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Abstract

Motivated from a molecular dynamics context we propose a sequential change point
detection algorithm for vector-valued autoregressive models based upon Bayesian
model selection. The algorithm does not rely on any sampling procedure and is
designed to cope with high dimensional data. We show the applicability of the
algorithm on a time series obtained from simulation of a penta peptide.
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1 Introduction

The macroscopic dynamics of typical biomolecular systems is often charac-
terised by the existence of biomolecular conformations which can be under-
stood as metastable geometrical large scale structures, i.e., molecular geome-
tries which are on average persistent for long periods of time.
In many applications a Markovian picture is an appropriate description of this
behaviour, where the effective or macroscopic dynamics is given by a Markov
jump process that hops between metastable sets, representing the large scale
structures, while the dynamics within these sets might be mixing on time
scales that are smaller than the typical waiting time between the hops, cf. [1–
5].
Biophysical research seems to indicate that these metastable sets of a typical
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biomolecular system can be characterised in terms of a small number of essen-
tial degrees of freedom [6], e.g. the torsion or backbone angles of the molecule
under consideration. Thus, the metastable conformations can be identified
from the molecular dynamics time series projected onto these angles.
However, the problem of efficient algorithmic identification of the most persis-
tent conformations from a given time series is still a challenging open problem.
There have been several set-oriented approaches to this problem, which, after
careful discretization of the state space into sets, are based on the analysis
of the transition matrix that describes transition probabilities between these
sets [3,7–10].
Recently there have also been approaches which are based on a dynamical de-
scription of the configurations by fitting local stochastic differential equations
to the observed time series, a jump in configuration space then corresponds
to the switching between different parameter sets [11,12].

All these approaches are based upon a global analysis of a given time series.
However, due to the multiscale structure it is often difficult or even infeasible
to obtain a time series from molecular dynamics which covers the macroscopic
dynamics, as both system size and required simulation time is too large. There-
fore approaches based upon distributed computing became more and more
important. Art Voter [13,14] presented an approach, which is based upon par-
allel simulation of uncorrelated copies of a molecular system. However, his
approach is based upon the assumption that transition between between the
(not known) conformations can be detected on-line. In this article we deduce
a statistical model for trajectories of molecular systems and show a change
point algorithm that can be used to detect these changes on-line.

Although the matter of change point detection received considerable atten-
tion in the last years the problem is essentially still unsolved. One of the most
prominent approaches to change point analysis is the CUMSUM approach,
where knowledge about the distribution of the difference between prediction,
assuming a model, and observation is employed to construct a rule for detect-
ing an abrupt change in the parameterisation, e.g. [15,16]. CUMSUM methods
are in many cases asymptotically well understood but effectively rely on know-
ing the parameter-values which are going to change. As we are confronted with
high-dimensional systems and therefore with the risk of high uncertainty in
parameter estimation, we have chosen a Bayesian approach, as it can natu-
rally deal with parameter uncertainty. However, boon and bane of Bayesian
methods is the need of specification of prior distributions for the parameters.
In our context we can not resort to environmental studies to specify prior dis-
tributions, as in Perreault et. al. [17]. On the other hand many ways to obtain
”objective” priors, like the one presented by Girón et. al. [18], are feasible
only in low dimensional parameter settings. We employ the fractional Bayes
approach of O’Hagan [19] and show that this can be easily adapted to our
setting.
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Although we avoided a sampling based approaches like particle filtering [20,21],
as we consider change points in principle as rare events which makes it dif-
ficult to make prior assumptions on the distribution of change points, there
is a similarity to the approach proposed by Fearnhead [21] as our algorithm
relies as well on that the likelihood functions for linear models can be inte-
grated out over the parameter space. Opposed to sampling based algorithms
our algorithm can only, at least in the form stated here, handle with multiple
change points in a sequential form.

In § 2 we briefly introduce the model used to describe conformation dynamics,
consisting of linear stochastic differential equations (SDE’s) and a jump pro-
cess switching between them. In § 3 we show that discrete observations from a
single linear SDE can be described by vector-valued autoregressive processes
(VAR) processes, which makes it possible to reformulate the initial change
point problem to a change point problem of VAR-processes by transformation
of the parameter set. To prepare ground for the change point detection we also
review the maximum likelihood estimators (MLE’s) of a VAR model. In § 4
we formalise the change point problem as a Bayesian model selection problem
and comment on general on methods to cope with vague prior distributions.
In § 5 we concretize the proposed methods to our specific problem. Finally we
summarise in § 6 the obtained algorithm and apply it in § 7 to an example
from molecular dynamics.

