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We study the cyclization and relaxation dynamics of ideal as well as interacting polymers as a function
of chain length N. For the cyclization time τcyc of ideal chains we recover the known scaling τcyc ∼ N2

for different backbone models, for a self-avoiding slightly collapsed chain we obtain from Langevin
simulations and scaling theory a modified scaling τcyc ∼ N5=3. The cyclization and relaxation dynamics of a
finite-length collapsed chain scale differently; this unexpected dynamic multiscale behavior is rationalized
by the crossover between swollen and collapsed chain behavior.
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The loop formation kinetics of polymers governs the
dynamics of protein folding [1–3] and gene expression
regulation [4–7]. The quantity of main interest is the
cyclization time τcyc, i.e., the mean time it takes the two
polymer ends to reach a cyclization radius Rcyc for the first
time after starting from a distance Rs > Rcyc. Pioneering
theoretical works for Gaussian chains predicted τcyc to scale
with the monomer number N as

τcyc ∼ Nα; ð1Þ

with the Wilemski-Fixman (WF) scaling α ¼ 2 for inter-
mediate Rcyc [8–11], and the Szabo-Schulten-Schulten
(SSS) scaling α ¼ 3=2 for small Rcyc [12].
For ideal chains, without monomer-monomer inter-

actions, the crossover and asymptotic scaling behavior
has been studied both analytically [4,13–17] and numeri-
cally [18–20]. Experiments on short chains confirmed the
SSS scaling α ¼ 3=2 [2,3,21]. Numerical [22–24] and
experimental [25] studies of self-avoiding swollen chains
find α ≈ 2.2, consistent with approximate analytical meth-
ods [24]. For the particularly interesting case of a self-
avoiding collapsed chain, as relevant for the initial steps of
protein folding, only few results exist [24,26–28], indicat-
ing α ≈ 5=3. Typically, theories and simulations use sim-
plified polymeric backbone models, and it is not clear
whether realistic backbone models with constrained bond
lengths and bond angles modify τcyc.
In this work we consider the dynamics of the end-to-end

distance Rete of three different polymer backbone models,
namely, the Gaussian (G), freely jointed (FJ), and freely
rotating (FR) models; see Fig. 1. We furthermore consider
an interacting Gaussian chain that includes Lennard-Jones
interactions (GLJ). From Langevin simulations we extract
cyclization times τcyc and recover for ideal chains, depend-
ing on the cyclization radius Rcyc, the WF and SSS scaling

laws, independent of the backbone model. However, for an
interacting collapsed chain we find the asymptotic scaling
τcyc ∼ N5=3, in agreement with scaling predictions for a
collapsed chain [28]. Thus, cyclization dynamics is insen-
sitive to polymer backbone details but substantially influ-
enced by nonbonded interactions. To relate these results to
the dynamics of Rete, which is a collective variable that
involves all polymer degrees of freedom [4,15,17], we map
the dynamics of Rete onto the generalized Langevin
equation (GLE) that accounts for non-Markovian effects
via a memory kernel ΓðtÞ [24,29–32]. We find that the
memory kernels of all ideal chains considered decay as
ΓðtÞ ∼ t−1=2 for intermediate times t, while for the interact-
ing collapsed chain ΓðtÞ ∼ t−6=11, a scaling expected for a
swollen rather than a collapsed chain. This demonstrates
that the dynamics of a self-avoiding collapsed chain
exhibits signatures of both collapsed and swollen chain
behavior, reflecting the complex polymer relaxation
kinetics observed in experiments [25].

FIG. 1. Illustration of different backbone models considered. In
theGaussianmodel, neighboringmonomers are bound byharmonic
potentials. In the freely jointed model, the bond length b between
neighboring monomers is constrained. In the freely rotating
chain model both bond length b and bond angle θ are constrained.
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We perform Langevin simulations at a temperature T ¼
300 K using the GROMACS 2016.3 simulation package [33]
with parameters for alkane chains from the gromos53a6
forcefield [34]; see the Supplemental Material [35] for
details. Friction coefficients approximate methane in water,
masses are enhanced by a factor of 100, which improves the
numerical accuracy of ΓðtÞ without modifying the relevant
long-time behavior. For the Gaussian chain model neigh-
boring monomers are subject to a harmonic potential which
produces a mean-squared distance b2 ¼ 0.1532 nm2. For
the FJ model the distance between neighboring monomers
is constrained to b ¼ 0.153 nm, in the FR model in
addition bond angles are constrained to θ ¼ 111°. All
these models are ideal, i.e., without nonbonded inter-
actions. The GLJ model is based on the Gaussian chain
model and includes the gromos53a6 Lennard-Jones (LJ)
interactions for alkane chains [34], which produces a
collapsed chain of self-avoiding segments that cannot cross
each other [35].
We map our Langevin trajectories onto the GLE,

