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Jarzynski’s equality, fluctuation theorems, and variance

reduction: Mathematical analysis and numerical algorithms
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Abstract

In this paper, we study Jarzynski’s equality and fluctuation theorems for diffusion pro-

cesses. While some of the results considered in the current work are known in the (mainly

physics) literature, we review and generalize these nonequilibrium theorems using mathe-

matical arguments, therefore enabling further investigations in the mathematical commu-

nity. On the numerical side, variance reduction approaches such as importance sampling

method are studied in order to compute free energy differences based on Jarzynski’s equality.

Keywords Jarzynski’s equality, fluctuation theorem, nonequilibrium dynamics, free energy dif-

ference, variance reduction, reaction coordinate
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1 Introduction

Nonequilibrium work relations concern the behavior of dynamical systems which are out of

equilibrium under nonequilibrium driving forces. Different from linear response theory [42, 49]

where systems are required to be close to equilibrium, nonequilibrium work relations refer to

a set of equalities which hold for general systems far away from equilibrium. And the most

remarkable ones include Jarzynski’s equality [37, 38] and Crooks’s fluctuation theorem [15]. In

particular, Jarzynski’s equality relates free energy differences to the work that is applied to

the system in order to drive the system from one state to another within a finite period of

time. Since its first report in 1997 [37, 38], considerable amount of research work has been done

both numerically and experimentally to study the computation of free energy differences, by

driving the system out of equilibrium using nonequilibrium forces [27, 51, 50, 68, 67]. In recent

years, inspired by the work [57], there has also been growing research interest to generalize both

Jarzynski’s equality and fluctuation theorems to nonequilibrium systems under discrete feedback

controls [58, 54, 34, 59].

Although Jarzynski’s equality ensures that free energy differences can be calculated by

pulling the system using any control forces (protocols) and the transition can be done within

any finite time, the efficiency of Monte Carlo estimators for free energy computation based

on Jarzynski’s equality crucially depends on the control protocols and therefore careful design

is needed. Various techniques, such as importance sampling in trajectory space [68, 51], the

use of both forward and reversed trajectories [16, 67, 50, 64], the interacting particle system

techniques [55], and the escorted free energy simulation method [63, 64], have been proposed in

order to improve the efficiency of Monte Carlo estimators. Meanwhile, we note that several recent

works have considered optimal control protocols which minimize either average work or average

heat [62, 60, 2, 4]. However, it is important to point out that, although these protocols are optimal

in certain sense and are physically interesting, they do not necessarily provide the optimal Monte

Carlo estimators in the sense of smallest variance. Readers are referred to [27, 52, 40, 19, 67]

for detailed discussions on related issues.

In the aforementioned literature, the concept of free energy is often defined as a function of

physical parameters, e.g., temperature, volume or pressure, which characterize the macroscopic

status of physical system. This is termed as the alchemical transition case in [45]. Free energy also

plays an important role in the study of model reduction of complex (molecular) systems along a

given reaction coordinate or collective variables. In this context, free energy is often defined as a

function of reaction coordinate which in turn depends on the state of the system. And calculating
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free energy differences along a given reaction coordinate has attracted considerable attentions

in the study of molecular systems [35, 1, 65, 11, 45]. Similar to the alchemical transition case,

Jarzynski-like equalities and their applications in free energy calculation have been considered

in [44, 46].

Motivated by the development of nonequilibrium work relations and their potential ap-

plications, the goal of the current work is to understand these results from a mathematical

point of view, and to study variance reduction approaches, such as importance sampling, in

Monte Carlo methods for free energy calculation based on Jarzynski’s equality. In the alchemi-

cal transition case, we provide mathematical proofs of both Jarzynski’s equality and fluctuation

theorems in a general setting based on the theory of stochastic differential equations, making

them more accessible for readers in mathematical community (we refer to the previous study [25]

for a mathematical proof of Jarzynski’s equality). It is worth emphasizing that the nonequilib-

rium diffusion processes in our setting are allowed to be irreversible and can have multiplicative

noise. Furthermore, the Jarzynski’s equality is generalized to allow noisy control protocols.

This generalization may be useful to study systems in experiments [36], since the implementa-

tions of control protocols through physical devices are typically imprecise to some extent. As

an advantage of our mathematical approach, it allows us to elucidate the connection between

thermodynamic integration identity and Jarzynski’s equality, which were usually considered as

two distinct identities involving free energy differences. Such a connection is indeed known in

physics community [14], but we believe it is helpful to present its mathematical derivation. In

the reaction coordinate case, we prove a fluctuation theorem and derive a Jarzynski-like equality

based on the fluctuation theorem. These results complement the previous mathematical studies

in [44, 46]. In both the alchemical transition case and the reaction coordinate case, following our

previous studies [72, 30, 31], we investigate variance reduction approaches in order to compute

free energy differences using Monte Carlo method based on Jarzynski’s equality.

The paper is organized as follows. In Section 2, we study the Jarzynski’s equality and

fluctuation theorem in the alchemical transition case. In particular, the cases when the control

protocols are noisy will be considered. Information-theoretic formulation of Jarzynski’s equality,

the importance sampling method, as well as the cross-entropy method will be discussed in the

context of free energy calculation. In Section 3, we study the Jarzynski-like equality and the fluc-

tuation theorem in the reaction coordinate case. Information-theoretic formulations and variance

reduction approaches will be discussed following a similar reasoning as in Section 2. Two simple

numerical examples are studied in detail in Section 4 to illustrate the numerical issues of Monte

Carlo estimators for free energy calculation as well as the variance reduction ideas proposed in

this work. In Appendix A two asymptotic regimes of nonequilibrium processes(fast mixing and

slow driving) and, in particular, connections between Jarzynski’s equality and thermodynamic

integration identity will be discussed. Appendix B records the thermodynamic integration iden-

tity in the reaction coordinate case. Appendix C contains an alternative proof of the fluctuation

theorem (Theorem 2) in the alchemical transition case. The proof of the fluctuation theorem in

the reaction coordinate case (Theorem 3) is given in Appendix D.
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2 Jarzynski’s equality and fluctuation theorem: alchemi-

cal transition case

In this section, we study the Jarzynski’s equality and the fluctuation theorem in the al-

chemical transition case. In Subsection 2.1, we introduce the dynamical systems which will be

studied in this section and fix notations. Jarzynski’s equality and fluctuation theorem will be

studied from Subsection 2.2 to Subsection 2.3. Finally, Information-theoretic formulation of

Jarzynski’s equality, as well as the cross-entropy method will be discussed in Subsection 2.4 and

Subsection 2.5, respectively.

2.1 Mathematical setup

Consider the stochastic process x(s) ∈ R
n which satisfies the stochastic differential equation

(SDE)

dx(s) = b(x(s), λ(s)) ds +
√
2β−1σ(x(s), λ(s)) dw(1)(s) , s ≥ 0 , (1)

where β > 0 is a constant, w(1)(s) is a d1-dimensional Brownian motion with d1 ≥ n. Both the

drift vector b : Rn × R
m → R

n and the matrix σ : Rn × R
m → R

n×d1 are smooth functions

depending on the control protocol λ(s) ∈ R
m, which we assume is governed by

dλ(s) = f(λ(s), s) ds+
√
2ǫ α(λ(s), s) dw(2)(s) . (2)

In the above, ǫ ≥ 0 is related to the intensity of the noise, λ(0) ∈ R
m is fixed, f : Rm×R

+ → R
m,

α : Rm × R
+ → R

m×d2 are smooth functions, and w(2)(s) is a d2-dimensional Brownian motion

independent of w(1)(s). Notice that in equation (2), functions f, α are assumed to be independent

of x(s), and therefore the control protocol λ(s) is of feedback form with respect to itself but does

not depend on the system state x(s). More generally, in Subsection 2.3, we will also consider

the case when the control protocol is of feedback form with respect to both processes x(s) and

λ(s), i.e.,

dλ(s) = f(x(s), λ(s), s) ds +
√
2ǫ α(x(s), λ(s), s) dw(2)(s) . (3)

In both cases (2) and (3), the infinitesimal generator of the dynamics λ(s) for fixed x(s) is given

by

L2 = f · ∇λ + ǫ (ααT ) : ∇2
λ , (4)

where ∇λ denotes the gradient operator with respect to the variable λ ∈ R
m and

(ααT ) : ∇2
λφ :=

∑

1≤i,j≤m

(ααT )ij
∂2φ

∂λi∂λj
,

for a smooth function φ of variable λ ∈ R
m.

For fixed parameter λ ∈ R
m, the dynamics (1) reads

dx(s) = b(x(s), λ) ds +
√
2β−1σ(x(s), λ) dw(1)(s) , s ≥ 0 , (5)
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and its infinitesimal generator is

L1 = b(·, λ) · ∇+
1

β
a(·, λ) : ∇2 , (6)

where the matrix a = σσT and ∇ denotes the gradient operator with respect to x ∈ R
n.

Correspondingly, the infinitesimal generator of the joint process (x(s), λ(s)) is

L = L1 + L2 , (7)

since the two Brownian motions w(1)(s), w(2)(s) are independent. Throughout this article, we

assume that the drift and noise coefficients satisfy appropriate Lipschitz and growth conditions,

such that equations (1)-(3) have unique strong solutions [53]. For each fixed parameter λ ∈ R
m,

we further assume that the process x(s) in (5) is ergodic and has a unique invariant measure µλ

satisfying

µλ(dx) = ρ(x, λ)dx ,

∫

Rn

ρ(x, λ)dx = 1 . (8)

Furthermore, we introduce the potential

V (x, λ) = −β−1 ln ρ(x, λ) + constant , (9)

where the constant only depends on the parameter λ. Equivalently, we have ρ(x, λ) = 1
Z(λ)e

−βV (x,λ),

and the normalization constant Z(λ) is given by

Z(λ) =

∫

Rn

e−βV (x,λ)dx . (10)

The free energy of the system (5) for a fixed parameter λ ∈ R
m is defined as

F (λ) = −β−1 lnZ(λ) . (11)

To proceed, we follow the previous study [70] and introduce the quantity

Ji(x, λ) = bi −
1

βρ

n∑

j=1

∂(aijρ)

∂xj
, 1 ≤ i ≤ n . (12)

Note that both here and in the following, Ji, bi denote the ith component of the vectors J, b,

respectively. Also, the dependence of the functions on the variables x and λ will be omitted

when no ambiguities arise. Since the probability measure µλ in (8) is the invariant measure of

the dynamics (5), we can verify that

div
(
J(x, λ)e−βV (x,λ)

)
≡ 0 , ρ− a.e. x ∈ R

n , (13)

for every λ ∈ R
m. Thus, (1) can be written as

dxi(s) = Jids+
1

βρ

n∑

j=1

∂(aijρ)

∂xj
ds+

√
2β−1

d1∑

j=1

σij dw
(1)
j (s) , 1 ≤ i ≤ n , (14)

or, in vector form,

dx(s) =
(
J − a∇V +

1

β
∇ · a

)
ds+

√
2β−1σ dw(1)(s) , (15)
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where ∇ · a denotes the vector in R
n with components

(∇ · a)i =
n∑

j=1

∂aij

∂xj
, 1 ≤ i ≤ n . (16)

Finally, we introduce two physical quantities which are associated to the trajectories of the

stochastic processes x(s), λ(s) and will be relevant for our subsequent study. For each trajectory

x(s), λ(s) of the dynamics (1), (3) on the time interval [t1, t2] ⊆ [0, T ], the change of internal

energy and the work done to the system are defined as

∆U(t1, t2) =V
(
x(t2), λ(t2)

)
− V

(
x(t1), λ(t1)

)

W(t1, t2) =

∫ t2

t1

∇λV (x(s), λ(s)) ◦ dλ(s) ,
(17)

respectively. Note that, in (17), the notation ‘◦’ indicates that Stratonovich integration has been

used. Using the relation between Stratonovich integration and Ito integration, we can verify the

alternative expression

W(t1, t2) =

∫ t2

t1

(
∇λV · f + ǫ ααT : ∇2

λV
)(
x(s), λ(s), s

)
ds

+
√
2ǫ

∫ t2

t1

(
αT∇λV

)(
x(s), λ(s), s

)
· dw(2)(s) ,

(18)

where Ito integration has been used.

In the following, we will omit the subscripts and adopt the notation W =W(t1,t2) when we

consider the time interval [t1, t2] = [0, T ]. Similarly, W (t) will be used to denote the work W(0,t)

for t ∈ [0, T ].

2.2 Jarzynski’s equality under noisy control protocol

Jarzynski’s equality can be derived using different approaches [40]. In this subsection,

we will provide a simple argument to obtain the (generalized) Jarzynski’s equality, where the

nonequilibrium processes x(s) can be irreversible for fixed parameter λ, the diffusion coefficient

σ in the equation (1) of x(s) can be position dependent (multiplicative noise), and the control

protocol λ(s) can be stochastic (ǫ > 0). The proof has some similarities with the one in [36]

using the Feynman-Kac formula. As an advantage of our method, it allows us to figure out

the connections between thermodynamic integration and Jarzynski’s equality by analyzing the

related PDEs. See Remark 1 and Appendix A for more details.

Before starting, we first introduce the quantity

g(x, λ, t) =Ex,λ,t

(
ϕ(x(T ), λ(T )) e−βW(t,T )

)

=Ex,λ,t

[
ϕ(x(T ), λ(T )) e−β

∫
T

t
∇λV

(
x(u),λ(u)

)
◦ dλ(u)

]
,

(19)

for fixed x ∈ R
n, λ ∈ R

m and 0 ≤ t ≤ T , where ϕ : Rn × R
m → R is a bounded and continuous

test function, Ex,λ,t denotes the conditional expectation with respect to the path ensemble of

the dynamics (1), (3) starting from x(t) = x and λ(t) = λ at time t. The following lemma is a

direct application of the Feynman-Kac formula [53], and we provide its proof for completeness.
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Lemma 1. Consider the dynamics x(s), λ(s) given in (1), (3). The function g defined in (19)

satisfies the equation

∂tg + L1g + L2g − 2ǫβ
(
αT∇λV

)
·
(
αT∇λg

)
+
(
ǫβ2|αT∇λV |2 − βL2V

)
g = 0 , 0 ≤ t < T ,

g(·, ·, T ) = ϕ ,

(20)

where L1 is the operator defined in (6), which is the infinitesimal generator of the dynamics (1)

for x(s) when λ ∈ R
m is fixed, and L2 is the operator defined in (4) for the process λ(s) when

x ∈ R
n is fixed.

Proof. Using the tower property of the conditional expectation, we have

g(x, λ, t) =Ex,λ,t

[
ϕ(x(T ), λ(T )) e−β

∫
T

t
∇λV

(
x(u),λ(u)

)
◦ dλ(u)

]

=Ex,λ,t

[
e−β

∫
s

t
∇λV

(
x(u),λ(u)

)
◦ dλ(u)g(x(s), λ(s), s)

]
,

(21)

for all time s ∈ [t, T ]. Let us define Y (s) = e−β
∫

s

t
∇λV

(
x(u),λ(u)

)
◦ dλ(u). Changing Stratonovich

integration into Ito integration as in (18) and applying Ito’s formula to the process Y (s), we get

dY (s) = Y (s)
[
− βL2V ds+ ǫβ2

∣∣αT∇λV
∣∣2 ds−

√
2ǫβ

(
αT∇λV

)
· dw(2)(s)

]
.

In a similar way, applying Ito’s formula to g(x(s), λ(s), s), gives

dg =
(
∂tg + L1g + L2g

)
ds+

√
2β−1

(
σT∇g

)
· dw(1)(s) +

√
2ǫ
(
αT∇λg

)
· dw(2)(s) .