2 Modelling of conformational changes by linear SDE’s with switch-

ing parameters

In dealing with molecular systems one is typically faced with systems of very
high dimensionality, e.g. several thousands degrees of freedom (d.o.f.). There-
fore methods of model reduction are needed in the analysis of molecular sys-
tems. An important class of such reduced models are the Langevin models
and its generalised variants. The derivation of these models is based on the
existence of slow and fast time-scales in the system. While the slow d.o.f.’s are
modelled by some effective potential function, the influence of the fast d.o.f.’s
is modelled by a noise term [22]. In the easiest case the resulting effective

dynamics is given by a first order Langevin equation

ż(t) = −∇zU(z(t)) + ΣẆ (t), (1)

where z ∈ Rd is the reduced system, U is some effective potential function,
W (t) a d-dimensional Brownian motion simulating the influence of the unre-
solved variables and Σ ∈ Rd×d a positive definite noise intensity matrix.
For the moment we will stick to the first order model given by (1) and com-
ment later in § 3.2 on generalised models obtained by adding a memory kernel
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to the noise.

Following [11,23] we linearise the non-linear stochastic differential equation
(SDE) given in (1), by assuming a set of local linear SDE’s, each of them
representing the dynamics within a molecular conformation, while a switching
process generates transitions between them, i.e.

ż(t) = F [i(t)]
(

z − µ[i(t)]
)

+ Σ [i(t)]Ẇ (t)

i(t) ∈ {1, . . . , s},
(2)

where {F i}, resp. {µi}, is a set of (d× d) force matrices, resp. d-dimensional
mean vectors (this is equivalent to assume local quadratic potentials Ui(z) =
−1

2
(z − µi)′F i(z − µi) in Eq. (1)). If the obtained reduced model shall be

parameterised based on some observed time series, one encounters the prob-
lem that, unlike z, the switching process i is not observable. In [12,23,11]
the assumed Markovian structure of the (hidden) switching process is used
in order to employ Hidden Markov Models (HMM) to estimate the parame-
ters and transition probabilities of the system (2) via usage of the so-called
Expectation-Maximisation algorithm.

Our focus is different as we are interested in on-line analysis of a time series, i.e.
we want to detect transitions from one regime to another one, e.g. i(t) = j for
t0 ≤ t < t1 and i(t) = k for t ≥ t1, while observing the time series sequentially.
We will call a time point where such a change in parameterisation occurs, here
t1, a change point.
However, in § 7.3 we show that if all change points are successfully identified
over a certain time interval, we can use the obtained information as well to
estimate transition probabilities of the process i. But before bothering with
the change point detection we have to elaborate on parameter estimation of a
single linear SDE in the next section.

3 Parameter estimation of a linear SDE

3.1 Maximum likelihood estimators

A natural way for parameter estimation of a d-dimensional linear SDE

ż = F (z − µ) + ΣẆ

based upon a series of observations Z = {zt}, t ∈ {1, . . . , T}, at equidistant
time points, i.e. zt := z((t−1)τ), with time step τ , is to investigate an appro-
priate likelihood function [11]. It is well known that for a linear SDE with fixed
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initial conditions the solution is a Markov process and any time discretization
of the solution is multivariate normal distributed [24]. In particular, given an
observation zt, the conditional probability density of zt+1 is a Gaussian with
density function

fλ(zt+1|zt) =
1

√

|2πR(τ)|
exp

(

−1

2
(zt+1 − µt)

TR(τ)−1(zt+1 − µt)
)

, (3)

where | · | denotes the matrix determinant and the mean, resp. variance,
of the distribution is given by µt := µ + exp(τF )(zt − µ), resp. R(τ) :=
∫ τ
0 exp(sF )ΣΣ ′ exp(sF ′)ds (depending on the argument exp(·) denotes a scalar

or a matrix exponential function). The dependence on the parameter set is
marked by λ = (µ,F ,Σ ). Therefore, a likelihood function can be constructed
as

L(λ|Z) =
T−1
∏

t=1

fλ(zt+1|zt).

Unfortunately there is no known analytic solution to the maximisation prob-
lem of L w.r.t the parameter set (µ,F ,Σ ). Another drawback, from a statis-
tical viewpoint, is that L is not integrable over the parameter space (e.g. if we
set F = 0 (for d = 1) integrating over µ is not possible). Therefore we can not
obtain a density in parameter space from the likelihood function. A resort is
given by rewriting (3) to

zt+1 = N (µ + exp(τF )(zt − µ),R)

= (I − exp(τF ))µ + exp(τF )zt +N (0,R),
(4)

where N is a multivariate normal distributed random variable and I an iden-
tity matrix of appropriate size. Eq. (4) reveals the autoregressive structure of
order one, VAR(1), of the time series of discrete observations. Defining

Φ :=
(

(I − exp(τF ))µ exp(τF )

)

∈ Rd×(d+1)

X :=







1 . . . 1

z1 . . . zT−1





 ∈ R(d+1)×(T−1)

Y :=
(

z2, . . . ,zT

)

∈ Rd×(T−1)