μR̈eteðtÞ ¼ −
Z

t

0

dt0 Γðt− t0Þ _Reteðt0Þ−∇U½ReteðtÞ� þFRðtÞ;

ð2Þ

where Rete ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR⃗N−1 − R⃗0Þ2

q
is the scalar end-to-end

distance with R⃗i the position of monomer i, μ is an effective
mass, ∇U is the derivative of the effective potential
UðReteÞ, ΓðtÞ is the memory kernel, and the random
force FRðtÞ obeys the fluctuation-dissipation theorem
hFRðtÞFRðt0Þi ¼ kBTΓðjt − t0jÞ. We extract all parameters
of the GLE from simulations [35–37].
Figure 2 compares memory kernels for the end-to-end

distance vector, R⃗ete ¼ R⃗N−1 − R⃗0, extracted from simula-
tions of Gaussian chains, to analytical predictions based on
the Mori-Zwanzig projection formalism [38,39]; see
Supplemental Material for details [35]. The perfect agree-
ment validates our numerical method for extracting ΓðtÞ
from simulations also for the scalar end-to-end distance, for

which no exact calculation is possible. For N ≳ 100, ΓðtÞ
shows an intermediate ΓðtÞ ∼ t−1=2 scaling regime, similar
to recent results for the position of the central monomer of a
Gaussian chain [29,31].
Figure 3(b) shows U as a function of Rete rescaled by the

(for the GLJ model N-dependent) Kuhn length ai, which is
defined by hR2

etei≡ aiL, where i ¼ G, FJ, FR, GLJ
indicates the chain model, and L ¼ ðN − 1Þb is the contour
length. The potentials of all ideal chains are very similar.
This is reflected by the mean squared end-to-end distance
hR2

etei in Fig. 3(c), where all ideal chains yield a linear
scaling hR2

etei ¼ aibðN − 1Þ with aG ¼ aFJ ¼ b, aFR ¼
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ cos θÞ=ð1 − cos θÞp
[40], consistent with the static

power-law scaling

hR2
etei ∼ N2νst ; ð3Þ

with the ideal-chain Flory exponent νst ¼ 1=2. For the GLJ
chain we observe swollen behavior for N ≲ 30 with an
exponent νst > 1=2 [40,41] and a broad crossover to
collapsed behavior for N ≳ 100 with an exponent νst ¼
1=3 [27,41,42] as indicated by a dotted line. This is
expected, since our LJ parameters model a hydrophobic
chain in water.
In Fig. 3(d) we show simulation results for the mean

squared displacement (MSD) of Rete, which for intermedi-
ate time displays a power law according to

hΔR2
eteðtÞi≡ h½ReteðtÞ − Reteð0Þ�2i ∼ tβ: ð4Þ

From the dynamic size scaling of a diffusing subchain of
Nsub monomers, hRsubi ∼ N

νdyn
sub , the diffusion law for the

MSD of the subchain position, hR2
subi ∼Dsubt, and the

diffusivity of a freely draining chain, Dsub ∼ 1=Nsub, one

obtains N
2νdynþ1

sub ∼ t and thus [40,43–45]

β ¼ 2νdyn=ð1þ 2νdynÞ: ð5Þ

Here, νdyn characterizes the dynamic chain size and only in
the asymptotic long-time large-polymer length limit equals
the static Flory exponent νst, as we will detail further below.
For ideal chains with νdyn ¼ 1=2 one obtains β ¼ 1=2, in
agreement with simulations results for the ideal chains in
Fig. 3(d). For the GLJ chain, the simulation results are
consistent with an exponent β ¼ 6=11 over two decades in
time [43,44], which follows from Eq. (5) for the exponent
of a swollen chain νdyn ¼ 3=5 [40,41], but not for the
collapsed exponent νdyn ¼ 1=3 which would yield β ¼ 2=3
(clearly inconsistent with the simulation data). We thus
observe swollen scaling νdyn ¼ 3=5 for the MSD in
Fig. 3(d), while hR2

etei in Fig. 3(c) is characterized by
collapsed scaling νst ¼ 1=3 for large N. This is rationalized
by the fact that the internal mean monomer distance
hðR⃗0 − R⃗iÞ2i in Fig. 3(e) indeed exhibits swollen scaling