Note that, here and in the following, we drop the dependence of the functions on the states

x(s), λ(s) and the time s in order to simplify notation. Applying Ito’s formula to the product

Y (s)g(x(s), λ(s), s), we obtain

e−β
∫

s

t
∇λV

(
x(u),λ(u)

)
◦ dλ(u)g(x(s), λ(s), s)

= g(x, λ, t) +

∫ s

t

Y (u)
(
− βL2V + ǫβ2|αT∇λV |2

)
g(x(u), λ(u), u) du

+

∫ s

t

Y (u)
(
∂tg + L1g + L2g

)
du − 2ǫβ

∫ s

t

Y (u)
(
αT∇λV

)
·
(
αT∇λg

)
du +M(s) ,

(22)

where M(s) is a (local) martingale. Taking expectations in (22) and using (21), we get

Ex,λ,t

[
− β

∫ s

t

Y (u)(L2V )g du+ ǫβ2

∫ s

t

Y (u)|αT∇λV |2g du

+

∫ s

t

Y (u)
(
∂tg + L1g + L2g

)
du − 2ǫβ

∫ s

t

Y (u)
(
αT∇λV

)
·
(
αT∇λg

)
du

]
= 0 .

Notice that Y (t) = 1, x(t) = x and λ(t) = λ at time t. Dividing the last equation by (s− t) and

letting s→ t+, we obtain (20) which concludes the proof.

Now we can prove the Jarzynski equality as stated below.
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Theorem 1 (Generalized Jarzynski equality). Let x(s) and λ(s) be given by (1) and (2), re-

spectively. Then, for any bounded smooth test function ϕ : Rn × R
m → R, we have

Eλ(0),0

[
ϕ(x(t), λ(t)) e−βW (t)

]
= Eλ(0),0

[
e−β

(
F (λ(t))−F (λ(0))

)
Eµλ(t)

ϕ(·, λ(t))
]
, (23)

where F (·) is the free energy in (11) and W (t) = W(0,t) is the work defined in (17) on the time

interval [0, t]. Eµλ(t)
denotes the expectation with respect to the probability measure µλ(t) on R

n.

And Eλ(0),0 denotes the conditional expectation over the realizations of x(s) and λ(s), starting

from fixed λ(0) ∈ R
m and the initial distribution x(0) ∼ µλ(0). In particular, choosing ϕ ≡ 1,

we have

Eλ(0),0

[
e−βW (t)

]
= Eλ(0),0

[
e−β

(
F (λ(t))−F (λ(0))

)]
. (24)

Proof. It suffices to prove the equality (23) for t = T . From the definitions of the function g in

(19) and the function Z(λ) in (10), it is easy to see that (23) is equivalent to

∫

Rn

g(x, λ(0), 0)e−βV (x,λ(0))dx = Eλ(0),0

[∫

Rn

g(x, λ(T ), T ) e−βV (x,λ(T )) dx

]
. (25)

Noticing that the process λ(s) in (2) is independent of x(s) and motivated by the form of (25),

we consider the quantity
∫
Rn e

−βV (x,λ(s))g(x, λ(s), s)dx as a function of time s. Applying Ito’s

formula, we compute

d

[ ∫

Rn

e−βV (x,λ(s))g(x, λ(s), s)dx

]

=

[ ∫

Rn

e−βV (x,λ(s))
(
∂tg + L2g +

(
ǫβ2|αT∇λV |2 − βL2V

)
g − 2ǫβ

(
αT∇λV

)
·
(
αT∇λg

))
dx

]
ds

+
√
2ǫ

[ ∫

Rn

e−βV (x,λ(s))αT
(
∇λg − β∇λV g

)
dx

]
· dw(2)(s) ,

(26)

where the functions under the integral above are evaluated at (x, λ(s), s). Since the function g

satisfies the equation (20) in Lemma 1, we find

d

[ ∫

Rn

e−βV (x,λ(s))g(x, λ(s), s)dx

]

=−
[ ∫

Rn

e−βV (x,λ(s))L1g dx

]
ds+

√
2ǫ

[∫

Rn

e−βV (x,λ(s))αT
(
∇λg − β∇λV g

)
dx

]
· dw(2)(s) .

(27)

Recalling that µλ in (8) and L1 are the invariant measure and the infinitesimal generator of

dynamics (5), we have L∗
1

(
e−βV (x,λ)

)
= 0, where L∗

1 is the formal L2 adjoint of L1. Integrating

by parts, we conclude that the first term on the right hand side of equation (27) vanishes and

therefore

d

[ ∫

Rn

e−βV (x,λ(s))g(x, λ(s), s)dx

]
=

√
2ǫ

[ ∫

Rn

e−βV (x,λ(s))αT
(
∇λg − β∇λV g

)
dx

]
· dw(2)(s) .

Taking expectation and noticing that g(·, ·, T ) ≡ ϕ, we obtain (25) and the equality (23) readily

follows.
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Remark 1. 1. While Lemma 1 holds in both cases when the control protocol λ(s) satisfies

either dynamics (2) or dynamics (3), a close examination reveals that the proof of The-

orem 1 above is valid only when the process λ(s) is independent of the process x(s), i.e.,

when λ(s) satisfies dynamics (2).

2. When ǫ = 0, the control protocol is deterministic and the work becomes

W (t) =

∫ t

0

∇λV
(
x(s), λ(s)

)
· λ̇(s) ds =

∫ t

0

∇λV
(
x(s), λ(s)

)
· f(λ(s), s) ds . (28)

In this case, we recover the standard Jarzynski equality [37, 38, 40], since (24) becomes

Eλ(0),0

[
e−βW (t)

]
= e−β∆F (t) , (29)

where

∆F (t) = F
(
λ(t)

)
− F

(
λ(0)

)
(30)

is the free energy difference and the conditional expectation is taken with respect to dynam-

ics (1), starting from the equilibrium distribution µλ(0).

3. Besides the Jarzynski’s equality, the thermodynamic integration identity is another well

known representation of the free energy that can be used to calculate free energy differ-

ences [24]. Based on the argument in this subsection, in Appendix A we will derive the

thermodynamic integration identity from Jarzynski’s equality, and therefore provide con-

nections of these two methods.

In [63], the authors proposed the escorted free energy calculation method based on an

identity for dynamics involving an extra force term. In the following, we briefly discuss this

identity and provide a proof of it using the same argument of Theorem 1. Let us consider the

dynamics

dx̄(s) = b(x̄(s), λ(s)) ds + u(x̄(s), λ(s)) ds +
√
2β−1σ(x̄(s), λ(s)) dw(1)(s) , s ≥ 0 , (31)

where u : Rn × R
m → R

n is a smooth vector field with compact support and λ(s) satisfies (2).

We define the modified work

W (t1,t2) =

∫ t2

t1

∇λV (x̄(s), λ(s)) ◦ dλ(s) +
∫ t2

t1

(
u · ∇V − 1

β
∇ · u

)
(x̄(s), λ(s)) ds , (32)

for 0 ≤ t1 ≤ t2 ≤ T .

Corollary 1. Let x̄(s) and λ(s) be given by (31) and (2), respectively. Then, for any bounded

smooth test function ϕ : Rn × R
m → R, we have

Eλ(0),0

[
ϕ(x̄(t), λ(t)) e−βW (t)

]
= Eλ(0),0

[
e−β

(
F (λ(t))−F (λ(0))

)
Eµλ(t)

ϕ(·, λ(t))
]
, (33)

∀ 0 ≤ t ≤ T , where F (·) is the free energy in (11) and W (t) = W (0,t) is the modified work in

(32). Eµλ(t)
denotes the expectation with respect to the probability measure µλ(t) on R

n, while

Eλ(0),0 denotes the conditional expectation over the realizations of x̄(s) and λ(s), starting from

fixed λ(0) ∈ R
m and the initial distribution x̄(0) ∼ µλ(0). In particular, choosing ϕ ≡ 1, we have

Eλ(0),0

[
e−βW(t)

]
= Eλ(0),0

[
e−β

(
F (λ(t))−F (λ(0))

)]
. (34)
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Proof. We only sketch the proof since it is similar to the proof of Theorem 1. Similar to (19),

we introduce the function

g(x, λ, t) =Ex,λ,t

(
ϕ(x̄(T ), λ(T )) e−βW (t,T )

)
, (35)

where x̄(t) = x ∈ R
n, λ(t) = λ ∈ R

m and t ∈ [0, T ]. Using the same argument of Lemma 1, we

can verify that g satisfies the PDE

∂tg + L1g + L2g + u · ∇g − 2ǫβ
(
αT∇λV

)
·
(
αT∇λg

)

+
(
ǫβ2|αT∇λV |2 − βL2V − βu · ∇V +∇ · u

)
g = 0 , 0 ≤ t < T ,

(36)

with the terminal condition g(·, ·, T ) = ϕ. Applying Ito’s formula as we did in Theorem 1, we

can get

d

[ ∫

Rn

e−βV (x,λ(s))g(x, λ(s), s) dx

]

=−
[∫

Rn

e−βV (x,λ(s))
(
L1g + u · ∇g − (βu · ∇V )g + (∇ · u)g

)
dx

]
ds

+
√
2ǫ

[ ∫

Rn

e−βV (x,λ(s))αT
(
∇λg − β∇λV g

)
dx

]
· dw(2)(s) .

(37)

Since u is smooth and has compact support, the first term on the right hand side above vanishes

using integration by parts formula. (33) is obtained following the same argument in the proof of

Theorem 1.

2.3 Fluctuation theorem

In this subsection we study the fluctuation theorem in the alchemical transition case. Note

that the main result below (Theorem 2) has been obtained in [10], where comprehensive analysis

as well as several concrete examples have been presented. The main purpose of this subsection

is to provide a both concise and mathematical derivation which directly leads to Theorem 2. A

different proof which is similar (but shorter) to the argument in [10] can be found in Appendix C.

First of all, we introduce the “reversed” dynamics, which is closely related to the dynamics

x(s) in (1), or its vector form (15). Notice that different reversals of stochastic dynamics have

been studied in the literature in both mathematics and physics communities. We refer to [32, 10]

and the references therein. In our case, we consider the dynamics xR(s) on the time interval

s ∈ [0, T ], which is governed by

dxR(s) =
(
− J − a∇V +

1

β
∇ · a

)(
xR(s), λR(s)

)
ds+

√
2β−1σ

(
xR(s), λR(s)

)
dw(1)(s) , (38)

where λR(s) is the control protocol satisfying the SDE

dλR(s) =− f
(
xR(s), λR(s), T − s

)
ds+ 2ǫ

(
∇λ · (ααT )

)(
xR(s), λR(s), T − s

)
ds

+
√
2ǫ α

(
xR(s), λR(s), T − s

)
dw(2)(s) .

(39)

Comparing to dynamics (3), we note that there is an extra term ∇λ · (ααT ) in (39). The

infinitesimal generator of the system (38) and (39) is given by

LR =
(
− J − a∇V +

1

β
∇ · a

)
· ∇+

1

β
a : ∇2 +

(
2ǫ∇λ · (ααT )− f

)
· ∇λ + ǫ ααT : ∇2

λ

=LR
1 + LR

2 ,

(40)

10



where LR
1 is the infinitesimal generator of the dynamics (38) when λR(s) is fixed, and similarly

LR
2 is the infinitesimal generator of the dynamics (39) when xR(s) is fixed. We will also use the

notation LR
(x,λ,T−t) to emphasize that functions in the operator (40) are evaluated at (x, λ, T −t).

The following fluctuation result concerns the relation between dynamics (15), (3) and the

reversed ones (38), (39).

Theorem 2. Let 0 ≤ t′ < t ≤ T , x, x′ ∈ R
n and λ, λ′ ∈ R

m. For any continuous function

η ∈ C
(
R

n × R
m × [0, T ]

)
with compact support, we have

e−βV (x′,λ′) ER
x′,λ′,t′

[
exp

(∫ t

t′
η
(
xR(s), λR(s), T − s

)
ds

)
δ
(
xR(t)− x

)
δ
(
λR(t)− λ

)]

=e−βV (x,λ) Ex,λ,T−t

[
e−βW exp

(∫ T−t′

T−t

η
(
x(s), λ(s), s

)
ds

)
δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)]
,

(41)

where

W =

∫ T−t′

T−t

∇λV
(
x(s), λ(s)

)
◦ dλ(s) − 1

β

∫ T−t′

T−t

[
divλ

(
f − ǫ∇λ · (ααT )

)](
x(s), λ(s), s

)
ds ,

(42)

xR(·), λR(·) satisfy the dynamics (38), (39), and x(·), λ(·) satisfy the dynamics (15), (3), respec-

tively. Here, δ(·) denotes the Dirac delta function (see Remark 2 below) and divλ denotes the

divergence operator with respect to λ ∈ R
m. ER

x′,λ′,t′ is the conditional expectation with respect

to the path ensemble of the dynamics (38), (39) starting from xR(t′) = x′ and λR(t′) = λ′ at

time t′, while Ex,λ,T−t is the conditional expectation with respect to the dynamics (15) and (3).

Proof. We consider the quantities on both sides of the equality (41). For the left hand side of

(41), let us fix the values (x′, λ′, t′) ∈ R
n × R

m × [0, T ] and define the function u by

u
(
x, λ, t ;x′, λ′, t′

)
= ER

x′,λ′,t′

[
exp

(∫ t

t′
η
(
xR(s), λR(s), T − s

)
ds

)
δ
(
xR(t)− x

)
δ
(
λR(t)− λ

)]
,

(43)

for (x, λ, t) ∈ R
n × R

m × [0, T ]. It is known that u satisfies the PDE

∂u

∂t
=

(
LR
(x,λ,T−t))

∗u+ η(x, λ, T − t)u , ∀ (x, λ, t) ∈ R
n × R

m × (t′, T ] ,

u(x, λ, t ;x′, λ′, t′) = δ(x − x′) δ(λ − λ′) , if t = t′ ,

(44)

where the operator LR
(x,λ,T−t) is defined in (40) and

(
LR
(x,λ,T−t)

)∗
denotes its formal L2 adjoint.

Direct calculation shows that, after some cancellation, we have

(
LR
(x,λ,T−t)

)∗
φ =

[
div(J + a∇V ) + divλ

(
f − ǫ∇λ · (ααT )

)]
φ+

(
J + a∇V +

1

β
∇ · a

)
· ∇φ

+
1

β
a : ∇2φ+ f · ∇λφ+ ǫ ααT : ∇2

λφ ,

(45)

for a smooth function φ.
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For the right hand side of (41), we define the function g for fixed (x′, λ′, t′) as

g(x, λ, t) = Ex,λ,T−t

[
e−βW exp

(∫ T−t′

T−t

η
(
x(s), λ(s), s

)
ds

)

× δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)]
,

where W is defined in (42), and the dynamics x(·), λ(·) satisfies SDEs (15), (3). Using the same

argument as in Lemma 1, we can verify that the function g satisfies the PDE

∂g

∂t
= L(x,λ,T−t) g , ∀ (x, λ, t) ∈ R

n × R
m × (t′, T ] ,

g(x, λ, t) = δ(x − x′)δ(λ − λ′) , if t = t′ ,

(46)

where the operator L(x,λ,T−t) is defined as

L(x,λ,T−t) φ =
[
ǫβ2|αT∇λV |2 − βL2V + divλ

(
f − ǫ∇λ · (ααT )

)
+ η

]
φ

+ L1φ+ L2φ− 2ǫβ
(
αT∇λV

)
·
(
αT∇λφ

) (47)

for a smooth function φ, and the functions in (47) are evaluated at (x, λ, T−t). Motivated by the

right hand side of (41), now a key step is to consider the function ω(x, λ, t) = e−βV (x,λ)g(x, λ, t).