ǫ :=
(

N (0,R), . . . ,N (0,R)

)

∈ Rd×(T−1),

allows to write (4) in a compact form

Y = ΦX + ǫ.
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Transforming the parameter set λ to λ̃ = (Φ,R), leads to a likelihood function

L(λ̃|Z) =





1
√

|2πR|





(T−1)

exp
(

−1

2
tr((Y − ΦX )(Y − ΦX )′R−1)

)

, (5)

for which there are analytic MLE’s Φ̂ and R̂ given by [25,26]

Φ̂ = YX ′(XX ′)−1 and R̂ = (Y − Φ̂X )(Y − Φ̂X )′/(T − 1). (6)

Therefore transforming the parameter set to λ̃ has the advantages that (i)
the distribution of the discrete observations is fully characterised by λ̃, (ii)
analytical MLE’s are available and (iii) the likelihood function is integrable
over the parameter space (c.f 8).

3.2 Higher order VAR processes to include memory effects

Considering the discrete observations of a linear SDE as realizations of a
VAR(1) process naturally raises the question if there is a consistent inter-
pretation of using a higher order model, e.g. VAR(p), that is

zt+1 = A0µ +
p

∑

i=1

Aizt−i+1 +N (0,R). (7)

This process is obviously not anymore a Markov process but exhibits a memory
lag of p steps into the past. In fact Eq. (7) can be interpreted as a time
discretization of a generalised Langevin process

ż(t) = −∇zU(z(t))−
∫ t

0
γ(t− s)z(s)ds + ΣẆ (t), (8)

under the assumption of a quadratic potential function, as above, and a piece-
wise constant memory kernel γ with finite support. For a more detailed pre-
sentation we refer to [27].
If a fixed order p is assumed estimation of the parameters of a VAR(p) is ana-
logue to that of the VAR(1) process, we only have to extend the definitions of
the data matrices X and Y to

X :=





















1 . . . 1

z1 . . . zT−p

...
...

zp . . . zT−1





















∈ R(dp+1)×(T−p)

Y :=
(

zp+1, . . . ,zT

)

∈ Rd×(T−p).
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The estimator Φ̂ in (6) now estimates

Φ =
(

A0µ A1 A2 . . . Ap

)

∈ Rd×(dp+1).

3.3 Estimation of the model order

There are several criteria and tests to estimate the order p of a VAR process
from a given time series, for a discussion of these we refer to [25], Chapter
4.3. In our application example we use the Schwarz criterion which chooses
the order p so that the function

SC(p) = log |R̂(p)|+ log T

T
pd2, (9)

where R̂(p) is the MLE of R under the assumption of a VAR(p) process, is
minimised within a predefined range 0, . . . , pmax. The first term of the Schwarz
criterion minimises the noise term in the model while the second penalises the
number of estimated parameters which grows with a higher order model. It
can be shown that the Schwarz criterion is a consistent estimator of the order
of a VAR process. We are aware, that, unfortunately, the Schwarz criterion
is often not optimal in finite sample situations. We do not want to elaborate
on this subject, but only remark that as the order of the VAR process here is
essentially the memory depth of the molecular process, which might be known
or estimated by methods specific in the MD context.

3.4 Computation of the estimators

The analytic estimators given in (6) are in general not used for computation
of the parameters, as the matrix inversion can be unstable. Instead one can
use the moment matrix

M = M (Z) : =
T

∑

i=1

(

1 z′

i . . . z′

i+p

)





















1

zi

...

zi+p





















=







XX ′ XY ′

YX ′ YY ′





 =:







M11 M12

M21 M22





 .

(10)

The moment matrix is an important object as it contains all statistical relevant
information about the observed process (under the assumption of a VAR(p)
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process). This can be seen by rewriting the likelihood function in terms of the
blocks in M :

L(Φ,R|Z) = L(Φ,R|M) =





1
√

|2πR|





m

(11)

· exp
(

−1

2
tr((M22 −M21Φ

′ − ΦM 12 + ΦM 22Φ
′)R−1)

)

, (12)

where m denotes the upper left scalar entry of M which equals T − p, i.e. the
length of the observed time series minus p initial points. We will employ this
notation m = m(Z) below to avoid the indices for the length of different time
series. Also we employ subsequently the notation f(Z|Φ,R) ≡ L(Φ,R|Z) if we
want to highlight Eq. 11 as a density in data space. The MLE’s can be obtained
from the moment matrix M in a stable way via a Cholesky factorisation which
gives an upper triangular matrix

R =







R11 R12

0 R22





 ,

such that

M =







XX ′ XY ′

YX ′ YY ′





 =







R′

11R11 R′

11R12

R′

12R11 R′

12R12 + R′

22R22





 = R′R.

