
The Dune Framework: Basic Concepts and Recent
Developments

Peter Bastiana, Markus Blattb, Andreas Dednerc, Nils-Arne Dreierd, Christian
Engwerd, René Fritzed, Carsten Gräsere, Christoph Grüninger, Dominic

Kempfa, Robert Klöfkornf, Mario Ohlbergerd, Oliver Sanderg

aHeidelberg University
bDr. Blatt HPC-Simulation-Software & Services

cUniversity of Warwick
dApplied Mathematics: Institute of Analysis and Numerics, University of Münster

eFreie Universität Berlin
fNORCE Norwegian Research Centre AS

gTechnische Universität Dresden

Abstract

This paper presents the basic concepts and the module structure of the Dis-
tributed and Unified Numerics Environment and reflects on recent developments
and general changes that happened since the release of the first Dune version
in 2007 and the main papers describing that state [1, 2]. This discussion is
accompanied with a description of various advanced features, such as coupling
of domains and cut cells, grid modifications such as adaptation and moving
domains, high order discretizations and node level performance, non-smooth
multigrid methods, and multiscale methods. A brief discussion on current and
future development directions of the framework concludes the paper.

1. Introduction

The Distributed and Unified Numerics Environment Dune1 [1, 2] is a free
and open source software framework for the grid-based numerical solution of
partial differential equations (PDEs) that has been developed for more than
15 years as a collaborative effort of several universities and research institutes.
In its name, the term “distributed” refers to distributed development as well
as distributed computing. The enormous importance of numerical methods for
PDEs in applications has lead to the development of a large number of general
(i.e. not restricted to a particular application) PDE software projects. Many
of them will be presented in this special issue and an incomplete list includes
AMDIS [3], deal.II [4], FEniCS [5], FreeFEM [6], HiFlow [7], Jaumin [8], MFEM
[9], Netgen/NGSolve [10], PETSc [11], and UG4 [12].

1www.dune-project.org

Preprint submitted to Computers & Mathematics with Applications June 23, 2020

ar
X

iv
:1

90
9.

13
67

2v
3 

 [
cs

.M
S]

  2
2 

Ju
n 

20
20

www.dune-project.org


The distinguishing feature of Dune in this arena is its flexibility combined
with efficiency. The main goal of Dune is to provide well-defined interfaces for
the various components of a PDE solver for which then specialized implemen-
tations can be provided. Dune is not build upon one single grid data structure
or one sparse linear algebra implementation nor is the intention to focus on one
specific discretization method only. All these components are meant to be ex-
changeable. This philosophy is based on a quote from The Mythical Man-Month:
Essays on Software Engineering by Frederick Brooks [13, p. 102]:

Sometimes the strategic breakthrough will be a new algorithm, . . .
Much more often, strategic breakthrough will come from redoing the
representation of the data or tables. This is where the heart of a
program lies.

This observation has lead to the design principles of Dune stated in [2]:

i. Keep a clear separation of data structures and algorithms by providing
abstract interfaces algorithms can be built on. Provide different, special
purpose implementations of these data structures.

ii. Employ generic programming using templates in C++ to remove any over-
head of these abstract interfaces at compile-time. This is very similar to
the approach taken by the C++ standard template library (STL).

iii. Do not reinvent the wheel. This approach allows us also to reuse existing
legacy code from our own and other projects in one common platform.

Another aspect of flexibility in Dune is to structure code as much as possible
into separate modules with a clear dependence.

This paper is organized as follows. In Section 2 we describe the modular
structure of Dune and the ecosystem it provides. Section 3 describes the core
modules and their concepts while Section 4 describes selected advanced features
and illustrates the concepts with applications. The latter section is intended for
selective reading depending on the interests of the reader. Section 5 concludes
the paper with current development trends in Dune.

2. The Dune ecosystem

The modular structure of Dune is implemented by conceptually splitting
the code into separate, interdependent libraries. These libraries are referred
to as Dune-modules (not to be confused with C++-modules and translation
units). The Dune project offers a common infrastructure for hosting, develop-
ing, building, and testing these modules. However, modules can also be main-
tained independently of the official Dune infrastructure.

The so-called Dune core modules are maintained by the Dune developers
and each stable release provides consistent releases of all core modules. These
core modules are:

2



Dune-Common: Basic infrastructure for all Dune modules such as build scripts
or dense linear algebra.

Dune-Geometry: Reference elements, element transformations, and quadra-
ture rules.

Dune-Grid: Abstract interface for general grids featuring any dimension, var-
ious element types, conforming and nonconforming, local hierarchical re-
finement, and parallel data decomposition. Two example implementations
are provided.

Dune-ISTL: Abstract interfaces and implementations for sparse linear algebra
and iterative solvers on matrices with small dense blocks of sizes often
known at compile time.

Dune-LocalFunctions: Finite elements on the reference element.
While the core modules build a common, agreed-upon foundation for the

Dune framework, higher level functionality based on the core modules is devel-
oped by independent groups, and concurrent implementations of some features
focusing on different aspects exist. These additional modules can be grouped
into the following categories:
Grid modules provide additional implementations of the grid interface includ-

ing so-called meta grids, implementing additional functionality based on
another grid implementation.

Discretization modules provide full-fledged implementations of finite element,
finite volume, or other grid based discretization methods using the core
modules. The most important ones are Dune-Fem, Dune-Fufem, and
Dune-PDELab.

Extension modules provide additional functionality interesting for all Dune
users which are not yet core modules. Examples currently are Python
bindings, a generic implementation of grid functions, and support for sys-
tem testing.

Application modules provide frameworks for applications. They make heavy
use of the features provided by the Dune ecosystem but do not intend to
merge upstream as they provide application-specific physical laws, include
third-party libraries, or implement methods outside of Dune’s scope. Ex-
amples are the porous media simulators OPM [14] and DuMux [15], the
FEM toolbox KASCADE7 [16], and the reduced basis method module
Dune-RB [17].

User modules are all other Dune modules that usually provide applications
implementations for specific research projects and also new development
features that are not yet used by a large number of other Dune users but
over time may become extension modules.

Some of the modules that are not part of the Dune core are designated as so-
called staging modules. These are considered to be of wider interest and may
be proposed to become part of the core in the future.

The development of the Dune software takes place on the Dune gitlab in-
stance (https://gitlab.dune-project.org) where users can download and clone
all openly available Dune git repositories. They can create their own new
projects, discuss issues, and open merge requests to contribute to the code base.

3

https://gitlab.dune-project.org


The merge requests are reviewed by Dune developers and others who want to
contribute to the development. For each commit to the core and extension
modules continuous integration tests are run to ensure code stability.

3. Dune core modules and re-usable concepts

In this section we want to give an overview of the central components of
Dune, as they are offered through the core modules. These modules are de-
scribed as they are in Dune version 2.7, released in January 2020. Focus of
the core modules is on those components modeling mathematical abstractions
needed in a finite element method. We will discuss in detail the Dune-Grid and
Dune-ISTL modules, explain the basic ideas of the Dune-LocalFunctions
and Dune-Functions module, and discuss how the recently added Python
support provided by the Dune-Python module works. While Dune-Common
offers central infrastructure and foundation classes, its main purpose is that of
a generic C++ toolbox and we will only briefly introduce it, when discussing
the build system and infrastructure in general.

3.1. The Dune grid interface – Dune-Grid

The primary object of interest when solving partial differential equations
(PDEs) are functions

f : Ω→ R,

where the domain Ω is a (piecewise) differentiable d−manifold embedded in Rw,
w ≥ d, and R = Rm or R = Cm is the range. In grid-based numerical methods
for the solution of PDEs the domain Ω is partitioned into a finite number of
open, bounded, connected, and nonoverlapping subdomains Ωe, e ∈ E, E the
set of elements, satisfying⋃

e∈E
Ωe = Ω and Ωe ∩ Ωe′ = ∅ for e 6= e′.

This partitioning serves three separate but related tasks:

i. Description of the manifold. Each element e provides a diffeomorphism
(invertible and differentiable map) µe : Ω̂e → Ωe from its reference domain
Ω̂e ⊂ Rd to the subdomain Ωe ⊂ Rw. It is assumed that the maps µe are
continuous and invertible up to the boundary ∂Ω̂e. Together these maps
give a piecewise description of the manifold.

ii. Computation of integrals. Integrals can be computed by partitioning and
transformation of integrals

∫
Ω
f(x) dx =

∑
e∈E

∫
Ω̂e
f(µe(x̂)) dµe(x̂). Typ-

ically, the reference domains Ω̂e have simple shape that is amenable to
numerical quadrature.

iii. Approximation of functions. Complicated functions can be approximated
subdomain by subdomain for example by multivariate polynomials pe(x)
on each subdomain Ωe.

4



The goal of Dune-Grid is to provide a C++ interface to describe such subdivi-
sions, from now on called a “grid”, in a generic way. Additionally, approximation
of functions (Task iii.) requires further information to associate data with the
constituents of a grid. The grid interface can handle arbitrary dimension d
(although naive grid-based methods become inefficient for larger d), arbitrary
world dimension w as well as different types of elements, local grid refinement,
and parallel processing.

3.1.1. Grid entities and topological properties

Our aim is to separate the description of grids into a geometrical part, mainly
the maps µe introduced above, and a topological part describing how the ele-
ments of the grid are constructed hierarchically from lower-dimensional objects
and how the grid elements are glued together to form the grid.

The topological description can be understood recursively over the dimen-
sion d. In a one-dimensional grid, the elements are edges connecting two vertices
and two neighboring elements share a common vertex. In the combinatorial de-
scription of a grid the position of a vertex is not important but the fact that
two edges share a vertex is. In a two-dimensional grid the elements might be
triangles and quadrilaterals which are made up of three or four edges, respec-
tively. Elements could also be polygons with any number of edges. If the grid
is conforming, neighboring elements share a common edge with two vertices or
at least one vertex if adjacent.

In a three-dimensional grid elements might be tetrahedra or hexahedra con-
sisting of triangular or quadrilateral faces, or other types up to very general
polyhedra.

In order to facilitate a dimension-independent description of a grid we call its
constituents entities. An entity e has a dimension dim(e), where the dimension
of a vertex is 0, the dimension of an edge is 1, and so on. In a d-dimensional
grid the highest dimension of any entity is d and we define the codimension of
an entity as

codim(e) = d− dim(e).

We introduce the subentity relation ⊆ with e′ ⊆ e if e′ = e or e′ is an entity
contained in e, e.g. a face of a hexahedron. The set U(e) = {e′ : e′ ⊆ e} denotes
all subentities of e. The type of an entity type(e) is characterized by the graph
(U(e),⊆) being isomorphic to a specific reference entity ê ∈ Ê (the set of all
reference entities).

A d-dimensional grid is now given by all its entities Ec of codimension 0 ≤
c ≤ d. Entities of each set Ec are represented by a different C++ type depending
on the codimension c as a template parameter. In particular we call Ed the set of
vertices, Ed−1 the set of edges, E1 the set of facets, and E0 the set of elements.
Grids of mixed dimension are not allowed, i.e. for every e′ ∈ Ec, c > 0 there
exists e ∈ E0 such that e′ ⊆ e. We refer to [1, 18] for more details on formal
properties of a grid.

Dune provides several implementations of grids all implementing the Dune-
Grid interface. Algorithms can be written generically to operate on different

5



grid implementations. We now provide some code snippets to illustrate the
Dune-Grid interface. First we instantiate a grid:

const int dim = 4;
using Grid = Dune:: YaspGrid <dim>;
Dune:: FieldVector <double ,dim> length ; for (auto& l : length ) l=1.0;
std::array<int ,dim> nCells ; for (auto& c : nCells ) c=4;
Grid grid(length , nCells );

Here we selected the YaspGrid implementation providing a d-dimensional struc-
tured, parallel grid. The dimension is set to 4 and given as a template parameter
to the YaspGrid class. Then arguments for the constructor are prepared, which
are the length of the domain per coordinate direction and the number of el-
ements per direction. Finally, a grid object is instantiated. Construction is
implementation specific. Other grid implementations might read a coarse grid
from a file.

Grids can be refined in a hierarchic manner, meaning that elements are
subdivided into several smaller elements. The element to be refined is kept in the
grid and remains accessible. More details on local grid refinement are provided
in Section 4.1 below. The following code snippet refines all elements once and
then provides access to the most refined elements in a so-called GridView:

grid. globalRefine (1);
auto gv = grid. leafGridView ();

A GridView object provides read-only access to the entities of all codimensions
in the view. Iterating over entities of a certain codimension is done by the
following snippet using a range-based for loop:

const int codim = 2;
for ( const auto& e : entities (gv ,Dune::Codim<codim>{}))

if (!e.type (). isCube ()) std::cout << "no cube" << std::endl;

In the loop body the type of the entity is accessed and tested for being a cube
(here of dimension 2=4-2). Access via more traditional names is also possible:

for ( const auto& e : elements (gv)) assert (e.codim ()==0);
for ( const auto& e : vertices (gv)) assert (e.codim ()==dim);
for ( const auto& e : edges(gv)) assert (e.codim ()==dim-1);
for ( const auto& e : facets (gv)) assert (e.codim ()==1);

Range-based for loops for iterating over entities have been introduced with re-
lease 2.4 in 2015. Entities of codimension 0, also called elements, provide an
extended range of methods. For example it is possible to access subentities of
all codimensions that are contained in a given element:

for ( const auto& e : elements (gv))
for ( unsigned int i=0; i<e. subEntities (codim); ++i)

auto v = e. template subEntity <codim>(i);

This corresponds to iterating over U(e) ∩ Ec for a given e ∈ E0.

3.1.2. Geometric aspects

Geometric information is provided for e ∈ Ec by a map µe : Ω̂e → Ωe,
where Ω̂e is the domain associated with the reference entity ê of e and Ωe is its

6



image on the manifold Ω. Usually Ω̂e is one of the usual shapes (simplex, cube,
prism, pyramid) where numerical quadrature formulae are available. However,
the grid interface also supports arbitrary polygonal elements. In that case no
maps µe are provided and only the measure and the barycenter of each entity
is available. Additionally, the geometry of intersections Ωe ∩ Ωe′ with d − 1-
dimensional measure for e, e′ ∈ E0 is provided as well.

Working with geometric aspects of a grid requires working with positions, e.g.
x ∈ Ω̂e, functions, such as µe, or matrices. In Dune these follow the DenseVector
and DenseMatrix interface and the most common implementations are the class
templates FieldVector and FieldMatrix providing vectors and matrices with
compile-time known size built on any data type having the operations of a field.
Here are some examples (using dimension 3):

Dune:: FieldVector <double ,3> x({1.0,2.0,3.0}); // construct a vector
Dune:: FieldVector <double ,3> y(x);
y *= 1.0/3.0; // scale by scalar value
double s = x*y; // scalar product
double norm = x. two_norm (); // compute Euclidean norm
Dune:: FieldMatrix <double ,3,3> A({{1,0,0},{0,1,0},{0,0,1}});
A.mv(x,y); // y = Ax
A.usmv(0.5,x,y); // y += 0.5*Ax

An entity e (of any codimension) offers the method geometry() returning (a
reference to) a geometry object which provides, among other things, the map
µe : Ω̂e → Ωe mapping a local coordinate in its reference domain Ω̂e to a global
coordinate in Ωe. Additional methods provide the barycenter of Ωe and the
volume of Ωe, for example. They are used in the following code snipped to
approximate the integral over a given function using the midpoint rule:

auto u = [](const auto& x){ return std::exp(x. two_norm ());};
double integral =0.0;
for ( const auto& e : elements (gv))

integral += u(e. geometry (). center ())*e. geometry (). volume ();

For more accurate integration Dune provides a variety of quadrature rules which
can be selected depending on the reference element and quadrature order. Each
rule is a container of quadrature points having a position and a weight. The
code snippet below computes the integral over a given function with fifth or-
der quadrature rule on any grid in any dimension. It illustrates the use of
the global() method on the geometry which evaluates the map µe for a given
(quadrature) point. The method integrationElement() on the geometry pro-
vides the measure arising in the transformation formula of the integral.

double integral = 0.0;
using QR = Dune:: QuadratureRules <Grid::ctype ,Grid:: dimension >;
for ( const auto& e : elements (gv)) {

auto geo = e. geometry ();
const auto& quadrature = QR::rule(geo.type (),5);
for (const auto& qp : quadrature )

integral += u(geo. global (qp. position ()))
*geo. integrationElement (qp. position ())*qp. weight ();

}

7



µI

µi(I)

µo(I)

ηI,i(I)

ηI,o(I)
ΩI

Ω̂I

Ω̂i(I)

Ω̂o(I)

Ωi

Ωo

Figure 1: Maps related to an interior intersection.

An intersection I describes the intersection ΩI = ∂Ωi(I) ∩ ∂Ωo(I) of two
elements i(I) and o(I) in E0. Intersections can be visited from each of the
two elements involved. The element from which I is visited is called the inside
element i(I) and the other one is called the outside element o(I). Note that I
is not necessarily an entity of codimension 1 in the grid. In this way Dune-
Grid allows for nonconforming grids. In a conforming grid, however, every
intersection corresponds to a codimension 1 entity. For an intersection three
maps are provided:

µI : Ω̂I → ΩI , ηI,i(I) = Ω̂I → Ω̂i(I), ηI,o(I) = Ω̂I → Ω̂o(I).

The first map describes the domain ΩI by a map from a corresponding reference
element. The second two maps describe the embedding of the intersection into
the reference elements of the inside and outside element, see Figure 1, such that

µI(x̂) = µi(I)(ηI,i(I)(x̂)) = µo(I)(ηI,o(I)(x̂)).

Intersections ΩI = ∂Ωi(I) ∩ ∂Ω with the domain boundary are treated in the
same way except that the outside element is omitted.

As an example consider the approximative computation of the elementwise
divergence of a vector field dive =

∫
Ωe
∇ · f(x)dx =

∫
∂Ωe

f · nds for all elements

e ∈ E0. Using again the midpoint rule for simplicity this is achieved by the
following snippet:

auto f = [](const auto& x){ return x;};
for ( const auto& e : elements (gv)) {

double divergence =0.0;
for (const auto& I : intersections (gv ,e)) {

auto geo = I. geometry ();
divergence += f(geo. center ())*I. centerUnitOuterNormal ()

*geo. volume ();
}

}

8



3.1.3. Attaching data to a grid

In grid-based methods data, such as degrees of freedom in the finite element
method, is associated with geometric entities and stored in containers, such as
vectors, external to the grid. To that end, the grid provides an index for each
entity that can be used to access random-access containers. Often there is only
data for entities of a certain codimension and geometrical type (identified by
its reference entity). Therefore we consider subsets of entities having the same
codimension and reference entity

Ec,ê = {e ∈ Ec : e has reference entity ê}.

The grid provides bijective maps

indexc,ê : Ec,ê → {0, . . . , |Ec,ê| − 1}

enumerating all the entities in Ec,ê consecutively and starting with zero. In
simple cases where only one data item is to be stored for each entity of a given
codimension and geometric type this can be used directly to store data in a
vector as shown in the following example:

auto& indexset = gv. indexSet ();
Dune:: GeometryType gt(Dune:: GeometryTypes ::cube(dim)); // encodes (c, ê)
std:: vector < double > volumes ( indexset .size(gt)); // allocate container
for ( const auto& e : elements (gv))

volumes [ indexset .index(e)] = e. geometry (). volume ();

Here, the volumes of the elements in a single element type grid are stored in
a vector. Note that a GeometryType object encodes both, the dimension and
the geometric type, e.g. simplex or cube. In more complicated situations an
index map for entities of different codimensions and/or geometry types needs
to be composed of several of the simple maps. This leaves the layout of degrees
of freedom in a vector under user control and allows realization of different
blocking strategies. Dune-Grid offers several classes for this purpose, such
as MCMGMapper which can map entities of multiple codimensions and multiple
geometry types to a consecutive index.

When a grid is modified through adaptive refinement, coarsening, or load
balancing in the parallel case, the index maps may change as they are required
to be consecutive and zero-starting. In order to store and access data reliably
when the grid is modified each geometric entity is equipped with a global id:

globalid :

d⋃
c=0

Ec → I

where I is a set of unique identifiers. The map globalid is injective and persistent,
i.e. globalid(e) does not change under grid modification when entity e is in the
old and the new grid, and globalid(e) is not used when e was in the old grid
and is not in the new grid (note that global ids may be used again after the
next grid modification). There are very weak assuptions on the ids provided by

9



globalid. They don’t need to be consecutive, actually they don’t even need to
be numbers. Here is how element volumes would be stored in a map:

const auto& globalidset = gv.grid (). globalIdSet ();
using GlobalId = Grid:: GlobalIdSet :: IdType ;
std::map<GlobalId , double > volumes2 ;
for ( const auto& e : elements (gv))

volumes2 [ globalidset .id(e)] = e. geometry (). volume ();

The type GlobalId represents I and must be sortable and hashable. This re-
quirement is necessary to be able to store data for example in an std::map
or std::unordered_map. For example, YaspGrid uses the bigunsignedint class
from Dune-Common that implements arbitrarily large unsigned integers, while
Dune-UGGrid uses a std::uint_least64_t which is stored in each entity. In
Dune-ALUGrid the GlobalId of an element is computed from the macro ele-
ment’s unique vertex ids, codimension, and refinement information.