Recalling the relation (13), a direct calculation shows that

e−βV L1g =e
−βV

(
J − a∇V +

1

β
∇ · a

)
· ∇

(
eβV ω

)
+
e−βV

β
a : ∇2

(
eβV ω

)

=
(
J − a∇V +

1

β
∇ · a

)
· ∇ω + β

[(
J − a∇V +

1

β
∇ · a

)
· ∇V

]
ω

+
1

β
a : ∇2ω + 2(a∇V ) · ∇ω +

e−βV ω

β
a : ∇2

(
eβV

)

=
[
div(J + a∇V )

]
ω +

(
J + a∇V +

1

β
∇ · a

)
· ∇ω +

1

β
a : ∇2ω ,

e−βV L2g =e
−βV

[
f · ∇λ(e

βV ω) + ǫ ααT : ∇2
λ(e

βV ω)
]

=L2ω + β(L2V )ω + 2ǫβ
(
αT∇λV

)
·
(
αT∇λω

)
+ ǫβ2|αT∇λV |2 ω ,

e−βV ∇λg =e
−βV ∇λ

(
eβV ω

)
= β

(
∇λV

)
ω +∇λω .

(48)

Combining (40), (46), (47), (48), we can conclude that ω satisfies PDE

∂ω

∂t
= e−βV L(x,λ,T−t) g =

(
LR
(x,λ,T−t)

)∗
ω + η(x, λ, T − t)ω , ∀ (x, λ, t) ∈ R

n × R
m × (t′, T ] ,

ω(x, λ, t) = e−βV (x′,λ′)δ(x− x′)δ(λ− λ′) , if t = t′ .

Comparing the latter with (44), we obtain that e−βV (x′,λ′)u(x, λ, t ;x′, λ′, t′) = ω(x, λ, t), which

is equivalent to the equality (41).

Remark 2. We have adopted the Dirac delta function both in Theorem 2 and in its proof

above, in order to simplify the derivations. Precisely, (41) should be understood in the sense of
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distributions, or equivalently,

∫

Rn

∫

Rm

e−βV (x′,λ′) ER
x′,λ′,t′

[
exp

(∫ t

t′
η
(
xR(s), λR(s), T − s

)
ds

)
ϕ
(
xR(t), λR(t), x′, λ′

)]
dx′dλ′

=

∫

Rn

∫

Rm

e−βV (x,λ) Ex,λ,T−t

[
e−βW exp

(∫ T−t′

T−t

η
(
x(s), λ(s), s

)
ds

)
ϕ
(
x, λ, x(T − t′), λ(T − t′)

)]
dx dλ ,

(49)

for all test functions ϕ(x, λ, x′, λ′) which are smooth enough with compact support. We empha-

size that the above proof can be reformulated more rigorously, by introducing test functions and

applying integration by parts.

From fluctuation theorems to Jarzynski’s equality. It is well known that Jarzyn-

ski’s equality can be obtained from the fluctuation theorem [10]. In the remaining part of this

subsection, we consider the case when the control protocol λ(s) satisfies the dynamics (2) and

show that Theorem 1 is a consequence of Theorem 2. In this case, (39) governing the reversed

protocol λR(·) simplifies to

dλR(s) =− f
(
λR(s), T − s

)
ds+ 2ǫ

(
∇λ · (ααT )

)(
λR(s), T − s

)
ds

+
√
2ǫ α

(
λR(s), T − s

)
dw(2)(s) ,

(50)

and therefore is independent of the process xR(·) in (38). For simplicity, we only prove the

equality (23) for t = T .

In order to derive the equality (23) in Theorem 1, we set t′ = 0, t = T and η = −divλ
(
f −

ǫ∇λ · (ααT )
)
, which is a function independent of x ∈ R

n. Multiplying ϕ(x′, λ′) on both sides

of the equality (41), integrating with respect to x, x′, λ′, and recalling the definition (17) of the

work W , we obtain

∫

Rn

e−βV (x,λ)Ex,λ,0

(
ϕ(x(T ), λ(T )) e−βW

)
dx

=

∫

Rn

∫

Rm

ϕ(x′, λ′) e−βV (x′,λ′) ER
x′,λ′,0

[
exp

(∫ T

0

η
(
λR(s), T − s

)
ds

)
δ(λR(T )− λ)

]
dx′dλ′ .

(51)

Notice that the conditional expectation on the right hand side of (51) is actually independent of

x′ (This is only true when the control protocol doesn’t depend on the dynamics. See Remark 1.).

We have
∫

Rn

e−βV (x,λ)Ex,λ,0

(
ϕ(x(T ), λ(T )) e−βW

)
dx

=

∫

Rm

[
Eµλ′ϕ(·, λ′)

]
Z(λ′)ER

λ′,0

[
exp

(∫ T

0

η
(
λR(s), T − s

)
ds

)
δ(λR(T )− λ)

]
dλ′ ,

(52)

where Z(·) is the normalization constant in (10).

More generally, let us define the function

ψ(λ, t) =

∫

Rm

[
Eµλ′ϕ(·, λ′)

]
Z(λ′)ER

λ′,0

[
exp

(∫ T−t

0

η(λR(s), T − s)ds

)
δ(λR(T − t)− λ)

]
dλ′ .
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Similarly to the function u in (43) which satisfies the PDE (44), we know that ψ satisfies

∂ψ

∂t
+
(
LR
2

)∗
ψ −

[
divλ

(
f − ǫ∇λ · (ααT )

)]
ψ = 0 , ∀ (λ, t) ∈ R

m × [0, T ) ,

ψ(λ, T ) = Z(λ)Eµλ
ϕ(·, λ) ,

(53)

where LR
2 =

(
2ǫ∇λ · (ααT ) − f

)
· ∇λ + ǫ ααT : ∇2

λ, and the functions in (53) are evaluated at

(λ, t). Calculating (LR
2 )

∗, one can conclude that (53) is equivalent to

∂ψ

∂t
+ L2ψ = 0 , ∀ (λ, t) ∈ R

m × [0, T ) ,

ψ(λ, T ) = Z(λ)Eµλ
ϕ(·, λ) ,

(54)

where L2 is the infinitesimal generator defined in (4) for the dynamics (2), and therefore the

Feynman-Kac formula implies that

ψ(λ, t) = Eλ,t

[
Z
(
λ(T )

)
Eµλ(T )

ϕ(·, λ(T ))
]
.

Combining this with the identity in (52), we conclude that

∫

Rn

e−βV (x,λ) Ex,λ,0

(
ϕ(x(T ), λ(T )) e−βW

)
dx = ψ(λ, 0) = Eλ,0

[
Z
(
λ(T )

)
Eµλ(T )

ϕ(·, λ(T ))
]
,

which is equivalent to the equality (23) in Theorem 1 for t = T . �

In the above analysis, we have assumed that the control protocol λ(s) is perturbed by noise.

Let us now consider the case when λ(s) is deterministic, i.e., when ǫ = 0 in dynamics (2). In

this case, we have

λ̇(s) = f(λ(s), s) , 0 ≤ s ≤ T , (55)

and λR(s) = λ(T − s). It is well known that Crooks’s relations [16] can be derived from the

fluctuation relation [10, 64]. In the following remark, for simplicity we will only state Crooks’s

relations for the escorted dynamics (31). Results corresponding to the original dynamics (1) can

be recovered by choosing u ≡ 0.

Remark 3 (Crooks’s relations for the escorted dynamics). Consider the reversed version of the

escorted dynamics (31), which satisfies

dx̄R(s) =
(
− J − a∇V +

1

β
∇ · a

)(
x̄R(s), λR(s)

)
ds− u(x̄R(s), λR(s)) ds

+
√
2β−1σ(x̄R(s), λR(s)) dw(1)(s) , s ≥ 0 .

(56)

By slightly modifying the proof of Theorem 2, we can prove

e−βV (x′,λ(T )) E
R

x′,0

[
exp

(∫ T

0

η
(
x̄R(s), T − s

)
ds

)
δ
(
x̄R(T )− x

)]

=e−βV (x,λ(0)) Ex,0

[
e−βW exp

(∫ T

0

η
(
x̄(s), s

)
ds

)
δ
(
x̄(T )− x′

)]
, ∀ x, x′ ∈ R

n ,

(57)

where W = W (0,T ) is the modified work in (32) and η ∈ C
(
R

n × [0, T ]
)
is continuous with

compact support. The notations Ex,0 and E
R

x′,0 denote the ensemble averages with respect to
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the escorted dynamics x̄(·) in (31) and its reversed counterpart x̄R(·) in (56) starting from fixed

state at time s = 0, respectively.

Since any (bounded) continuous function G on the path space can be approximated by lin-

ear combinations of functions which are of the form exp
( ∫ T

0 η(x̄(s), s) ds
)
(for instance, by

discretizing [0, T ] into subintervals), integrating (57) gives

Eλ(0),0

(
e−βWG

)

E
R

λ(T ),0 (GR)
= e−β∆F (T ) , (58)

where GR
(
x(·)

)
= G

(
x(T − ·)

)
for all path x(·) ∈ C

(
[0, T ],Rn

)
, and ∆F (T ) is the free energy

difference in (30). The notation Eλ(0),0 is the path ensemble average of the forward dynamics

x̄(s) starting from x̄(0) ∼ µλ(0), and E
R

λ(T ),0 is defined similarly for the reversed dynamics x̄R(s).

If we formally write P[x̄(·) | x̄(0)], PR
[x̄R(·) | x̄R(0)] as the probability densities on the path space

for the dynamics x̄(s), x̄R(s) starting from x̄(0) and x̄R(0) respectively, we obtain from (58) that

P [x(·) |x(0)]
PR

[x(T − ·) |x(T )]
= e−β(∆U(T )−W) , ∀ x(·) ∈ C

(
[0, T ],Rn

)
, (59)

where ∆U(T ) is the change of internal energy in (17).

Furthermore, notice that for the work function G
(
x(·)) =W in (32), we have

GR
(
x(·)) =G

(
x(T − ·))

=

∫ T

0

(
∇λV · f + u · ∇V − 1

β
∇ · u

)
(x(s), λ(T − s), T − s) ds

=−
∫ T

0

(
∇λV · λ̇R + (−u) · ∇V − 1

β
∇ · (−u)

)
(x(s), λR(s), s) ds

=−W
R
,

where W
R

is the modified work of the reversed dynamics (56). Therefore, (58) implies

Eλ(0),0

(
e−βWφ(W )

)

E
R

λ(T ),0 (φ(−W
R
))

= e−β∆F (T ) , ∀ φ ∈ Cb(R) . (60)

Readers can recognize that the identities (59), (58) and (60) are the counterparts of the mi-

croscopic reversibility and Crooks’s relations in [16, 64] for (escorted) continuous-time Markovian

processes. It was already pointed out in [16] that these relations (in particular the microscopic

reversibility) hold for general Markov chains out of equilibrium without reversibility assumption.

The derivations above show that this is also true for the continuous-time process x̄(s) in (31)

with the control protocol in (55).

2.4 Change of measure and information-theoretic formulation

In this subsection, we explore the idea of importance sampling [72, 31] to study the Jarzyn-

ski’s equality. We focus on the case when the control protocol λ(s) is deterministic and satisfies

the ODE (55), i.e. ǫ = 0 in dynamics (2). For simplicity, we also assume that the coefficient

matrix σ in dynamics (1) is an invertible n×n matrix. Denote P, E as the probability measure
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and the mathematical expectation on path space C
(
[0, T ],Rn

)
with respect to paths of the pro-

cess (15) starting from x(0) ∼ µλ(0), where λ(s) satisfies (55) with fixed λ(0) ∈ R
m. Then the

Jarzynski’s equality (24) reads

E
[
e−βW

]
= e−β∆F , (61)

where ∆F = F
(
λ(T )

)
− F

(
λ(0)

)
, with

W =

∫ T

0

∇λV
(
x(s), λ(s)

)
· f

(
λ(s), s

)
ds . (62)

See Remark 1 for related discussions.

Let P be another probability measure on the space C
(
[0, T ],Rn

)
which is equivalent to P

and let E be the corresponding expectation. Applying a change of measure in (61), together

with Jensen’s inequality, we can deduce

∆F = − β−1 lnE
(
e−βW dP

dP

)

≤E
(
W + β−1 ln

dP

dP

)

=E(W ) + β−1DKL

(
P ‖P

)
,

(63)

where DKL

(
· ‖ ·

)
denotes the Kullback-Leibler divergence of two probability measures [47, 7].

Notice that the inequality (63) can be interpreted as a generalization of the second law of

thermodynamics [8]. In particular, under certain conditions on the workW , the equality in (63)

can be attained by the optimal probability measure P∗, which is determined by

dP∗

dP
= e−β(W−∆F ) , P∗ − a.s. (64)

In other words, the optimal change of measure tilts the original path probabilities exponentially

according to the differences between the workW and the free energy difference ∆F . In particular,

the probability of paths with smaller work W (compared to ∆F ) increases under the optimal

measure.

Meanwhile, the importance sampling Monte Carlo estimator for the free energy difference

∆F based on the identity

∆F = −β−1 lnE∗
(
e−βW dP

dP∗

)
(65)

will achieve zero variance. More generally, inspired by the last line in (63), we define

Φ(P) := E
(
W ) + β−1DKL

(
P ‖P

)
, (66)

for a general probability measure P which is equivalent to P. Then the above discussions imply

the following variational principle

∆F = inf
P∼P

[
E
(
W ) + β−1DKL

(
P ‖P

)]

= inf
P∼P

Φ(P) = Φ(P∗) ,
(67)
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where ‘∼’ denotes the equivalence relation between two probability measures. In other words, the

optimal probability measureP∗ in (64) can be characterized as the minimizer of the minimization

problem (67) and the corresponding minimum equals to ∆F . Furthermore, using (64) and (66),

we can verify the following simple relation

Φ(P) =E

(
W + β−1 ln

dP

dP

)

=E∗

[(
W + β−1 ln

dP

dP

)
dP

dP∗

]

=E∗

[(
∆F + β−1 ln

dP

dP∗
+ β−1 ln

dP

dP

)
dP

dP∗

]

=∆F + β−1E∗

[(
ln

dP

dP∗

)
dP

dP∗

]

=∆F + β−1DKL

(
P ‖P∗

)
,

(68)

for a general probability measure P such that P ∼ P. It becomes apparent from the last

expression in (68) that ∆F is the global minimum of the function Φ and is attained by the

(unique) probability measure P∗, since DKL

(
P ‖P∗

)
≥ 0 and the equality is achieved if and only

if P = P∗. Furthermore, minimizing the function Φ is equivalent to minimizing the Kullback-

Leibler divergence DKL

(
· ‖P∗

)
.

In the following, we show that the optimal change of measure P∗ can be characterized

more transparently. To this end, let Px,t, Ex,t denote the path measure and the conditional

expectation of the process (15) starting from a fixed state x ∈ R
n at time t. Notice that, by the

disintegration theorem [3, Theorem 5.3.1], we can write the path measure P as

P =

∫

Rn

Px,0 dµλ(0)(x).