Plugging the Cholesky factorisation into the estimators (6) one obtains

Φ̂ = (R−1
11 R12)

′ and R̂ =
1

m
R′

22R22. (13)

In the case of an ill-conditioned moment matrix M one can add a regularization
matrix to ensure a well-posed Cholesky factorisation. A possible choice is to
use M + δdiag(M ) instead of M , with a small parameter δ depending on the
dimensionality of the problem and the machine precision, cf. [28].

4 Bayesian model comparison

4.1 Change point models

To detect changes in the parameterisation of the underlying VAR model we
utilise a Bayesian approach like the one presented in [17] for the univariate
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and independent distributed case. Assume that we have observed a sequence
of observations

Z = {z1,z2, . . . zT},zi ∈ Rd

for which we presume a VAR(p) model as the data generating mechanism
(DGM). Our aim is to test within a window from t1 to t2 for a change point
in the parameterisation. We do not test from 1 to T as we need at least
(d + 1)p + d + 1 observations in one dynamical regime, as becomes apparent
later, i.e. one could set t1 = (d + 1)p + d + 2 and t2 = T − (d + 1)p − d − 2.
In practice, however, all our experience indicates that it is highly advisable to
increase t1.

Thus we have n := t2 − t1 + 1 candidate change points giving rise to n + 1
models Hi, 0 ≤ i ≤ n, where

Hi :=































Zis generated by only one VAR(p)-DGM, for i = 0.

Z1 = Z1(i) = {z1, . . . ,zt1+i−1} and

Z2 = Z2(i) = {zt1+i−p, . . . ,zT}
are generated by distinct VAR(p)-DGM’s. for 1 ≤ i ≤ n.

(14)

Note that the Z1 and Z2 are overlapping, as the last p points of Z1 are used
as initial conditions for Z2 (of course one has to remove the overlap if Z1 and
Z2 are not directly subsequent, which does not affect any of the subsequent
considerations).

The probability of each model given the observations Z can be computed via
the Bayes formula

P[Hi|Z] =
P[Z|Hi]P[Hi]

n
∑

j=0

P[Z|Hj]P[Hj]

, (15)

where

P[Z|Hi] =















∫

f(Z|Φ1,R1)π1(Φ1,R1)dΦ1dR1 if i = 0 ,
∏

i=1,2

∫

f(Zi|Φi,Ri)πi(Φi,Ri)dΦidRi if i > 0,

with prior distributions π1 and π2 on the parameters. Having 15 we can easily
evaluate the probability of a change point as:

P[change|Z2] =

n
∑

i=1

P[Z2|Hi]P[Hi]

n
∑

j=0

P[Z2|Hj]P[Hj]

. (16)

But to evaluate these probabilities we obviously have to specify the prior
probabilities for the models, i.e. P[Hi], and the parameters, i.e. π1 and π2,
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and, of course, evaluate the above integrals. The prior distributions on the
parameters will be discussed in detail in § 4.3. The (analytic) solution of the
integrals will be given in § 5 and § 8. But before we introduce Bayes factors to
reformulate the problem as suggested in [18], so that ”objective” Bayes factors
can be used to evaluate (16) under missing prior information.

4.2 Bayesian factors

A natural way to compare the posterior probabilities of two distinct models
Hi and Hj is the ratio

P[Hi|Z]

P[Hj|Z]
=
P[Z|Hi]P[Hi]

P[Z|Hj]P[Hj]
, (17)

called posterior odds. A high ratio mean that model Hi is more probable in
the light of data Z than Hj. The Bayes factor Bij is defined as

Bij =
P[Z|Hi]

P[Z|Hj]
. (18)

Eq. (17) reveals the meaning of the Bayes factor: it defines how the data Z
transforms the prior odds P[Hi]/P[Hj] to the posterior odds, i.e. in which di-
rection the data shifts our prior beliefs. The Bayes factor approach is similar
to the likelihood ratio statistic, cf. [29,30], but while the likelihood ratio is
obtained via maximisation over the parameter space the Bayes factor is ob-
tained by integration over the parameter space. Division of (16) by P[Z2|H0]
yields

P[change|Z2] =

n
∑

i=1

Bi0P[Hi]

n
∑

j=0

Bj0P[Hj]

.

which can be interpreted as an assembly of a sequence of test against the null
hypothesis of no change.

4.3 Prior distributions

A natural choice to code our ignorance on a parameter change before observing
data is to assign a prior probability of 1

2
to the event of a change and distribute

the rest probability among the other models, i.e.

