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Zusammenfassung

In vielen experimentellen und natürlichen Systemen treten kritische Übergänge, d.h.
abrupte Wechsel von einem dynamischen Zustand in einen anderen, auf. Zum Beispiel
in Klimasystemen können in der untersten Schicht der Atmosphäre, genauer gesagt
der atmosphärischen Grenzschicht, abrupte Übergänge zwischen gänzlich turbulenten
Zuständen und stabilen festgestellt werden. Solche abrupten Übergänge werden ins-
besondere in Polarregionen und in der Nacht beobachtet. Sie sind äußert relevant für
den Grad der Durchmischung mit den höheren Ebenen der Grenzschicht. Um die sta-
bil geschichte Grenzschicht analysieren zu können verwenden viele Ansätze eine Klassi-
fizierung der Zustände in der Grenzschicht in schwach und sehr stabile Zustände. Aus
diesem Grund ist eine Methode zur Erkennung der Übergänge unerlässlich.

In dieser Masterarbeit werden diese Übergänge in der stabil geschichteten Grenzschicht
der Atmosphäre mit Hilfe von verschiedenen Methoden der statistischen Modellierung
und aus dem Bereich der Dynamischen Systeme untersucht. Die Grundlage für die
Analyse bilden ein Indikator für die Stabilität (Resistenz gegnüber Störungen) und ein
Model für Übergänge von Temperaturinversionen in Bodennähe in der Nacht und in ark-
tischen Konditionen. Ein besonderer Fokus liegt dabei auf Bifurkationspunkte, Punkte
in denen sich die Stabilität des Systems drastisch verändert. Die Zuverlässigkeit des
Stabilitätsindikators wird mittels simulierter Daten und echter Daten, gemessen in der
Nacht und in der Antarktis, überprüft. Die Resultate zeigen, dass die Übergänge zu-
verlässig erkannt werden.
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Abstract

Many experimental or natural systems undergo critical transitions, i.e. sudden shifts
from one dynamical regime to another. For example in the climate system, the lower
atmospheric layer, namely the atmospheric boundary layer, can experience sudden tran-
sitions between fully turbulent states and stable, quasi-laminar states. Such rapid tran-
sition are observed in Polar regions and at night, and have important consequences in
the level of mixing with the higher levels of the atmosphere. To analyse the stable
boundary layer many approaches rely on the identification of regimes, i.e. weakly and
very stable regimes. Therefore, it is crucial to detect the transitions between the regimes.

In this master thesis a combination of methods from dynamical systems and statisti-
cal modelling are applied to study these regime transitions. The analysis is based on an
indicator for the dynamical stability (i.e. the resilience to pertubations) and a concep-
tual model for regime transitions of near-surface temperature inversion at night as well
as in Arctic conditions. A focus lies on bifurcation points in the dynamics, points in
which the stability of the system changes drastically. The performance of the stability
indicator is assessed by applying it to simulated and observation data, provided from
nighttime and Polar meteorological measurements.
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1. Introduction

The atmospheric boundary layer (BL) is the part of the troposphere that is directly
influenced by the earth’s surface [Stull (2009)]. It is the area in which we live and most
human activities take place. The list of direct and indirect influences of the atmospheric
boundary layer (BL) on our lives is very long. Therefore, a deep knowledge of the pro-
cesses that take place therein are important for various research areas and are of high
interest for us.

The BL thickness varies between hundreds of meters and a few kilometres. One of
its key characteristics is the change of its structure with the diurnal cycle. In figure 1.1
the diurnal evolution of the BL in high pressure regions over land is shown. At sunrise

Figure 1.1.: diurnal evolution of the BL [on the basis of graphic by Stull (2009)]

a turbulent mixed layer starts to form due to the heating of the grounds and begins
to grow in depth. Its maximum depth is reached in the late afternoon and about half
an hour before sunset turbulence decays leaving a residual layer in place of the mixed
layer. As night progresses, the bottom portion of the residual layer is transformed by
its contact with the ground into a stable boundary layer (SBL). Generally speaking, the
boundary layer can become stably stratified by the advection of warm air over a colder
surface. The density of air changes with the variation of its temperature. Thus, in the
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SBL there is a denser flow at the bottom and layered above is a less dense one. This is
called a stable stratification. As a result of long-wave radiative cooling a stably stratified
boundary layer often forms at night over land, where it is known as nocturnal boundary
layer (NBL), or in Arctic conditions due to the presence of cold snow and the ice surface.
If the density stratification is great enough near the the surface to cause temperatures
to increase with height, then that part of the SBL is classified as a temperature inversion.

The dynamics in the SBL are very complex and as a result hard to describe and model.
Nonetheless, several approaches have been made. The approaches generally rely on
identifying multiple regimes of the dynamics in the SBL. It is often broadly classified in
weakly stable and very stable regimes. We use the definitions by Mahrt (2014): ”The
weakly stable regime usually includes a well-defined boundary layer in which the tur-
bulence decreases with height and becomes small at the top of the boundary layer. The
turbulence is relatively continuous in both time and space. Weakly stable conditions occur
with either cloud cover or significant airflow.[...]The very stable regime occurs with strong
stratification and weak winds and does not follow the traditional concept of a boundary
layer. For example, the turbulence may increase with height and reach a maximum in
a layer only intermittently coupled to the surface. The very stable regime will include a
variety of different scenarios and vertical structures, and a unifying conceptual picture
is not available.” There exist more detailed classification schemes which may include a
transition regime between the weakly and very stable regime and an extremely stable
regime. We focus on weakly and very stable regimes.