Defining the function

g(x, t) = Ex,t

(
e−βW(t,T )

)
, (69)

analogously to (19), Jarzynski’s equality (61) implies that

∆F = −β−1 ln
(
Eµλ(0)

g(·, 0)
)
. (70)

Sampling an expectation value whose form is similar to (69) using importance sampling Monte

Carlo method has been studied in previous work [20, 61, 66, 72, 30, 31]. In particular, we know

from the Feynman-Kac formula that g solves the PDE

∂tg + L1g − β(f · ∇λV )g = 0 , g(·, T ) = 1 , (71)

where L1 is the infinitesimal generator in (6) with λ = λ(·) being dependent on time t. Intro-

ducing U = −β−1 ln g, it follows from (71) that U satisfies a Hamilton-Jacobi-Bellman equation

∂tU + min
c∈Rn

{
L1U + σc · ∇U +

|c|2
4

+ (f · ∇λV )
}
= 0 ,

U(·, T ) = 0 ,

(72)
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and one can show [23] that U is the value function of the optimal control problem

U(x, t) = inf
us

Eu
x,t

[∫ T

t

(
∇λV

(
xu(s), λ(s)

)
· f(λ(s), s) + |us|2

4

)
ds

]
, (73)

where us ∈ R
n is the control policy, xu(s) is the controlled process given by

dxu(s) = b(xu(s), λ(s))ds + σ(xu(s), λ(s))us ds+
√
2β−1σ(xu(s), λ(s)) dw(1)(s) , (74)

and Eu
x,t denotes the corresponding conditional expectation starting from xu(t) = x at time t.

In particular, it is well known that the feedback control policy

u∗s(x) = −2σT (x, λ(s))∇U(x, s) = 2β−1σ
T (x, λ(s))∇g(x, s)

g(x, s)
, (x, s) ∈ R

n × [0, T ] (75)

leads to the zero-variance importance sampling Monte Carlo estimator for the path ensemble

average in (69) [29]. Based on these facts and the equality (70), it is not difficult to conclude

that the optimal probability measure to sample the free energy ∆F in (65) is given by the

disintegration expression

P∗ =

∫

Rn

P∗
x,0 dµ

∗
0(x) , (76)

where µ∗
0 is the probability measure on R

n such that

dµ∗
0

dx
∝ e−βV (x,λ(0))g(x, 0) , (77)

and P∗
x,0 is the probability measure corresponding to the controlled dynamics (74) starting

from xu(0) = x, with u∗s = u∗s(x
u(s)) which is defined in (75) for s ∈ [0, T ]. In other words,

the importance sampling estimator (65) for the free energy ∆F will achieve zero-variance, if we

generate trajectories from dynamics (74) with the control u∗s starting from the initial distribution

xu(0) ∼ µ∗
0.

Remark 4. In the following, we make a comparison with other relevant directions in the liter-

ature.

1. (Optimal control protocol) In the importance sampling approach above, where the main

purpose is to improve the numerical efficiency of free energy calculation, we assumed that

the control protocol λ(s) is fixed and the dynamics of the original nonequilibrium process

is modified by adding an extra (additive) control force. In contrast to this, the problem

of minimizing either the average work or the average heat by varying the control protocols

has been considered in several recent works in the study of thermodynamics for small sys-

tems [62, 60, 2, 4]. Motivated by these studies, it may be also interesting to optimize the

control protocols in order to minimize the variance of the Monte Carlo estimators. This

problem is beyond the scope of the current paper but we would like to consider it in the

future.

2. (Escorted free energy simulation) The idea of further adding an extra control force to

the nonequilibrium processes in order to improve the efficiency of free energy calculation

has also been explored in the escorted free energy simulation method [63, 64]. In this
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method [63], the authors derived the identity (34) for the modified dynamics (31), and sug-

gested to apply it to compute the free energy difference ∆F by choosing the vector field u

in (31) properly (such that the “lag” is reduced). There also exists an optimal vector field,

at least formally, such that the Monte Carlo estimator in the escorted simulation method

achieves zero variance. Despite of these similarities, we emphasize that the importance

sampling method in this subsection and the escorted free energy simulation method rely on

different identities (of the nonequilibrium processes with extra control). In other words,

the change of measure identity in the first line of (63) and the identity (34) can not be

derived from one to the other straightforwardly. Furthermore, unlike the escorted free en-

ergy simulation method where the initial distribution is fixed, in importance sampling one

has the freedom to change the initial distribution as well. In particular, this is the case for

the optimal change of measure, since µ∗
0 in (77) is typically different from the equilibrium

distribution µλ(0).

3. (Bidirectional sampling, Bennett’s acceptance ratio method) It is known in the litera-

ture [16, 67, 50, 64] that free energy estimators based on Crooks’s relation (60), using

trajectories of both the forward and backward processes, perform much better than esti-

mators based on the Jarzynski’s equality (61), which only use trajectories of the forward

process. The optimal choice of the function φ in (60) is known [6], given the numbers of

both forward and backward trajectories. It is interesting to consider how one can apply

the importance sampling idea to further improve the efficiency of estimators which use

trajectories of both forward and backward processes. We leave this question in future study.

2.5 Cross-entropy method

From the previous subsection, we know that the probability measure P∗ in (64), or equiv-

alently in (76), is optimal in the sense that the importance sampling estimator (65) has zero-

variance. However, in practice it is often difficult to compute P∗ or u∗s. In this subsection,

we briefly outline a numerical approach to sample the free energy difference ∆F using the im-

portance sampling Monte Carlo method [72, 56]. The main idea is to approximate the optimal

measure P∗ within a family of parameterized probability measures
{
Pω |ω ∈ R

k
}
, with the hope

that the closer Pω is to P∗, the more efficient the importance sampling estimator will be (in the

sense that variance is small). Different from the importance sampling method studied in [68, 51]

which requires Monte Carlo sampling in path space with an acceptance-rejection procedure, the

method proposed below can be implemented at the SDE level.

We recall that the probability measure P corresponds to the trajectories of processes (1)

and (55). Now let µ̄0 be the probability measure on R
n, possibly different from µλ(0). Given a

parameter ω = (ω1, ω2, · · · , ωk)
T ∈ R

k, we define Pω as the probability measure corresponding

to the trajectories of the process

dx(s) = b
(
x(s), λ(s)

)
ds+ σ

(
x(s), λ(s)

)( k∑

l=1

ωlφ
(l)
(
x(s), λ(s), s

))
ds+

√
2β−1σ

(
x(s), λ(s)

)
dw(s) ,

(78)

and the control protocol (55), starting from x(0) ∼ µ̄0, where φ
(l) : Rn × R

m × R
+ → R

n,

1 ≤ l ≤ k, are k ansatz functions. Clearly, we have Pω = P when ω = 0 ∈ R
k and µ̄0 = µλ(0).
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As a special choice of ansatz functions, we can take φ(l) = −σT∇V (l), where V (l) : Rn×R
m → R,

1 ≤ l ≤ k, are k potential functions. In this case, recalling that dynamics (1) can be written

equivalently as (15), we see that dynamics (78) becomes

dx(s) =

[
J − a∇

(
V +

k∑

l=1

ωlV
(l)
)
+

1

β
∇ · a

]
(x(s), λ(s)) ds +

√
2β−1σ

(
x(s), λ(s)

)
dw(s) ,

i.e., probability measure Pω corresponds to the dynamics under the modified potential V +
k∑

l=1

ωlV
(l).

The optimal approximation of the probability measure P∗ within the set
{
Pω |ω ∈ R

k
}
is

defined as the minimizer of the minimization problem

min
ω∈Rk

DKL

(
P∗ ‖Pω

)
. (79)

Note that, comparing to the minimization of the function Φ in (66), which is equivalent to

minimizing DKL(· ‖P∗) by (68), approximations have been introduced in (79), i.e., we have

first switched the order of the two arguments in DKL(· ‖ ·) and then confined ourselves on a

parameterized subset of probability measures with fixed starting distribution µ̄0. Using (64), we

can write the objective function in (79) more explicitly as

DKL

(
P∗ ‖Pω

)
= DKL

(
P∗ ‖P

)
− eβ∆FE

(
e−βW ln

dPω

dP

)
, (80)

where the parameter ω only appears in the second term on the right hand side of the above

equality. Applying Girsanov’s theorem [53], we have

dPω

dP
=

dµ̄0

dµλ(0)

(
x(0)

)
× exp

[
β

2

∫ T

0

( k∑

l=1

ωlφ
(l)
)
· σ−1

(
dx(s)− b ds

)
− β

4

∫ T

0

∣∣∣
k∑

l=1

ωlφ
(l)
∣∣∣
2

ds

]
,

(81)

where the dependence of the functions b, σ, φ(l) on x(s), λ(s), s is omitted for simplicity. Sub-

stituting (81) into equality (80), we can observe that the objective function in (79) is in fact

quadratic with respect to the parameter ω ∈ R
k. Taking derivatives, we conclude that the

minimizer of (79) is determined by the linear equation Aω∗ = R, where

All′ = E

[
e−βW

∫ T

0

φ(l) · φ(l′) ds
]
, Rl = E

[
e−βW

∫ T

0

φ(l) · σ−1
(
dx(s)− b ds

)]
, (82)

for 1 ≤ l, l′ ≤ k.

In practice, we can estimate entries of A and R in (82) by simulating a relatively small

number of trajectories, and compute ω
∗ by solving the linear equation Aω∗ = R. After this,

the free energy difference ∆F can be estimated using importance sampling by simulating a large

number of trajectories corresponding to Pω
∗ . Also notice that, instead of computing A and

R using the original dynamics and solving ω
∗ directly, it is helpful to solve ω

∗ in an iterative

manner starting from a higher temperature (small β) or running a different dynamics (importance

sampling). We refer readers to the previous studies [56, 72] for more algorithmic details.

Remark 5. More generally, instead of keeping the starting distribution µ̄0 fixed, we could also

optimize µ̄0 within a parameterized set of probability measures on R
n by solving an optimization

20



problem which is similar to (79). In this case, while the optimal parameter ω
∗ can still be

obtained from the same linear equation Aω∗ = R, a nonlinear equation needs to be solved in

order to get the optimal µ̄0. We expect to develop algorithms which adaptively optimize ω
∗ and

µ̄0 in an alternative manner. This will be considered in future work.

Choices of ansatz functions. Clearly, the efficiency of the importance sampling Monte

Carlo method crucially depends on the choices of ansatz functions used in the cross-entropy

method. From Jarzynski’s equality (61) and the optimal change of measure (64), we can expect

that an importance sampling estimator will have better performance if paths with smaller work

W (comparing to ∆F ) are sampled more frequently. Accordingly, the ansatz functions used

in the cross-entropy method should be chosen such that the work W can be decreased by the

control forces. A similar idea has been used in the previous work [31], where several ways of

choosing ansatz functions have been proposed.

In the current situation where the work W is given in (62), we can see that W will be

large if the potential increases along the movement of the parameter λ. Actually, this already

explains the reason why a standard Monte Carlo simulation of fast-switching dynamics based

on Jarzynski’s equality is likely to have poor efficiency. To elucidate this point more clearly, we

consider a special situation when the expression of the workW becomes simpler and allows us to

have some insights on how to choose ansatz functions. Specifically, let λ ∈ [0, 1] and suppose that

we are interested in the free energy differences corresponding to potentials V (x, 0) and V (x, 1),

x ∈ R
n. Then a simple way is to consider the linear interpolation [68]

V (x, λ) = (1 − λ)V (x, 0) + λV (x, 1) , λ ∈ [0, 1] , (83)

and the control protocol λ(s) = s on the time interval s ∈ [0, 1]. In this case, the expression of

work in (62) as a path functional becomes as simple as

W =

∫ 1

0

(
V (x(s), 1)− V (x(s), 0)

)
ds . (84)

It is not difficult to see that paths simulated by a standard Monte Carlo method will typically

have large work due to the fact that, starting from the Boltzmann distribution of the potential

V (x, 0) and on the finite time interval [0, 1], the nonequilibrium process x(s) is likely to stay

within the region where potential V (x, 1) is large, in particular when the low potential regions

of V (x, 0) and V (x, 1) do not overlap (see [39] for more detailed discussions). Accordingly, the

importance sampling can improve the efficiency of the standard Monte Carlo estimator if we

place ansatz functions in a way such that, after optimization using the cross-entropy method,

transitions of the controlled dynamics (78) from low energy regions of V (x, 0) to low energy region

of V (x, 1) within time [0, 1] become easier. Similar idea (i.e., to reduce the “lag”) has been used

to guide the choice of the vector field in the escorted free energy simulation method [63, 64].

Readers are referred to Subsection 4.1 for numerical study of the ideas discussed above.

3 Jarzynski-like equality and fluctuation theorem : reac-

tion coordinate case

Different from the situation in Section 2 where the free energy in (11) is defined as a function

of the parameter λ through the invariant measure µλ on R
n, in this section we assume a function
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ξ : Rn → R
d is given and the free energy is defined as a function of z ∈ R

d through the invariant

measure µz on the level set ξ−1(z). In the literature, such a function ξ is often termed as reaction

coordinate function or collective variable [26, 28, 43, 12, 45, 48].

In this context, we point out that a Jarzynski-like equality has been obtained in the previous

work [44], and a Jarzynski-Crooks fluctuation identity has been derived for the constrained

Langevin dynamics in [46]. In this section, following the analysis in Section 2, we will prove

a fluctuation theorem (Theorem 3) which is similar to Theorem 2, and then we obtain the

Jarzynski-like equality (Theorem 4) by applying the fluctuation theorem. Importance sampling

and variance reduction issues will be discussed in Subsection 3.4.

3.1 Mathematical setup

First of all, we recall some notations as well as some results from the work [70, 69] in order

to introduce the problem under investigation.

Let ξ : Rn → R
d be a C2 function with components ξ = (ξ1, ξ2, · · · , ξd)T ∈ R

d, where

1 ≤ d < n. Given z ∈ Im ξ ⊆ R
d, which is a regular value of the map ξ, we define the level set

Σz = ξ−1(z) =
{
y ∈ R

n
∣∣∣ ξ(y) = z ∈ R

d
}
. (85)

It is known from the regular value theorem [5] that Σz is a smooth (n−d)-dimensional submani-

fold of Rn. Let νz denote the surface measure on Σz which is induced from the Euclidean metric

on R
n, and ∇ξ denote the n× d matrix whose entries are (∇ξ)iγ =

∂ξγ
∂yi

, 1 ≤ i ≤ n, 1 ≤ γ ≤ d.

Given a smooth function V : Rn → R, we consider the probability measure on the subman-

ifold Σz defined as

dµz =
1

Q(z)
e−βV

[
det

(
∇ξT∇ξ

)]− 1
2

dνz , (86)

where Q(z) is the normalization constant. The probability measure µz arises in many situations

and plays an important role in the free energy calculation along a reaction coordinate [12, 13,

43, 70, 45, 69]. The free energy for fixed z ∈ Im ξ ⊆ R
d is defined as

F (z) =− β−1 lnQ(z)

=− β−1 ln

∫

Σz

e−βV
[
det

(
∇ξT∇ξ

)]− 1
2

dνz

=− β−1 ln

∫

Rn

e−βV (y)δ
(
ξ(y)− z

)
dy ,

(87)

where the last equality follows from the co-area formula [22, 41]. Let σ : Rn → R
n×n be an n×n

matrix valued function such that the function a(·) := (σσT )(·) is uniformly elliptic on R
n. Let

Ψ = ∇ξT a∇ξ be the invertible d× d matrix whose entries are

Ψγγ′ = (∇ξγ)T a∇ξγ′ , 1 ≤ γ, γ′ ≤ d , (88)

where ∇ξγ is the usual gradient of the function ξγ . Let P = id− a∇ξΨ−1∇ξT be the projection

matrix, with entries

Pij =δij − (Ψ−1)γγ′ail∂lξγ ∂jξγ′ , 1 ≤ i, j ≤ n . (89)
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Notice that in the above δij is the Kronecker delta function and Einstein’s summation convention

is used here and in the following. From (89), we can directly verify that

P 2 = P , PT∇ξγ = 0 , 1 ≤ γ ≤ d ,

(aPT )ij = (Pa)ij = aij − (Ψ−1)γγ′(a∇ξγ)i(a∇ξγ′)j , 1 ≤ i, j ≤ n ,
(90)

i.e., P is the orthogonal projection w.r.t. the scalar product 〈u, v〉a−1 = uTa−1v, for u, v ∈ R
n.