P[H0] =
1

2
, P[Hi] =

1

2n
, 1 ≤ i ≤ n.
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More problematic is the choice of prior distributions for the parameters of the
VAR models under ignorance. A common choice is the usage of the diffusive

prior, which consist of a flat prior on Φ and a Jeffrey’s prior on R, so that

πD(Φ, R) ∝ |R|− d+1
2 , (19)

a discussion of this prior and other possibilities is given in, e.g. [26,31]. Al-
though it can be easily shown that under the diffusive prior the posterior
distribution (4.1) is a proper, i.e. normalizable, distribution, the choice is prob-
lematic for model comparison, as this prior is only defined upon a constant
and therefore the model probabilities (15) as well as the Bayes factor (18) are
also only defined upon a constant. The constant does not cancel out of the
fraction in (15) and (18) as we have parameters which are not common to all
models, i.e. the parameters for the VAR model after a change has occurred.
This means, that with the use of an unproper prior we can compare different
change point models, as the indeterminate constants do cancel out, but we
can not compare the probability between change and no-change.

A possible way out of this dilemma is the usage of objective Bayesian factors,
which we shortly introduce in the next paragraphs before adapting them to
our specific situation in § 5.

4.3.1 Partial Bayes

A way to obtain a proper prior distribution for some parameter θ despite of
ignorance is to split the data Z = {Zp, Z−p} and use a part (Zp) as a training
set to specify the prior while the other part (Z−p) is used for testing or analysis,
i.e.

πPB(θ) ∝ πD(θ)f(Zp|θ),
where πD(θ) denotes an improper parameter prior. The size of the training set
is usually taken as the minimal size to guarantee properness of the resulting
prior. A problem is the arbitrariness in the choice of data points taken into the
training sample. Proposals to overcome this arbitrariness are, e.g., averaging
over all possible minimal training sets resulting in the intrinsic Bayes ap-
proach [32]. The intrinsic Bayes approach can be elegantly expanded if nested
models are tested, [18,33], but has the drawback that computation of intrinsic
Bayes factors is often hard, resp. feasible only for certain models.

4.3.2 Fractional Bayes

The fractional Bayes approach, put forward by O’Hagan [19], is based on the
idea not to use part of the data to specify a prior but to use a fraction of the
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likelihood function, i.e.

πFB(θ) ∝ πD(θ)f b(Z|θ), b ∈]0, 1[.

The likelihood function is then transformed to L(θ|Z) = f (1−b)(Z|θ), thus
becoming flatter as a fraction of the information was already used to define
the prior distribution. The question of the right choice of a training set is
elegantly avoided, as a fraction of all data is used. A reasonable choice of b is
again the minimal value to guarantee properness of the resulting prior.

4.3.3 Imaginary minimal experiment

Another approach presented by Spiegelhalter and Smith [34] is the use of a
so called imaginary minimal experiment. Suppose there are two models to
be compared and in at least one of them there is a parameter for which we
can only specify an improper non-informative prior. Then the resulting Bayes
factor is given by

B01 = c ·
∫

f1(Z|θ1)π1(θ1)dθ1
∫

f2(Z|θ2)π2(θ2)dθ2

,

with an unknown constant c. The idea of an imaginary minimal experiment
is to fix the undetermined constant c by imagination of a data set ZI which
is just big enough to discriminate between the two models, therefore minimal,
but gives maximal support for one of the two models. The reasoning then is
that the Bayes factor should favour the supported model but only minimal,
due to the smallness of the data set, so that

B01 ≈ 1⇒ c ≈
∫

f2(ZI |θ2)π2(θ2)dθ2
∫

f1(ZI |θ1)π1(θ1)dθ1

.

It has been argued that the definition of an imaginary minimal experiment
is sufficient only in rather special cases [19]. Furthermore it is not clear that
the claim B01 ≈ 1 is an appropriate choice in all cases. But, as we will show,
in the change point detection framework as presented, the imaginary minimal
approach seems to be good applicable.

5 Identification of a change point

The key ingredient to employ the approaches stated above in the computa-
tion of objective Bayes factors B(i) := B0i, 1 ≤ i ≤ n is that our model allows
analytical integration of the likelihood function over paramer space. Assume
for the moment an arbitrary time series Z of length T and the corresponding
moment matrix M = M (Z). As M contains all statistical relevant informa-
tion of the data we can write f(M |Φ,R) instead of f(Z |Φ,R), as given in
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Eq. (11). Following the notation introduced in §3.4 we denote by R11 and
R12 the corresponding blocks of the triangular matrix R obtained from the
Cholesky factorisation of M and by m = T − p the upper left scalar entry of
M . Then, see Appendix 8,

I[M ] :=
∫

f(M |Φ,R)πD(Φ,R)dΦdR

=π
d(d−1)

4 |R11|−d|√πR22|−(m−dp−1)
d

∏

j=1

Γ

(

m− dp− j

2

)

,
(20)

as long as m > dp + d (therefore we need at least dp + d + p + 1 subsequent
points before and after a change point). Furthermore note from Eq. (11) that
information coming from different time series (parts), e.g. Z1 and Z2 can be
combined just by adding the moment matrices, as

f(M (Z1)|Φ,R)f(M (Z2)|Φ,R) = f(M (Z1) + M (Z2)|Φ,R). (21)

Now assume a fixed i > 0 and Z1, Z2 defined as in 14. In the next subsections
we construct the corresponding fractional Bayes and imaginary experiment
factors.