FIG. 2. Comparison of analytically and numerically calculated
memory kernels for the end-to-end distance vector R⃗ete of a
Gaussian chain.
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with ν > 1=2 on spatial scales for which the MSD in
Fig. 3(d) is characterized by the swollen exponent
β ¼ 6=11.
To corroborate that the end-to-end distance dynamics is

characterized by swollen chain statistics, we in Fig. 3(f)
show memory kernels extracted from Langevin simulations
for N ¼ 1000. The kernel of the Gaussian chain scales as
ΓðtÞ ∼ t−1=2 and, except for short times, agrees quantita-
tively with the FJ chain, demonstrating that the end-to-end
dynamics is insensitive to details of the backbone model.
This power law, which we also find for R⃗ete in Fig. 2,
reflects the Rouse spectrum [29,31]. Interestingly, Markov
state models for the polymer dynamics show similar power-
law distribution of timescales, see the Supplemental
Material [35,46]. The kernel of the FR chain also scales
as ΓðtÞ ∼ t−1=2 with a prefactor that results from the
different Kuhn length, as detailed in the Supplemental
Material [35]. The kernel of the GLJ chain exhibits a
different power law, consistent with ΓðtÞ ∼ t−6=11 and in
agreement with the expected relationship hΔR2

eteðtÞi ∼
1=ΓðtÞ [47], which is derived in the Supplemental
Material [35]. We conclude that the dynamics of an
interacting collapsed chain is at intermediate times, for
which we can extract ΓðtÞ, characteristic of a swollen chain.

The cyclization time τcyc, defined in the introduction, is
illustrated in the inset of Fig. 4(a), where we show UðReteÞ
and τcyc for the GLJ model as a function of Rs for fixed
Rcyc ¼ 3b ≈ 0.46 nm. For Rs not too close to Rcyc, τcyc is
rather independent of Rs, so the scaling of τcyc should not
critically depend on Rs, for which we use the minimum
of U.
In Fig. 4(b) it is seen that τcyc exhibits power-law scaling

according to Eq. (1). For ideal chains and rather large
Rcyc ¼ 3b ≈ 0.46 nm, we obtain the ideal WF scaling α ¼
2 [10]. This corresponds to the scaling of the chain
relaxation time τrel and can be derived by equating the
MSD, Eq. (4), with the equilibrium end-to-end radius,
Eq. (3), leading to τrel ∼ Nλ with [28]

λ ¼ 2νst=β ¼ νstð2νdyn þ 1Þ=νdyn; ð6Þ

where we used Eq. (5). For νst ¼ νdyn ≡ ν this reduces to
λ ¼ 2νþ 1 [48,49]. For an ideal chain with ν ¼ 1=2, and
assuming that τrel and τcyc scale alike, we obtain the WF
scaling α ¼ λ ¼ 2 [10], as indeed observed for the ideal
chains in Fig. 4(b).

(c)(b)(a)

(f)(e)(d)

FIG. 3. (a) Simulation snapshots of Gaussian and GLJ chains. (b) Effective potential U for the end-to-end distance for N ¼ 1000.
(c) Mean squared end-to-end distance as a function of chain length N. Dashed and dash-dotted lines show predictions for FR and
Gaussian/FJ chain models, respectively. The dotted line indicates the power law hR2

etei ∼ N2=3. (d) Mean-squared displacement of the
end-to-end distance. For better visibility, the FR chain MSD is multiplied by 5. (e) Mean squared distance hR2

0;ii ¼ hðR⃗0 − R⃗iÞ2i
between the terminal monomer and the ith monomer of a GLJ chain. The red dashed line represents the mean end-to-end distance hR2

etei.
(f) Memory kernels for chain length N ¼ 1000. The power laws indicated by black bars in (d) and (f) are justified by fits in the
Supplemental Material [35].
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For Rcyc ≪ hRetei the cyclization time will eventually
exceed τrel and cyclization becomes Markovian, in which
limit τcyc is to leading order proportional to the inverse
equilibrium probability for the two chain ends to be at the
same position, thus τcyc ∼ R3

ete ∼ N3νst and

α ¼ 3νst: ð7Þ

For an ideal chain, νst ¼ 1=2, we recover the SSS scaling
τcyc ∼ N3=2 [12], which indeed describes the simulation
data in Fig. 4(b) for a small cyclization radius of Rcyc ¼
0.03 nm ≈ b=15.