It is shown in [69] that, starting from y(0) ∈ Σz, the process

dyi(s) =− (Pa)ij
∂V

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds+
√
2β−1 (Pσ)ij dwj(s) , 1 ≤ i ≤ n , (91)

where w(s) is an n-dimensional Brownian motion, will remain on the submanifold Σz and has

a unique invariant measure µz which is defined in (86). In particular, denoting by L⊥ the

infinitesimal generator of the process (91), i.e.,

L⊥ = −(Pa)ij
∂V

∂yj

∂

∂yi
+

1

β

∂(Pa)ij
∂yj

∂

∂yi
+

1

β
(Pa)ij

∂2

∂yi∂yj
, (92)

it is easy to verify that L⊥ξγ ≡ 0, for 1 ≤ γ ≤ d.

3.2 Fluctuation theorem

In order to state the fluctuation theorem, we further introduce a “controlled” process

as well as its time-reversed counterpart based on the process (91). Specifically, we let f =

(f1, f2, · · · , fd)T : Rn × [0, T ] → R
d be a bounded smooth function and consider the process

dyi(s) =− (Pa)ij
∂V

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds+ (Ψ−1)γγ′(a∇ξγ)i fγ′ ds+
√
2β−1 (Pσ)ij dwj(s) ,

(93)

for 1 ≤ i ≤ n on the time interval [0, T ]. The infinitesimal generator of the process (93) is given

by

L = L⊥ + (Ψ−1)γγ′(a∇ξγ)ifγ′

∂

∂yi
, (94)

where the operator L⊥ is defined in (92), and a simple application of Ito’s formula implies that

dξ(y(s)) = f(y(s), s) ds . (95)

Similarly, the time-reversed process of the dynamics (93) on the time interval [0, T ] is defined as

dyRi (s) =− (Pa)ij
∂V

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds− (Ψ−1)γγ′(a∇ξγ)i f−
γ′ ds+

√
2β−1 (Pσ)ij dwj(s) ,

(96)

where 1 ≤ i ≤ n, f−
γ′(·, s) = fγ′(·, T − s), and the infinitesimal generator is

LR = L⊥ − (Ψ−1)γγ′(a∇ξγ)if−
γ′

∂

∂yi
. (97)

Using a similar argument as in the proof of Theorem 2, we obtain the following fluctuation

theorem which concerns the relation between the dynamics (93) and the time-reversed one (96).
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Theorem 3. Let 0 ≤ t′ < t ≤ T and y, y′ ∈ R
n. For any continuous function η ∈ C

(
R

n× [0, T ]
)

with compact support, we have

e−βV (y′) ER
y′,t′

[
exp

(∫ t

t′
η(yR(s), T − s)ds

)
δ
(
yR(t)− y

) ]

=e−βV (y)Ey,T−t

[
e−βW exp

(∫ T−t′

T−t

η(y(s), s)ds

)
δ
(
y(T − t′)− y′

)]
,

(98)

where

W =

∫ T−t′

T−t

[
(Ψ−1)γγ′(a∇ξγ)ifγ′

∂V

∂yi
− 1

β

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)ifγ′

)]
ds , (99)

yR(·), y(·) satisfy the dynamics (96) and (93), respectively. ER
y′,t′ is the conditional expectation

with respect to the path ensemble of the dynamics (96) starting from yR(t′) = y′ at time t′. And

Ey,T−t is the conditional expectation with respect to the dynamics (93) starting from y(T−t) = y

at time T − t.

The proof of Theorem 3 can be found in Appendix D. Similar to Theorem 2, the identity (98)

should be understood in the sense of distributions. We refer to Remark 2 for further discussions.

3.3 Jarzynski-like equality

In this subsection, we assume that there is a function f̃ = (f̃1, f̃2, · · · , f̃d)T : Rd × [0, T ] →
R

d, such that

f(y, s) = f̃(ξ(y), s), ∀(y, s) ∈ R
n × [0, T ] . (100)

Fix t ∈ [0, T ] and suppose that both the ODE

ζ̇(s ; z) = f̃(ζ(s ; z), s), s ∈ [0, t] , (101)

starting from ζ(0 ; z) = z, and the ODE

ζ̇R(s ; z) = −f̃(ζR(s ; z), T − s), s ∈ [T − t, T ] , (102)

starting from ζR(T − t ; z) = z, have a unique solution for any z ∈ R
d. Under this assumption,

it is not difficult to conclude that

ζR(s ; ζ(t ; z)) = ζ(T − s ; z) , ζ(T − s ; ζR(T ; z)) = ζR(s ; z) , s ∈ [T − t, T ] ,

which in turn implies that the map ζR(T ; ·) : Rd → R
d is invertible and its inverse is given by

ζ(t ; ·).
Consider the process y(s) in (93) on the time interval [0, t], and process yR(s) in (96) on

the time interval [T − t, T ], respectively. Assume that ξ(y(0)) = z and ξ(yR(T − t)) = z′, where

z, z′ ∈ R
d. Similar to (95), we can obtain

dξ(y(s)) = f̃
(
ξ(y(s)), s

)
ds, dξ(yR(s)) = −f̃

(
ξ(yR(s)), T − s

)
ds ,

which imply that

ξ(y(s)) = ζ(s ; z) , ξ(yR(T − s)) = ζR(T − s ; z′) , ∀ s ∈ [0, t] . (103)

Applying Theorem 3, we can obtain the following Jarzynski-like equality for the free energy

difference in the reaction coordinate case.
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Theorem 4 (Jarzynski-like equality). Let y(s) be the dynamics in (93) with the function f in

(100) and z(s) solve the ODE (101). For any smooth and bounded test function ϕ : Rn → R and

t ∈ [0, T ], we have

Ez(0),0

[
ϕ(y(t)) e−βW (t)

]
= e−β

(
F (z(t))−F (z(0))

) ∫

Σz(t)

ϕdµz(t) , (104)

where F (·) is the free energy in (87) and W (t) is defined as

W (t) =

∫ t

0

[
(Ψ−1)γγ′(a∇ξγ)i

∂V

∂yi
− 1

β

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)i

)]
żγ′(s) ds . (105)

Ez(0),0 denotes the conditional expectation with respect to the dynamics y(s), starting from the

initial distribution y(0) ∼ µz(0) on Σz(0). In particular, taking ϕ ≡ 1, we have

Ez(0),0

[
e−βW (t)

]
= e−β

(
F (z(t))−F (z(0))

)
. (106)

Proof. Let divz denote the divergence operator with respect to z ∈ R
d. Notice that from the

definitions of Ψ in (88) and the function f in (100) we can compute

(Ψ−1)γγ′(a∇ξγ)i
∂fγ′

∂yi
= (Ψ−1)γγ′(a∇ξγ)i

∂f̃γ′

∂zj

∂ξj

∂yi
= (divz f̃ )(ξ(y), s) .

Choosing η(y, s) = −(divz f̃ )(ξ(y), s) in the equality (98) of Theorem 3, we obtain

e−βV (y′) ER
y′,T−t

[
exp

(
−
∫ T

T−t

(divz f̃ )
(
ξ(yR(s)), T − s

)
ds

)
δ
(
yR(T )− y

) ]

=e−βV (y) Ey,0

[
e−βW (t)δ

(
y(t)− y′

)]
.

(107)

Let τ > 0 and multiply both sides of (107) by ϕ(y′)e−β
|ξ(y)−z(0)|2

τ . Integrating with respect to

y, y′, yields

∫

Rn

e−β
(
V (y)+ |ζR(T ; ξ(y))−z(0)|2

τ

)
exp

(
−
∫ T

T−t

(divz f̃ )
(
ζR(s ; ξ(y)), T − s

)
ds

)
ϕ(y) dy

=

∫

Rn

e−β
(
V (y)+ |ξ(y)−z(0)|2

τ

)
Ey,0

[
e−βW (t)ϕ(y(t))

]
dy .

(108)

Notice that, on the left hand side above, we have used the fact that ξ(yR(s)) under the conditional

expectation is deterministic and is given by (103).

We can rewrite the left hand side of (108) by applying the co-area formula

∫

Rn

e−β
(
V (y)+ |ζR(T ; ξ(y))−z(0)|2

τ

)
exp

(
−
∫ T

T−t

(divz f̃ )
(
ζR(s ; ξ(y)), T − s

)
ds

)
ϕ(y) dy

=

∫

Rd

e−β
|z′−z(0)|2

τ

[ ∫

{y | ζR(T ; ξ(y))=z′}

e−βV (y) ϕ(y) exp

(
−
∫ T

T−t

(divz f̃ )
(
ζR(s ; ξ(y)), T − s

)
ds

)

×
[
det

((
∇ζR(T ; ξ(y))

)T∇ζR(T ; ξ(y))
)]− 1

2

νRz′(dy)

]
dz′ ,

(109)
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where νRz′ is the volume measure on the level set
{
y ∈ R

n | ζR(T ; ξ(y)) = z′
}
, ∇ζR(s ; ξ(y))

denotes the n × d matrix with components
(
∇ζR(s ; ξ(y))

)
iγ

=
∂ζR

γ (s ; ξ(y))

∂yi
, for s ∈ [T − t, T ],

1 ≤ γ ≤ d and 1 ≤ i ≤ n.

To simplify the above expressions, let ∇zζ
R(s ; z) denote the d×d matrix with components

(∇zζ
R(s ; z))ij =

∂ζR
i (s ; z)
∂zj

for 1 ≤ i, j ≤ d, i.e., the differentiations with respect to the initial

value at time T − t. Furthermore, since ζR(T ; ·) is invertible, we can deduce that ζR(s ; ·) is

invertible for all s ∈ [T − t, T ], which then implies that the matrix ∇zζ
R(s ; z) has full rank for

s ∈ [T − t, T ]. Applying chain rule, we have ∇ζR(s ; ξ(y)) = ∇ξ∇zζ
R(s ; ξ(y)) and therefore

[
det

((
∇ζR(T ; ξ(y))

)T∇ζR(T ; ξ(y))
)]− 1

2

=
[
det

(
∇zζ

R(T ; ξ(y))
)]−1[

det
(
∇ξT∇ξ)(y)

]− 1
2

.

Combining the above identity, the equation (109), and applying Lemma 2 below, we know that

equation (108) can be simplified as

1

Zτ

∫

Rn

e−β
(
V (y)+ |ξ(y)−z(0)|2

τ

)
Ey,0

[
e−βW (t)ϕ(y(t))

]
dy

=

(
πτ
β

) d
2

Zτ

( β

πτ

) d
2

∫

Rd

e−β
|z′−z(0)|2

τ

[∫

{y | ζR(T ; ξ(y))=z′}

e−βV (y) ϕ(y)
[
det

(
∇ξT∇ξ)

]− 1
2

νRz′(dy)

]
dz′ ,

(110)

where Zτ =
∫
Rn e

−β
(
V (y)+ |ξ(y)−z(0)|2

τ

)
dy is the normalization constant. Letting τ → 0 and

applying [69, Proposition 3], we obtain
∫

Σz(0)

Ey,0

[
e−βW (t)ϕ(y(t))

]
µz(0)(dy)

=
1

Q(z(0))

∫
{
y

∣∣ ζR(T ; ξ(y))=z(0)
} e−βV (y) ϕ(y)

[
det

(
∇ξT∇ξ)

]− 1
2

νRz(0)(dy) ,

(111)

where Q(·) is the normalization constant in (86). Since the inverse of the map ζR(T ; ·) is ζ(t ; ·),
we know

{
y ∈ R

n
∣∣ ζR(T ; ξ(y)) = z(0)

}
=

{
y ∈ R

n
∣∣ ξ(y) = ζ(t ; z(0)) = z(t)

}
= Σz(t) ,

and therefore (111) becomes
∫

Σz(0)

Ey,0

[
e−βW (t)ϕ(y(t))

]
µz(0)(dy) =

Q(z(t))

Q(z(0))

∫

Σz(t)

ϕ(y)µz(t)(dy) , (112)

which is equivalent to the identity (104).

We have used the following result in the above proof.

Lemma 2. Let ζR(s ; z) be the solution of the ODE (102) for s ∈ [T −t, T ], starting from z ∈ R
d

at time s = T − t. ∇zζ
R(s ; z) denotes the d × d matrix where (∇zζ

R(s ; z))ij =
∂ζR

i (s ; z)
∂zj

for

1 ≤ i, j ≤ d and T − t ≤ s ≤ T . Suppose that ∇zζ
R(s ; z) is invertible for T − t ≤ s ≤ T , then

we have

det
(
∇zζ

R(s ; z)
)
= e−

∫
s

T−t
(divz f̃ )(ζR(s′ ; z),T−s′) ds′ , s ∈ [T − t, T ] . (113)
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Proof. Differentiating both sides of the ODE (102) with respect to z, we obtain the matrix

equation

d
(
∇zζ

R(s ; z)
)

ds
= −∇zζ

R(s ; z)∇z f̃(ζ
R(s ; z), T − s) , s ∈ [T − t, T ] , (114)

with the initial condition ∇zζ
R(T − t ; z) = id. Applying Jacobi’s formula, we know that the

determinant of ∇zζ
R(s ; z) satisfies

d
[
det

(
∇zζ

R(s ; z)
)]

ds

=det
(
∇zζ

R(s ; z)
)
tr

((
∇zζ

R(s ; z)
)−1 d

(
∇zζ

R(s ; z)
)

ds

)

=− det
(
∇zζ

R(s ; z)
)
tr
(
∇z f̃(ζ

R(s ; z), T − s)
)

=− det
(
∇zζ

R(s ; z)
) (

divz f̃
)
(ζR(s ; z), T − s) .

The expression (113) is obtained by integrating the above equation.

Remark 6. 1. In the special case when the reaction coordinate ξ ∈ R is scalar, matrix a =

σ = id, we have Ψ = |∇ξ|2 and it can be checked that the work (105) becomes

W (t) =

∫ t

0

[ ∇ξ
|∇ξ|2 · ∇V − 1

β
div

( ∇ξ
|∇ξ|2

)]
ż(s) ds

=

∫ t

0

∇ξ
|∇ξ|2 ·

[
∇
(
V +

1

β
ln |∇ξ|

)
+

1

β
H
]
ż(s) ds ,

(115)

where H = −div
(

∇ξ
|∇ξ|

)
∇ξ
|∇ξ| is the mean curvature vector (field) of the surface Σz [44].

Notice that the free energy (87) is different from the one considered in [44]. In fact, from

the second expression in (115), we see that Theorem 4 is identical to the Feynman-Kac

fluctuation equality Theorem of [44] for the potential V + 1
2β ln(detΨ).

2. As in the alchemical transition case, one can also study the escorted dynamics and Crooks’s

relations in the reaction coordinate case. For simplicity, we will omit the discussions on the

escorted dynamics and only briefly summarize the Crooks’s relations. In fact, by modifying

the proof of Theorem 4, we can show that

E(e−βWG)
ER(GR)

= e−β∆F (T ) , (116)

for any bounded smooth function G on the path space, where W = W (T ) is the work in

(105), GR(y(·)) = G(y(T − ·)) for any path y(·), E and ER are the expectation with respect

to the process y(·) in (93) starting from y(0) ∼ µz(0) on Σz(0), and the expectation with

respect to the process yR(·) in (96) starting from yR(0) ∼ µz(T ) on Σz(T ), respectively. In

particular, this implies

E
(
e−βWφ(W )

)

ER(φ(−WR))
= e−β∆F (T ) , ∀ φ ∈ Cb(R) , (117)

where WR is the work for the time-reversed process yR(·) in (96). We refer to Remark 3

for comparisons.
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3. Similarly as in the alchemical transition case, by considering the Jarzynski-like equal-

ity (106) for the dynamics

dyi(s) =− 1

τ
(Pa)ij

∂V

∂yj
ds+

1

βτ

∂(Pa)ij
∂yj

ds+ (Ψ−1)γγ′(a∇ξγ)i fγ′ ds

+

√
2β−1

τ
(Pσ)ij dwj(s) ,

(118)

as τ → 0, we can recover the thermodynamic integration identity in the reaction coordinate

case. See Appendix A and B for details.