5.1 Fractional Bayes

The fractional Bayes approach can be easily implemented by noting from (11)
that

f b(M |Φ,R)

=





1
√

|2πR|





bm

exp
(

−1

2
tr((bM22 − bM21Φ

′ − ΦbM12 + ΦbM22Φ
′)R−1)

)

= f(bM |Φ,R), (22)

so that, using the notation introduced above, we have

∫

f b(Z2|Φ,R)πD(Φ,R)dΦdR = I[bM (Z2)],

and, using (21),

∫

f(Z1|Φ,R)f (1−b)(Z2|Φ,R)πD(Φ,R)dΦdR = I[M (Z1) + (1− b)M (Z2)].

Plugging it all together we obtain in short notation the fractional Bayes factor

B
(i)
FB =

I[M (Z1)]I[M (Z2)]

I[M (Z1) + (1− b)M (Z2)]I[bM (Z2)]
. (23)

13



The minimal value of b is determined by the minimal value for which

I[bM (Z2)]

is defined (cf. §8). Therefore the minimal value of b is given by

bmin =
dp + d + 1

m(Z2)
,

which means that the upper left entry of bM (Z2) just meets the threshold of
dp + d + 1.

5.2 Imaginary minimal experiment

To employ the Spiegelhalter/Smith approach we have to define an adequate
imaginary minimal experiment ZI . If we want to decide if Z2 is generated
by the same DGM as Z1 we need, as stated above, a minimum of dp + d +
1 + p observations, otherwise the integrals in the Bayes factor are not defined
anymore. Maximal support for the ”no change”-model would be the same
observed statistic in both observed time series, i.e.

M (Z1)

m(Z1)
=

M (ZI)

m(ZI)
⇔ M (ZI) =

dp + d + 1

m(Z1)
M (Z1).

With this definition of M (ZI) we can fix the undetermined constant in the
Bayes factor as

cI =
I[M (Z1) + M (ZI)]

I[M (Z1))]I[M (ZI)]
,

and obtain the Bayes factor

B
(i)
I = cI ·

I[M (Z1)]I[M (Z2)]

I[M (Z1) + M (Z2)]
.

In our experience both suggested procedures are feasible, but the fractional
Bayes Factor approach seems to be less sensitive against outliers in the data
and deviation from the model. So we use the fractional Bayes approach but
remark that in the case of little data (where we do not want to flatten the
density further) the imaginary minimal experiment approach can be seen as
an alternative.

14



6 Algorithmic procedure

To clarify our approach we summarise the obtained procedure in a flow chart
(next page). Besides the time series access three parameters are needed, the
length of an initial window tI , the length of the update window tU and the or-
der of the VAR process p (alternatively a maximal order pmax is needed to test
the order). In practice it is advisable to choose a larger tI as the minimal one,
as otherwise, if a change close to tI is tested, the likelihood induced parameter
distribution will be so different, even if there is no change point, in the two
time series segments that it is likely to detect a false one. Furthermore, having
real data where the VAR model is just an approximation of the DGM choosing
a higher tI makes the change point detection less sensitive to deviations from
the model, which is a crucial point in practice. With increasing length of the
update window tU the algorithm will become less sensitive against short time
departures from the model. In the algorithmic scheme we forbid change points
at the end of the test interval to provide the opportunity to detect a better
change point in the next available sequence.
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Algorithm 1: Sequential change point detection

Parameter: tI (length of initial window)
: tU (length of update window)
: p (VAR-order) or pmax (maximal VAR-order)

Input : A time series Z = {z1, z2, . . .} with sequential access

t0 ← 1
t1 ← tI + tU
Z ← {zt0 , . . . , zt1}
If p is not given estimate p ∈ {0, 1, . . . , pmax} based on {zt0 , . . . , zt0+tI−1}.
while incoming data is available do

Compute Bayes factors:

for k ← tI + 1 to t1 − ((d + 1)p + d + 1) do
Z1 ← {zt0 , . . . , zt0+k−1}
Z2 ← {zt0+k−p, . . . , zt1}
b← dp+d+1

m(Z2)

B
(k−tI )
FB ← I[M (Z1)]I[M (Z2)]

I[M (Z1)+(1−b)M (Z2)]I[bM (Z2)]

n← t1 − tI − ((d + 1)p + d + 1)P[change] =
Pn

i=1 B
(i)
F B

P

n
j=1 B

(j)
F B

+n

c = argmax1≤i≤n B
(i)
FB

if P[change] > 0.5 and c 6= n then
changepoints ← {changepoints,t0 + tI + c}
t0 ← t0 + tI + c− p

t1 ← t0 + tI + tU − 1
Z ← {zt0 , . . . , zt1}
If p is not given estimate p ∈ {0, 1, . . . , pmax} based on
{zt0 , . . . , zt0+tI−1}.