Van de Wiel et. al. define a conceptual model in their paper [van de Wiel et al. (2017)]
to understand the regime transitions of near-surface temperature inversions at night as
well as in Arctic conditions. Moreover, Nevo et. al. define in their paper [Nevo et al.
(2017)] an indicator for the hydro-dynamical stability of the SBL using a combination
of dynamical systems concepts and stochastic processes tools. We concentrate on these
two approaches.

This master thesis is organized as follows: In chapter 2 the essential concepts of au-
toregressive moving average, ARMA(p,q), modelling, which are needed in the following
chapters, are introduced. Then, in chapter 3 the model for the regime transitions and its
equilibrium properties are analysed. In chapter 4 the stability indicator is introduced.
Moreover, we analyse its mathematical background and we explain how a window length
which needs to be defined to calculate the stability indicator can be chosen. Thereafter,
in chapter 5 we apply the stability indicator to controlled data generated by the concep-
tual model for regime transitions and two observational data sets. Finally, in chapter 6
we give an outlook for another approach to choose the window length.

2 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019



2. Statistics / ARMA(p,q) Processes

This chapter gives an overview over the statistical concepts, especially ARMA(p,q) re-
lated ones, which are needed in this master thesis. In particular, in chapter 4 ARMA(p,q)
process play an important role.

2.1. Introduction to ARMA Processes

First of all a time series is the same as a stochastic process indexed by integers. The
term ”time series” is nonetheless often used to refer to the realization of a time-series
process. Because it will be clear from the context of the discussion the term time series
will be used in this thesis to refer to both the processes and the realization.

Definition 2.1.1. (stochastic process) [Klenke (2008)]
Let I ⊂ R. A family of random variables X = {xt|t ∈ I} (on the probability space
(Ω,F , P r) where Ω is the sample space, F a filtration and Pr a probability measure)
with values in (E, E) is called a stochastic process with index set I and range E.

If not specified otherwise the random variables will be real-valued, i.e. (E, E) = (R,B(R))
with B(R) being the Borel σ-algebra on R. To shorten notation we write {xt} for the
stochastic process.

Often there exists some sort of regularity in the behaviour of a time series. The no-
tion of regularity is introduced by the concept of stationarity.

Definition 2.1.2. (strictly stationary) [Shumway (2017)]
A strictly stationary time series is one for which the probabilistic behaviour of every
collection of variables

{xt1 , xt2 , ..., xtk}

is identical to that of the time shifted set

{xt1+h , xt2+h , ..., xtk+h}.

That is
Pr{xt1 ≤ c1, ..., xtk ≤ ck} = Pr{xt1+h ≤ c1, ..., xtk+h ≤ ck}
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for all k = 1, 2, ..., all time points t1, t2, ..., tk, all numbers c1, c2, ..., ck and all time shifts
h = 0,±1,±2, ... .

This version of stationarity is often too strong and it is difficult to assess with only one
data set. Hence, a milder version is commonly used.

Definition 2.1.3. (weakly stationary) [Shumway (2017)]
A weakly stationary time series, {xt} is a finite-variance process, i.e. var(xt) <∞, such
that

i. the mean value function, µt = E(xt) =
∫∞
−∞ xft(x)dx, is constant and does not

depend on time t, and

ii. the autocovariance function, γ(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)], depends
on s and t only through their difference |s− t|.

If it is not specified otherwise the term stationary will be used instead of weakly sta-
tionary.

A strictly stationary process with finite second moments i.e. E[x2
t ] < ∞, is stationary

but the converse is not true. There is one important case however in which stationarity
implies strict stationarity.

Definition 2.1.4. (Gaussian time series)[Brockwell (1991)]
The process {xt} is a Gaussian time series if and only if the distribution functions of
{xt} are all multivariate normal.

By defining the n-dimensional vector X = (xt1 , . . . , xtn)T , the n × 1 mean vector µ =
(µt1 , . . . , µtn)T and the n × n covariance matrix Σ = {γ(ti, tj)|i, j = 1, . . . n}, which is
assumed to be positive-definit, the multivariate density function of X ∈ R can be written
as

f(X) = (2π)−
n
2 |Σ|−

1
2 exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
where | · | denotes the determinant.

If {xt} is a stationary Gaussian process {xt} is also strictly stationary, since for all n ∈ N
and for all h, t1, t2, ... ∈ Z, the random vectors (xt1 , ..., xtn)T and (xt1+h, ..., xtn+h)T have

4 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019
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the same mean and covariance matrix and, hence the the same distribution.