The typical use case would be to store data in vectors and use an indexset
while the grid is in read-only state and to copy only the necessary data to a map
using globalidset when the grid is being modified. Since using a std::map may
not be the most efficient way to store data, a utility class PersistentContainer<Grid,
T> exists, that implements the strategy outlined above for arbitrary types T. To
allow for optimization, this class can be specialized by the grid implementation
using structural information to optimize performance.

3.1.4. Grid refinement and coarsening

Adaptive mesh refinement using a posteriori error estimation is an estab-
lished and powerful technique to reduce the computational effort in the numer-
ical solution of PDEs, see e.g.[19]. Dune-Grid supports the typical estimate-
mark-refine paradigm as illustrated by the following code example:

const int dim = 2;
using Grid = Dune:: UGGrid <dim>;
auto pgrid = std:: shared_ptr <Grid>(

Dune:: GmshReader <Grid>::read(" circle .msh"));
auto h = [](const auto& x)

{auto d=x. two_norm (); return 1E-6*(1-d)+0.01*d;};
for (int i=0; i<15; ++i) {

auto gv = pgrid-> leafGridView ();
for (const auto& e : elements (gv)) {

auto diameter =std::sqrt(e. geometry (). volume ()/M_PI);
if ( diameter >h(e. geometry (). center ())) pgrid->mark(1,e);

}
pgrid-> preAdapt ();
pgrid->adapt ();
pgrid-> postAdapt ();

}

Here the UGGrid implementation is used in dimension 2. In each refinement
iteration those elements with a diameter larger than a desired value given by
the function h are marked for refinement. The method adapt() actually modi-
fies the grid, while preAdapt() determines grid entities which might be deleted
and postAdapt() clears the information about new grid entities. In between

10



level 0

level 1

level 2

level 3

leaf

Figure 2: Level and leaf grid views.

preAdapt() and adapt() data from the old grid needs to be stored using per-
sistent global ids and in between adapt() and postAdapt() this data is trans-
ferred to the new grid. In order to identify elements that may be affected by
grid coarsening and refinement the element offers two methods. The method
mightVanish(), typically used between preAdapt() and adapt(), returns true if
the entity might vanish during the grid modifications carried out in adapt().
Afterwards, the method isNew() returns true if an element was newly created
during the previous adapt() call. How an element is refined when it is marked for
refinement is specific to the implementation. Some implementations offer sev-
eral ways to refine an element. Furthermore some grids may refine non-marked
elements in an implementation specific way to ensure certain mesh properties
like, e.g., conformity. For implementation of data restriction and prolongation a
geometryInFather() method provides geometrical mapping between parent and
children elements.

Grid refinement is hierarchic in all currently available Dune-Grid imple-
mentations. Each entity is associated with a grid level. After construction of a
grid object all its entities are on level 0. When an entity is refined the entities
resulting from this refinement, also called its direct children, are added on the
next higher level. Each level-0-element and all its descendants form a tree. All
entities on level l are the entities of the level l grid view. All entities that are
not refined are the entities of the leaf grid view. This is illustrated in Figure 2.
The following code snippet traverses all vertices on all levels of the grid using a
levelGridView:

for (int l=0; l<=pgrid-> maxLevel (); l++)
for (const auto& v : vertices (pgrid-> levelGridView (l)))

assert ( v.level () == l); // check level consistency

Each GridView provides its own IndexSet and so allows to associate data with
entities of a single level or with all entities in the leaf view.

3.1.5. Parallelization

Parallelization in Dune-Grid is based on three concepts: i. data decom-
position, ii. message passing paradigm and iii. single-program-multiple-data
(SPMD) style programming. As for the refinement rules in grid adaptation
the data decomposition is implementation specific but must adhere to certain

11



rules:

i. The decomposition of codimension 0 entities E0 into sets E0,r assigned to
process rank r form a (possibly overlapping) partitioning

⋃p−1
i=0 E

c,r = Ec.

ii. When process r has a codimension 0 entity e then it also stores all its
subentities, i.e. e ∈ E0,r ∧ Ec 3 f ⊆ e⇒ f ∈ Ec,r for c > 0.

iii. Each entity is assigned a partition type attribute

partitiontype(e) ∈ {interior,border, overlap, front, ghost}

with the following semantics:

iii.a. Codimension 0 entities may only have the partition types interior, overlap,
or ghost. The interior codimension 0 entities E0,r,interior = {e ∈
E0,r : partitiontype(e) = interior} form a nonoverlapping partition-
ing of E0. Codimension 0 entities with partition type overlap can
be used like regular entities whereas those with partition type ghost
only provide a limited functionality (e.g. intersections may not be
provided).

iii.b. The partition type of entities with codimension c > 0 is derived from
the codimension 0 entities they are contained in. For any entity f ∈
Ec, c > 0, set Σ0(f) = {e ∈ E0 : f ⊆ e} and Σ0,r(f) = Σ0(f) ∩E0,r.
If Σ0,r(f) ⊆ E0,r,interior and Σ0,r(f) = Σ0(f) then f is interior, else
if Σ0,r(f) ∩ E0,r,interior 6= ∅ then f is border, else if Σ0,r(f) contains
only overlap entities and Σ0,r(f) = Σ0(f) then f is overlap, else if
Σ0,r(f) contains overlap entities then f is front, else f is ghost.

Two examples of typical data decomposition models are shown in Figure 3. Vari-
ant a) on the left with interior/overlap codimension 0 entities is implemented by
YaspGrid, variant b) on the right with the interior/ghost model is implemented
by UGGrid and ALUGrid.

To illustrate SPMD style programming we consider a simple example. Grid
instantiation is done by all processes r with identical arguments and each stores
its respective grid partition Ec,r.

const int dim = 2;
using Grid = Dune:: YaspGrid <dim>;
Dune:: FieldVector <double ,dim> length ; for (auto& l: length ) l=1.0;
std::array<int ,dim> nCells ; for (auto& c : nCells ) c=20;
Grid grid(length ,nCells ,std:: bitset <dim>(0ULL),1);
auto gv = grid. leafGridView ();

Here, the third constructor argument of the grid controls periodic boundary
conditions and the last argument sets the amount of overlap in codimension 0
entities.

Parallel computation of an integral over a function using the midpoint rule
is illustrated by the following code snippet:

12



partitiontype(e) ∈ {interior,border, overlap, front, ghost}

Figure 3: Two types of data decomposition implemented by YaspGrid (left) and
UGGrid/ALUGrid (right). The colored entities show the entities of one rank. Sub-entities
of elements assume the partition type of the element unless those sub-entities are located on
a border between different partition types of interior,overlap or ghost.

auto u = [](const auto& x){ return std::exp(x. two_norm ()); };
double integral =0.0;
for ( const auto& e : elements (gv ,Dune:: Partitions :: interior ))

integral += u(e. geometry (). center ())*e. geometry (). volume ();
integral = gv.comm ().sum( integral );

In the range-based for loop we specify in addition that iteration is restricted to
interior elements. Thus, each element of the grid is visited exactly once. After
each process has computed the integral on its elements a global sum (allreduce)
produces the result which is now known by each process.

Data on overlapping entities Ec,r ∩ Ec,s stored by two processes r 6= s can
be communicated with the abstraction CommDataHandleIF describing which infor-
mation is sent for each entity and how it is processed. Communication is then
initiated by the method communicate() on a GridView. Although all current
parallel grid implementation use the message passing interface (MPI) in their
implementation, nowhere the user has to make explicit MPI calls. Thus, an
implementation could also use shared memory access to implement the Dune-
Grid parallel functionality. Alternatively, multithreading can be used within a
single process by iterating over grid entities in parallel. This has been imple-
mented in the Exa-Dune project [20, 21] or in Dune-Fem [22] but a common
interface concept is not yet part of Dune core functionality.

3.1.6. List of grid implementations

The following list gives an overview of existing implementations of the Dune-
Grid interface and their properties and the Dune module these are imple-
mented in. Where noted, the implementation wraps access to an external li-
brary. A complete list can be found on the Dune web page https://dune-project.
org/doc/grids/.

13

https://dune-project.org/doc/grids/
https://dune-project.org/doc/grids/


AlbertaGrid (dune-grid) Provides simplicial grids in two and three dimensions
with bisection refinement based on the ALBERTA software [23].

ALUGrid (dune-alugrid) Provides a parallel unstructured grid in two and three
dimensions using either simplices or cubes. Refinement is nonconforming
for simplices and cubes. Conforming refinement based on bisection is
supported for simplices only[24].

CurvilinearGrid (dune-curvilineargrid) Provides a parallel simplicial grid [25]
supporting curvilinear grids read from Gmsh [26] input.

CpGrid (opm-grid) Provides an implementation of a corner point grid, a non-
conforming hexahedral grid, which is the standard in the oil industry
https://opm-project.org/.

FoamGrid (dune-foamgrid) Provides one and two-dimensional grids embedded in
three-dimensional space including non-manifold grids with branches [27].

OneDGrid (dune-grid) Provides an adaptive one-dimensional grid.

PolygonGrid (dune-polygongrid) A grid with polygonal cells (2d only).

UGGrid (dune-grid) Provides a parallel, unstructured grid with mixed element
types (triangles and quadrilaterals in two, tetrahedra, pyramids, prisms,
and hexahedra in three dimensions) and local refinement. Based on the
UG library [28].

YaspGrid (dune-grid) A parallel, structured grid in arbitrary dimension using
cubes. Supports non-equidistant mesh spacing and periodic boundaries.

Metagrids use one or more implementations of the Dune-Grid interface
to provide either a new implementation of the Dune-Grid interface or new
functionality all together. Here are examples:

GeometryGrid (dune-grid) Takes any grid and replaces the geometries of all en-
tities e by the concatenation µgeo◦µe where µgeo is a user-defined mapping,
see Section 4.1.2.

PrismGrid (dune-metagrid) Takes any grid of dimension d and extends it by a
structured grid in direction d+ 1 [29].

GridGlue (dune-grid-glue) Takes two grids and provides a projection of one on
the other as a set of intersections [30, 31], see Section 4.2.1.

MultiDomainGrid (dune-multidomaingrid) Takes a grid and provides possibly
overlapping sets of elements as individual grids [32], see Section 4.2.2.

SubGrid (dune-subgrid) Takes a grid and provides a subset of its entities as a
new grid [33].

14

https://opm-project.org/


IdentityGrid (dune-grid) Wraps all classes of one grid implementation in new
classes that delegate to the existing implementation. This can serve as an
ideal base to write a new metagrid.

CartesianGrid (dune-metagrid) Takes a unstructured quadrilateral or hexahe-
dral grid (e.g. ALUGrid or UGGrid) and replaces the geometry implementa-
tion with a strictly Cartesian geometry implementation for performance
improvements.

FilteredGrid (dune-metagrid) Takes any grid and applies a binary filter to the
entity sets for codimension 0 provided by the grid view of the given grid.

SphereGrid (dune-metagrid) A meta grid that provides the correct spherical
mapping for geometries and normals for underlying spherical grids.

3.1.7. Major developments in the Dune-Grid interface

Version 1.0 of the Dune-Grid module was released on December 20, 2007.
Since then a number of improvements were introduced, including the following:

• Methods center(), volume(), centerUnitOuterNormal() on Geometry and
Intersection were introduced to support FV methods on polygonal and
polyhedral grids.

• GridFactory provides an interface for portably creating initial meshes.
GmshReader uses that to import grids generated with gmsh.

• EntitySeed replaced EntityPointer; this allows the grid to free the memory
occupied by the entity and to recreate the entity from the seed.

• The Dune-Geometry module was introduced as a separate module to
provide reference elements, geometry mappings, and quadrature formulae
independent of Dune-Grid.

• The automatic type deduction using auto makes using heavily template-
based libraries such as Dune more convenient to use.

• Initially, the Dune-Grid interface tried to avoid copying objects for per-
formance reasons. Many methods returned const references to internal
data and disallowed copying. With copy elision becoming standard, copy-
able lightweight entities and intersections were introduced. Given an
Entity with codimension c to obtain the geometry one would write:

using Geometry = typename Grid:: template Codim< c >:: Geometry ;
const Geometry & geo = entity . geometry ();

whereas in newer Dune versions one can simply write:

const auto geo = entity . geometry ();

15



using both, the automatic type deduction and the fact that objects are
copyable. A performance comparison discussing the references vs. copy-
able grid objects can be found in [34, 35]. In order to save on memory
when storing entities the entity seed concept was introduced.

• Range-based for loops for entities and intersections made iteration over
grid entities very convenient. With newer Dune versions this is simply:

for( const auto& element : Dune:: elements ( gridView ) )
const auto geo = element . geometry ();

• UGGrid and ALUGrid became dune modules instead of being external li-
braries. This way they can be downloaded and installed like other dune
modules.

As the Dune grid interface has been adapted only slightly, it proved to
work for a wide audience. Looking back, the separation of both topology and
geometry, and mesh and data were good principles. Further, having entities as
a view was a successful choice. Having Dune split up in modules helped to
keep the grid interface separated from other concerns. Some interface changes
resulted from extensive advancements of C++11 and the subsequent standards;
many are described in [34]. Other changes turned out to make the interface
easier to use or to enable different methods on top of the grid interface.

3.2. The template library for iterative solvers – Dune-ISTL

Dune-ISTL is the linear algebra library of Dune. It consists of two main
components. First it offers a collection of different vector and matrix classes.
Second it features different solvers and preconditioners. While the grid interface
consists of fine grained interfaces and relies heavily on static polymorphism, the
abstraction in Dune-ISTL uses a combination of dynamic and static polymor-
phism.

3.2.1. Concepts behind the Dune-ISTL interfaces

A major design decision in Dune-ISTL was influenced by the observation,
that linear solvers can significantly benefit from inherent structure of PDE dis-
cretizations. For example a discontinuous Galerkin (DG) discretization leads to
a block structured matrix for certain orderings of the unknowns, the same holds
for coupled diffusion reaction systems with many components. Making use of
this structure often allows to improve convergence of the linear solver, reduce
memory consumption and improve memory throughput.

Dune-ISTL offers different vector and matrix implementations and many
of these can be nested. The whole interface is fully templatized w.r.t. the
underlying scalar data type (double, float, etc.), also called field type. Examples
of such nested types are:

Dune::BlockVector<Dune::FieldVector<std::complex<double>,2>> a dynamic block
vector, which consists of N blocks of vectors with static size 2 over the field
of the complex numbers, i.e. a vector in (C2)N .

16



Dune::BCRSMatrix<Dune::FieldMatrix<float,27,27>> a sparse block matrix with
dense 27 × 27 matrices as its entries. The dense matrices use a low preci-
sion float representation. The whole matrix represents a linear mapping
(R27×27)N×M .

Dune::BCRSMatrix<Dune::BCRSMatrix<double>> a (sparse) matrix whose entries
are sparse matrices with scalar entries. These might for example arise from
a Taylor–Hood [36] discretization of the Navier–Stokes equations, where we
obtain a 4× 4 block matrix of sparse matrices.

It is not necessary to use the same field type for matrices and vectors, as the
library allows for mixed-precision setups with automatic conversions and deter-
mination of the correct return type of numeric operations. In order to allow for
an efficient access to individual entries in matrices or vectors, these matrix/vec-
tor interfaces are static and make use of compile-time polymorphism, mainly by
using duck typing2 like in the STL3.

Solvers on the other hand can be formulated at a very high level of ab-
straction and are a perfect candidates for dynamic polymorphism. Dune-ISTL
defines abstract interfaces for operators, scalar products, solvers, and precondi-
tioners. A solver, like LoopSolver, CGSolver, and similar is parameterized with
the operator, possibly a preconditioner, and usually the standard euclidean
scalar product. The particular implementations, as well as the interface, are
strongly typed on the underlying vector types, but it is possible to mix and
shuffle different solvers and preconditioners dynamically at runtime. While lin-
ear operators are most often stored as matrices, the interface only requires that
an operator can be applied to a vector and thus also allows for implementing
on-the-fly operators for implicit methods; this drastically reduces the memory
consumption and allows for increased arithmetic intensity and thus overcomes
performance limitations due to slow memory access. The benefit of on-the-fly
operators is highlighted in section 4.5. It should be noted that many strong pre-
conditioners, like the Dune::Amg::AMG have stricter requirements on the operator
and need access to the full matrix.

The interface design also offers a simple way to introduce parallel solvers.
The parallelization of Dune-ISTL’s data structures and solvers differs signif-
icantly from that of other libraries like PETSc. While many libraries rely on
a globally consecutive numbering of unknowns, we only require a locally con-
secutive numbering, which allows for fast access into local containers. Global
consistency is then achieved by choosing appropriate parallel operators, precon-
ditioners, and scalar products. Note that the linear solvers do not need any
information about parallel data distribution, as they only rely on operator (and
preconditioner) applications and scalar product computations, which are hid-
den under the afore introduced high level abstractions. This allows for a fully

2Used characteristics rather than actual type for algorithms: “if it walks like a duck and
quacks like a duck, it is a duck”

3standard template library

17



transparent switch between sequential and parallel computations.

3.2.2. A brief history

The development of Dune-ISTL began nearly in parallel with Dune-Grid
around the year 2004 and it was included in the 1.0 release of Dune in 2007. The
serial implementation was presented in [37]. One goal was to make Dune-ISTL
usable standalone without Dune-Grid. Hence a powerful abstraction of parallel
iterative solvers based on the concept of parallel index sets was developed as
described in [38]. As a first showcase of it an aggregation based parallel algebraic
multigrid method for continuous and discontinuous Galerkin discretizations of
heterogeneous elliptic problems was added to the library, see [39, 40]. It was
one of the first solvers scaling to nearly 295,000 processors on a problem with
150 billion unknowns, see [41].

3.2.3. Feature overview and recent developments

The afore outlined concepts are implemented using several templatized C++
structures. Linear operators, that do not do their computations on the fly,
will often use an underlying matrix representation. Dune-ISTL offers dense
matrices, both either of dynamic size or size known already at compile time, as
well as several sparse (block) matrices. For a comprehensive list see Table 1.
The corresponding vector classes can be found in Table 2.

Table 1: Matrix types in Dune-ISTL, the first three matrix types can not be used as a block
matrices.

class implements

FieldMatrix (small) matrix with size known at compile
time

DiagonalMatrix storage optimal representation of a diagonal
matrix with size known at compile time

ScaledIdentityMatrix storage optimal representation of a scaled
identity matrix with size known at compile
time

BCRSMatrix (block) compressed row storage matrix

BDMatrix (block) diagonal matrix

BTDMatrix (block) tri-diagonal matrix

Matrix generic dynamic dense (block) matrix

MultiTypeBlockMatrix dense block matrix with differing block type
known at compile time

The most important building blocks of the iterative solvers in Dune-ISTL
are the preconditioners. Together with the scalar product and linear operator
they govern whether a solver will be serial/sequential only or capable of run-
ning in parallel. To mark sequential solvers the convention is that their name
starts with Seq. Using the idea of inexact block Jacobi methods or Schwarz type
methods, the BlockPreconditioner allows to turn any sequential into a parallel

18



Table 2: Vector types in Dune-ISTL, the first vector type can not be used as a block vector.

class implements

FieldVector (small) vector with size known at compile time

BVector (block) vector, blocks have same size

VariableBlockVector block vector where each block may vary in size

MultiTypeBlockVector block vector with differing block type known
at compile time

preconditioner, given information about the parallel data decomposition. Such
so-called hybrid preconditioners are commonly used in parallel (algebraic) multi-
grid methods, see [42]. A list of preconditioners provided by Dune-ISTL is in
Table 3. The third column indicates whether a preconditioner is sequential (s),
parallel (p), or both. For simple preconditioners, that do not need to store a de-
composition, a recursion level can be given to the class. Those are marked with
“yes” in the last column. The level given to the class indicates where the inver-
sion on the matrix block happens. For a BCRSMatrix<FieldMatrix<double,n,m>>
a level of 0 will lead to the inversion of the scalar values inside of the small
dense matrices whereas a level of 1 would invert the FieldMatrix. The latter
variant, which leads to a block preconditioner, is the default. All of the listed
preconditioners can be used in the iterative solvers provided by Dune-ISTL.
Table 4 contains a list of these together with the direct solvers. The latter are
only wrappers to existing well established libraries.