else
t1 ← t1 + tU

Output: changepoints

7 Example

In this section we demonstrate the applicability of the precedingly presented
algorithm by an example from molecular dynamics (MD). As an example
we will use simulation data of an artificial penta-peptide, consisting of a
capped chain of five amino-acids: Glutamine-Alanine-Phenylalanine-Alanine-
Argenine, shown in Fig. 1. The peptide is itself an interesting object to study,
as it is a small molecule which is able to form salt bridges, an important and
still not well understood matter. We will not concern with this subject but
rather use a trajectory of the peptide for demonstration purpose of our algo-
rithm only. The trajectory was obtained from an MD-simulation in vacuum
using the NWChem software package [35,36]. The integration time step was
set to 1 femtosecond, while the coordinates were written out every 200 fem-
toseconds. The trajectory we use consists of 100000 points thus covers a length
of 20 nanoseconds. What can be seen in the trajectory is the folding of the
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Fig. 1. Left: The simulated penta-peptide with the 10 observed torsional backbone
angles marked. Right: During the simulation the molecule transforms from a struc-
ture where mainly the side chains interact to a more compact and stable structure
via several meta stable intermediates. The obtained metastable structures from
beginning and end of the trajectory are visualised by density plots showing the
flexibility within a conformation (Visualisation by AMIRA, [37]).

peptide from a spread out structure where only the two long side chains inter-
act (the salt bridge) to a more compact structure and very stable structure,
see Fig. 1.

7.1 Observables and removing periodicity

A way to avoid difficulties with the free translational and rotational modes of
the positional coordinates of a molecule is to switch to internal coordinates. In
general, the overall geometric structure of a peptide can be characterised by
the torsion angles along the backbone, excluding the rigid N-H-C-O peptide
bonds. For demonstration purpose we omit at this point the torsional angles
along the side chains, as it only makes the picture more complicated. Therefore
we are left with a 10-dimensional torsion angle time series from the backbone
as seen in Fig. 1.
Obviously we have to take care of the periodic nature of the torsion angles.
But as the algorithm expects the data to come in sequentially we can just shift
the data piecewise to remove periodicity, which will work in most cases as the
torsion angles are in general not free rotating. The shifting of the data can
be automatised by discretizing the angle domain determine a borderline with
minimal number of transitions across. Additionally we can exclude transition
to data points that cross the periodic boundary from our statistics, cf. Fig. 2.
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Fig. 2. Top left: an angular time se-
ries exhibiting periodicity. Top right:

the angular domain is discretised and
the borderline with the fewest tran-
sitions across is determined. Bottom:

shifting the data, so that the deter-
mined borderline becomes the bound-
ary, makes the time series effectively
non-periodic. Single transitions over
the boundary (dotted line) are just
excluded.

7.2 Results of change-point analysis on the trajectories

We applied the algorithm to the trajectory with the parameters set to tI = 500,
tU = 300, , pmax = 8. Note that even if the initial window tI appears to be
chosen rather large, which makes the algorithm less sensitive to outliers and
allows better order estimation in the time series segments, it is still small
compared to the length of the time series. The choice of pmax is not very
crucial as the order along the time series is mostly estimated as p̂ = 1 or
maximal p̂ = 2.

The outcome is depicted in Fig. 3. All obvious change points are detected.
Between about 200000 and 500000 fs there are a few change points which
seem to be spurios. In fact the distribution of detected change points in this
region is sensitive to parameter changes indicating the existence of outliers (in
a dynamic sense). In the next section we show how we can reassembly these
segments.
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Fig. 3. The 10-dimensional backbone torsion angle time series of the peptide (splitted
in 3 subpanels, Top: 1-4, Middle: 5-7: Bottom: 8-10). The vertical lines mark the
detected change points. The digits 1 to 20 on the margins of the middle panel
indicate the membership of the obtained time series segments to the 21 clusters
obtained from hierarchical clustering as explained below.
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7.3 Using hierarchical clustering to group identified sections

After having obtained the change points sequentially we can use the outcome of
the change point algorithm also to group the data globally. Therefore we define
a distance matrix D , measuring the distance between all identified segments
{S1, S2, . . . , SN} of the time series, N = 43 in our case, according to the
probability that the segments are generated by the same DGM:

Dij =
Bij

Bij + 1

Bij =



















I[M (Si)]I[M (Sj)]

I[M (Si) + (1− bmin)M (Sj)]I[bminM (Sj)]
, if m(Si) ≤ m(Sj),

I[M (Si)]I[M (Sj)]