3.4 Information-theoretic formulation and numerical considerations

In this subsection, we study the information-theoretic formulation of the Jarzynski-like

equality (106) in the reaction coordinate setting. Numerical issues related to computing free

energy differences will be discussed as well. Since the analysis is similar to Subsection 2.4 and

Subsection 2.5, the discussion in this subsection will be brief and mainly focus on the changes.

First of all, let P, E denote the probability measure and the expectation of the path

ensemble corresponding to the dynamics (93) starting from y(0) ∼ µz(0), with the function f

given in (100). We can rewrite the equality (106) as

∆F = −β−1 lnE
(
e−βW

)
, (119)

where ∆F = F (z(T ))−F (z(0)) is the free energy difference and W =W (T ) is defined in (105).

Let P be another probability measure on the path space which is equivalent to P and E denote

the corresponding expectation. Applying a change of measure in (119), we have

∆F = −β−1 lnE
(
e−βW dP

dP

)
. (120)

Following the same argument in Subsection 2.4, we can deduce exactly the same inequality (63),

as well as the expression for the optimal measure P∗, which is characterized by (64), such that

the Monte Carlo estimator based on (65) will achieve zero variance. The derivations (66), (67),

(68) in Subsection 2.4 carry over to the current setting as well.

On the other hand, since the trajectories of the dynamics (93) satisfy ξ(y(t)) = z(t) for

t ∈ [0, T ], it is important to notice that the probability measure P concentrates on the set of

paths
{
y(·)

∣∣∣ y(·) ∈ C([0, T ],Rn), y(t) ∈ Σz(t), 0 ≤ t ≤ T
}
. (121)

Accordingly, the probability measure P used to perform the change of measure in (120) should

also concentrate on the set (121) in order to assure that it is equivalent to P.

The optimal measure P∗ can be characterized more transparently by considering the HJB

equation. Specifically, define

g(y, t) = E
(
e−βW(t,T )

∣∣∣ y(t) = y
)
, ∀ y ∈ Σz(t) , (122)

where y(·) satisfies (93) and W(t,T ) is similarly defined as in (105) except that the integration is

from t to T . It follows from the Feynman-Kac formula that g satisfies

∂tg + Lg − β
[
(Ψ−1)γγ′(a∇ξγ)i

∂V

∂yi
− 1

β

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)i

)]
fγ′g = 0 ,

g(·, T ) = 1 .

(123)
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where L is the infinitesimal generator defined in (94) for the process y(·). And a simple calculation

shows that U = −β−1 ln g satisfies the HJB equation

∂tU + min
c∈Rn

{
LU + (Pσc) · ∇U +

|c|2
4

+
[
(Ψ−1)γγ′(a∇ξγ)i

∂V

∂yi
− 1

β

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)i

)]
fγ′

}
= 0 ,

U(·, T ) = 0 ,

(124)

from which we conclude that the optimally controlled dynamics satisfies

dyi(s) =− (Pa)ij
∂V

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds+ (Ψ−1)γγ′(a∇ξγ)i fγ′ ds

+
[
Pσu∗s(y(s))

]
i
ds+

√
2β−1 (Pσ)ij dwj(s) , 1 ≤ i ≤ n ,

(125)

where the optimal feedback control u∗s(y) = −2(Pσ)T∇U , starting from the distribution µ∗
0

which is determined by
dµ∗

0

dµz(0)
∝ g(·, 0).

Cross-entropy method. In the following, we briefly discuss the cross-entropy method

following Subsection 2.5. Consider a family of parameterized probability measures {Pω |ω ∈
R

k}, where, for given ω = (ω1, ω2, · · · , ωk)
T ∈ R

k, Pω is the probability measure of paths

corresponding to the dynamics

dyi(s) =− (Pa)ij
∂V

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds+ (Ψ−1)γγ′(a∇ξγ)i fγ′ ds

+ (Pσ)ij

( k∑

l=1

ωlφ
(l)
j

)
ds+

√
2β−1 (Pσ)ij dwj(s) , 1 ≤ i ≤ n ,

(126)

where φ(l) = (φ
(l)
1 , φ

(l)
2 , · · · , φ(l)n )T : Rn × [0, T ] → R

n are k ansatz functions, 1 ≤ l ≤ k. As a

special choice, we consider φ(l) = −σT∇V (l) where V (l) : Rn → R, 1 ≤ l ≤ k, are smooth and

linearly independent potential functions, by which (126) becomes

dyi(s) =− (Pa)ij
∂
(
V +

∑k
l=1 ωlV

(l)
)

∂yj
ds+

1

β

∂(Pa)ij
∂yj

ds

+ (Ψ−1)γγ′(a∇ξγ)i fγ′ ds+
√
2β−1 (Pσ)ij dwj(s) , 1 ≤ i ≤ n ,

(127)

i.e., paths are sampled with the modified potential function V +
k∑

l=1

ωlV
(l).

Applying Ito’s formula as in (95), we can verify that trajectories of the dynamics (126),

starting from y(0) ∈ Σz(0), satisfy ξ(y(t)) = z(t) for t ∈ [0, T ] as well. Therefore, the probability

measures Pω indeed concentrate on the set (121). Applying Girsanov’s theorem, we obtain

dPω

dP
= exp

[√
β

2

∫ T

0

( k∑

l=1

ωlφ
(l)
)
· dw(s)− β

4

∫ T

0

∣∣∣
k∑

l=1

ωlφ
(l)
∣∣∣
2

ds

]
, (128)

where w(s) is the Brownian motion in the original dynamics (93) (i.e., under the probability

measure P). Following the same argument as in Subsection 2.5, we know that the minimizer of

the optimization problem (79) is given by the unique solution of the linear equation Aω∗ = R,

where

All′ = E

(
e−βW

∫ T

0

φ(l) · φ(l′) ds
)
, Rl =

√
2β−1E

[
e−βW

∫ T

0

φ(l) · dw(s)
]
, (129)
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for 1 ≤ l, l′ ≤ k.

Variance reduction by increasing mixing. In practice, however, due to the complicate

expressions of work W in (105) or (115), it becomes difficult to have an intuitive idea to guide

the choices of ansatz functions, which play a crucial role in the cross-entropy method above. In

the following, we briefly discuss another idea that can be explored in order to reduce the variance

in the free energy calculation based on Jarzynski-like identity.

Different from the importance sampling method which improves the efficiency of Monte

Carlo method by increasing the sampling frequency of paths with small work, the idea here,

which is inspired by the analysis in Appendix A and Appendix B, is to compute free energy

differences based on trajectories of the dynamics (118) with a small τ (similar idea has also

been investigated in [18, 33]). The observation is that the standard Monte Carlo estimator

based on Jarzynski-like identity typically sample trajectories with large work (therefore low

efficiency) because the nonequilibrium dynamics do not have enough time to equilibrate under

nonequilibrium force. Therefore, by decreasing τ in (118), the mixing of the “equilibrium part”

of the nonequilibrium system becomes faster at each fixed nonequilibrium force. Numerically,

the workW of the sampled trajectories is likely to be both smaller and more concentrated. From

the analysis in Appendix A and Appendix B, we know that the free energy calculation method

based on Jarzynski-like identity (106) reduces to the thermodynamic integration method when

τ → 0. In practice, τ should be chosen not very small since otherwise the system will become

more stiff and a smaller time step-size has to be used in numerical integration. Readers are

referred to Subsection 4.2 for numerical study of free energy calculation using different τ .

4 Numerical examples

We consider two simple examples and study the efficiency of Monte Carlo methods for free

energy computation.

4.1 Example 1: 1D example in alchemical transition case

In this example, we consider one-dimensional potentials

V (x, λ) = (1− λ)
(x + 1)2

2
+ λ

( (x2 − 1)2

4
− 0.4x

)
, (130)

where x ∈ R and λ ∈ [0, 1]. As λ increases from 0 to 1, V (·, λ) varies from a quadratic potential

centered at x = −1 to a tilted double well potential (Figure 1(a)). Recalling the free energy F

defined in (11), (10), we will compute free energy differences ∆F (λ) = F (λ)−F (0), using Monte

Carlo based on Jarzynski’s identity (61). We fix β = 5.0 and the SDE

dx(s) = −∂V
∂x

(x(s), λ(s)) ds +
√
2β−1dw(s) , (131)

with control protocol λ(s) = s, s ∈ [0, 1], will be considered in the Monte Carlo simulations.

Clearly, for the initial distribution µ0 = µλ(0), we have dµ0

dx
∝ exp

(
− β

(x+1)2

2

)
.

In fact, since the problem is one dimensional in space, we can directly compute the normal-

ization constant Z(λ) by numerically integrating (10) and therefore obtain the free energy differ-

ences ∆F (λ), which are shown in Figure 6(a). In particular, we obtain ∆F (1) = F (1)−F (0) =
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−3.44 × 10−1 and this will be our reference solution. Furthermore, we can also approximate

the optimal change of measure P∗ in (76) by computing the optimal control force u∗ and the

optimal initial distribution µ∗
0 according to (75), (77), respectively. For this purpose, we need to

compute the function g(x, t) = Ex,t

(
e−βW(t,T )

)
in (69) which satisfies (71). Notice that, in the

current setting, we have T = 1 and (71) becomes

∂g

∂t
− ∂V

∂x

∂g

∂x
+

1

β

∂2g

∂x2
− β

(
V (x, 1)− V (x, 0)

)
g = 0 , 0 ≤ t < 1 ,

g(·, 1) = 1 .

(132)

To compute g, we truncate the space of (x, t) to [−5.0, 5.0]× [0, 1] and discretize the PDE (132)

on a uniform grid of size 10000× 10000, following a similar way that was described in [30, 71].

The solution g is obtained by solving the discretized system backwardly from t = 1 to 0. The

function U = −β−1 ln g is displayed in Figure 1(b) and the profile of g(·, 0) at t = 0 is shown in

Figure 3(a). Based on these results, we can obtain the optimal control potentials (which is V +2U

according to (74) and (75)) and the optimal initial distribution µ∗
0. These results are shown in

Figure 2(a), Figure 3(b) and Figure 4, respectively. In particular, combining the expression (77)

with Figure 3(a) and Figure 4, it can be observed that, due to the strong inhomogeneity of

g(·, 0), the high probability density region of the optimal initial distribution µ∗
0 is shifted along

the positive x axis and has little overlap with that of the distribution µ0.

Now we turn to discuss the performance of Monte Carlo methods. First of all, we apply

the standard Monte Carlo method to estimate free energy differences. SDE (131) is discretized

with time step-size ∆s = 5× 10−4 and we repeat the simulation 10 times. For each independent

run, the estimator

I(λ) = 1

N

N∑

i=1

e−βWi(λ) (133)

is computed by generating N = 5 × 105 trajectories of dynamics (131) starting from µ0, where

Wi(λ) is the numerical approximation of (84) on [0, λ] for the ith trajectory. The free energy

differences are then estimated by

∆F (λ) ≈ −β−1 ln I(λ) , (134)

which is asymptotically unbiased when N → +∞. The results are summarized in Figure 6(a),

Figure 6(b) as well as in the last row of Table 1. We can observe that the estimations of free

energy differences have very large fluctuations within the 10 runs and the standard Monte Carlo

estimator (133) has a very large (sample) standard deviation.

Noticing that the initial distribution µ0 in fact is very different from the optimal initial

distribution µ∗
0, we have also used the probability measure µ̄0, which is given by dµ̄0

dx
∝ exp

(
−

β
(x−0.5)2

2

)
, as the initial distribution in importance sampling Monte Carlo methods. From the

profiles of their probability density functions in Figure 4, we expect that the importance sampling

Monte Carlo estimators using µ̄0 will have better performance than estimators using µ0. Besides

the change of measure in the initial distribution, the controlled dynamics

dx(s) = −∂V
∂x

(x(s), λ(s)) ds +

k∑

l=1

ωlφ
(l)(x(s), s) ds+

√
2β−1 dw(s) (135)
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is used to generate trajectories instead of dynamics (131), which leads to a further change of

measure on path space. In (135), φ(l) are ansatz functions which we choose to be either piecewise

linear functions or Gaussian functions [31]. In the case of piecewise linear ansatz function, we

divide the domain [−1.3, 1.3] uniformly into 30 Voronoi cells Cl and the ansatz functions are

defined as φ(l)(x, t) = (1− t)1Cl
(x), 1 ≤ l ≤ 30, where 1Cl

denotes the characteristic function of

cell Cl. In the case of Gaussian ansatz function, we choose two functions φ(l)(x, t) = ∂V (l)

∂x
(x, t),

where l = 1, 2 and

V (1)(x, t) = (1− t) exp
(
− x2

2

)
, V (2)(x, t) = (1− t) exp

(
− (x− 1.2)2

4.5

)
. (136)

In both cases, the ansatz functions are chosen based on the idea discussed in Subsection 2.5

and the dependence on time t is included since we know that the optimal control force, which is

proportional to ∂g
∂x

, vanishes at time t = 1, due to the Dirichlet boundary condition in (132).

After these preparations, we apply the cross-entropy method discussed in Subsection 2.5

to optimize the coefficients ωl in (135) by simulating 105 trajectories. The control forces at

time t = 0, as well as the control potentials in Gaussian ansatz case are shown Figure 3(b) and

Figure 2(b), respectively. Apparently, although the control forces are different from the optimal

one, all of them can help drive the system along the positive x axis. Similarly as in the standard

Monte Carlo case, we estimate the free energy differences using importance sampling Monte

Carlo method for 10 times where N = 5× 105 trajectories of the controlled dynamics (135) are

simulated for each run. Instead of (133), estimator

I(λ) = 1

N

N∑

i=1

e−βWi(λ) ri (137)

is computed, where ri is the likelihood ratio given by Girsanov’s theorem (see (81)). The results

are shown in Figure 6(a), Figure 6(b), as well as in Table 1. Comparing to the standard deviation

of the standard Monte Carlo estimator (133), we observe that the standard deviations of the

importance sampling Monte Carlo estimators I(λ) in (137) are significantly reduced when we

applied a change of measure both in the initial distribution and in the dynamics, i.e., when

the controlled dynamics (135) with initial distribution µ̄0 is used. And both types of ansatz

functions exhibit comparable performances. To better understand the efficiency of Monte Carlo

methods, the probability density functions and the mean values of work within the 10 runs of

simulations are shown in Figure 5(a), Figure 5(b) and Table 1 for each Monte Carlo estimators.

Clearly, by applying importance sampling both in the initial distribution and in the dynamics,

trajectories with low work value are more efficiently sampled, leading to a much better efficiency

of the Monte Carlo estimators.

4.2 Example 2: reaction coordinate case

In the second example, we study free energy calculation in the reaction coordinate case

considered in Section 3. A similar example has been considered in [43], where the main focus was

the approximation quality of effective dynamics. The system consists of three two-dimensional

particles A,B,C whose positions are at xA, xB, xC , with potential

V (xA, xB , xC) =
1

2ǫ

{
rBC −

[
1 + κ

(
sin(θABC)−

1

2

)]
leq

}2

+
1

2ǫ

(
rAB − leq

)2
+ V3(θABC) ,

(138)
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Figure 1. Example 1. (a) Potential V (x, λ) in (130). (b) Function U = −β−1 ln g, where β = 5.0

and g solves PDE (132).
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Figure 2. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. (a) Optimally biased

potential (V + 2U). (b) Biased potentials computed from cross-entropy method with Gaussian

ansatz functions (136).
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Figure 3. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. (a) Profile of the function

g(x, 0) = Ex,0(e
−βW ) where β = 5.0 and g solves PDE (132). (b) Profiles of control forces at

time t = 0. Curves with Labels “optimal”, “linear” and “Gaussian” correspond to the optimal

control u∗, the control forces obtained from the cross-entropy method using piecewise linear and

Gaussian ansatz functions.
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Figure 4. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. Probability den-

sity functions of different initial distributions used in Monte Carlo methods for β = 5.0.