Table 3: Preconditioners in Dune-ISTL

class implements s/p recursive

Richardson Richardson (multiplicate with a
scalar)

s no

SeqJac Jacobi method s yes

SeqSOR successive overrelaxation (SOR) s yes

SeqSSOR symmetric SOR s yes

SeqOverlappingSchwarz overlapping Schwarz for arbi-
trary subdomains

s no

SeqILU incomplete LU decomposition s no

SeqILDL incomplete LDL decomposition s no

Pamg::AMG algebraic multigrid solver based
on aggregation

s/p no

BlockPreconditioner wraps sequential preconditioner
to parallel hybrid one

p no

In recent time Dune-ISTL has seen a lot of new development. Both, regard-
ing usability, as well as feature-wise. We now briefly discuss some noteworthy
improvements.

19



Table 4: Iterative and direct solvers in Dune-ISTL. Some of these solvers can handle non-static
preconditioner, i.e. the preconditioner might change from iteration to iteration.

class implements direct

LoopSolver simply applies preconditioner in
each step

no

GradientSolver simple gradient solver no

CGSolver conjugate gradient method no

BiCGSTABSolver biconjugate gradient stabilized
method

no

MINRESSolver minimal residual method no

RestartedGMResSolver restarted GMRes solver no

RestartedFlexibleGMResSolver flexible restarted GMRes solver
(for non-static preconditioners)

no

GeneralizedPCGSolver flexible conjugate gradient solver
(for non-static preconditioners)

no

RestartedFCGSolver flexible conjugate gradient solver
proposed by Notay (for non-
static preconditioners)

no

CompleteFCGSolver flexible conjugate gradient
method reusing old orthogonal-
izations when restarting

no

SuperLU Wrapper for SuperLU library yes

UMFPack Wrapper for UMFPack direct
solver library

yes

i. From the start, Dune-ISTL was designed to support nested vector and
matrix structures. However, the nesting recursion always had to end in
FieldVector and FieldMatrix, respectively. Scalar entries had to be writ-
ten as vectors of length 1 or matrices of size 1×1. Exploiting modern C++
idioms now allows to support scalar values directly to end the recursion.
In other words, it is now possible to write

Dune:: BCRSMatrix < double >

instead of the lengthy

Dune:: BCRSMatrix < FieldMatrix <double ,1,1>>

Internally, this is implemented using the Dune::IsNumber traits class to
recognize scalar types. Note that the indirections needed internally to
implement the transparent use of scalar and blocked entries is completely
optimized away by the compiler.

ii. As discussed in the concepts section, operators, solvers, preconditioners,
and scalar products offer only coarse grained interfaces. This allows to use
dynamic polymorphism. To enable full exchangeability of these classes at

20



runtime we introduced abstract base classes and now store shared pointers
to these base classes. With this change it is now possible to configure
the solvers at runtime. Additionally, most solvers can now be configured
using a Dune::ParameterTree object, which holds configuration parameters
for the whole program. A convenient solver factory is currently under
development, which will complete these latest changes. For example the
restarted GMRes solver was constructed as

Dune:: RestartedGMResSolver <V> solver (op , preconditioner , reduction ,
restart , maxit , verbose );

where reduction, restart, maxit, and verbose are just scalar parameters,
which the user usually wants to change often to tweak the solvers. Now
these parameters can be specified in a section of an INI-style file like:

[GMRES]
reduction = 1e-8
maxit = 500
restart = 10
verbose = 0

This configuration is parsed into a ParameterTree object, which is passed
to the constructor:

Dune:: RestartedGMResSolver <V> solver (op , preconditioner ,
parametertree );

iii. From a conceptual point of view Dune-ISTL was designed to support
vectors and matrices with varying block structure since the very first re-
lease. In practice, it took a very long time to actually fully support such
constructs. Only since the new language features of C++11 are avail-
able it was possible to implement the classes MultiTypeBlockVector and
MultiTypeBlockMatrix in a fully featured way. These classes implement
dense block matrices and vectors with different block types in different
entries. The user now can easily define matrix structures like

using namespace Dune;
using Row0 = MultiTypeBlockVector <

Matrix < FieldMatrix <double ,3,3>>,
Matrix < FieldMatrix <double ,3,1>> >;

using Row1 = MultiTypeBlockVector <
Matrix < FieldMatrix <double ,1,3>>,
Matrix < double > >;

MultiTypeBlockMatrix <Row0 ,Row1> A;

Such a matrix type would be natural, e.g., for a Taylor–Hood discretiza-
tion of a three-dimensional Stokes or Navier–Stokes problem, combining
a velocity vector field with a scalar pressure.

iv. With the Dune 2.6 release an abstraction layer for SIMD-vectorized data
types was introduced. This abstraction layer provides functions for trans-

21



parently handling SIMD data types, as provided by libraries, e.g. Vc4 [43,
44] or VectorClass [45], and scalar data types, like double or std::complex.
The layer consists of free-standing functions, for example Simd::lane(int
l, VT& v), where v is of vector-type VT and Simd::lane gives access to the
l-th entry of the vector. Operators like + or * are overloaded and applied
component-wise. The result of boolean expressions are also vectorized and
return data types with bool as scalar type. To handle these values Dune
offers functions like Simd::cond, Simd::allTrue, or Simd::anyTrue for test-
ing them. The Simd::cond function has the semantics of the ternary oper-
ator, which cannot be overloaded. This operator is necessary, as if-else
expressions might lead to different branches in the different lanes, which
contradicts the principle of vectorization.

Using this abstraction layer it is possible to construct a solver in Dune-
ISTL supporting multiple right hand sides. This is achieved by using the
vectorized type as field_type in the data structures. For example using
the type Vec4d, provided by VectorClass, the Vector type is constructed
as:

Dune:: BlockVector <Dune:: FieldVector <Vec4d , 1>>

It can be interpreted as a tall-skinny matrix in RN×4. Using these data
types has multiple advantages:

• Explicit use of vectorization instructions - Modern CPUs provide
SIMD-vectorization instructions, that can perform the same instruc-
tion on multiple data simultaneously. It is difficult for the compiler
to make use of these instructions automatically. With the above ap-
proach we can make explicit use of the vectorization instructions.

• Better utilization of memory bandwidth - The application of the op-
erator or the preconditioner is in most cases limited by the available
memory bandwidth. This means the runtime of these operations de-
pends on the amount of data that must be transferred from or to
the memory. With our vectorization approach the matrix has to be
loaded from memory only once for calculating k matrix–vector prod-
ucts.

• Reduction of communication overhead - On distributed systems the
cost for sending a message is calculated as αD + β, where D is the
amount of data, α is the bandwidth, and β is the latency. When
using vectorized solvers, k messages are fused to a single message.
Therefore the costs are reduced from k(αD + β) to kαD + β.

4note that an interface similar to Vc is part of the C++ Parallelism TS 2 standard

22



• Block Krylov methods - Block Krylov methods are Krylov methods for
systems with multiple right hand sides. In every iteration the energy
error is minimized in all search directions of all lanes. This improves
the number of iterations, that are needed to achieve a certain residual
reduction.

3.3. Finite element spaces on discretization grids

While Dune focuses on grid-based discretization methods for PDEs, its mod-
ular design explicitly avoids any reference to ansatz functions for discretizations
in the interfaces of grids and linear algebra of the modules discussed so far.
Instead of this the corresponding interfaces and implementations are contained
in separate modules. However, the Dune infrastructure is not limited to finite
element discretizations and, for example, a number of applications based on the
finite volume method exist, for example DuMuX [15] and the Open Porous
Media Initiative [14], or higher order finite volume schemes on polyhedral grids
[46] as well as a tensor product multigrid approach for grids with high aspect
ratios in atmospheric flows [47].

3.3.1. Local functions spaces

The Dune-LocalFunctions core module contains interfaces and imple-
mentations for ansatz functions on local reference domains. In terms of finite
element discretizations, this corresponds to the finite elements defined on refer-
ence geometries. Again following the modular paradigm, this is done indepen-
dently of any global structures like grids or linear algebra, such that the Dune-
LocalFunctions module does not depend on the Dune-Grid and Dune-
ISTL module. The central concept of the Dune-LocalFunctions module is
the LocalFiniteElement which is defined along the lines of a finite element in
terms of [48]. There, a finite element is a triple (D,Π,Σ) of the local domain D,
a local function space Π, and a finite set of functionals Σ = {σ1, . . . , σn} which
induces a basis λ1, . . . , λn on the local ansatz space by σi(λj) = δij .

Each LocalFiniteElement provides access to its polyhedral domain D by
exporting a GeometryType. The exact geometry of the type is defined in the
Dune-Geometry module. The local basis functions λi and the functionals
σi are provided by each LocalFiniteElement by exporting a LocalBasis and
LocalInterpolation object, respectively. Finally, a LocalFiniteElement provides
a LocalCoefficients object. The latter maps each basis function/functional to
a triple (c, i, j) which identifies the basis function as the j-th one tied to the
i-th codimension-c face of D.

3.3.2. Global functions spaces

In contrast to local shape functions provided by Dune-LocalFunctions, a
related infrastructure for global function spaces on a grid view—denoted global
finite element spaces in the following—is not contained in the Dune core so far.
Instead several concurrent/complementary discretization modules, like Dune-
Fem, Dune-PDELab, Dune-Fufem, used to provide their own implementa-
tions. To improve interoperability, an interface for global function spaces was

23



developed as a joint effort in the staging module Dune-Functions. This in-
tended to be a common foundation for higher level discretization modules.

It can often be useful to use different bases of the same global finite element
space for different applications. For example, a discretization in the space P2

will often use a classical Lagrange basis of the second order polynomials on
the elements, whereas hierarchical error estimators make use of the so called
hierarchical P2 basis. As a consequence the Dune-Functions module does not
use the global finite element space itself but its basis as the central abstraction.
This is represented by the concept of a GlobalBasis in the interface.

Inspired by the Dune-PDELab module, Dune-Functions provides a flex-
ible framework for global bases of hierarchically structured finite element prod-
uct spaces. Such spaces arise, e.g. in non-isothermal phase field models, primal
plasticity, mixed formulations of higher order PDEs, multi-physics problems,
and many more applications. The central feature is a generic mechanism for
the construction of bases for arbitrarily structured product spaces from existing
elementary spaces. Within this construction, the global DOF indices can easily
be customized according to the matrix/vector data structures suitable for the
problem at hand, which may be flat, nested, or even multi-type containers.

In the following we will illustrate this using the k-th order Taylor–Hood
space P 3

k+1 × Pk in R3 for k ≥ 1 as example. Here Pj denotes the space of j-th
order continuous finite elements. Notice that the Taylor–Hood space provides
a natural hierarchical structure: It is the product of the space P 3

k+1 for the
velocity with the space Pk for the pressure, where the former is again the 3-fold
product of the space Pk+1 for the individual velocity components. Any such
product space can be viewed as a tree of spaces, where the root denotes the full
space (e.g. P 3

k+1 × Pk) inner nodes denote intermediate product spaces (e.g.
P 3
k+1), and the leaf nodes represent elementary spaces that are not considered

as products themselves (e.g. Pk+1 and Pk).
The Dune-Functions module on the one hand defines an interface for

such nested spaces and on the other hand provides implementations for a set of
elementary spaces together with a mechanism for the convenient construction
of product spaces. For example, the first order Taylor–Hood space on a given
grid view can be constructed using

using namespace Dune:: Functions ;
using namespace Dune:: Functions :: BasisFactory ;
auto basis = makeBasis (gridView ,

composite ( power<3>( lagrange <2>()), lagrange <1>()));

Here, lagrange<k>() creates a descriptor of the Lagrange basis of Pk which is
one of the pre-implemented elementary bases, power<m>(...) creates a descriptor
of an m-fold product of a given basis, and composite(...) creates a descriptor
of the product of an arbitrary family of (possibly different) bases. Finally,
makeBasis(...) creates the global basis of the desired space on the given grid
view. For other applications, composite and power can be nested in an arbitrary
way, and the mechanism can be extended by implementing further elementary
spaces providing a certain implementers interface.

24



The interface of a GlobalBasis is split into to several parts. All functionality
that is related to the basis as a whole is directly provided by the basis, whereas
all functionality that can be localized to grid elements is accessible by a so
called LocalView obtained using basis.localView(). Binding a local view to a
grid element using localView.bind(element) will then initialize (and possibly
pre-compute and cache) the local properties. To avoid costly reallocation of
internal data, one can rebind an existing LocalView to another element.

Once a LocalView is bound, it gives access to all non-vanishing basis functions
on the bound-to element. Similar to the global basis, the localized basis forms a
local tree which is accessible using localView.tree(). Its children can either be
directly obtained using the child(...) method or traversed in a generic loop.
Finally, shape functions can be accessed on each local leaf node in terms of a
LocalFiniteElement (cf. Section 3.3.1).

The mapping of the shape functions to global indices is done in several stages.
First, the shape functions of each leaf node have unique indices within their
LocalFiniteElement. Next, the per-LocalFiniteElement indices of each leaf node
can be mapped to per-LocalView indices using leafNode.localIndex(i). The
resulting local indices enumerate all basis functions on the bound-to element
uniquely. Finally, the local per-LocalView indices can be mapped to globally
unique indices using localView.index(j). To give a full example, the global
index of the i-th shape function for the d-th velocity component of the Taylor–
Hood basis on a given element can be obtained using

using namespace Dune:: Indices ; // Use compile-time indices
auto localView = basis. localView (); // Create a LocalView
localView .bind( element ); // Bind to a grid element
auto && velocityNode = localView .child(_0 , d); // Obtain leaf node of the

// d-th velocity component
auto localIndex = velocityNode . localIndex (i); // Obtain local index of

// i-th shape function
auto globalIndex = localView .index( localIndex );// Obtain global index

Here, we made use of the compile time index Dune::Indices::_0 because direct
children in a composite construction may have different types.

While all local indices are flat and zero-based, global indices can in gen-
eral be multi-indices which allows to efficiently access hierarchically structured
containers. The global multi-indices do in general form an index tree. The lat-
ter can be explored using basis.size(prefix) with a given prefix multi-index.
This provides the size of the next digit following the prefix, or, equivalently,
the number of direct children of the (possibly interior) node denoted by the
prefix. Consistently, basis.size() provides the number of entries appearing in
the first digit. In case of flat indices, this corresponds to the total number of
basis functions.

The way shape functions are associated to indices can be influenced accord-
ing to the needs of the used discretization, algebraic data structures, and alge-
braic solvers. In principle an elementary basis provides a pre-defined set of global
indices. When defining more complex product space bases using composite and
power, the indices provided by the respective direct children are combined in a

25



customizable way. Possible strategies are, for example, to prepend or append
the number of the child to the global index within the child, or to increment
the global indices to get consecutive flat indices.

Additionally to the interfaces and implementations of global finite element
function space bases, the Dune-Functions module provides utility functions
for working with global bases. The most basic utilities are subspaceBasis(basis,
childIndices), which constructs a view of only those basis functions correspond-
ing to a certain child in the ansatz tree, makeDiscreteGlobalBasisFunction<Range>(
basis, vector), which allows to construct the finite element function (with
given range type) obtained by weighting the basis functions with the coefficients
stored in a suitable vector, and interpolate(basis, vector, function), which
computes the interpolation of a given function storing the result as coefficient
vector with respect to a basis.

The following example interpolates a function into the pressure degrees of
freedom only and later construct the velocity vector field as a function. The
latter can e.g. be used to write a subsampled representation in the VTK format.

// Interpolate f into vector x
auto f = [] (auto x) { return sin(x[0]) * sin(x[1]); };
interpolate ( subspaceBasis (basis , _1), x, f);
// [ Do something to compute x here ]
using Range = FieldVector <double ,dim>;
auto velocityFunction =

makeDiscreteGlobalBasisFunction <Range>( subspaceBasis (basis , _0), x);

A detailed description of the GlobalBasis interface, the available elementary
basis implementations, the mechanism to construct product spaces, the rule-
based combination of global indices, and the basis-related utilities can be found
in [49]. The type-erasure based polymorphic interface of global functions and lo-
calizable grid functions as e.g. implemented by makeDiscreteGlobalBasisFunction
is described in [50].

3.4. Python interfaces for Dune

Combining easy to use scripting languages with state-of-the-art numerical
software has been a continuous effort in scientific computing for a long time.
For solution of PDEs the pioneering work of the FEniCS team [5] inspired many
others, e.g. [51, 52] to also provide Python scripting for high performance PDE
solvers usually coded in C++.

Starting with the 2.6 release in 2018, Dune can also be used from within the
Python scripting environment. The Dune-Python staging module provides
i. a general concept for exporting realizations of polymorphic interfaces as used
in many Dune modules and ii. Python bindings for the central interfaces of
the Dune core modules described in this section. These bindings make rapid
prototyping of new numerical algorithms easy since they can be implemented
and tested within a scripting environment. Our aim was to keep the Python
interfaces as close as possible to their C++ counterparts so that translating the
resulting Python algorithms to C++ to maximize efficiency of production code
is as painless as possible. Bindings are provided using [53].

26



We start with an example demonstrating these concepts. We revisit the ex-
amples given in Section 3.1.1 starting with the construction of a simple Cartesian
grid in four space dimensions and the approximation of the integral of a function
over that grid. The corresponding Python code is

from dune.grid import yaspGrid , cartesianDomain
from math import exp
dim = 4
lower = 4*[0.]
upper = 4*[1.]
nCells = 4*[4]
gv = yaspGrid ( constructor = cartesianDomain (lower ,upper , nCells ))
u = lambda x: exp(x. two_norm )
integral = 0.0
for e in gv. elements :

integral += u(e. geometry . center )*e. geometry . volume

A few changes were made to make the resulting code more Pythonic, i.e., the use
of class attributes instead of class methods, but the only major change is that
the function returning the grid object in fact returns the leaf grid view and not
the hierarchic grid structure. Notice that the life time of this underlying grid is
managed automatically by Python’s internal reference counting mechanism. It
can be obtained using a class attribute, i.e., to refine the grid globally

gv. hierarchicalGrid . globalRefine (1);

Other interface classes and their realizations have also been exported so that
for example the more advanced quadrature rules used in the previous sections
can also be used in Python:

from dune. geometry import quadratureRule
integral = 0.0
for e in gv. elements :

geo = e. geometry
quadrature = quadratureRule (e.type ,5)
for qp in quadrature :

integral += u( geo. toGlobal (qp. position ) )\
*geo. integrationElement (qp. position )*qp. weight

Again, the changes to the C++ code is mostly cosmetics or due to the restric-
tions imposed by the Python language.

While staying close to the original C++ interface facilitates rapid proto-
typing, it also can lead to a significant loss of efficiency. A very high level of
efficiency was never a central target during the design of the Python bindings to
Dune—to achieve this, a straightforward mechanism is provided to call Dune
algorithms written in C++. Nevertheless, we made some changes to the in-
terface and added a few extra features to improve the overall efficiency of the
code. The two main strategies are to reduce the number of calls from Python to
C++ by, for example, not returning single objects for a given index but iterable
structures instead. The second strategy is to introduce an extended interface
taking a vector of its arguments to allow for vectorization.

Consider, for example the C++ interface methods on the Geometry class
geometry.corners() and geometry.corner(i) which return the number of corners

27



of the elements and their coordinates in physical space, respectively. Using these
methods, loops would read as follows:

auto center = geometry . corner (0);
for (std:: size_t i=1;i< geometry . corners ();++i)

center += geometry . corner (i);
center /= geometry . corners ();

To reduce the number of calls into C++, we decided to slightly change the
semantics of method pairs of this type: the plural version now returns an iterable
object, while the singular version still exists in its original form. So in Python
the above code snippet can be written as follows:

corners = geometry . corners
center = corners [0]
for c in corners [1:]:

center += c
center /= len( corners )

As discussed above, quadrature loops are an important ingredient of most grid
based numerical schemes. As the code snippet given at the beginning of this
section shows, this requires calling methods on the geometry for each point of
the quadrature rule which again can lead to a significant performance penalty.
To overcome this issue we provide vectorized versions of the methods on the
geometry class so that the above example can be more efficiently implemented

import numpy
from dune. geometry import quadratureRule
u = lambda x: numpy.exp( numpy.sqrt( sum(x*x) ) )
integral = 0.0
for e in gv. elements :

hatxs , hatws = quadratureRule (e.type , 5).get ()
weights = hatws * e. geometry . integrationElement (hatxs)
integral += numpy.sum(u(hatxs) * weights , axis=-1)

The following list gives a short overview of changes and extensions we made
to the Dune interface while exporting it to Python:

• Since global is a keyword in Python we cannot export the global method
on the Geometry directly. So we have exported global as toGlobal and for
symmetry reasons local as toLocal.

• Some methods take compile-time static arguments, e.g., the codimen-
sion argument for entity.subEntity<c >( i ). These had to be turned
into dynamic arguments, so in Python the subEntity is obtained via
entity.subEntity(i,c).

• In many places we replaced methods with properties, i.e., entity.geometry
instead of entity.geometry().