I[M (Sj) + (1− bmin)M (Si)]I[bminM (Si)]
, if m(Si) > m(Sj),

with 1 ≤ i, j ≤ N . So the distance is just the probability of a change point,
where the change point has to be between the two segments. To make the
distance matrix symmetric and to avoid waste information from the shorter
segment we always use the longer segment to extract prior information about
the parameters. The obtained distance matrix can be used to cluster the data,
i.e. to merge different time series segments, e.g. by an hierarchical clustering
algorithm [38]. Therefore the distance between two clusters C1 and C2 is given
by the maximal distance between any member of one cluster to any member
of the other cluster:

d(C1, C2) = max
Si∈C1,Sj∈C2

Dij,

The hierarchical structure appears by raising the maximal distance dmax al-
lowed for objects within a cluster gradually. If dmax = 0 all segments S1, . . . , SN

define their own cluster. By raising dmax eventually two segments are allowed
to form a cluster, further on other segments may join the cluster or define
their own cluster or two clusters may merge to a single cluster. In our case a
natural choice as the allowed maximal distance is dmax = 0.5, which was our
testing criteria to separate the time series segments. In fact our example is not
very challenging for the cluster algorithm as the segments can just be grouped
in 21 clusters with all elements within a cluster having a distance of virtually
zero to each other and a distance of one to elements outside the cluster. The
obtained global grouping is marked in Fig. 3. Again visual expection confirms
that the results are meaningful in that similar segments of the time series are
indeed grouped together. It can also happen that adjacent segments will be
recombined again (as happens in the above mentioned interval from 200000 fs
to 500000 fs), this is due to a better statistical base to make our decisions as
we now look from a global view on the obtained data.
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8 Conclusion

Motivated by the task to detect conformational changes in biomolecules on-
line from time series, we showed how to paraphrase the problem into a change
point detection problem for VAR models. We tackled the problem by employ-
ing a Bayesian approach to model selection. As we assumed having no prior
knowledge about parameters of change points we avoided the need to specify
proper prior distributions by usage of a fractional Bayes approach, which we
formulated in a way to deal with our high dimensional parameter space. We
finally achieved an algorithmic procedure which is very clear and easy to im-
plement. In the last section we demonstrate the applicability of the procedure
to ”real” data from molecular dynamics simulations, with promising results.
Even though one has to admit that the approach crucially depends on identi-
fying the right observables, i.e. observables which are locally linear, which is
in practice not always trivial task.
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Appendix: Integration of the Likelihood function

Integration of the integral in (20) is rather straightforward but for complete-
ness we will derive it in this appendix, i.e. we want to integrate f(Z|Φ,R)πD(Φ,R)
,with πD the diffusive prior as given in Eq. 19 and f the density as given in 11,
over all Φ ∈ Rd×(dp+1) and over all positive definite matrices R ∈ Rd×d, where
Z is a given time series of length T and dimension d. With the notation in
§ 3.2 and § 3.4 we have

∫

f(Z|Φ,R)πD(Φ,R)dΦdR =
∫

|2πR|−T−p

2 exp

(

− 1

2

(

tr
(

(Y − ΦX )(Y − ΦX )′R−1
)

)

)

|R|− d+1
2 dΦdR.
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The argument of the trace function can be Taylor expanded around the MLE
of Φ yielding

∫

|2πR|−T−p

2 exp

(

− 1

2

(

tr
(

(Y − Φ̂X )(Y − Φ̂X )′R−1

+(Φ− Φ̂)′[R−1 ⊗ XX ′](Φ− Φ̂)
)

)

)

|R|− d+1
2 dΦdR,

where Φ, resp. Φ̂, denote the vectorised notation of Φ, resp. Φ̂, and ⊗ the
Kronecker product. Next Φ can be integrated out as it is normal distributed,
giving

∫

|2πR|−T−p

2 |R|− d+1
2 |2π(R−1⊗XX ′)−1| 12 exp

(

−1

2

(

tr
(

(Y−Φ̂X )(Y−Φ̂X )′R−1
)

)

)

dR,

which can be simplified to

(2π)−
d(T−p−dp−1)

2 |XX ′|− d
2

∫

|R|−T−(d+1)p+d

2 exp

(

−1

2

(

tr
(

(Y−Φ̂X )(Y−Φ̂X )′R−1
)

)

)

dR

The resulting integrand is proportional to an inverted Wishart distribution
with T−p+d−dp d.o.f’s, which has a defined density as long as T > p+dp+d,
cf. [39, ch. 3.4]. Therefore R can be integrated out giving rise to

π
d(d−1)

4 |XX ′|− d
2 |π · (Y − Φ̂X )(Y − Φ̂X )′|−T−p−dp−1

2

d
∏

j=1

Γ

(

T − p− dp− j

2

)

.

The form stated in (20) is obtained by simply using the notation introduced
in § 3.4.
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