The corresponding densities are dµ0

dx
∝ exp

(
− β

(x+1)2

2

)
, dµ̄0

dx
∝ exp

(
− β

(x−0.5)2

2

)
, and

dµ∗
0

dx
∝ exp

(
− β

(x+1)2

2

)
g(x, 0), which is given by (77).

34



−3 −2 −1 0 1 2
W

0.0

0.2

0.4

0.6

0.8

1.0

pd
f

optimal µ̄0 , linear
µ̄0 , Gaussian
µ̄0 , stdMC

(a)

−3 −2 −1 0 1 2
W

0.0

0.5

1.0

1.5

2.0

2.5

pd
f

µ0 , linear
µ0 , Gaussian
µ0 , stdMC

(b)

Figure 5. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. Probability density

functions of work along trajectories estimated from 10 independent runs of Monte Carlo simu-

lations where 5 × 105 trajectories are simulated for each run. (a) “optimal” corresponds to the

importance sampling estimator with control u∗ starting from the distribution µ∗
0. The other

three curves correspond to Monte Carlo estimators with initial distribution µ̄0, using either the

controlled dynamics (135) with piecewise linear ansatz functions (Label “µ̄0, linear”), Gaus-

sian ansatz functions (Label “µ̄0, Gaussian”), or the uncontrolled dynamics (131) (Label “µ̄0,

stdMC”). (b) Results correspond to Monte Carlo estimators with initial distribution µ0, using

either the controlled dynamics (135) with piecewise linear ansatz functions (Label “µ0, linear”),

Gaussian ansatz functions (Label “µ0, Gaussian”), or the uncontrolled dynamics (131) (Label

“µ0, stdMC”).

initial control mean I SD I mean ∆F SD ∆F mean W

µ∗
0 optimal 5.58 8.4× 10−2 −3.44× 10−1 2.4× 10−4 −1.85

µ̄0

linear 5.59 6.0× 100 −3.44× 10−1 3.4× 10−4 −2.08

Gaussian 5.59 7.1× 100 −3.44× 10−1 3.5× 10−4 −2.05

stdMC 5.51 9.8× 101 −3.41× 10−1 5.4× 10−3 −0.71

µ0

linear 5.74 2.2× 102 −3.49× 10−1 1.0× 10−2 −0.08

Gaussian 5.71 2.6× 102 −3.48× 10−1 1.3× 10−2 0.06

stdMC 6.28 1.7× 103 −3.53× 10−1 7.2× 10−2 0.40

Table 1. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. Estimations of free

energy difference for λ = 1 using different (importance sampling) Monte Carlo methods. Direct

calculation of (10) and (11) gives the reference value ∆F = −3.44 × 10−1. Column “initial”

specifies the initial distribution that are used to generate trajectories in Monte Carlo simulations.

Column “control” specifies the different dynamics (different control forces) and the meaning of

each name is the same as those appeared in Figure 5. Columns “mean I”, “SD I” show the

mean and the sample standard deviation of estimators (133) or (137). Columns “mean ∆F”,

“SD ∆F” show the mean and the sample standard deviation of 10 independent runs of the free

energy difference estimations ∆F (1) using (134). The mean values of workW for different Monte

Carlo methods are shown in Column “mean W”.
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Figure 6. Example 1 with the control protocol λ(s) = s, for s ∈ [0, 1]. Labels of different curves

have the same meaning as those appeared in Figure 5. (a) Profiles of free energy differences

∆F (λ) for λ ∈ [0, 1]. Standard deviations of the free energy difference estimations for 10 in-

dependent runs are shown in vertical error bar for different λ. “exact” corresponds to results

obtained by directly integrating the normalization constant Z(λ) from (10). (b) Mean values of

free energy differences at λ = 1 for 10 independent runs using different (importance sampling)

Monte Carlo methods. For each run, 5 × 105 trajectories of either SDE (131) or the controlled

SDE (135) are generated with time step-size ∆t = 5× 10−4. Results corresponding to piecewise

linear ansatz functions are not shown here since they are very similar to those corresponding

Gaussian ansatz functions.
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where rAB , rBC are the distances between particles A and B, B and C, respectively. θABC is

the angle spanned by the bonds AB and BC, and V3 is the potential of angle given by

V3(θ) =
kθ

2

(
(θ − θ0)

2 − (δθ)2
)2

− kθ,1(θ − θ0) , (139)

with kθ > 0. Furthermore, in order to remove rigid body motion invariance, we fix the position of

particle B (xB = 0) and particle A is only allowed to move along horizontal axis. For parameters,

we take θ0 = π
3 , δθ =

π
6 , ǫ = 0.1, kθ = 20, kθ,1 = 0.3, and leq = 5.0.

The system essentially has three degree of freedom, i.e., the position of xC = (y1, y2) and

the position of xA = (y3, 0) on the x-axis. The free energy is defined according to (87), where

we take

ξ(y1, y2, y3) = θABC = arctan
y2

y1
(140)

as the reaction coordinate function and β = 5.0. In order to calculate free energy differences,

we consider the dynamics y(s) = (y1(s), y2(s), y3(s)) in (118) during the time interval [0, 1] with

a = σ = id, and f ≡ π
3 , starting from θ(y(0)) = π

6 at time s = 0. In this case, the projection

matrix in (89) can be directly computed as

P =




y2
1

y2
1+y2

2

y1y2

y2
1+y2

2
0

y1y2

y2
1+y2

2

y2
2

y2
1+y2

2
0

0 0 1


 (141)

and we have Ψ = |∇ξ|2 = 1
y2
1+y2

2
in (88). The angle θABC of the system y(s) evolves uniformly

during time s ∈ [0, 1] from π
6 to π

2 and the free energy at θABC = π
6 is taken as reference. The

free energy differences are calculated based on the Jarzynski-like identity (106), where the work

W is given in (115) and becomes as simple as

W (t) =

∫ t

0

(
− y2

∂V

∂y1
+ y1

∂V

∂y2

)
(y(s)) ds . (142)

In the numerical experiment below, we take κ = 0.3, 0.6 in the potential V in (138) and the

performance of the Monte Carlo estimator is tested using different values τ = 1.0, 0.6, 0.3 in

dynamics (118). In each case, we estimate the free energy differences based on 10 independent

runs of Monte Carlo sampling of

∆F (θ(t)) ≈ −β−1 ln I(θ(t)) = −β−1 ln
( 1

N

N∑

i=1

e−βWi(t)
)
, (143)

where θ(t) = π
6 + π

3 t. In each run, N = 5 × 105 trajectories of dynamics (118) are simulated

using time step-size ∆t = 10−4, where Wi denotes the work (142) of the ith trajectory.

The numerical results are shown in Figure 7 , Figure 8 (results for κ = 0.3 are similar and

therefore are not displayed) and Table 2. From both Figure 7 and Table 2, we can observe that

the free energy calculation using τ = 1.0 lead to large fluctuations and inaccurate estimations.

On the other hand, by decreasing τ to 0.3, the variance of 10 independent runs of free energy

calculation decreases significantly and the results become stable. Based on the 10 runs of Monte

Carlo simulations of the nonequilibrium dynamics, we can also estimate the probability density
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functions of the work (142) and the results are shown in Figure 8. It can be seen that, as τ

decreases, the probability density functions shift along the negative horizontal axis and become

more concentrated. This indicates that the work of the sampled paths becomes smaller on average

and the variance decreases. All these results confirm that variance of the Monte Carlo estimator

can be reduced by decreasing the value of τ (see discussions at the end of Subsection 3.4).
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Figure 7. Example 2 for κ = 0.6. (a) Profiles of free energy differences ∆F (θ) for θ = θABC ∈
[π6 ,

π
2 ] computed using different τ in (118). Standard deviations of the free energy difference

estimations for 10 independent runs are shown in vertical error bar for different θ. “exact”

corresponds to the reference results obtained by directly integrating the normalization constants

Q(·) appeared in (86). Curves with Label “τ = 0.3” and Label “exact” almost coincide. (b)

Mean values of free energy differences at θ = π
2 for 10 runs of Monte Carlo simulations using

different values of τ in (118). The horizontal line with Label “exact” corresponds to the reference

value ∆F (π2 ) = −3.74 × 10−1. For each run, 5 × 105 trajectories of SDE (118) are generated

with time step size ∆t = 10−4.

5 Conclusions

In this work, we have studied nonequilibrium theorems for diffusion processes. Jarzynski’s

equalities and fluctuation theorems are proved for quite general types of diffusion processes in

both the alchemical transition case and the reaction coordinate case. The information-theoretic

formulation of the Jarzynski’s equality, as well as variance reduction approaches are discussed in

both cases. Our mathematical tools to derive these nonequilibrium relations are from the theory

of stochastic differential equation, in particular the Feynman-Kac formula and the Girsanov’s

theorem. An advantage of the approach is that, it enables us to elucidate the connections between

Jarzynski’s equality and the thermodynamic integration identity, which were often treated as

two distinct free energy calculation methods.

Two variance reduction approaches for Monte Carlo methods have been studied in order

to compute free energy differences using Jarzynski’s equality. As demonstrated by simple ex-

amples, these approaches can largely improve the efficiency of Monte Carlo estimators in both
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Figure 8. Example 2 for κ = 0.6. Probability density functions of the work W (142) along

trajectories of (118) for different values τ = 1.0, 0.6, 0.3. For each τ , the probability density

function is estimated from 10 runs of Monte Carlo simulations where 5 × 105 trajectories are

simulated in each run.

κ τ mean I SD I mean ∆F SD ∆F mean W

0.3

1.0 5.46 9.4× 101 −3.39× 10−1 1.4× 10−2 0.29

0.6 5.67 4.0× 101 −3.47× 10−1 1.1× 10−2 0.05

0.3 5.52 1.5× 101 −3.42× 10−1 2.9× 10−3 −0.13

0.6

1.0 4.27 2.0× 103 −2.55× 10−1 1.6× 10−1 2.14

0.6 5.28 5.1× 102 −3.32× 10−1 4.0× 10−2 1.22

0.3 6.33 2.3× 102 −3.69× 10−1 1.3× 10−2 0.46

Table 2. Example 2. Estimations of free energy difference for θ = π
2 using Monte Carlo methods

for different values κ and τ . Direct calculation of (10) and (11) gives the reference value ∆F (π2 ) =

−3.42× 10−1 and ∆F (π2 ) = −3.74× 10−1 for κ = 0.3 and 0.6, respectively. Columns “mean I”,
“SD I” show the mean and the sample standard deviation of the estimator I in (143). Columns

“mean ∆F”, “SD ∆F” show the mean and the sample standard deviation of 10 runs of free

energy difference estimations ∆F (π2 ) using (143). The mean values of the work W for Monte

Carlo simulations using different κ and τ are shown in the Column “mean W”.
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the alchemical transition case and the reaction coordinate case. One of the key findings is that

variance reduction by a change of measure requires to change both the initial distribution and

the equation of the dynamics. We expect that our simple numerical studies can provide some

insights into the source of sampling variances.

While the current work focuses on diffusion processes, the mathematical tools may be

applicable to other types of stochastic processes, such as Markov chains, particle systems or

networks, whose evolution depends on external parameters. In future work, we will also in-

vestigate free energy calculation for high-dimensional applications using the variance reduction

approaches proposed in this work, together with the recent techniques of solving high-dimensional

PDEs [17, 9, 21].
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A Connections with thermodynamic integration and adi-

abatic switching : Alchemical transition case

In this appendix, we study two (essentially equivalent) asymptotic regimes of nonequilibrium

processes using formal arguments. In particular, we will derive the thermodynamic integration

identity from Jarzynski’s identity, therefore bridging these two different free energy calculation

methods. Let us point out that such a connection is indeed known in physics community [14],

although we are not aware of its mathematical derivation in the literature. For simplicity, we

only consider the alchemical transition case studied in Section 2 and assume the protocol λ(·) is
deterministic with ǫ = 0.

From Jarzynski’s equality to thermodynamic integration Thermodynamic integra-

tion is a well known method and has been widely used to compute free energy differences [24].

From the definition of the normalization constant Z(·) in (10), we can derive the thermodynamic

integration identity by the simple argument

∆F (T ) =F (λ(T ))− F (λ(0))

=− β−1 ln
Z(λ(T ))

Z(λ(0))

=− β−1

∫ T

0

d

ds

(
ln
Z(λ(s))

Z(λ(0))

)
ds

=

∫ T

0

(∫
Rn e

−βV (x,λ(s))∇λV (x, λ(s)) dx)

Z(λ(s))

)
· f(λ(s), s) ds

=

∫ T

0

(
Eµλ(s)

(∇λV )
)
· f(λ(s), s) ds . (144)

In the following, using a formal argument, we show that the identity (144) corresponds to the
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Jarzynski’s equality (29) in certain asymptotic limit. For this purpose, we consider the dynamics

dx(s) =
1

τ
b(x(s), λ(s)) ds +

√
2β−1

τ
σ(x(s), λ(s)) dw(1)(s) , (145)

on s ∈ [0, T ], where 0 < τ ≪ 1 and λ(s) satisfies the ODE

λ̇(s) = f(λ(s), s) . (146)

Clearly, dynamics (145) is related to (1) by rescaling time with the parameter 0 < τ ≪ 1, and its

infinitesimal generator is 1
τ
L1, where L1 is defined in (6) with λ(·) being time dependent. The

main observation is that, repeating the argument from Subsection 2.2, the Jarzynski’s equality

(29) holds for (145) and (146) for any τ > 0. As a consequence,

e−β∆F (T ) = Eµ(λ(0))

(
g(·, λ(0), 0)

)
, (147)

where the function g now satisfies

∂tg +
1

τ
L1g + f · ∇λg − β

(
f · ∇λV

)
g = 0 , 0 ≤ t < T ,

g(·, ·, T ) = 1 .
(148)

To show that (147) reduces to the thermodynamic integration identity (144) as τ → 0, it is

enough to study the asymptotic limit of (148). To this end, we consider the formal asymptotic

expansion

g = g0 + τg1 + τ2g2 + · · ·

as τ → 0, where g0, g1, · · · are functions independent of τ . Substituting this expansion into (148)

and comparing terms of different powers of τ , we can conclude that g0 = g0(λ, t) is independent

of x and satisfies

∂tg0 + L1g1 + f · ∇λg0 − β(f · ∇λV )g0 = 0 , 0 ≤ t < T

g0(·, T ) = 1 .
(149)

Taking the expectation with respect to µλ on both sides of (149) and noticing that Eµλ
(L1g1) =

0, we obtain

∂tg0 + f · ∇λg0 − β
(
f · Eµλ

(∇λV )
)
g0 = 0 , 0 ≤ t < T

g0(·, T ) = 1 .
(150)

It is easy to verify that the solution of (150) is given by

g0(λ, t) = e
−β

∫
T

t

(
Eµλ(s)

(∇λV )
)
·f(λ(s),s) ds

, (151)

where λ(s) satisfies (146) with initial value λ(t) = λ. Taking the limit τ → 0 in (147) then yields

e−β∆F (T ) = lim
τ→0

Eµ(λ(0))

(
g(·, λ(0), 0)

)
= g0(λ(0), 0) = e

−β
∫

T

0

(
Eµλ(s)

(∇λV )
)
·f(λ(s),s) ds

, (152)

which is equivalent to the thermodynamic integration identity (144).
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Adiabatic switching Now we turn to another (equivalent) asymptotic regime where the

protocol λ(·) is switched infinitely slowly. Specifically, given λ0, λ1 ∈ R
m, the protocol λ(·) satis-

fying λ(0) = λ0 and λ(T ) = λ1 as T → +∞ is called adiabatic switching. For the nonequilibrium

process x(·) in (1) under adiabatic switching, it is well known that we have

F (λ1)− F (λ0) = lim
T→+∞

Eλ0,0

(
W (T )

)
= lim

T→+∞
Eλ0,0

(∫ T

0

∇λV (x(s), λ(s)) · f(λ(s), s) ds
)
,

(153)

i.e., the free energy difference equals to the average work performed during the switching. In

the following we provide a formal mathematical argument to derive the above identity. For this

purpose, we define

u(x, λ, t) = E
(∫ T

t

∇λV (x(s), λ(s)) · f(λ(s), s) ds
∣∣∣ x(t) = x, λ(t) = λ

)
, (154)

which, by the Feynman-Kac formula, satisfies

∂tu+ L1u+ f · ∇λu+ f · ∇λV = 0 ,

u(·, ·, T ) = 0 .
(155)

Notice that, as T → +∞, the switching becomes infinitely slow and λ̇(t) = f goes to zero.