• Methods returning a bool specifying that other interface methods will
return valid results are not exported (e.g. neighbor on the intersection
class). Instead None is returned to specify a non valid call (e.g. to outside).

28



• Some of the C++ interfaces contain pairs of methods where the method
with the plural name returns an integer (the number of ) and the singular
version takes an integer and returns the ith element. The plural version
was turned to a range-returning method in Python as discussed above.

• In C++, free-standing functions can be found via argument-dependent
lookup. As Python does not have such a concept, we converted those
free-standing functions to methods or properties. Examples are elements,
entities, intersections, or localFunction.

• A grid in Dune-Python is always the LeafGridView of the hierarchical
grid. To work with the actual hierarchy, i.e., to refine the grid, use the
hierarchicalGrid property. Level grid views can also be obtained from
that hierarchical grid.

• In contrast to C++, partitions are exported as objects of their own. The
interior partition, for example, can be accessed by

partition = grid. interiorPartition

The partition, in turn, also exports the method entities and the proper-
ties elements, facets, edges, and vertices.

• An MCMGMapper can be constructed using the mapper method on the GridView
class passing in the Layout as argument. The mapper class has an addi-
tional call method taking an entity, which returns an array with the indices
of all DoFs (degrees of freedom) attached to that entity. A list of DoF
vectors based on the same mapper can be communicated using methods
defined on the mapper itself and without having to define a DataHandle.

A big advantage of using the Python bindings for Dune is that non per-
formance critical tasks, e.g., pre- and postprocessing can be carried out within
Python while the time critical code parts can be easily carried out in C++.
To make it easy to call functions written in C++ from within a Python script,
Dune-Python provides a simple mechanism. Let us assume for example that
the above quadrature for e|x| was implemented in a C++ function integral
contained in the header file integral.hh using the Dune interface as described
in Section 3.1.1:

template <class GridView >
double integral (const GridView &gv) {

auto u = [](const auto& x){ return std::exp(x. two_norm ());};
double integral =0.0;
for (const auto& e : elements (gv))

integral += u(e. geometry (). center ())*e. geometry (). volume ();
return integral ;

}

We can now call this function from within Python using

integral = algorithm .run(’integral ’, ’integral .hh’, gv)

29



Note that the correct version of the template function integral will be exported
using the C++ type of the gv argument, i.e., YaspGrid<4>.

With the mechanism provided in the Dune-Python module, numerical
schemes can first be implemented and tested within Python and can then be
translated to C++ to achieve a high level of efficiency. The resulting C++
functions can be easily called from within Python making it straightforward to
simply replace parts of the Python code with their C++ counterparts.

In addition to the features described so far, the Dune-Python module
provides general infrastructure for adding bindings to other Dune modules.
Details are given in [54]. We will demonstrate the power of this feature in
Section 4.1 where we also use the domain specific language UFL [55] to describe
PDE models.

3.5. Build system and testing

Starting with the 2.4 release, Dune has transitioned from its Autotools build
system to a new, CMake-based build system. This follows the general trend in
the open source software community to use CMake. The framework is split
into separate modules; each module is treated as a CMake project in itself,
with the build system managing inter-module dependencies and propagation
of configuration results. In order to simplify the inter-module management,
there is a shell script called dunecontrol (part of Dune-Common) that resolves
dependencies and controls the build order.

In the CMake implementation of the Dune build system, special emphasis
has been put on testing. Testing has become increasingly important with the
development model of the Dune core modules being heavily based on Contin-
uous Integration. In order to lower the entrance barrier for adding tests to
a minimum, a one-line solution in the form of a CMake convenience function
dune_add_test has been implemented. Further testing infrastructure has been
provided in the module Dune-TestTools [56], which allows the definition
of system tests. These system tests describe samples of framework variability
covering both compile-time and run-time variations.

More information on the Dune CMake build system can be found in the
Sphinx-generated documentation, which is available on the Dune website5.

4. Selected advanced features with applications

After having discussed the central components of Dune and their recent
changes, we now want to highlight some advanced features. The following ex-
amples all showcase features of Dune extension modules in conjunctions with
the core modules.

5https://dune-project.org/buildsystem/

30

https://dune-project.org/buildsystem/


4.1. Grid modification

In this section we discuss two mechanisms of modifying grids within the
DUNE framework: dynamic local grid adaptation and moving domains. In
particular, dynamic local grid adaptation is of interest for many scientific and
engineering applications due to the potential high computational cost savings.
However, especially parallel dynamic local grid adaptation is technically chal-
lenging and not many PDE frameworks offer a seamless approach. We will
demonstrate in this section how the general concepts described in Section 3.1
for grid views and adaptivity provided by the core modules are used to solve
PDE problems on grids with dynamic refinement and coarsening. Especially
important for these concepts is the separation of topology, geometry, and user
data provided by the grid interface.

To support grid modification the Dune-Fem module provides two special-
ized GridViews: AdaptiveGridView and GeometryGridView. Both are based on a
given grid view, i.e., the LeafGridView, and replace certain aspects of the im-
plementation. In the first case, the index set is replaced by an implementation
that provides additional information that can be used to simplify data transfer
during grid refinement and coarsening. In the second case the geometry of each
element is replaced by a given grid function, e.g., by an analytic function or
by some discrete function over the underlying grid view. The advantage of this
meta grid view approach is that any algorithm based on a Dune grid view can
be used without change while for example the data transfer during grid modifi-
cation can be transparently handled by specialized algorithms using features of
the meta grid view.

4.1.1. Dynamic local grid adaptation

A vast number of structured or Cartesian grid managers are available which
support adaptive refinement6. There exist far fewer open source unstructured
grid managers, supporting adaptivity, for example, deal.II [4] which is build on
top of p4est [57] for parallel computations, or another recent development the
FEMPAR [58] package. Both provide hexahedral grids with non-conforming re-
finement. Other very capable unstructured grid managers providing tetrahedral
elements are, for example, AMDIS [3], FEniCS [5], HiFlow [7], or the ”Flexible
Distributed Mesh Database (FMDB)” [59], libMesh [60], and others.

As previously described in Section 3.1.4 the Dune grid interface offers the
possibility to dynamically refine and coarsen grids if the underlying grid imple-
mentation offers these capabilities. Currently, there are two implementations
that support parallel dynamic grid adaptation including load balancing, UGGrid
and ALUGrid. AlbertaGrid supports grid adaptation but cannot be used for
parallel computations.

A variety of applications make use of the Dune grid interface for adaptive
computations. For example, adaptive discontinuous Galerkin computations of

6See http://math.boisestate.edu/˜calhoun/www_personal/research/amr_software/.

31

http://math.boisestate.edu/~calhoun/www_personal/research/amr_software/


compressible flow, e.g. Euler equations [61] or atmospheric flow [62]. A num-
ber of applications focus on hp-adaptive schemes, e.g. for continuous Galerkin
approximations of Poisson type problems [63], or discontinuous Galerkin ap-
proximations of two-phase flow in porous media [64, 65, 66, 67] or conservation
laws [68]. Other works consider, for example, the adaptive solution of the Cahn–
Larché system using finite elements [69].

In this section we demonstrate the capabilities of the Dune grid interface
and its realizations making use of the Python bindings for the Dune module
Dune-Fem. We show only small parts of the Python code here, the full scripts
are part of the tutorial [70].

To this end we solve the Barkley model, which is a system of reaction-
diffusion equations modeling excitable media and oscillatory media. The model
is often used as a qualitative model in pattern forming systems like the Belousov–
Zhabotinsky reaction and other systems that are well described by the interac-
tion of an activator and an inhibitor component [71].

In its simplest form the Barkley model is given by

∂u

∂t
=

1

ε
f(u, v) +D∆u,

∂v

∂t
= h(u, v),

with f(u, v) = u
(

1 − u
)(
u − v+b

a

)
and h(u, v) = u − v. Finally, ε = 0.02,

a = 0.75, b = 0.02, and D = 0.01 are chosen according to the web page http://
www.scholarpedia.org/article/Barkley_model and [71]. To evolve the equations
in time, we employ the carefully constructed linear time stepping scheme for this
model described in the literature: let un, vn be approximations of the solution at
a time tn. To compute approximations un+1, vn+1 at a later time tn+1 = tn+∆t
we replace the nonlinear function f(u, v) by −m(un, vn)un+1+fE(un, vn) where
using U∗(V ) := V+b

a

m(U, V ) :=

{
(U − 1) ( U − U∗(V ) ) U < U∗(V )

U ( U − U∗(V ) ) U ≥ U∗(V ),

fE(U, V ) :=

{
0 U < U∗(V )

U ( U − U∗(V ) ) U ≥ U∗(V ).

Note that u, v are assumed to be between zero and one so m(un, vn) > 0. We
end up with a linear, positive definite elliptic operator defining the solution un+1

given un, vn. In the following we will use a conforming Lagrange approximation
with quadratic basis functions. To handle possible nonconforming grids we add
interior penalty DG terms as discussed in [63]. The slow reaction h(u, v) can
be solved explicitly leading to a purely algebraic equation for vn+1. The initial
data is piecewise constant chosen in such a way that a spiral wave develops.

The model and initial conditions are easily provided using the Unified Form
Language (UFL) [55]. First the problem data needs to be provided

dt ,t = 0.1,0
spiral_a ,spiral_b ,spiral_eps , spiral_D = 0.75 , 0.02 , 0.02 , 0.01

32

http://www.scholarpedia.org/article/Barkley_model
http://www.scholarpedia.org/article/Barkley_model


def spiral_h (u,v): return u - v

and the discrete space and functions constructed

space = lagrange ( gridView , order=2 )
x = ufl. SpatialCoordinate (space)
iu = lambda s: ufl. conditional (s > 1.25 , 1, 0 )
top = ufl. conditional ( x[2] > 1.25 ,1,0)
initial_u = iu(x[1])*top + iu(2.5-x[1])*(1.0 - top)
initial_v = ufl. conditional (x[0]<1.25 ,0.5,0)
uh = space. interpolate ( initial_u , name="u" )
vh = space. interpolate ( initial_v , name="v" )
uh_n , vh_n = uh.copy (), vh.copy ()

Now we use UFL to describe the PDE for the function u adding DG skeleton
terms to take care of possible conforming intersections caused by local grid
modification [63]:

u, phi = ufl. TrialFunction (space), ufl. TestFunction (space)
hT = ufl. MaxCellEdgeLength (space.cell ())
hS = ufl.avg( ufl. MaxFacetEdgeLength (space.cell ()) )
hs = ufl. MaxFacetEdgeLength (space.cell ())(’+’)
n = ufl. FacetNormal (space.cell ())
penalty = 5 * (order * (order+1)) * spiral_D
ustar = lambda v: (v+ spiral_b )/ spiral_a
source = lambda u1 ,u2 ,u3 ,v: -1/ spiral_eps * u1*(1-u2)*(u3-ustar(v))
# main terms
xForm = inner( D_spiral *grad(u), grad(phi)) * dx
xForm += ufl. conditional (uh_n<ustar(vh_n),

source (u,uh_n ,uh_n ,vh_n), source (uh_n ,u,uh_n ,vh_n)) * phi * dx
# dg terms
xForm -= ( inner( outer(jump(u), n(’+’)), avg( spiral_D *grad(phi))) +\

inner( avg( spiral_D *grad(u)), outer(jump(phi), n(’+’))) ) * dS
xForm += penalty /hS * inner(jump(u), jump(phi)) * dS
# adding time discretization
form = ( inner(u,phi) - inner(uh_n , phi) ) * dx + dt*xForm

For adaptation we use a residual based error estimator derived in [63] for
a Discontinuous Galerkin (DG) approximation for the Poisson problem. The
error estimator for an element E at a given time step is given by

∫
E
ηE(un+1) +

1
2

∫
∂E

η∂E(un+1) with

ηE(uh) = h2
E

(uh − un
∆t

− f(uh, v
n+1) +∇ ·D∇uh

)2

,

η∂E(uh) = hE [[D∇uh · ν]]2 + [[uh]]2

where [[·]] is the jump of the given quantity over the boundary of E and ν denotes
the outward unit normal. To describe the estimator using UFL we rewrite it in
the form

R(uh, ϕh) :=

∫
Ω

ηh(uh)ϕh +

∫
∂Ω

η∂Ω(uh){ϕh}

such that computing R(un+1, χE) =
∫
E
ηE(un+1) + 1

2

∫
∂E

η∂E(un+1) provides
the estimator on each element where χE is the characteristic function on E.
The characteristic functions are the basis of the finite-volume space provided by

33



Dune-Fem so that R(·, ·) can be defined using UFL as bilinear form over the
solution space of un+1 and the scalar finite volume space:

fvspace = dune.fem.space. finiteVolume (uh.space.grid)
estimate = fvspace . interpolate ([0], name=" estimate ")
chi = ufl. TestFunction ( fvspace )
residual = (u-uh_n)/dt - div( spiral_D *grad(u)) + source (u,u,u,vh)
estimator_ufl = hT**2 * residual **2 * chi * dx +\

hS * inner( jump( spiral_D *grad(u)), n(’+’))**2 * avg(chi) * dS +\
1/hS * jump(u)**2 * avg(chi) * dS

estimator = dune.fem. operator . galerkin ( estimator_ufl )

Now the grid can be modified according to the estimator within the time loop
by i. applying the operator constructed above to the discrete solution un+1

ii. marking all elements where the error indicator exceeds a given tolerance for
refinement and marking elements for coarsening with an indicator below a given
threshold and finally iii. modifying the grid prolonging/restricting the data for
uh, vh to the new element:
estimator (uh , estimate )
dune.fem.mark(estimate , maxTol ,0.1*maxTol , 0, maxLevel )
dune.fem.adapt([uh ,vh])

where maxTol is some prescribed tolerance (in the following set to 10−4). Note
that only the data for uh, vh is retained during the adaptation process, the
underlying storage for other discrete functions used in the simulation is resized
as required but the values of the functions are not maintained.

Figure 4 shows results for different times using a 2d quadrilateral grid with
conforming, quadratic Lagrange basis functions. When using a conforming dis-
crete space, the additional terms in the DG formulation vanish whenever basis
functions are smooth across element intersection while these terms lead to a
stabilization for nonconforming refinement/coarsening with hanging nodes. On
a conforming mesh without hanging nodes the residual error estimator coincides
with standard results known from the literature [23, and references therein].

(a) t = 0 (b) t = 6 (c) t = 8 (d) t = 11 (e) t = 14

Figure 4: The evolution of u for different times using non-conforming grid adaptation in 2d
with quadrilaterals.

Figure 5 shows results using the quadratic Lagrange basis and a conforming
simplicial grid with bisection refinement.

Figure 6 shows the same example for 3d grids, using a bi-linear Lagrange
basis for a non-conforming hexahedral grid in Figure 6a and using a quadratic
Lagrange basis on a conforming simplicial grid with bisection refinement in
Figure 6b.

34



(a) t = 0 (b) t = 6 (c) t = 8 (d) t = 11 (e) t = 14

Figure 5: The evolution of u for different times using conforming bisection grid adaptation in
2d.

(a) ALUGrid(cube, nonconforming, Q1) (b) ALUGrid(simplex, conforming, P2)

Figure 6: The solution u at t = 11 for (a) a non-conforming cube grid in 3d and (b) conforming
bisection grid adaptation in 3d. The visual differences between the two solutions especially on
the right face is caused by the spiral having rotated a fraction more on the cube grid compared
to the spiral on the simplex grid. This is also noticeable on the top left corner. Looking at
the front left face it is clear that the difference in angle of the spiral is quite small.

Details on the available load balancing algorithms and parallel performance
studies for the Dune-ALUGrid package can be found in [24], [72], and [73],
and for UGGrid in [28].

4.1.2. Moving grids

In this section we touch on another important topic for modern scientific
computing: moving domains. Typically this is supported by moving nodes in
the computational grid. In Dune this can be done in a very elegant way. The
presence of an abstract grid interface allows the construction of meta grids where
only parts of the grid implementation are re-implemented and, in addition, the
original grid implementation stays untouched. Thus meta grids provide a very
sophisticated way of adding features to the complete feature stack and keeping
the code base modular. In Dune-Grid one can use the meta grid GeometryGrid
(see also Section 3.1.6) which allows to move nodes of the grid by providing an
overloaded Geometry implementation. Another, slightly easier way, is to only
overload geometries of grid views which is, for example, done in Dune-Fem.

Both approaches re-implement the reference geometry mapping. In GeometryGrid
an external vector of nodes providing the positions of the computational grid is

35



used while for GeometryGridView a grid function, i.e., a function which is evalu-
ated on each entity given reference coordinates, is used to provide a mapping for
the coordinates. The advantage of both approaches is, that the implementation
of the numerical algorithm does not need to change at all. The new grid or grid
view follows the same interface as the original implementation. A moving grid
can now be realized by modifying this grid function.

To demonstrate this feature of Dune we solve a mean curvature flow problem
which is a specific example of a geometric evolution equation where the evolution
is governed by the mean curvature H. One real-life example of this is in how
soap films change over time, although it can also be applied to other problems
such as image processing. Assume we are given a reference surface Γ̄ such that
we can write the evolving surface in the form Γt = X(t, Γ̄). It is now possible
to show that the vector valued function X = X(t, x̄) with x̄ ∈ Γ̄ satisfies

∂

∂t
X = −H(X)ν(X),

where H is the mean curvature of Γt and ν is its outward pointing normal.
We use the following time discrete approximation as suggest in [74]∫

Γn

(
Un+1 − x

)
· ϕ dσ + ∆t

∫
Γn

∇ΓnUn+1 : ∇Γnϕ dσ = 0.

Here Un parametrizes Γn+1 ≈ Γtn+1 over Γn := Γtn and ∆t is the time step.
In the example used here, the work flow can be set up as follows. First one

creates a reference grid and a corresponding quadratic Lagrange finite element
space to represent the geometry of the mapped grid.

refView = leafGridView (" sphere .dgf", dimgrid =2, dimworld =3)
refView . hierarchicalGrid . globalRefine ( 2 )
space = solutionSpace (refView , dimRange = refView .dimWorld , order=2)

Then, a deformation function is projected onto this Lagrange space

x = ufl. SpatialCoordinate (space)
positions = space. interpolate (

x*(1 + 0.5*sin(2*pi*x[0]*x[1])*cos(pi*x[2])), name=" position ")

Using this grid function, a GeometryGridView can be created that uses these new
coordinates to represent the grid geometries. This grid view is then used to
create the solution space.

gridView = geometryGridView ( positions )
space = lagrange (gridView , dimRange = gridView .dimWorld , order=2)

In each step of the time loop the coordinate positions can be updated, for
example, by assigning the values from the computed solution of the mean cur-
vature flow.

positions . dofVector . assign (uh. dofVector )

In Figure 7 the evolution of the surface is presented.
Other successful applications of this meta grid concept for moving domains

36



(a) t=0 (b) t=0.05 (c) t=0.1 (d) t=0.15 (e) t=0.2

Figure 7: Surface evolution towards a sphere using the ALUGrid<2,3,conforming> grid
implementation. The color coding reflects the magnitude of the surface velocity U .

can be found, for example, in [75] where the compressible Navier-Stokes equa-
tions are solved in a moving domain and in [29] where free surface shallow water
flow is considered.

4.2. Grid coupling and complex domains

In recent years Dune has gained support for different strategies to handle
couplings of PDEs on different subdomains. One can distinguish three different
approaches to describe and handle such different domains involved in a multi-
physics simulation. As an important side effect, the last approach also provides
support for domains with complex shapes.

i. Coupling of individual grids: In the first approach, each subdomain is

: ∩ =

Figure 8: Coupling of two unrelated meshes via a merged grid: Intersecting the coupling
patches yields a set of remote intersections, which can be used to evaluate the coupling con-
ditions.

treated as a separate grid, and meshed individually. The challenge is then
the construction of the coupling interfaces, i.e., the geometrical relation-
ships at common subdomain boundaries. As it is natural to construct non-
conforming interfaces in this way, coupling between the subdomains will in
general require some type of weak coupling, like the mortar method [76],
penalty methods [77, 78], or flux-based coupling [79].

ii. Partition of a single grid: In contrast, one may construct a single
host grid that resolves the boundaries of all subdomains. The subdomain
meshes are then defined as subsets of elements of the host grid. While the
construction of the coupling interface is straightforward, generating the
initial mesh is an involved process, if the subdomains have complicated
shapes. As the coupling interfaces are conforming (as long as the host grid
is), it is possible to enforce coupling conditions in strong form.

37



Figure 9: Partition of a given host mesh into subdomains.

Figure 10: Construction of two cut-cell subdomain grids from a Cartesian background grid
and a level-set geometry representation: cut-cells are constructed by intersecting a background
cell with the zero-iso-surface of the level-set.

iii. Cut-cell grids: The third approach is similar to the second one, and
again involves a host grid. However, it is more flexible because this time
the host grid can be arbitrary, and does not have to resolve the boundaries
of the subdomains. Instead, subdomain grids are constructed by inter-
secting the elements with the independent subdomain geometry, typically
described as the 0-level set of a given function. This results in so-called
cut-cells, which are fragments of host grid elements. Correspondingly, the
coupling interfaces are constructed by intersecting host grid elements with
the subdomain boundary.