For the GLJ data in Fig. 4(b) we observe for collapsed
chains with N ≳ 100 a scaling exponent of α ¼ 5=3, which
is in between the ideal limits of the SSS and WF scaling
predictions and close to a recent analytical proposal [24].
While the generalized SSS scaling Eq. (7) predicts α ¼ 1
for a collapsed chain (νst ¼ 1=3), the generalized WF
scaling Eq. (6) correctly gives α ¼ λ ¼ 5=3 for a collapsed
chain (νst ¼ νdyn ≡ 1=3). The observed scaling can thus be
interpreted as a generalization of the WF scaling.
Curiously, for νdyn ¼ 1=3 one would from Eq. (5) expect

β ¼ 2=5, in contrast to β ¼ 6=11 (as follows using
νdyn ¼ 3=5) seen in Figs. 3(d) and 5. On the other hand,
the scaling of the chain relaxation time in Fig. 4(c) is
rather consistent with the exponent λ ¼ 11=9 which fol-
lows from Eq. (6) using νst ¼ 1=3 and νdyn ¼ 3=5. The
difference of the exponents α and λ characterizing the
cyclization time τcyc and the relaxation time τrel can be
understood by considering the MSD of a terminal monomer
of a N ¼ 2000 GLJ chain, shown in the inset of Fig. 5,
which exhibits three distinct scaling regimes: While for t≲
104 ps the MSD displays swollen scaling, β ¼ 6=11, for
intermediate times 104 ps≲ t≲ 106 ps we observe col-
lapsed scaling β ¼ 2=5, until for longer times diffusive
behavior β ¼ 1 is found. We thus expect collapsed scaling
to only become relevant on timescales t≳ 104 ps, and
indeed the cyclization times of the GLJ chains shown in
Fig. 4(b) are of that order. The corresponding relaxation
times in Fig. 4(c) on the other hand are slightly smaller, and
thus still dominated by swollen statistics, characterized by
the exponent λ ¼ 11=9.
In conclusion, the cyclization dynamics of a slightly

collapsed, self-avoiding chain is characterized by an
exponent α ¼ 5=3 which is in between the classical SSS

(c)(b)(a)

FIG. 4. (a) Effective potential U for the end-to-end distance of a GLJ chain as a function of Rete (upper plot) and corresponding
cyclization time τcyc (lower plot) as a function of the starting position Rs. The cyclization radius Rcyc ¼ 3b ≈ 0.46 nm is denoted by a
black vertical dashed line; colored vertical dashed lines denote the respective positions of the minima of U. The inset illustrates the end-
to-end distance Rete and the cyclization radius Rcyc. (b) Cyclization time as a function of chain length N, together with scaling
predictions indicated by lines. Except for the blue empty circles, where Rcyc ¼ 0.03 nm, we use Rcyc ¼ 3b ≈ 0.46 nm. For Rs the
minimum of U is used. (c) Chain relaxation time τrel (as defined in Fig. 5) as function of N.

FIG. 5. The chain relaxation time τrel is defined by the
intersect of the intermediate-time power-law behavior of
hΔR2

eteðtÞi and the long-time limiting value limt→∞hΔR2
eteðtÞi ¼

2VarðReteÞ calculated directly from simulations. The dashed
black lines illustrate the definition of τrel for N ¼ 2000. The
inset shows the MSD of a terminal monomer, hΔR2

0ðtÞi ¼
h½R⃗0ðtÞ − R⃗0ð0Þ�2i, for N ¼ 2000. The different scaling regimes
are denoted by black bars.
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and WF predictions of 3=2 and 2. Because a finite-length
collapsed self-avoiding polymer exhibits a complex cross-
over of swollen to collapsed behavior, the cyclization
time scaling τcyc differs for finite chain lengths from the
relaxation time scaling τrel. Our comprehensive picture of
the cyclization crossover dynamics also applies to the
dynamics of intrachain distances as probed in the collapsed
globular state of proteins [50,51]. The generalized WF and
SSS scalings given by Eqs. (6), (7) contain all scalings
found in literature [2,3,21–25] and are expected to be
independent of details of the chain interactions. Our explicit
characterization of the non-Markovian dynamics of Rete
will be helpful in further understanding the first-passage
distributions observed in cyclization of polypeptides
[1,52,53]. In future work it will be interesting to study
the effects of hydrodynamic interactions [40,54,55].
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