Instead, we rescale the time by t̄ = t
T

∈ [0, 1] and define λ̄(t̄ ) = λ( t̄
τ
), where τ = 1

T
→ 0. λ̄(·)

satisfies λ̄(0) = λ0, λ̄(1) = λ1 and

dλ̄

dt̄
= f̄(λ̄(t̄ ), t̄ ) , (156)

where f̄(·, t̄ ) = 1
τ
f(·, t̄

τ
) is a function of O(1). Under this time scaling, PDE (155) becomes

∂t̄u+
1

τ
L1u+ f̄ · ∇λu+ f̄ · ∇λV = 0 , 0 ≤ t̄ < 1 ,

u ≡ 0 , t̄ = 1 .
(157)

Consider the expansion u = u0 + τu1+ τ2u2+ · · · , then the same argument as above yields that

the function u0 is independent of x and satisfies

∂t̄u0 + f̄ · ∇λu0 + f̄ · Eλ

(
∇λV

)
= 0 , 0 ≤ t̄ < 1 ,

u0 ≡ 0 , t̄ = 1 .
(158)

The solution of (158) can be directly computed:

u0(λ, t̄ ) =

∫ 1

t̄

Eλ̄(s)

(
∇λV

)
· f̄(λ̄(s), s) ds , (159)

where λ̄(·) satisfies (156) on [t̄, 1] with λ̄(t̄ ) = λ. In particular, taking t̄ = 0 and applying the

thermodynamic integration identity (144), gives

u0(λ0, 0) =

∫ 1

0

Eλ̄(s)

(
∇λV

)
· f̄(λ̄(s), s) ds = F (λ1)− F (λ0) . (160)
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Therefore,

lim
T→+∞

Eλ0,0

(∫ T

0

∇λV (x, λ(s)) · f(λ(s), s) ds
)

= lim
τ→0

Eµλ0

(
u(·, λ0, 0)

)

=u0(λ0, 0) = F (λ1)− F (λ0) ,

which concludes the proof of (153).

B Thermodynamic integration identity in the reaction co-

ordinate case

In the reaction coordinate case considered in Section 3, connections between the thermo-

dynamic integration identity and the Jarzynski’s equality as well as the adiabatic switching

regime can be studied using the same asymptotic argument as in Appendix A. In this section,

we omit the derivation and only provide the thermodynamic integration identity. We emphasize

that both the identity and its proof can be found in the literature, e.g., [45, 43]. The result is

included for readers’ convenience.

Recall the definition of the probability measure µz in (86), where the normalization constant

is given by

Q(z) =

∫

Rn

e−βV (y)δ
(
ξ(y)− z

)
dy , z ∈ R

d , (161)

and the free energy is defined in (87). Let z(s) ∈ R
d satisfy the ODE (101) on [0, T ]. Similar to

the derivations in (144), and using Lemma 3 below, we can compute

F (z(T ))− F (z(0))

=− β−1 ln
Q(z(T ))

Q(z(0))

=− β−1

∫ T

0

d

ds

(
ln
Q(z(s))

Q(z(0))

)
ds

=− β−1

∫ T

0

( 1

Q

∂Q

∂zγ

)(
z(s)

)
żγ(s) ds

=

∫ T

0

Eµz(s)

[
(a∇ξγ′)i(Ψ

−1)γ′γ

∂V

∂yi
− 1

β

∂

∂yi

(
(a∇ξγ′)i(Ψ

−1)γγ′

)]
żγ(s) ds ,

(162)

where Einstein’s summation convention has been used.

Lemma 3. Let the function Q be defined in (161). For 1 ≤ γ ≤ d, we have

∂Q

∂zγ
(z) = −βQ(z)

∫

Σz

[
(a∇ξγ′)i(Ψ

−1)γγ′

∂V

∂yi
− 1

β

∂

∂yi

(
(a∇ξγ′)i(Ψ

−1)γγ′

)]
µz(dy) .

Proof. Let ϕ : R
d → R be a smooth test function with compact support. For 1 ≤ γ ≤ d,

integrating by parts and using (161), we have
∫

Rd

ϕ(z)
∂Q

∂zγ
(z) dz = −

∫

Rd

∂ϕ

∂zγ
(z)Q(z) dz = −

∫

Rn

∂ϕ

∂zγ
(ξ(y))e−βV (y) dy . (163)
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On the other hand, from the relation

∂
(
ϕ ◦ ξ

)

∂yi
(y) =

∂ϕ

∂zγ′

(ξ(y))
∂ξγ′

∂yi
(y), 1 ≤ i ≤ n ,

and the definition of the d× d matrix Ψ in (88), we obtain

∂ϕ

∂zγ
(ξ(y)) =

[∂
(
ϕ ◦ ξ

)

∂yi
aij

∂ξγ′

∂yj
(Ψ−1)γγ′

]
(y) . (164)

Therefore, integrating by parts, (163) simplifies to

∫

Rd

ϕ(z)
∂Q

∂zγ
(z) dz

=

∫

Rn

ϕ(ξ(y))
∂

∂yi

(
aij

∂ξγ′

∂yj
(Ψ−1)γγ′e−βV (y)

)
dy

=

∫

Rd

ϕ(z)
[ ∫

Rn

∂

∂yi

(
aij

∂ξγ′

∂yj
(Ψ−1)γγ′e−βV (y)

)
δ(ξ(y)− z)dy

]
dz ,

from which we can conclude after simplification.

C An alternative proof of Theorem 2

In this appendix, we provide an alternative proof of Theorem 2. Different from the proof

in Subsection 2.3 where only the Feynman-Kac formula has been used, the proof below relies on

the combination of both the Feynman-Kac formula and Girsanov’s Theorem. While the idea is

inspired by the derivations in [10], the proof below is shorter.

Alternative proof of Theorem 2. First of all, we recall the definition of u in (43) as well as the

equations (40), (44), (45) used in the proof of Theorem 2 in Subsection 2.3. In accordance with

(45), we define

L =
(
J + a∇V +

1

β
∇ · a

)
· ∇+

1

β
a : ∇2 + f · ∇λ + ǫ ααT : ∇2

λ , (165)

and consider the function ω(x, λ, t) = u
(
x, λ, T − t ;x′, λ′, t′

)
. From (44) and (45), we know that

ω satisfies

∂ω

∂t
+ L(x,λ,t)ω +

[
div(J + a∇V ) + divλ

(
f − ǫ∇λ · (ααT )

)
+ η

]
ω = 0 , ∀t ∈ [0, T − t′) ,

ω(x, λ, t) = δ(x′ − x)δ(λ′ − λ) , t = T − t′ ,

(166)

where (x, λ) ∈ R
n × R

m and L(x,λ,t) is the operator (165) evaluated at (x, λ, t). On the other

hand, applying the Feynman-Kac formula to (166), we observe that

ω(x, λ, t) =Ex,λ,t

[
exp

(∫ T−t′

t

(
div

(
J + a∇V

)
+ divλ

(
f − ǫ∇λ · (ααT )

)
+ η

)(
x̄(s), λ̄(s), s

)
ds

)

× δ
(
x̄(T − t′)− x′

)
δ
(
λ̄(T − t′)− λ′

)]
,

(167)
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where Ex,λ,t denotes the conditional expectation under the path ensemble of the dynamics

dx̄(s) =
(
J + a∇V +

1

β
∇ · a

)(
x̄(s), λ̄(s)

)
ds+

√
2β−1σ

(
x̄(s), λ̄(s)

)
dw(1)(s) (168)

and the control protocol

dλ̄(s) =f(x̄(s), λ̄(s), s) ds+
√
2ǫ α

(
x̄(s), λ̄(s), s

)
dw(2)(s) , (169)

starting from x̄(t) = x and λ̄(t) = λ at time t. Note that the infinitesimal generator of the

dynamics (168) and (169) is given by the operator L in (165).

Now we apply Girsanov’s theorem to change the probability measure in (167) from the

path ensemble of the dynamics (168), (169) to the path ensemble of the dynamics (15), (3).

Specifically, starting from (x, λ) at time t, let Px,λ and Px,λ denote the path measures on

the time interval [t, T − t′] corresponding to (15), (3) and (168), (169), respectively. Applying

Girsanov’s theorem, we obtain after some straightforward calculations

dPx,λ

dPx,λ

(
x(·), λ(·)

)
=exp

[
− β

∫ T−t′

t

∇V
(
x(s), λ(s)

)
· dx(s)

+ β

∫ T−t′

t

(
∇V ·

(
J +

1

β
∇ · a

))(
x(s), λ(s)

)
ds

]
.

(170)

Therefore, changing the probability measure in (167) from Px,λ to Px,λ, using (170), (13), we

find

u(x, λ, T − t) = ω(x, λ, t)

=Ex,λ,t

[
exp

(∫ T−t′

t

(
div

(
J + a∇V

)
+ divλ

(
f − ǫ∇λ · (ααT )

)
+ η

)(
x(s), λ(s), s

)
ds

)

× δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)dPx,λ

dPx,λ

(
x(·), λ(·)

)]

=Ex,λ,t

[
exp

(
β

∫ T−t′

t

∇V (x(s), λ(s)) · dx(s) +
∫ T−t′

t

(
a : ∇2V

)(
x(s), λ(s)

)
ds

+

∫ T−t′

t

(
divλ

(
f − ǫ∇λ · (ααT )

)
+ η

)(
x(s), λ(s), s

)
ds

)
δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)]

=Ex,λ,t

[
exp

(
β

∫ T−t′

t

∇V
(
x(s), λ(s)

)
◦ dx(s) +

∫ T−t′

t

(
divλ

(
f − ǫ∇λ · (ααT )

)
+ η

)(
x(s), λ(s), s

)
ds

)

× δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)]
.

Note that in the last equality above, we have converted Ito integration to Stratonovich integration

according to (15). Substituting t by T − t, integrating by parts, and recalling the expression

(43), we obtain

e−βV (x′,λ′) ER
x′,λ′,t′

[
exp

(∫ t

t′
η(xR(s), λR(s), T − s)ds

)
δ
(
xR(t)− x

)
δ
(
λR(t)− λ

)]

=e−βV (x,λ) Ex,λ,T−t

[
e−βW exp

(∫ T−t′

T−t

η(x(s), λ(s), s)ds

)
δ
(
x(T − t′)− x′

)
δ
(
λ(T − t′)− λ′

)]
,

where W is defined in (42).
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D Proof of Theorem 3

In this appendix, we provide the proof of Theorem 3 in Subsection 3.2.

Proof of Theorem 3. We consider the quantities on both sides of the equality (98). For the left

hand side of (98), let us fix (y′, t′) ∈ R
n × [0, T ] and define the function u by

u
(
y, t ; y′, t′

)
= ER

y′,t′

[
exp

(∫ t

t′
η
(
yR(s), T − s

)
ds

)
δ
(
yR(t)− y

)]
, (171)

for (y, t) ∈ R
n × [t′, T ]. It is known that u satisfies the PDE

∂u

∂t
=

(
LR

)∗
u+ η(y, T − t)u , ∀ (y, t) ∈ R

n × (t′, T ] ,

u(y, t ; y′, t′) = δ(y − y′) , if t = t′ ,

(172)

where the operator LR is defined in (97) and
(
LR

)∗
denotes its formal L2 adjoint. A direct

calculation shows that

(
LR

)∗
φ =

[
∂

∂yi

(
(Pa)ij

∂V

∂yj

)
+

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)if−

γ′

)]
φ

+

[
(Pa)ij

∂V

∂yj
+

1

β

∂(Pa)ij
∂yj

+ (Ψ−1)γγ′(a∇ξγ)if−
γ′

]
∂φ

∂yi
+

1

β
(Pa)ij

∂2φ

∂yi∂yj
,

(173)

for a smooth function φ.

For the right hand side of (98), fixing (y′, t′) ∈ R
n × [0, T ], we define the function g for

(y, t) ∈ R
n × [t′, T ] as

g(y, t) = Ey,T−t

[
e−βW exp

(∫ T−t′

T−t

η
(
y(s), s

)
ds

)
δ
(
y(T − t′)− y′

)]
,

where W is defined in (99), and the dynamics y(·) satisfies the SDE (93). Using the same

argument as in Lemma 1, we can verify that g satisfies the PDE

∂g

∂t
= L g + η(·, T − t)g , ∀ (y, t) ∈ R

n × (t′, T ] ,

g(y, t) = δ(y − y′) , if t = t′ ,

(174)

where the operator L is defined as

Lφ =

[
− β(Ψ−1)γγ′(a∇ξγ)if−

γ′

∂V

∂yi
+

∂

∂yi

(
(Ψ−1)γγ′(a∇ξγ)if−

γ′

)]
φ

+ L⊥φ+ (Ψ−1)γγ′(a∇ξγ)if−
γ′

∂φ

∂yi

(175)

for a smooth function φ. Now consider the function ω(y, t) = e−βV (y)g(y, t). A direct calculation

shows that

e−βV L⊥g =e−βV

[
− (Pa)ij

∂V

∂yj

∂
(
eβV ω

)

∂yi
+

1

β

∂(Pa)ij
∂yj

∂
(
eβV ω

)

∂yi
+

1

β
(Pa)ij

∂2
(
eβV ω

)

∂yi∂yj

]

=

[
∂

∂yi

(
(Pa)ij

∂V

∂yj

)]
ω +

[
(Pa)ij

∂V

∂yj
+

1

β

∂(Pa)ij
∂yj

]
∂ω

∂yi
+

1

β
(Pa)ij

∂2ω

∂yi∂yj
,

e−βV ∂g

∂yi
=e−βV

∂
(
eβV ω

)

∂yi
= β

∂V

∂yi
ω +

∂ω

∂yi
.

(176)
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Combining (97), (174), (175), (176), it follows that the function ω satisfies the PDE

∂ω

∂t
= e−βV

[
L g + η(·, T − t)g

]
=

(
LR

)∗
ω + η(y, T − t)ω , ∀ (y, t) ∈ R

n × (t′, T ] ,

ω(y, t) = e−βV (y′)δ(y − y′) , if t = t′ .

Comparing this with the equation of function u in (172), we obtain

e−βV (y′)u(y, t ; y′, t′) = ω(y, t),

which is equivalent to (98).
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