It is important to note that the shapes of the cut-cells can be arbitrary
and the resulting cut-cell grids are not necessarily shape-regular. As a
consequence, it is not possible to employ standard discretization tech-
niques. Instead, a range of different methods like the unfitted discontinu-
ous Galerkin (UDG) method [80, 81] and the CutFEM method [82] have
been developed for cut-cell grids.

All three concepts for handling complex domains are available as special
Dune modules.

38



4.2.1. Dune-Grid-Glue — Coupling of individual grids

When coupling simulations on separate grids, the main challenge is the con-
struction of coupling operators, as these require detailed neighborhood informa-
tion between cells in different meshes. The Dune-Grid-Glue module [30, 31],
available from https://dune-project.org/modules/dune-grid-glue, provides in-
frastructure to construct such relations efficiently. Neighborhood relationships
are described by the concept of RemoteIntersections, which are closely related
to the Intersections known from the Dune-Grid module (Section 3.1.2): Both
keep references to the two elements that make up the intersection, they store
the shape of the intersection in world space, and the local shapes of the inter-
section when embedded into one or the other of the two elements. However, a
RemoteIntersection is more general than its Dune-Grid cousin: For example,
the two elements do not have to be part of the same grid object, or even the
same grid implementation. Also, there is no requirement for the two elements
to have the same dimension. This allows mixed-dimensional couplings like the
one in [83].

Constructing the set of remote intersections for a pair of grids first requires
the selection of two coupling patches. These are two sets of entities that are
known to be involved in the coupling, like a contact boundary, or the overlap
between two overlapping grids. Coupling entities can have any codimension. In
principle all entities of a given codimension could always be selected as coupling
entities, but it is usually easy and more efficient to preselect the relevant ones.

There are several algorithms for constructing the set of remote intersections
for a given pair of coupling patches. Assuming that both patches consist of
roughly N coupling entities, the naive algorithm will require O(N2) operations.
This is too expensive for many situations. Gander and Japhet [84] proposed
an advancing front algorithm with expected linear complexity, which, however,
slows down considerably when the coupling patches consist of many connected
components, or contain too many entities not actually involved in the coupling.
Both algorithms are available in Dune-Grid-Glue. A third approach using a
spatial data structure and a run-time of O(N logN) still awaits implementation.

A particular challenge arises in the case of parallel grids, as the partitioning
of both grids is also unrelated. Dune-Grid-Glue can also compute the set
of RemoteIntersection in parallel codes, using additional communication. For
details on the algorithm and how to handle couplings in the parallel case we
refer to [31].

As an example we implement the assembly of mortar mass matrices using
Dune-Grid-Glue. Let Ω be a domain in Rd, split into two parts Ω1, Ω2 by a
hypersurface Γ, as in Figure 8. On Ω we consider an elliptic PDE for a scalar
function u, subject to the continuity conditions

u1 = u2, 〈∇u1,n〉 = 〈∇u2,n〉 on Γ,

where u1 and u2 are the restrictions of u to the subdomains Ω1 and Ω2, respec-
tively, and n is a unit normal of Γ.

For a variationally consistent discretization, the mortar methods discretizes

39

https://dune-project.org/modules/dune-grid-glue


the weak form of the continuity condition∫
Ω∩Γ

(u1|Γ − u2|Γ)w ds = 0, (1)

which has to hold for a space of test functions w defined on the common sub-
domain boundary. Let Ω1 and Ω2 be discretized by two independent grids, and
let {θ1

i }
n1
i=1 and {θ2

i }
n2
i=1 be nodal basis functions for these grids, respectively.

We use the nonzero restrictions of the {θ1
i } on Γ to discretize the test function

space. Then (1) has the algebraic form

M1u1 −M2u2 = 0,

with mortar mass matrices

M1 ∈ RnΓ,1×nΓ,1 , (M1)ij =

∫
Ω∩Γ

θ1
i θ

1
j ds

M2 ∈ RnΓ,1×nΓ,2 , (M2)ij =

∫
Ω∩Γ

θ1
i θ

2
j ds.

The numbers nΓ,1 and nΓ2 denote the numbers of degrees of freedom on the
interface Ω ∩ Γ. Assembling these matrices is not easy, because M2 involves
shape functions from two different grids.

For the implementation, assume that the grids on Ω1 and Ω2 are available
as two Dune grid view objects gridView1 and gridView2, of types GridView1
and GridView2, respectively. The code first constructs the coupling patches, i.e.,
those parts of the boundaries of Ω1, Ω2 that are on the interface Γ. These
are represented in Dune-Grid-Glue by objects called Extractors. Since we
are coupling on the grid boundaries—which have codimension 1—we need two
Codim1Extractors:

using Extractor1 = GridGlue :: Codim1Extractor < GridView1 >;
using Extractor2 = GridGlue :: Codim1Extractor < GridView2 >;

VerticalFacetPredicate < GridView1 > facetPredicate1 ;
VerticalFacetPredicate < GridView2 > facetPredicate2 ;

auto domEx = std:: make_shared < Extractor1 >(gridView1 , facetPredicate1 );
auto tarEx = std:: make_shared < Extractor2 >(gridView2 , facetPredicate2 );

The extractors receive the information on what part of the boundary to use by
two predicate objects facetPredicate1 and facetPredicate2. Both implement a
method

bool contains ( const typename GridView :: Traits :: template
Codim<0>:: Entity & element ,

unsigned int facet) const

that returns true if the facet-th face of the element given in element is part of
the coupling boundary Γ. For the example we use the hyperplane Γ ⊂ Rd of all
points with first coordinate equal to zero. Then the complete predicate class is

40



template <class GridView >
struct VerticalFacetPredicate
{

bool operator ()( const typename GridView :: template Codim<0>:: Entity &
element ,

unsigned int facet) const
{

const int dim = GridView :: dimension ;
const auto& refElement = Dune:: ReferenceElements <double ,

dim>:: general ( element .type ());

// Return true if all vertices of the facet
// have the coordinate (numerically) equal to zero
for (const auto& c : refElement . subEntities (facet ,1,dim))

if ( std::abs( element . geometry (). corner (c)[0] ) > 1e-6 )
return false;

return true;
}

};

Next, we need to compute the set of remote intersections from the two
coupling patches. The different algorithms for this mentioned above are imple-
mented in objects called “mergers”. The most appropriate one for the mortar
example is called ContactMerge, and it implements the advancing front algorithm
of Gander and Japhet.7 The entire code to construct the remote intersections
for the two trace grids at the interface Γ is

using GlueType = GridGlue :: GridGlue <Extractor1 , Extractor2 >;

// Backend for the computation of the remote intersections
auto merger = std:: make_shared < GridGlue :: ContactMerge <dim , double > >();
GlueType gridGlue (domEx , tarEx , merger );

gridGlue .build ();

The gridGlue object is a container for the remote intersections. These can
now be used to compute the two mass matrices M1 and M2. Let mortarMatrix1
and mortarMatrix2 be two objects of some (deliberately) unspecified matrix type.
We assume that both are initialized and all entries are set to zero. The nodal
bases {θ1

i }
n1
i=1 and {θ2

i }
n2
i=1 are represented by two Dune-Functions bases. The

mortar assembly loop is much like the loop for a regular mass matrix

auto nonmortarView = nonmortarBasis . localView ();
auto mortarView = mortarBasis . localView ();

for (const auto& intersection : intersections ( gridGlue ))
{

nonmortarView .bind( intersection . inside ());
mortarView .bind( intersection . outside ());

7It is called ContactMerge because it can also handle the case where the two subdomains
are separated by a physical gap, which is common in contact problems.

41



const auto& nonmortarFiniteElement =
nonmortarView .tree (). finiteElement ();

const auto& mortarFiniteElement =
mortarView .tree (). finiteElement ();

const auto& testFiniteElement =
nonmortarView .tree (). finiteElement ();

// Select a quadrature rule: Use order = 2 just for simplicity
int quadOrder = 2;
const auto& quad = QuadratureRules <double ,

dim-1>::rule( intersection .type (), quadOrder );

// Loop over all quadrature points
for (const auto& quadPoint : quad)
{

// compute integration element of overlap
double integrationElement =

intersection . geometry (). integrationElement ( quadPoint . position ());

// quadrature point positions on the reference element
FieldVector <double ,dim> nonmortarQuadPos =

intersection . geometryInInside (). global ( quadPoint . position ());
FieldVector <double ,dim> mortarQuadPos =

intersection . geometryInOutside (). global ( quadPoint . position ());

//evaluate all shapefunctions at the quadrature point
std:: vector < FieldVector <double ,1> >

nonmortarValues , mortarValues , testValues ;

nonmortarFiniteElement . localBasis ()
. evaluateFunction ( nonmortarQuadPos , nonmortarValues );

mortarFiniteElement . localBasis ()
. evaluateFunction ( mortarQuadPos , mortarValues );

testFiniteElement . localBasis ()
. evaluateFunction ( nonmortarQuadPos , testValues );

// Loop over all shape functions of the test space
for ( size_t i=0; i< testFiniteElement .size (); i++)
{

auto testIdx = nonmortarView .index(i);

// loop over all shape functions on the nonmortar side
for ( size_t j=0; j< nonmortarFiniteElement . localBasis ().size ();

j++)
{

auto nonmortarIdx = nonmortarView .index(j);

mortarMatrix1 [ testIdx ][ nonmortarIdx ] += integrationElement *
quadPoint . weight () * testValues [i] * nonmortarValues [j];

}

// loop over all shape functions on the mortar side
for ( size_t j=0; j< mortarFiniteElement .size (); j++)
{

auto mortarIdx = mortarView .index(j);

mortarMatrix2 [ testIdx ][ mortarIdx ] += integrationElement *

42



quadPoint . weight () * testValues [i] * mortarValues [j];
}

}
}

}

After these loops, the objects mortarMatrix1 and mortarMatrix2 contain the
matrices M1 and M2, respectively.

The problem gets more complicated when Γ is not a hyperplane. The ap-
proximation of a non-planar Γ by unrelated grids will lead to “holes” at the
interface, and the jump u1|Γ − u2|Γ is not well-defined anymore. This situation
is usually dealt with by identifying Γh1 and Γh2 with a homeomorphism Φ, and
replacing the second mass matrix by

M2 ∈ RnΓ,1×nΓ,2 , (M2)ij =

∫
Γh

1

θ2
i (θ

1
j ◦ Φ) ds.

Only few changes have to be done to the code to implement this. First of
all, the vertical predicate class has to be exchanged for something that correctly
finds the curved coupling boundaries. Then, setting up extractor and GridGlue
objects remains unchanged. The extra magic needed to handle the mapping
Φ is completely concealed in the ContactMerge implementation, which does not
rely on Γh1 and Γh2 being identical. Instead, if there is a gap between them, a
projection in normal direction is computed automatically and used for Φ.

4.2.2. Dune-MultiDomainGrid — Using element subsets as subdomains

The second approach to the coupling of subdomains is implemented in the
Dune-MultiDomainGrid module, available at https://dune-project.org/modules/
dune-multidomaingrid. This module allows to structure a given host grid into
different subdomains. It is implemented in terms of two cooperating grid im-
plementations MultiDomainGrid and SubDomainGrid: MultiDomainGrid is a meta
grid that wraps a given host grid and extends it with an interface for setting up
and accessing subdomains. It also stores all data required to manage the sub-
domains. The individual subdomains are exposed as SubDomainGrid instances,
which are lightweight objects that combine the information from the host grid
and the associated MultiDomainGrid. SubDomainGrid objects present a subdo-
main as a regular Dune grid. A MultiDomainGrid inherits all capabilities of
the underlying grid, including features like h-adaptivity and MPI parallelism.
Extensions of the official grid interface allow to obtain the associate entities in
the fundamental mesh and the corresponding indices in both grids.

A fair share of the ideas from Dune-MultiDomainGrid were incorporated
in the coupling capabilities of DuMux 3 [15].

4.2.3. Dune-TPMC — Assembly of cut-cell discretizations

The main challenge for cut-cell approaches is the construction of appropriate
quadrature rules to evaluate integrals over the cut-cell and its boundary. We
assume that the domain is given implicitly as a discrete level set function Φh, s.t.

43

https://dune-project.org/modules/dune-multidomaingrid
https://dune-project.org/modules/dune-multidomaingrid


Φ(x) < 0 if x ∈ Ω(i). The goal is now to compute a polygonal representation of
the cut-cell and a decomposition into sub-elements, such that standard quadra-
ture can be applied on each sub-element. This allows to evaluate weak forms
on the actual domain, its boundary, and the internal skeleton (when employing
DG methods).

The Dune-TPMC library implements a topology preserving marching cubes
(TPMC) algorithm [85], assuming that Φh is given as a piecewise multilinear
scalar function (i.e. a P 1 or Q1 function). The fundamental idea in this case
is the same as that of the classical marching cubes algorithm, known from
computer graphics. Given the sign of the vertex values the library identifies the
topology of the cut-cell. In certain ambiguous cases additional points in the
interior of the cell need to be evaluated. From the topological case the actual
decomposition is retrieved from a lookup table and mapped according to the
real function values.

Evaluating integrals over a cut-cell domain using Dune-TPMC. We look at
a simple example to learn how to work with cut-cell domains. As stated, the
technical challenge regarding cut-cell methods is the construction of quadrature
rules. We consider a circular domain of radius 1 in 2d and compute the area
using numerical quadrature. The scalar function Φ : x ∈ Rd → |x|2−1 describes
the domain boundary as the isosurface Φ = 0 and the interior as Φ < 0.

using namespace Dune;

double R = 1.0;
auto phi = [R]( FieldVector <ctype ,dim> x){ return x. two_norm ()-R; };

After having setup a grid, we iterate over a given gridview gv, compute the Q1

representation of Φ (or better to say the vertex values in an element e)

double volume = 0.0;
std:: vector <ctype> values ;
for ( const auto & e : elements (gv))
{

const auto & g = e. geometry ();
// fill vertex values
values . resize (g. corners ());
for (std:: size_t i = 0; i < g. corners (); i++)

values [i] = phi(g. corner (i));
volume += localVolume (values ,g);

}

We now compute the local volume by quadrature over the cut-cell e|Φ<0. In
order to evaluate the integral we use the TpmcRefinement and construct snippets,
for which we can use standard quadrature rules:

template < typename Geometry >
double localVolume (std:: vector < double > values , const Geometry & g)
{

double volume = 0.0;
// calculate tpmc refinement
TpmcRefinement <ctype ,dim> refinement ( values );
// sum over inside domain

44



for (const auto & snippet : refinement . volume (tpmc:: InteriorDomain ))
{

// get zero-order quadrature rule
const QuadratureRule <double ,dim>& quad =

QuadratureRules <double ,dim>::rule( snippet .type (),0);
// sum over snippets
for ( size_t i=0; i<quad.size (); i++)

volume += quad[i]. weight ()
* snippet . integrationElement (quad[i]. position ())
* g. integrationElement ( snippet . global (quad[i]. position ()));

}
}

This gives us a convergent integral, approximating π. Unsurprisingly we obtain
an O(h2) convergence of the quadrature error, as the geometry is approximated
as a polygonal domain.

4.3. Non-smooth multigrid

Various interesting PDEs from application fields such as computational me-
chanics or phase-field modeling can be written as nonsmooth convex minimiza-
tion problems with certain separability properties. For such problems, the
module Dune-TNNMG offers an implementation of the Truncated Nonsmooth
Newton Multigrid (TNNMG) algorithm [86, 87].

4.3.1. The truncated nonsmooth Newton multigrid algorithm

TNNMG operates at the algebraic level of PDE problems. Let RN be en-
dowed with a block structure

RN =

m∏
i=1

RNi ,

and call Ri : RN → RNi the canonical restriction to the i-th block. Typically,
the factor spaces RNi will have small dimension, but the number of factors m
is expected to be large. A strictly convex and coercive objective functional
J : RN → R ∪ {∞} is called block-separable if it has the form

J(v) = J0(v) +

m∑
i=1

ϕi(Riv), (2)

with a convex C2 functional J0 : RN → R, and convex, proper, lower semi-
continuous functionals ϕi : RNi → R ∪ {∞}.

Given such a functional J , the TNNMG method alternates between a non-
linear smoothing step and a damped inexact Newton correction. The smoother
solves local minimization problems

ṽk = arg min
ṽ∈ṽk−1+Vk

J(ṽ) for all k = 1, . . . ,m, (3)

45



in the subspaces Vk ⊂ RN of all vectors that have zero entries everywhere
outside of the k-th block. The inexact Newton step typically consists of a single
multigrid iteration for the linearized problem, but other choices are possible as
well.

For this method global convergence has been shown even when using only
inexact local smoothers [87]. In practice it is observed that the method degen-
erates to a multigrid method after a finite number of steps, and hence multigrid
convergence rates are achieved asymptotically [86].

The Dune-TNNMG module, available from https://git.imp.fu-berlin.
de/agnumpde/dune-tnnmg, offers an implementation of the TNNMG algorithm in
the context of Dune. The coupling to Dune is very loose—as TNNMG operates
on functionals in RN only, there is no need for it to know about grids, finite
element spaces, etc.8 The Dune-TNNMG module therefore only depends on
Dune-ISTL and Dune-Solvers.

4.3.2. Numerical example: small-strain primal elastoplasticity

The theory of elastoplasticity describes the behavior of solid objects that
can undergo both temporary (elastic) and permanent (plastic) deformation. In
its simplest (primal) form, its variables are a vector field u : Ω → Rd of dis-
placements, and a matrix field p : Ω → Symd×d

0 of plastic strains. These
strains are assumed to be symmetric and trace-free [88]. Displacements u live
in the Sobolev space H1(Ω,Rd), and (in theories without strain gradients) plas-
tic strains live in the larger space L2(Ω,Symd×d

0 ). Therefore, the easiest space
discretization employs continuous piecewise linear finite elements for the dis-
placement u, and piecewise constant plastic strains p.

Implicit time discretization of the quasistatic model leads to a sequence of
spatial problems [89, 88]. These can be written as minimization problems

J(u, p) :=
1

2
(uT pT )A

(
u
p

)
− bT

(
u
p

)
+ σc

n2∑
i=1

∫
Ω

θi(x) dx · ‖pi‖F , (4)

which do not involve a time step size because the model is rate-independent.
Here, u and p are the finite element coefficients of the displacement and plastic
strains, respectively, and A is a symmetric positive definite matrix. The number
σc is the yield stress, and b is the load vector. The functions θ1, . . . , θn2 are
the canonical basis functions of the space of piecewise constant functions, and
‖·‖F : Symd×d

0 → R is the Frobenius norm. In the implementation, trace free
symmetric matrices pi ∈ Symd×d

0 are represented by vectors of length 1
2 (d +

1)d− 1.
By comparing (4) to (2), one can see that the increment functional (4) has

the required form [89]. By a result of [90], the local nonsmooth minimization
problems (3) can be solved exactly.

8The only exception to this are the multigrid transfer operators. These require access to
finite element bases, but are not central to TNNMG.

46

https://git.imp.fu-berlin.de/agnumpde/dune-tnnmg
https://git.imp.fu-berlin.de/agnumpde/dune-tnnmg


(a) Setup.
(b) Evolution of the plastification front, shown at time steps 4, 9, 14,
and 19

Figure 11: Setup and numerical results for the three-dimensional benchmark from [91].

The implementation used in [89] employs several of the recent hybrid features
of Dune-Functions and Dune-ISTL. The pair of finite element spaces for
displacements and plastic strains for a three-dimensional problem forms the
tree (P1)3× (P0)5 (where we have identified Sym3×3

0 with R5). This tree can be
constructed by

constexpr size_t nPlasticStrainComponents = dim*(dim+1)/2-1;
auto plasticityBasis = makeBasis (gridView , composite (

power<dim>( lagrange <1>()), // Deformation basis
power< nPlasticStrainComponents >( lagrange <0>()) // Plastic strain basis

));

The corresponding linear algebra data structures must combine block vectors
with block size 3 and block vectors with block size 5. Hence the vector data
type definition is

using DisplacementVector = BlockVector < FieldVector <double ,dim> >;
using PlasticStrainVector = BlockVector <

FieldVector <double , nPlasticStrainComponents > >;
using Vector = MultiTypeBlockVector < DisplacementVector ,

PlasticStrainVector >;

and this is the type used by Dune-TNNMG for the iterates. The corresponding
matrix type combines four BCRSMatrix objects of different block sizes in a single
MultiTypeBlockMatrix, and the multigrid solver operates directly on this type of
matrix.

We show a numerical example of the TNNMG solver for a three-dimensional
test problem. Note that in this case, the space Symd×d

0 is 5-dimensional, and
therefore isomorphic to R5. Let Ω be the domain depicted in Figure 11a, with
bounding box (0, 4) × (0, 1) × (0, 7). We clamp the object at ΓD = (0, 4) ×
(0, 1)× {0}, and apply a time-dependent normal load

〈l(t),u〉 = 20 t

∫
ΓN

u · e3 ds

47



on ΓN = (0, 4)× (0, 1)×{7}. The material parameters are taken from [91]. Fig-
ure 11b shows the evolution of the plastification front at several points in time.
See [89] for more detailed numerical results and performance measurements.

4.4. Multiscale methods

There has been a tremendous development of numerical multiscale methods
in the last two decades including the multiscale finite element method (Ms-
FEM) [92, 93, 94], the heterogeneous multiscale method (HMM) [95, 96, 97],
the variational multiscale method (VMM) [98, 99, 100] or the local orthogonal
decomposition (LOD) [101, 102, 103]. More recently, extensions to parameter-
ized multiscale problems have been presented, such as the localized multiscale
reduced basis method (LRBMS) [104, 105, 106] or the generalized multiscale
finite element method (GMsFEM) [107, 108, 109]. In [110, 111] we have demon-
strated that most of these methods can be cast into a general abstract framework
that may then be used for the design of a common implementation framework for
multiscale methods, which has been realized in the Dune-MultiScale module
[112]. In the following, we concentrate on an efficient parallelized implementa-
tion of MsFEM within the DUNE software framework.

4.4.1. Multiscale model problem

As a model problem we consider heterogeneous diffusion. Given a domain
Ω ⊂ Rn, n ∈ N>0 with a polygonal boundary, an elliptic diffusion tensor Aε ∈
(L∞(Ω))

n×n
with microscopic features, and an f ∈ L2(Ω) we define our model

problem as

find uε ∈ H̊1(Ω) :

∫
Ω

Aε∇uε · ∇Φ =

∫
Ω

fΦ ∀Φ ∈ H̊1(Ω) (5)

with H̊1(Ω) := C̊∞(Ω)
‖·‖H1(Ω)

.
For the discretization of Equation (5) we require a regular partition TH

of Ω with elements T and a nested refinement Th of TH with elements t and
choose associated piece-wise linear finite element spaces UH := S1

0(TH) ⊂ Uh :=
S1

0(Th) ⊂ H̊1(Ω).
We assume that Uh is sufficiently accurate. By Aεh we denote a suitable

piecewise polynomial approximation of Aε, and for T ∈ TH , we call U(T ) an
admissible environment of T , if it is connected, if T ⊂ U(T ) ⊂ Ω and if it is the
union of elements of Th. Admissible environments will be used for oversampling.
In particular T is an admissible environment of itself.

The MsFEM in Petrov–Galerkin formulation with oversampling is defined
in the following. The typical construction of an explicit multiscale finite ele-
ment basis is already indirectly incorporated in the method. Also note that for
U(T ) = T we obtain the MsFEM without oversampling.

Let now UH = {U(T )| T ∈ TH} denote a set of admissible environments of
elements of TH . We call Rεh(uH) ∈ Uh ⊂ H̊1(Ω) the MsFEM-approximation of

48



uε, if uH ∈ UH solves:∑
T∈TH

∫
T

Aεh∇Rεh(uH) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ UH .

For ΦH ∈ UH , the reconstruction Rεh(ΦH) is defined by Rεh(ΦH)|T :=

Q̃εh(ΦH) + ΦH , where Q̃εh(ΦH) is obtained in the following way: First we solve

for Qεh,T (ΦH) ∈ Ůh(U(T )) with∫
U(T )

Aεh
(
∇ΦH +∇Qεh,T (ΦH)

)
· ∇φh = 0 ∀φh ∈ Ůh(U(T )) (6)

for all T ∈ TH , where Ůh(U(T )) is the underlying fine scale finite element space
on U(T ) with zero boundary values on ∂U(T ). Since we are interested in a
globally continuous approximation, i.e. Rεh(uH) ∈ Uh ⊂ H̊1(Ω), we still need a
conforming projection PH,h which maps the discontinuous parts Qεh,T (ΦH)|T to
an element of Uh. Therefore, if

PH,h : {φh ∈ L2(Ω)| φh ∈ Uh(T ) ∀T ∈ TH} −→ Uh

denotes such a projection, we define

Q̃εh(ΦH) := PH,h(
∑
T∈TH

χTQ
ε
h,T (ΦH))

with indicator function χT .
For a more detailed discussion and analysis of this method we refer to [94].

4.4.2. Implementation and parallelization

Our implementation of the general framework for multiscale methods (Dune-
Multiscale, [112]) is an effort birthed from the Exa-Dune project [20, 113,
114] and is built using the Dune Generic Discretization Toolbox (Dune-GDT,
[115]) and Dune-XT [116] as well as the Dune core modules described in Sec-
tion 3.

To maximize CPU utilization we employ multi-threading to dynamically
load balance work items inside one CPU without expensive memory transfer or
cross-node communication. This effectively reduces the communication/overlap
region of the coarse grid in a scenario with a fixed number of available cores.
Within Dune we decided to use Intel’s Thread Building Blocks (TBB) library
as our multithreading abstraction.

Let us now consider an abstract compute cluster that is comprised of a set of
processors P, where a set of cores CPi

= {CjPi
} is associated with each Pi ∈ P

and a collection of threads tCj = {tkCj
}. For simplicity, we assume here that

j = k across P.
Since we are interested in globally continuous solutions in UH , we require an

overlapping distribution TH,Pi
⊂ TH where cells can be present on multiple Pi.

49



Figure 12: Non-overlapping hybrid macro grid distribution of TH for P = P0, · · ·P3 with
the hatched area symbolizing sub-distribution over tCj

and zoomed fine scale sub-structure

of Uh,T for U(T ) = T (left). Overlapping macro grid distribution of TH for P = P0, · · · , P3

(right).

Furthermore, we denote by Ii ⊂ TH,Pi the set of inner elements, if for all TH ∈
Ii ⇒ TH /∈ Ij for all i, j with i 6= j. The first important step in the multiscale
algorithm is to solve the cell corrector problems (6) for all U(TH), TH ∈ Ii.
These are truly locally solvable in the sense of data independence with respect
to neighbouring coarse cells. We build upon extensions to the Dune-Grid
module made within Exa-Dune, presented in [117], that allow us to partition
a given GridView into connected ranges of cells. The assembler was modified to
use TBB such that different threads iterate over different of these partitions in
parallel (Fig. 12).

For each TH we create a new structured Dune::YaspGrid to cover U(TH).
Next we need to obtain Qεh,T (ΦH) for all J coarse scale basis function. After dis-
cretization this actually means assembling only one linear system matrix and J
different right hand sides. The assembly handled by Dune::GDT::SystemAssembler,
which is parametrized by an elliptic operator GDT::Operators::EllipticCG and
corresponding right hand side functionals GDT::LocalFunctional::Codim0Integral.
The SystemAssembler performs loop-fusion by merging cell-local operations of
any number of input functors. This allows to perform the complete assem-
bly in one single sweep over the grid, using a configurable amount of thread-
parallelism.

Since the cell problems usually only contain up to about 100,000 elements
it is especially efficient to factorize the assembled system matrix once and then
backsolve for all right hand sides. For this we employ the UMFPACK[118] direct
solver from the SuiteSparse library 9 and its abstraction through Dune-ISTL.
Another layer of abstraction on top of that in Dune-XT allows us to switch to
an iterative solver at run-time, should we exceed the suitability constraints of
the direct solver.

After applying the projections PH,h to get Q̃εh(ΦH), we discretize Eq. (6)
which yields a linear system in the standard way. Since this is a system with
degrees of freedom (DoF) distributed across all Pi we need to select an ap-
propriate iterative solver. Here we use the implementation of the bi–conjugate

9http://faculty.cse.tamu.edu/davis/suitesparse.html

50

http://faculty.cse.tamu.edu/davis/suitesparse.html


1792 3584 7168 14336

# Cores

10−1

100

101

102
T
im
e
(s
) Overall

Coarse solve

Local assembly + solve

Coarse assembly

1792 3584 7168 14336

# Cores

20

21

22

23

S
p
ee
du
p

Overall

Coarse solve

Local assembly + solve

Coarse assembly

Ideal

Figure 13: Strong scaling absolute runtimes (left) and speedup (right) for the MsFEM from
1792 MPI ranks with roughly 500 coarse cells per rank, up to 14336 ranks with around 60
cells per rank. Performed on a full 512-node island of the Phase 2 partition of the SuperMUC
Petascale System in Garching with 28 ranks per node.

gradient stabilized method (BiCGSTAB) in Dune-ISTL, preconditioned by an
Algebraic Multigrid (AMG) solver, see Section 3.2. We note that the application
of the linear solver for the coarse system is the only step in our algorithm that
requires global communication. This allows the overall algorithm to scale with
high parallel efficiency in setups with few coarse grid cells per rank, where a dis-
tributed iterative solver cannot be expected to scale with its runtime dominated
by communication overhead. We demonstrate this case in Figure 13.

While the Dune-Multiscale module can function as a standalone appli-
cation to apply the method to a given problem, it is also possible to use it as
a library in other modules as well (see for example Dune-MLMC[119]). Run-
time parameters like the problem to solve, oversampling size, micro and macro
grid resolution, number of threads per process, etc. are read from a structured
INI-style file or passed as a XT::Common::Configuration object. New problems
with associated data functions and computational domains can easily be added
by defining them in a new header file. The central library routine to apply the
method to a given problem, with nulled solution and prepared grid setup is very
concise as it follows the mathematical abstractions discussed above.

void Elliptic_MsFEM_Solver ::apply(
DMP:: ProblemContainer & problem ,
const CommonTraits :: SpaceType & coarse_space ,
std:: unique_ptr < LocalsolutionProxy >& solution ,
LocalGridList & localgrid_list ) const

{
CommonTraits :: DiscreteFunctionType coarse_msfem_solution ( coarse_space ,

" Coarse Part MsFEM Solution ");
LocalProblemSolver (problem , coarse_space ,

localgrid_list ). solve_for_all_cells ();
CoarseScaleOperator elliptic_msfem_op (problem , coarse_space ,

localgrid_list );
elliptic_msfem_op . apply_inverse ( coarse_msfem_solution );
//! projection and summation
identify_fine_scale_part (problem , localgrid_list ,

coarse_msfem_solution , coarse_space , solution );
solution ->add( coarse_msfem_solution );

}

51



4.5. Sum-factorization for high order discretizations to improve node level per-
formance

In this last example we showcase how Dune is used to develop HPC simula-
tion code for modern hardware architectures. We discuss some prevalent trends
in hardware development and how they affect finite element software. Then a
matrix-free solution technique for high order discretizations is presented and its
node level performance on recent architectures is shown. This work was imple-
mented in Dune-PDELab and was originally developed within the Exa-Dune
project. The complexity of the performance engineering efforts have let to a
reimplementation and continued development in Dune-codegen.

With the end of frequency scaling, performance increases on current hard-
ware rely on an ever-growing amount of parallelism in modern architectures.
This includes a drastic increase of CPU floating point performance through
instruction level parallelism (SIMD vectorization, superscalar execution, fused
multiplication and addition). However, memory bandwidth has not kept up
with these gains, severely restricting the performance of established numerical
codes and leaving them unable to saturate the floating point hardware. Devel-
opers need to both reconsider their choice of algorithms, as well as adapt their
implementations in order to overcome this barrier. E.g. in traditional FEM
implementations, the system matrix is assembled in memory and the sparse
linear system is solved with efficient solvers based on sparse matrices. Optimal
complexity solvers scale linearly in the number of unknowns. Despite their opti-
mal complexity, these schemes cannot leverage the capabilities of modern HPC
systems as they rely on sparse matrix vector products of the assembled system
matrix, which have very low arithmetic intensity and are therefore inherently
memory-bound.

One possible approach to leverage the capabilities of current hardware is to
directly implement the application of the sparse matrix on a vector. This direct
implementation shifts the arithmetic intensity into the compute-bound regime
of modern CPUs. Other software projects are pursuing similar ideas for highly
performant simulation codes on modern architectures, e.g. libceed [120] and
deal.ii [121]. Given an optimal complexity algorithm on suitable discretizations,
it is possible to compute the matrix-vector product faster than the entries of
an assembled system matrix can be loaded from main memory. Such optimal
complexity algorithms make use of a technique called sum factorization [122]
which exploits the tensor product structure of finite element basis functions
and quadrature formulae. Given polynomial degree k and minimal quadrature
order, it allows to reduce the computational complexity of one operator appli-
cation from O(k2d) to O(kd+1) by rewriting the evaluation of finite element
functions as a d sequence of tensor contractions. To compute local contribu-
tions of the operator it is necessary to have access to the 1d shape functions and
quadrature rule that was used in the tensor-product construction of the 2d or
3d variants. Although this optimal complexity algorithm can not use 3d shape
functions, the implementation is still hard-coded, but uses 1d shape functions
from Dune-LocalFunctions. By this the implementation can still be fairly

52



2 4 6 8 10
Polynomial degree

0

100

200

300

400

500
GF

lo
ps

 / 
s

Diffusion-Reaction on Haswell

Operator Application

2 4 6 8 10
Polynomial degree

0

100

200

300

400

500

600

M
DO

Fs
 / 

s

Diffusion-Reaction on Haswell
Operator Application

Figure 14: Performance measurements on an Intel Haswell node for a matrix-free application
of a convection–diffusion DG operator on an axis-parallel, structured grid: On the left side,
the machine utilization in GFlops/s (109 floating point operations per second) is shown. The
theoretical peak performance of this Haswell node is 1.17 TFlops/s. On the right hand side,
the degree of freedom throughput is measured in degrees of freedom per second.

generic and easily switch between different polynomial degrees and polynomial
representation (e.g. Lagrange- or Legendre-Polynomials).

In order to fully exploit the CPU’s floating point capabilities, an imple-
mentation needs to maximize its use of SIMD instructions. In our experience,
general purpose compilers are not capable to sufficiently autovectorize this type
of code, especially as the loop bounds of tensor contractions depend on the poly-
nomial degree k and are thus not necessarily an integer multiple of the SIMD
width. Explicit SIMD vectorization is a challenging task that requires both an
algorithmic idea of how to group instructions and possibly rearrange loops as
well as a technical realization. In the following we apply a vectorization strategy
developed in [123]: Batches of several sum factorization kernels arising from the
evaluation of finite element functions and their gradients are parallelized using
SIMD instructions. In order to achieve portability between different instruction
sets, code is written using a SIMD abstraction layer [45]. This however requires
the innermost loops of finite element assembly to be rewritten using SIMD types.
With Dune-PDELab’s abstraction of a local operator, these loops are typically
located in user code. This let to the development of Dune-codegen, which
will be further described in Section 5.

Figure 14 shows node level performance numbers for a Discontinuous Galerkin
finite element operator for the diffusion reaction equation on an Intel Haswell
node. The measurements use MPI to saturate the node and make extensive
use of SIMD instructions which lead to a performance of roughly 40% of the
theoretical peak performance of 1.17 TFlops/s (1012 floating point operations
per second) on this 32 core node. Discontinuous Galerkin discretizations bene-
fit best from this compute-bound algorithm, as they allow to minimize memory
transfers by omitting the costly setup of element-local data structured, oper-
ating directly on suitably blocked global data structures instead. A dedicated
assembler for DG operators, Dune::PDELab::FastDGAssembler, is now available

53



in Dune-PDELab. It does not gather/scatter data from global memory into
element-local data structures, but just uses views onto the global data. By this
it avoids unnecessary copy operations and index calculations. This assembler
is essential to achieve the presented node level performance, but can also be
beneficial for traditional DG implementations.

It is worth noting that iterative solvers based on this kind of matrix-free
operator evaluation require the design of preconditioners that preserve the low
memory bandwidth requirements while ensuring good convergence behavior, as
the per-iteration speedup would otherwise be lost to a much higher number of
solver iterations. We studied matrix-free preconditioning techniques for Dis-
continuous Galerkin problems in [124]. This matrix-free solution technology
have been used for an advanced application with the Navier–Stokes equations
in [125].

5. Development trends in Dune

Dune, and especially its grid interface, have proven themselves. Use cases
range from personal laptops to TOP500 super computers, from mathematical
and computer science methodologies to engineering application, and from bach-
elor thesis to research of Fortune 500 corporations.

As we laid out, Dune’s structure and its interfaces remained stable over the
time. The modular structure of Dune is sometimes criticized, as it might lead
to different implementations to solve the same problem. We still believe that the
decision was right, as it allows to experiment with new features and make them
publicly available to the community without compromising the stability of the
core. Other projects like FEniCS have taken similar steps. In our experience a
high granularity of the software is useful.

Dune remains under constant development and new features are added reg-
ularly. We briefly want to highlight four topics that are subject of current
research and development.

5.1. Asynchronous communication

The communication overhead is expected to be an even greater problem, in
future HPC systems, as the numbers of processes will increase. Therefore, it
is necessary to use asynchronous communication. A first attempt to establish
asynchronous communication in Dune was demonstrated in [22, 24].

With the MPI 3.0 standard, an official interface for asynchronous commu-
nication was established. Based on this standard, as part of the Exa-Dune
project, we are currently developing high-level abstractions for Dune for such
asynchronous communication, following the future-promise concept which is also
used in the STL library. An MPIFuture object encapsulates the MPI_Request as
well as the corresponding memory buffer. Furthermore, it provides methods to
check for the state of the communication and access the result.

Thereby the fault-tolerance with respect to soft- and hard-faults that occur
on remote processes is improved as well. We are following the recommended

54



way of handling failures by throwing exceptions. Unfortunately, this concept
integrates poorly with MPI. An approach how to propagate exceptions through
the entire system and handle them properly, using the ULFM functionality
proposed in [126, 127], can be found in [128].

Methods like pipelined CG [129] overlap global communication and operator
application to hide communication costs. Such asynchronous solvers will be
incorporated in Dune-ISTL, along with the described software infrastructure.

5.2. Thread parallelism

Modern HPC systems exhibit different levels of concurrency. Many numeri-
cal codes are now adopting the MPI+X paradigm, meaning that they use inter-
node parallelism via MPI and intranode parallelism, i.e. threads, via some other
interface. While early works where based on OpenMP and pthreads, for exam-
ple in [22], the upcoming interface changes in Dune will be based on the Intel
Thread Building Blocks (TBB) to handle threads. Up to now the core modules
don’t use multi-threading directly, but the consensus on a single library ensures
interoperability among different Dune extension modules.

In the Exa-Dune project several numerical components like assemblers or
specialized linear solvers have been developed using TBB. As many develop-
ments of Exa-Dune are proof of concepts, these can not be merged into the
core modules immediately, but we plan to port the most promising approaches
to mainline Dune. Noteworthy features include mesh partitioning into en-
tity ranges per thread, as it is used in the MS-FEM code in Section 4.4, the
block-SELL-C-σ matrix format [130] (an extension of the work of [131]) and a
task-based DG-assembler for Dune-PDELab.

5.3. C++ and Python

Combining easy to use scripting languages with state-of-the-art numerical
software has been a continuous effort in scientific computing for a long time.
While much of the development of mathematical algorithms still happens in
Matlab, there is increasing use of Python for such efforts, also in other sci-
entific disciplines. For solution of PDEs the pioneering work of the FEniCS
team [5] inspired many others, e.g. [51, 52] to also provide Python scripting
for high performance PDE solvers usually coded in C++. As discussed in Sec-
tion 3.4, Dune provides Python-bindings for central components like meshes,
shape functions, and linear algebra. Dune-Python also provides infrastruc-
ture for exporting static polymorphic interfaces to Python using just in time
compilation and without introducing a virtual layer and thus not leading to any
performance losses when objects are passed between different C++ components
through the Python layer. Bindings are now being added to a number of mod-
ules like the Dune-Grid-Glue module discussed in Section 4.2.1 and further
modules will follow soon.

55



5.4. DSLs and code-generation

Code-generation techniques allow to use scripting languages, while maintain-
ing high efficiency. Using a domain-specific language (DSL), the FEniCS project
first introduced a code generator to automatically generate efficient discretiza-
tion code in Python. The Unified Form Language UFL[5, 55] is an embedded
Python DSL for describing a PDE problem in weak form. UFL is now used by
several projects, in particular Firedrake [52]. We also started adopting this input
in several places in Dune. For example, UFL can now be used for the generating
model descriptions for Dune-Fem [70] as demonstrated in Section 4.1. Another
effort is the currently developed Dune-codegen module, which tries to make
performance optimization developed in the Exa-Dune project accessible to the
Dune community.

In Section 4.5 we highlighted how highly tuned matrix-free higher-order ker-
nels can achieve 40% peak performance on modern architectures. While Dune
offers the necessary flexibility, this kind of optimizations is hard to implement
for average users. To overcome this issue and improve sustainability, we intro-
duced a code generation toolchain in [132], using UFL as our input language.
From this DSL, a header file containing a performance-optimized LocalOperator
class is generated. The LocalOperator interface is Dune-PDELab’s abstrac-
tion for local integration kernels. The design decisions for this code generation
toolchain are discussed in detail in [133]. This toolchain achieves near-optimal
performance by applying structural transformations to an intermediate repre-
sentation based on [134]. A search space of SIMD vectorization strategies is ex-
plored from within the code generator through an autotuning procedure. This
work now lead to the development of Dune-codegen, which also offers other
optimizations, like block-structured meshes, similar to the concepts described
in [135], or extruded meshes, like in [136, 137]. This is an ongoing effort and is
still in early development.

Acknowledgements

We thank the Dune users and contributors for their continuous support, as
only a vivid community unfolds the power of open source. We would like to
point out the essential contributions of those Dune core developers that are not
authors of this paper: Ansgar Burchardt, Jorrit Fahlke, Christoph Gersbacher,
Steffen Müthing, and Martin Nolte. The file LICENSE.md within every Dune
module attributes the work of numerous more contributors.

Robert Klöfkorn acknowledges the support of the Research Council of Nor-
way through the INTPART project INSPIRE (274883). Peter Bastian, Nils-
Arne Dreier, Christian Engwer, René Fritze, and Mario Ohlberger acknowl-
edge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under SPP 1648: Software for Exascale Computing through the
project EXA-DUNE - Flexible PDE Solvers, Numerical Methods, and Appli-
cations under contract numbers Ba1498/10-2, EN 1042/2-2, and OH98/5-2.
Christian Engwer, Dominic Kempf, and Peter Bastian also acknowledge funding

56



through the BMBF project HPC2SE under reference number 01H16003A. Nils-
Arne Dreier, Christian Engwer, René Fritze, and Mario Ohlberger acknowledge
funding by the Deutsche Forschungsgemeinschaft under Germany’s Excellence
Strategy EXC 2044-390685587, Mathematics Münster: Dynamics – Geometry
– Structure.

References

[1] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,
O. Sander, A generic grid interface for parallel and adaptive scientific
computing. part I: Abstract framework, Computing 82 (2–3) (2008) 103–
119. doi:10.1007/s00607-008-0003-x.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
M. Ohlberger, O. Sander, A generic grid interface for parallel and adap-
tive scientific computing. part II: Implementation and tests in DUNE,
Computing 82 (2–3) (2008) 121–138. doi:10.1007/s00607-008-0004-9.

[3] S. Vey, A. Voigt, AMDiS: adaptive multidimensional simulations, Com-
put.Visual. Sci. 10 (1) (2007) 57–67. doi:10.1007/s00791-006-0048-3.

[4] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling,
D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler,
R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II
library, version 9.1, Journal of Numerical Mathematics (2019) online–first.
doi:10.1515/jnma-2019-0064.

[5] A. Logg, K.-A. Mardal, G. Wells, Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book, Springer
Publishing Company, Incorporated, 2012.

[6] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (3-4)
(2012) 251–265.
URL https://freefem.org/

[7] S. Gawlok, P. Gerstner, S. Haupt, V. Heuveline, J. Kratzke, P. Lösel,
K. Mang, M. Schmidtobreick, N. Schoch, N. Schween, J. Schwegler,
C. Song, M. Wlotzka, HiFlow3 – Technical Report on Release 2.0, Preprint
Series of the Engineering Mathematics and Computing Lab (EMCL)
0 (06). doi:10.11588/emclpp.2017.06.42879.

[8] Q. Liu, Z. Mo, A. Zhang, Z. Yang, JAUMIN: a programming frame-
work for large-scale numerical simulation on unstructured meshes, CCF
Transactions on High Performance Computing 1 (1) (2019) 35–48. doi:
10.1007/s42514-019-00001-z.

[9] T. Kolev, V. Dobrev, MFEM: Modular Finite Element Methods Library
(June 2010). doi:10.11578/dc.20171025.1248.

57

http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.1007/s00791-006-0048-3
http://dx.doi.org/10.1515/jnma-2019-0064
https://freefem.org/
https://freefem.org/
http://dx.doi.org/10.11588/emclpp.2017.06.42879
http://dx.doi.org/10.1007/s42514-019-00001-z
http://dx.doi.org/10.1007/s42514-019-00001-z
http://dx.doi.org/10.11578/dc.20171025.1248


[10] Netgen/NGSolve: high performance multiphysics finite element software,
https://ngsolve.org/.

[11] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik,
M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson,
K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc
Web page (2019).
URL https://www.mcs.anl.gov/petsc

[12] A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum, UG 4: A novel flexible
software system for simulating PDE based models on high performance
computers, Computing and Visualization in Science 16 (4) (2013) 165–179.
doi:10.1007/s00791-014-0232-9.

[13] F. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, 1975.
URL https://archive.org/details/mythicalmanmonth00fred

[14] A. F. Rasmussen, T. H. Sandve, K. Bao, A. Lauser, J. Hove, B. Skaflestad,
R. Klöfkorn, M. Blatt, A. B. Rustad, O. Sævareid, et al., The Open Porous
Media Flow Reservoir Simulator, arXiv preprint arXiv:1910.06059.

[15] T. Koch, D. Gläser, K. Weishaupt, S. Ackermann, M. Beck, B. Becker,
S. Burbulla, H. Class, E. Coltman, S. Emmert, T. Fetzer, C. Grüninger,
K. Heck, J. Hommel, T. Kurz, M. Lipp, F. Mohammadi, S. Scherrer,
M. Schneider, G. Seitz, L. Stadler, M. Utz, F. Weinhardt, B. Flemisch,
Dumux 3 – an open-source simulator for solving flow and transport prob-
lems in porous media with a focus on model coupling, Computers & Math-
ematics with Applicationsdoi:10.1016/j.camwa.2020.02.012.

[16] S. Götschel, M. Weiser, A. Schiela, Solving optimal control problems with
the Kaskade 7 finite element toolbox, in: Advances in DUNE, Springer,
2012, pp. 101–112.

[17] M. Drohmann, B. Haasdonk, S. Kaulmann, M. Ohlberger, A Software
Framework for Reduced Basis Methods Using Dune-RB and RBmatlab,
in: A. Dedner, B. Flemisch, R. Klöfkorn (Eds.), Advances in DUNE,
Springer, 2012, pp. 77–88. doi:10.1007/978-3-642-28589-9_6.

[18] C. T. Lee, J. B. Moody, R. E. Amaro, J. A. McCammon, M. J. Holst, The
Implementation of the Colored Abstract Simplicial Complex and Its Appli-
cation to Mesh Generation, ACM Transactions on Mathematical Software
45 (3). doi:10.1145/3321515.

[19] M. Ainsworth, J. Oden, A posteriori error estimation in finite ele-
ment analysis, Computer Methods in Applied Mechanics and Engineering
142 (1) (1997) 1 – 88. doi:10.1016/S0045-7825(96)01107-3.

58

https://ngsolve.org/
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/s00791-014-0232-9
https://archive.org/details/mythicalmanmonth00fred
https://archive.org/details/mythicalmanmonth00fred
http://dx.doi.org/10.1016/j.camwa.2020.02.012
http://dx.doi.org/10.1007/978-3-642-28589-9_6
http://dx.doi.org/10.1145/3321515
http://dx.doi.org/10.1016/S0045-7825(96)01107-3


[20] P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger,
S. Turek, J. Fahlke, S. Kaulmann, S. Müthing, D. Ribbrock, EXA-DUNE:
Flexible PDE solvers, numerical methods and applications, in: Lopes,
et al. (Eds.), Euro-Par 2014: Parallel Processing Workshops. Euro-Par
2014 International Workshops, Porto, Portugal, August 25-26, 2014, Re-
vised Selected Papers, Part II., Vol. 8806 of Lecture Notes in Computer
Science, Springer, 2014, pp. 530–541. doi:10.1007/978-3-319-14313-2_45.

[21] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev,
O. Ippisch, R. Milk, J. Mohring, S. Müthing, M. Ohlberger, D. Ribbrock,
S. Turek, Hardware-based efficiency advances in the EXA-DUNE project,
in: Software for Exascale Computing - SPPEXA 2013-2015, Lecture Notes
in Computational Science and Engineering, Springer Verlag, 2016, pp. 3–
23.

[22] R. Klöfkorn, Efficient Matrix-Free Implementation of Discontinuous
Galerkin Methods for Compressible Flow Problems, in: A. Handlovicova,
et al. (Eds.), Proceedings of the ALGORITMY, 2012, pp. 11–21.
URL http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/
2Kloefkornf.pdf

[23] A. Schmidt, K. Siebert, Design of Adaptive Finite Element Software –
The Finite Element Toolbox ALBERTA, Springer, 2005.
URL http://www.alberta-fem.de/

[24] M. Alkämper, A. Dedner, R. Klöfkorn, M. Nolte, The DUNE-ALUGrid
Module., Archive of Numerical Software 4 (1) (2016) 1–28. doi:10.11588/
ans.2016.1.23252.

[25] A. Fomins, B. Oswald, Dune-CurvilinearGrid: Parallel Dune Grid Man-
ager for Unstructured Tetrahedral Curvilinear Meshes, arXiv e-prints (Dec
2016). arXiv:1612.02967.

[26] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite element mesh generator
with built-in pre- and post-processing facilities, International Journal for
Numerical Methods in Engineering 79 (11) (2009) 1309–1331. doi:10.
1002/nme.2579.

[27] O. Sander, T. Koch, N. Schröder, B. Flemisch, The Dune FoamGrid im-
plementation for surface and network grids, Archive of Numerical Software
5 (1) (2017) 217–244.

[28] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz-Reichert,
C. Wieners, UG – A flexible software toolbox for solving partial differential
equations, Computing and Visualization in Science 1 (1) (1997) 27–40.
doi:10.1007/s007910050003.

[29] C. Gersbacher, The Dune-PrismGrid Module, in: A. Dedner, B. Flemisch,
R. Klöfkorn (Eds.), Advances in DUNE, Berlin, Heidelberg, 2012, pp. 33–
44. doi:10.1007\%2F978-3-642-28589-9_3.

59

http://dx.doi.org/10.1007/978-3-319-14313-2_45
http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/2Kloefkornf.pdf
http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/2Kloefkornf.pdf
http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/2Kloefkornf.pdf
http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/2Kloefkornf.pdf
http://www.alberta-fem.de/
http://www.alberta-fem.de/
http://www.alberta-fem.de/
http://dx.doi.org/10.11588/ans.2016.1.23252
http://dx.doi.org/10.11588/ans.2016.1.23252
http://arxiv.org/abs/1612.02967
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1007/s007910050003
http://dx.doi.org/10.1007%2F978-3-642-28589-9_3


[30] P. Bastian, G. Buse, O. Sander, Infrastructure for the Coupling of Dune
Grids, in: G. Kreiss, P. Lötstedt, A. Målqvist, M. Neytcheva (Eds.), Nu-
merical Mathematics and Advanced Applications 2009, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 107–114.

[31] C. Engwer, S. Müthing, Concepts for flexible parallel multi-domain sim-
ulations, in: Domain Decomposition Methods in Science and Engineering
XXII, Springer, 2016, pp. 187–195.

[32] S. Müthing, A flexible framework for multi physics and multi domain PDE
simulations, Ph.D. thesis, Universität Stuttgart (2015). doi:10.18419/
opus-3620.

[33] C. Gräser, O. Sander, The dune-subgrid module and some applications,
Computing 86 (4) (2009) 269. doi:10.1007/s00607-009-0067-2.

[34] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch,
C. Gersbacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf,
R. Klöfkorn, T. Malkmus, S. Müthing, M. Nolte, M. Piatkowski,
O. Sander, The Distributed and Unified Numerics Environment, Ver-
sion 2.4, Archive of Numerical Software 4 (100) (2016) 13–29. doi:
10.11588/ans.2016.100.26526.

[35] R. Klöfkorn, M. Nolte, Performance Pitfalls in the Dune Grid Interface, in:
A. Dedner, B. Flemisch, R. Klöfkorn (Eds.), Advances in DUNE, Springer
Berlin Heidelberg, 2012, pp. 45–58. doi:10.1007/978-3-642-28589-9_4.

[36] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative
Solvers with Applications in Incompressible Fluid Dynamics, 2nd Edition,
Oxford University Press, 2014.

[37] M. Blatt, P. Bastian, The Iterative Solver Template Library, in:
B. K̊agström, E. Elmroth, J. Dongarra, J. Waśniewski (Eds.), Applied
Parallel Computing. State of the Art in Scientific Computing, Vol. 4699
of Lecture Notes in Computer Science, Springer, 2007, pp. 666–675.

[38] M. Blatt, P. Bastian, On the Generic Parallelisation of Iterative Solvers
for the Finite Element Method, Int. J. Comput. Sci. Engrg. 4 (1) (2008)
56–69. doi:10.1504/IJCSE.2008.021112.

[39] M. Blatt, A parallel algebraic multigrid method for elliptic problems with
highly discontinuous coefficients, Ph.D. thesis, Universtität Heidelberg
(2010).

[40] P. Bastian, M. Blatt, R. Scheichl, Algebraic multigrid for discontinuous
Galerkin discretizations of heterogeneous elliptic problems, Numerical Lin-
ear Algebra with Applications 2 (19) (2012) 367–388.

60

http://dx.doi.org/10.18419/opus-3620
http://dx.doi.org/10.18419/opus-3620
http://dx.doi.org/10.1007/s00607-009-0067-2
http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.11588/ans.2016.100.26526
http://dx.doi.org/10.1007/978-3-642-28589-9_4
http://dx.doi.org/10.1504/IJCSE.2008.021112


[41] O. Ippisch, M. Blatt, Scalability test of µφ and the parallel algebraic
multigrid solver of dune-istl, in: Jülich Blue Gene/P Extreme Scaling
Workshop, no. FZJ-JSC-IB-2011-02. Jülich Supercomputing Centre, 2011,
pp. 21–26.
URL http://hdl.handle.net/2128/7309

[42] U. M. Yang, On the use of relaxation parameters in hybrid smoothers,
Numerical Linear Algebra with Applications 11 (2–3) (2004) 155–172.

[43] M. Kretz, Extending C++ for explicit data-parallel programming via
SIMD vector types., Ph.D. thesis, Goethe University Frankfurt am Main
(2015).

[44] M. Kretz, V. Lindenstruth, Vc: A C++ library for explicit vectorization,
Software: Practice and Experience 42 (11) (2012) 1409–1430. doi:10.
1002/spe.1149.

[45] A. Fog, C++ vector class library (2013).
URL http://www.agner.org/optimize/vectorclass.pdf

[46] R. Klöfkorn, A. Kvashchuk, M. Nolte, Comparison of linear recon-
structions for second-order finite volume schemes on polyhedral grids,
Computational Geosciences 21 (5) (2017) 909–919. doi:10.1007/
s10596-017-9658-8.

[47] A. Dedner, E. Müller, R. Scheichl, Efficient multigrid preconditioners for
atmospheric flow simulations at high aspect ratio, International Journal
for Numerical Methods in Fluids 80 (1) (2016) 76–102. doi:10.1002/fld.
4072.

[48] P. G. Ciarlet, The finite element method for elliptic problems, Vol. 40,
SIAM, 2002.

[49] C. Engwer, C. Gräser, S. Müthing, O. Sander, Function space bases in
the dune-functions module, arXiv e-prints (2018). arXiv:1806.09545.

[50] C. Engwer, C. Gräser, S. Müthing, O. Sander, The interface for functions
in the dune-functions module, Archive of Numerical Software 5 (1) (2017)
95–109. arXiv:1512.06136, doi:10.11588/ans.2017.1.27683.

[51] L. D. Dalcin, R. R. Paz, P. A. Kler, A. Cosimo, Parallel distributed com-
puting using Python, Advances in Water Resources 34 (9) (2011) 1124 –
1139. doi:10.1016/j.advwatres.2011.04.013.

[52] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
McRae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, Firedrake: Automat-
ing the Finite Element Method by Composing Abstractions, ACM Trans.
Math. Softw. 43 (3) (2016) 24:1–24:27. doi:10.1145/2998441.

61

http://hdl.handle.net/2128/7309
http://hdl.handle.net/2128/7309
http://hdl.handle.net/2128/7309
http://dx.doi.org/10.1002/spe.1149
http://dx.doi.org/10.1002/spe.1149
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
http://dx.doi.org/10.1007/s10596-017-9658-8
http://dx.doi.org/10.1007/s10596-017-9658-8
http://dx.doi.org/10.1002/fld.4072
http://dx.doi.org/10.1002/fld.4072
http://arxiv.org/abs/1806.09545
http://arxiv.org/abs/1512.06136
http://dx.doi.org/10.11588/ans.2017.1.27683
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1145/2998441


[53] W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – Seamless operabil-
ity between C++11 and Python, https://github.com/pybind/pybind11
(2017).

[54] A. Dedner, M. Nolte, The Dune Python Module, arXiv e-prints (2018).
arXiv:1807.05252.

[55] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, G. N. Wells, Unified
Form Language: A Domain-specific Language for Weak Formulations of
Partial Differential Equations, ACM Trans. Math. Softw. 40 (2) (2014)
9:1–9:37. doi:10.1145/2566630.

[56] D. Kempf, T. Koch, System testing in scientific numerical software frame-
works using the example of DUNE, Archive of Numerical Software 5 (1)
(2017) 151–168.

[57] C. Burstedde, L. Wilcox, O. Ghattas, p4est: Scalable algorithms for par-
allel adaptive mesh refinement on forests of octrees, SIAM Journal on
Scientific Computing 33 (3) (2011) 1103–1133. doi:10.1137/100791634.

[58] S. Badia, A. F. Mart́ın, J. Principe, FEMPAR: An Object-Oriented Par-
allel Finite Element Framework, Archives of Computational Methods in
Engineering 25 (2) (2018) 195–271. doi:10.1007/s11831-017-9244-1.

[59] T. Xie, S. Seol, M. Shephard, Generic components for petascale adaptive
unstructured mesh-based simulations, Engineering with Computers 30 (1)
(2014) 79–95. doi:10.1007/s00366-012-0288-4.

[60] B. Kirk, J. Peterson, R. Stogne, G. Carey, libMesh: A C++ Li-
brary for Parallel Adaptive Mesh Refinement/Coarsening Simulations,
Engineering with Computers 22 (3–4) (2006) 237–254. doi:10.1007/
s00366-006-0049-3.

[61] A. Dedner, R. Klöfkorn, A Generic Stabilization Approach for Higher Or-
der Discontinuous Galerkin Methods for Convection Dominated Problems,
J. Sci. Comput. 47 (3) (2011) 365–388. doi:10.1007/s10915-010-9448-0.

[62] D. Schuster, S. Brdar, M. Baldauf, A. Dedner, R. Klöfkorn, D. Kröner,
On discontinuous Galerkin approach for atmospheric flow in the mesoscale
with and without moisture, Meteorologische Zeitschrift 23 (4) (2014) 449–
464. doi:10.1127/0941-2948/2014/0565.

[63] A. Dedner, R. Klöfkorn, M. Kränkel, Continuous Finite-Elements on
Non-Conforming Grids Using Discontinuous Galerkin Stabilization, in:
J. Fuhrmann, et al. (Eds.), Finite Volumes for Complex Applications VII,
Vol. 77 of Springer Proceedings in Mathematics & Statistics, Springer,
2014, pp. 207–215. doi:10.1007/978-3-319-05684-5_19.

62

http://arxiv.org/abs/1807.05252
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1007/s11831-017-9244-1
http://dx.doi.org/10.1007/s00366-012-0288-4
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1007/s10915-010-9448-0
http://dx.doi.org/10.1127/0941-2948/2014/0565
http://dx.doi.org/10.1007/978-3-319-05684-5_19


[64] A. Dedner, B. Kane, R. Klöfkorn, M. Nolte, Python framework for hp-
adaptive discontinuous Galerkin methods for two-phase flow in porous
media, Applied Mathematical Modelling 67 (2019) 179 – 200. doi:10.
1016/j.apm.2018.10.013.

[65] B. Kane, R. Klöfkorn, C. Gersbacher, hp–Adaptive Discontinuous
Galerkin Methods for Porous Media Flow, in: C. Cancès, P. Omnes
(Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic,
Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017,
Springer International Publishing, Cham, 2017, pp. 447–456. doi:10.
1007/978-3-319-57394-6_47.

[66] B. Kane, Adaptive higher order discontinuous Galerkin methods for
porous-media multi-phase flow with strong heterogeneities, Dissertation,
Universität Stuttgart (2018). doi:10.18419/opus-9863.

[67] R. Klöfkorn, D. Kröner, M. Ohlberger, Parallel Adaptive Simulation of
PEM Fuel Cells, in: H.-J. Krebs, W. Jäger (Eds.), Mathematics – Key
Technology for the Future, Springer, 2008, pp. 235–249. doi:10.1007/
978-3-540-77203-3_16.

[68] C. Gersbacher, Higher-order discontinuous finite element methods and
dynamic model adaptation for hyperbolic systems of conservation laws,
Dissertation, Albert-Ludwigs Universität Freiburg (2017). doi:10.6094/
unifr/12838.

[69] C. Gräser, R. Kornhuber, U. Sack, Numerical simulation of coarsening
in binary solder alloys, Computational Materials Science 93 (2014) 221 –
233. doi:10.1016/j.commatsci.2014.06.010.

[70] A. Dedner, R. Klöfkorn, M. Nolte, Python bindings for the dune-fem
moduledoi:10.5281/zenodo.3706994.

[71] D. Barkley, A model for fast computer simulation of waves in excitable
media, Physica 49 (1991) 61–70.

[72] M. Alkämper, F. Gaspoz, R. Klöfkorn, A Weak Compatibility Condition
for Newest Vertex Bisection in Any Dimension, SIAM Journal on Scientific
Computing 40 (6) (2018) A3853–A3872. doi:10.1137/17M1156137.

[73] M. Alkämper, R. Klöfkorn, Distributed newest vertex bisection, Journal
of Parallel and Distributed Computing 104 (2017) 1 – 11. doi:10.1016/j.
jpdc.2016.12.003.

[74] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial
differential equations and mean curvature flow, Acta numerica 14 (2005)
139–232.

63

http://dx.doi.org/10.1016/j.apm.2018.10.013
http://dx.doi.org/10.1016/j.apm.2018.10.013
http://dx.doi.org/10.1007/978-3-319-57394-6_47
http://dx.doi.org/10.1007/978-3-319-57394-6_47
http://dx.doi.org/10.18419/opus-9863
http://dx.doi.org/10.1007/978-3-540-77203-3_16
http://dx.doi.org/10.1007/978-3-540-77203-3_16
http://dx.doi.org/10.6094/unifr/12838
http://dx.doi.org/10.6094/unifr/12838
http://dx.doi.org/10.1016/j.commatsci.2014.06.010
http://dx.doi.org/10.5281/zenodo.3706994
http://dx.doi.org/10.1137/17M1156137
http://dx.doi.org/10.1016/j.jpdc.2016.12.003
http://dx.doi.org/10.1016/j.jpdc.2016.12.003


[75] R. Klöfkorn, M. Nolte, Solving the Reactive Compressible Navier-Stokes
Equations in a Moving Domain, in: K. Binder, G. Münster, M. Kremer
(Eds.), NIC Symposium 2014 - Proceedings, Vol. 47, John von Neumann
Institute for Computing Jülich, 2014, pp. 353–362. doi:2128/5919.

[76] C. Bernardi, Y. Maday, A. Patera, Domain decomposition by the mortar
element method, in: H. Kaper, M. Garbey, G. Pieper (Eds.), Asymp-
totic and Numerical Methods for Partial Differential Equations with Crit-
ical Parameters, Vol. 384 of NATO ASI Series (Series C: Mathemati-
cal and Physical Sciences), Springer, 1993, pp. 269–286. doi:10.1007/
978-94-011-1810-1_17.

[77] R. Becker, P. Hansbo, R. Stenberg, A finite element method for domain
decomposition with non-matching grids, ESAIM: Mathematical Modelling
and Numerical Analysis 37 (2) (2003) 209–225.

[78] R. D. Lazarov, J. E. Pasciak, J. Schöberl, P. S. Vassilevski, Almost op-
timal interior penalty discontinuous approximations of symmetric elliptic
problems on non-matching grids, Numerische Mathematik 96 (2) (2003)
295–315.

[79] M. J. Gander, C. Japhet, Y. Maday, F. Nataf, A new cement to glue non-
conforming grids with Robin interface conditions: the finite element case,
in: Domain decomposition methods in science and engineering, Springer,
2005, pp. 259–266.

[80] P. Bastian, C. Engwer, An unfitted finite element method using discontin-
uous Galerkin, Internat. J. Numer. Methods Engrg. 79 (2009) 1557–1576.

[81] C. Engwer, F. Heimann, Dune-UDG: A Cut-Cell Framework for Unfitted
Discontinuous Galerkin Methods, in: Advances in DUNE, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012, pp. 89–100.

[82] E. Burman, S. Claus, P. Hansbo, M. G. Larson, A. Massing, CutFEM:
Discretizing geometry and partial differential equations, Intern. J. Numer.
Methods Engrg. 104 (2015) 472–501.

[83] T. Koch, K. Heck, N. Schröder, H. Class, R. Helmig, A new simulation
framework for soil-root interaction, evaporation, root growth, and solute
transport, Vadose Zone Journaldoi:10.2136/vzj2017.12.0210.

[84] M. J. Gander, C. Japhet, Algorithm 932: PANG: software for nonmatch-
ing grid projections in 2D and 3D with linear complexity, ACM Trans.
Math. Software 40 (1) (2013) 6.

[85] C. Engwer, A. Nüßing, Geometric Reconstruction of Implicitly Defined
Surfaces and Domains with Topological Guarantees, ACM Trans. Math.
Software 44 (2) (2017) 14.

64

http://dx.doi.org/2128/5919
http://dx.doi.org/10.1007/978-94-011-1810-1_17
http://dx.doi.org/10.1007/978-94-011-1810-1_17
http://dx.doi.org/10.2136/vzj2017.12.0210


[86] C. Gräser, R. Kornhuber, Multigrid methods for obstacle problems, J.
Comp. Math. 27 (1) (2009) 1–44.

[87] C. Gräser, O. Sander, Truncated nonsmooth Newton multigrid methods
for block-separable minimization problems, IMA J. Numer. Anal. 39 (1)
(2019) 454–481. doi:10.1093/imanum/dry073.

[88] W. Han, B. D. Reddy, Plasticity, 2nd Edition, Springer, 2013.

[89] O. Sander, Solving primal plasticity increment problems in the time of
a single predictor–corrector iteration, arXiv e-prints (Jul. 2017). arXiv:
1707.03733.

[90] J. Alberty, C. Carstensen, D. Zarrabi, Adaptive numerical analysis in
primal elastoplasticity with hardening, Comput. Methods Appl. Mech.
Engrg. 171 (1999) 175–204.

[91] P. Neff, A. Sydow, C. Wieners, Numerical approximation of incremental
infinitesimal gradient plasticity, Int. J. Numer. Meth. Engng 77 (2009)
414–436.

[92] T. Y. Hou, X. Wu, A multiscale finite element method for elliptic problems
in composite materials and porous media, J. Comput. Phys. 134 (1) (1997)
169–189. doi:10.1006/jcph.1997.5682.

[93] Y. Efendiev, T. Y. Hou, Multiscale finite element methods, Vol. 4 of Sur-
veys and Tutorials in the Applied Mathematical Sciences, Springer, New
York, 2009, theory and applications.

[94] P. Henning, M. Ohlberger, B. Schweizer, An adaptive multiscale finite
element method, Multiscale Mod. Simul. 12 (3) (2014) 1078–1107. doi:
10.1137/120886856.

[95] W. E, B. Engquist, The heterogeneous multiscale methods, Commun.
Math. Sci. 1 (1) (2003) 87–132.

[96] M. Ohlberger, A posteriori error estimates for the heterogeneous multi-
scale finite element method for elliptic homogenization problems, Multi-
scale Model. Simul. 4 (1) (2005) 88–114. doi:10.1137/040605229.

[97] A. Abdulle, On a priori error analysis of fully discrete heterogeneous
multiscale FEM, Multiscale Model. Simul. 4 (2) (2005) 447–459. doi:
10.1137/040607137.

[98] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-
to-Neumann formulation, subgrid scale models, bubbles and the origins
of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1-4)
(1995) 387–401.

65

http://dx.doi.org/10.1093/imanum/dry073
http://arxiv.org/abs/1707.03733
http://arxiv.org/abs/1707.03733
http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/10.1137/120886856
http://dx.doi.org/10.1137/120886856
http://dx.doi.org/10.1137/040605229
http://dx.doi.org/10.1137/040607137
http://dx.doi.org/10.1137/040607137


[99] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, J.-B. Quincy, The variational
multiscale method - a paradigm for computational mechanics, Comput.
Methods Appl. Mech. Engrg. 166 (1-2) (1998) 3–24.

[100] M. G. Larson, A. Malqvist, Adaptive variational multiscale methods based
on a posteriori error estimation: duality techniques for elliptic problems,
in: Multiscale methods in science and engineering, Vol. 44 of Lect. Notes
Comput. Sci. Eng., Springer, Berlin, 2005, pp. 181–193.

[101] A. Malqvist, D. Peterseim, Localization of elliptic multiscale prob-
lems, Math. Comp. 83 (290) (2014) 2583–2603. doi:10.1090/
S0025-5718-2014-02868-8.

[102] P. Henning, A. Malqvist, D. Peterseim, A localized orthogonal decom-
position method for semi-linear elliptic problems, ESAIM Math. Model.
Numer. Anal. 48 (5) (2014) 1331–1349. doi:10.1051/m2an/2013141.

[103] C. Engwer, P. Henning, A. Målqvist, D. Peterseim, Efficient implementa-
tion of the localized orthogonal decomposition method, Computer Meth-
ods in Applied Mechanics and Engineering 350 (2019) 123–153.

[104] F. Albrecht, B. Haasdonk, S. Kaulmann, M. Ohlberger, The localized
reduced basis multiscale method, Proceedings of ALGORITMY (2012)
393–403.

[105] M. Ohlberger, F. Schindler, Error control for the localized reduced basis
multiscale method with adaptive on-line enrichment, SIAM J. Sci. Com-
put. 37 (6) (2015) A2865–A2895. doi:10.1137/151003660.

[106] M. Ohlberger, S. Rave, F. Schindler, True error control for the local-
ized reduced basis method for parabolic problems, in: Model reduction of
parametrized systems, Vol. 17 of MS&A. Model. Simul. Appl., Springer,
Cham, 2017, pp. 169–182.

[107] Y. Efendiev, J. Galvis, T. Y. Hou, Generalized Multiscale Finite Element
Methods (GMsFEM), Journal of Computational Physics 251 (2013) 116–
135. doi:10.1016/j.jcp.2013.04.045.

[108] E. T. Chung, Y. Efendiev, G. Li, An adaptive GMsFEM for high-contrast
flow problems, Journal of Computational Physics 273 (2014) 54–76. doi:
10.1016/j.jcp.2014.05.007.

[109] E. T. Chung, Y. Efendiev, W. T. Leung, An adaptive generalized mul-
tiscale discontinuous Galerkin method for high-contrast flow problems,
Multiscale Model. Simul. 16 (3) (2018) 1227–1257. doi:10.1137/140986189.

[110] M. Ohlberger, Error control based model reduction for multiscale prob-
lems, Proceedings of the Conference ALGORITMY (2015) 1–10.
URL http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/
article/view/310

66

http://dx.doi.org/10.1090/S0025-5718-2014-02868-8
http://dx.doi.org/10.1090/S0025-5718-2014-02868-8
http://dx.doi.org/10.1051/m2an/2013141
http://dx.doi.org/10.1137/151003660
http://dx.doi.org/10.1016/j.jcp.2013.04.045
http://dx.doi.org/10.1016/j.jcp.2014.05.007
http://dx.doi.org/10.1016/j.jcp.2014.05.007
http://dx.doi.org/10.1137/140986189
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/310
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/310
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/310
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/310


[111] P. Henning, M. Ohlberger, On the implementation of a heterogeneous mul-
tiscale finite element method for nonlinear elliptic problems, in: Advances
in DUNE., Springer, Berlin, 2012, pp. 143–155.

[112] R. Milk, S. Kaulmann, DUNE multiscale (March 2015). doi:10.5281/
zenodo.16560.

[113] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, O. Iliev,
O. Ippisch, R. Milk, J. Mohring, S. Müthing, M. Ohlberger, D. Rib-
brock, S. Turek, Advances concerning multiscale methods and uncertainty
quantification in EXA-DUNE, in: Software for Exascale Computing -
SPPEXA 2013-2015, Lecture Notes in Computational Science and En-
gineering, Springer Verlag, 2016, pp. 25–43.

[114] P. Bastian, M. Altenbernd, N. Dreier, C. Engwer, J. Fahlke, R. Fritze,
M. Geveler, D. Göddeke, O. Iliev, O. Ippisch, J. Mohring, J. Müthing,
M. Ohlberger, D. Ribbrock, N. Shegunov, S. Turek, EXA-DUNE — Flex-
ible PDE Solvers, Numerical Methods and Applications, in: H.-J. Bun-
gartz, W. E. Nagel (Eds.), Software for Exascale Computing - SPPEXA
2016-2018, Springer Lecture Notes in Computational Science and Engi-
neering.

[115] F. Schindler, R. Milk, DUNE generic discretization toolbox (March 2015).
doi:10.5281/zenodo.16563.

[116] R. Milk, F. Schindler, T. Leibner, Extending dune: The dune-xt modules,
Archive of Numerical Software 5 (1) (2017) 193–216. doi:10.11588/ans.
2017.1.27720.

[117] C. Engwer, J. Fahlke, Scalable hybrid parallelization strategies for the
dune grid interface, in: Numerical Mathematics and Advanced Appli-
cations: Proceedings of ENUMATH 2013, Vol. 103 of Lecture Notes in
Computational Science and Engineering, 2014, pp. 583–590.

[118] T. A. Davis, Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern
Multifrontal Method, ACM Trans. Math. Softw. 30 (2) (2004) 196–199.
doi:10.1145/992200.992206.

[119] R. Milk, J. Mohring, DUNE-mlmc (SPPEXA AnPleMeet ’16) (Nov. 2015).
doi:10.5281/zenodo.34412.

[120] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-
S. Camier, M. Kronbichler, T. Warburton, K. Swirydowicz, J. Brown,
Scalability of high-performance pde solvers (2020). arXiv:2004.06722.

[121] M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous
galerkin finite element operators, ACM Trans. Math. Softw. 45 (3). doi:
10.1145/3325864.
URL https://doi.org/10.1145/3325864

67

http://dx.doi.org/10.5281/zenodo.16560
http://dx.doi.org/10.5281/zenodo.16560
http://dx.doi.org/10.5281/zenodo.16563
http://dx.doi.org/10.11588/ans.2017.1.27720
http://dx.doi.org/10.11588/ans.2017.1.27720
http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.5281/zenodo.34412
http://arxiv.org/abs/2004.06722
https://doi.org/10.1145/3325864
https://doi.org/10.1145/3325864
http://dx.doi.org/10.1145/3325864
http://dx.doi.org/10.1145/3325864
https://doi.org/10.1145/3325864


[122] S. A. Orszag, Spectral methods for problems in complex geometries,
Journal of Computational Physics 37 (1) (1980) 70–92. doi:10.1016/
0021-9991(80)90005-4.

[123] S. Müthing, M. Piatkowski, P. Bastian, High-performance Implementation
of Matrix-free High-order Discontinuous Galerkin Methods, Accepted to
Int. J. High Performance Computing ApplicationsarXiv:1711.10885.

[124] P. Bastian, E. H. Müller, S. Müthing, M. Piatkowski, Matrix-free multi-
grid block-preconditioners for higher order Discontinuous Galerkin dis-
cretisations, Journal of Computational Physics.

[125] M. Piatkowski, S. Müthing, P. Bastian, A stable and high-order accu-
rate discontinuous Galerkin based splitting method for the incompressible
Navier–Stokes equations, Journal of Computational Physics 356 (2018)
220–239.

[126] G. Bosilca, A. Bouteiller, A. Guermouche, T. Herault, Y. Robert, P. Sens,
J. Dongarra, Failure detection and propagation in HPC systems, in:
SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2016, pp. 312–322.

[127] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, J. J. Don-
garra, An evaluation of user-level failure mitigation support in MPI, in:
European MPI Users’ Group Meeting, Springer, 2012, pp. 193–203.

[128] C. Engwer, M. Altenbernd, N.-A. Dreier, D. Göddeke, A high-level C++
approach to manage local errors, asynchrony and faults in an MPI ap-
plication, in: 2018 26th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), IEEE, 2018, pp. 714–
721. arXiv:1804.04481.

[129] P. Ghysels, W. Vanroose, Hiding global synchronization latency in the
preconditioned conjugate gradient algorithm, Parallel Computing 40 (7)
(2014) 224–238.

[130] S. Müthing, D. Ribbrock, D. Göddeke, Integrating multi-threading and
accelerators into DUNE-ISTL, in: Proceedings of ENUMATH 2013, Vol.
103, Springer, 2014, pp. 601–609. doi:10.1007/978-3-319-10705-959.

[131] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. R. Bishop, A unified
sparse matrix data format for modern processors with wide SIMD units,
SIAM Journal on Scientific Computing 36 (5) (2014) C401–C423. doi:
10.1137/130930352.

[132] D. Kempf, R. Heß, S. Müthing, P. Bastian, Automatic Code Generation
for High-Performance Discontinuous Galerkin Methods on Modern Archi-
tectures, arXiv e-prints (2018). arXiv:1812.08075.

68

http://dx.doi.org/10.1016/0021-9991(80)90005-4
http://dx.doi.org/10.1016/0021-9991(80)90005-4
http://arxiv.org/abs/1711.10885
http://arxiv.org/abs/1804.04481
http://dx.doi.org/10.1007/978-3-319-10705-9 59
http://dx.doi.org/10.1137/130930352
http://dx.doi.org/10.1137/130930352
http://arxiv.org/abs/1812.08075


[133] D. Kempf, P. Bastian, An HPC perspective on generative programming,
in: Proceedings of the 14th International Workshop on Software Engineer-
ing for Science, IEEE Press, 2019, pp. 9–16.

[134] A. Klöckner, Loo.Py: Transformation-based Code Generation for GPUs
and CPUs, in: Proceedings of ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, ARRAY’14,
ACM, New York, NY, USA, 2014, pp. 82:82–82:87. doi:10.1145/2627373.
2627387.

[135] B. Bergen, T. Gradl, F. Hulsemann, U. Rüde, A massively parallel multi-
grid method for finite elements, Computing in Science & Engineering 8 (6)
(2006) 56–62.

[136] A. E. MacDonald, J. Middlecoff, T. Henderson, J.-L. Lee, A general
method for modeling on irregular grids, The International Journal of High
Performance Computing Applications 25 (4) (2011) 392–403.

[137] G. Bercea, A. T. T. McRae, D. A. Ham, L. Mitchell, F. Rathgeber,
L. Nardi, F. Luporini, P. H. J. Kelly, A structure-exploiting numbering
algorithm for finite elements on extruded meshes, and its performance
evaluation in Firedrake, Geoscientific Model Development 9 (10) (2016)
3803–3815. doi:10.5194/gmd-9-3803-2016.

69

http://dx.doi.org/10.1145/2627373.2627387
http://dx.doi.org/10.1145/2627373.2627387
http://dx.doi.org/10.5194/gmd-9-3803-2016

	1 Introduction
	2 The Dune ecosystem
	3 Dune core modules and re-usable concepts
	3.1 The Dune grid interface – Dune-Grid
	3.1.1 Grid entities and topological properties
	3.1.2 Geometric aspects
	3.1.3 Attaching data to a grid
	3.1.4 Grid refinement and coarsening
	3.1.5 Parallelization
	3.1.6 List of grid implementations
	3.1.7 Major developments in the Dune-Grid interface

	3.2 The template library for iterative solvers – Dune-ISTL
	3.2.1 Concepts behind the Dune-ISTL interfaces
	3.2.2 A brief history
	3.2.3 Feature overview and recent developments

	3.3 Finite element spaces on discretization grids
	3.3.1 Local functions spaces
	3.3.2 Global functions spaces

	3.4 Python interfaces for Dune
	3.5 Build system and testing

	4 Selected advanced features with applications
	4.1 Grid modification
	4.1.1 Dynamic local grid adaptation
	4.1.2 Moving grids

	4.2 Grid coupling and complex domains
	4.2.1 Dune-Grid-Glue — Coupling of individual grids
	4.2.2 Dune-MultiDomainGrid — Using element subsets as subdomains
	4.2.3 Dune-TPMC — Assembly of cut-cell discretizations

	4.3 Non-smooth multigrid
	4.3.1 The truncated nonsmooth Newton multigrid algorithm
	4.3.2 Numerical example: small-strain primal elastoplasticity

	4.4 Multiscale methods
	4.4.1 Multiscale model problem
	4.4.2 Implementation and parallelization

	4.5 Sum-factorization for high order discretizations to improve node level performance

	5 Development trends in Dune
	5.1 Asynchronous communication
	5.2 Thread parallelism
	5.3 C++ and Python
	5.4 DSLs and code-generation