To define an autoregressive model it is essential to explain white noise first. White noise
is a time series generated from a collection of uncorrelated 1 random variables wt, with
mean 0 and finite variance σ2

w. The process is denoted as {wt} ∼ wn(0, σ2
w). A white

noise process is stationary but not necessarily strictly stationary. Moreover, Gaussian
white noise is independent. Because in the case of Gaussianity uncorrelated random
variables are also independent.

Definition 2.1.5. (autoregressive model) [Shumway (2017)]
An autoregressive model of order p, abbreviated AR(p), is of the form

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt (2.1)

=

p∑
i=1

φixt−i + wt (2.2)

where {xt} is stationary, {wt} is white noise and φ1, φ2, ..., φp are constants (φp 6= 0).
We can assume that E(xt) = µ = 0 since we can otherwise replace xt by xt − µ. Hence,

xt − µ = φ1(xt−1 − µ) + ...+ φp(xt−p − µ) + wt

or one can write
xt = α+ φ1xt−1 + ...+ φpxt−p + wt

where α = µ(1− φ1 − ...− φp).

Note: If µ = 0 it follows directly that α = 0. Furthermore, it holds that

µ = E[xt]

= E[α+ φ1xt−1 + ...+ φpxt−p + wt]

= α+

p∑
i=1

φiµ

= µ− µ
p∑
i=1

φi + µ

p∑
i=1

φi

= µ.

Thus, this is well defined.

1That means ρ(s, t) = γ(s,t)√
γ(s,s)γ(t,t)

= 0 for s 6= t, with ρ(s, t) being the autocorrelation function.

Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019 5
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Example 2.1.6. (the AR(1) model) [Shumway (2017)]
The AR(1) model is given by

xt = φxt−1 + wt. (2.3)

Provided that |φ| < 1 and supt var(xt) < ∞, an AR(1) model can be represented as a
linear process given by

xt =
∞∑
i=0

φiwt−i. (2.4)

This can be shown by iterating equation 2.3. The mean of the process defined in 2.4 is

E[xt] =
∞∑
i=0

φiE[wt−i]

= 0

and the autocovariance function is

γ(h) = cov(xt+h, xt)

= E[(

∞∑
j=0

φjwt+h−j)(

∞∑
k=0

φkwt−k)]

= E[(wt+h + ...+ φhwt + φh+1wt−1 + ...)(wt + φwt−1 + ...)]

1

= E[(φhwt)wt + (φh+1wt−1)(φwt−1) + ...]

= var(wt)φ
h + var(wt−1)φh+1φ+ ...

= σ2
w

∞∑
j=0

φh+jφj

= σ2
wφ

h
∞∑
j=0

φ2j

2

=
σ2
wφ

h

1− φ2
, for h ≥ 0.

Hence, the process given by 2.4 is indeed stationary.

Definition 2.1.7. (moving average model) [Shumway (2017)]
The moving average model of order q, or MA(q) model, is defined as

xt = wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q (2.5)

where {wt} ∼ wn(0, σ2
w) and θ1, θ2, ..., θq (θq ≥ 0) are constants.

1Note: 0 = ρ(j, k) =
cov(xj ,xk)√
var(xj)var(xk)

=
cov(xj ,xk)

σ2
w

and that implies E[wjwk] = 0 for j 6= k

2geometric series

6 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019
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Unlike the autoregressive process the moving average process is stationary for any values
of the parameters θ1, ..., θq.

Definition 2.1.8. (ARMA(p,q)) [Shumway (2017)]
A time series {xt, t = 0,±1,±2, ...}, is an ARMA(p,q) process if it is stationary and

xt = φ1xt−1 + φ2xt−2 + ...+ φpxt−p + wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q (2.6)

with φp ≥ 0, θq ≥ 0 and σ2
w > 0. The parameters p and q are called the autoregressive

and moving average orders, respectively. If {xt} has a non-zero mean µ, we set α =
µ(1− φ1 − ...− φp) and write the process as xt = α+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p +
wt + θ1wt−1 + θ2wt−2 + ...+ θqwt−q where {wt} ∼ wn(0, σ2

w).

The polynomials
φ(z) = 1− φ1z − ...− φpzp, φp 6= 0

and
θ(z) = 1 + θ1z + ...+ θpz

p, θp 6= 0,

with z ∈ C, are required to have no common factors to avoid parameter redundant
models. This ensures that the model can’t be reduced to a simpler one.

It is often convenient to use the abbreviated form of 2.6

φ(B)xt = θ(B)wt

where φ(·) and θ(·) are the before mentioned polynomials and B is the backshift opera-
tor, i.e. Bjxt = xt−j , B

jwt = wt−j for j = 0,±1,±2, ... .

An important part of the Definition 2.1.8 is the requirement that {xt} is stationary.
The following theorem states the conditions for a unique solution of 2.6 to exist.

Theorem 2.1.9. (existence and uniqueness)[Brockwell (2016)]
A stationary solution {xt} of equation 2.6 exists (and is also the unique stationary
solution) if and only if

φ(z) = 1− φ1z − ...− φpzp 6= 0, for all |z| = 1, z ∈ C

Note: The region defined by the set of complex z such that |z| = 1 is referred to as the
unit circle.

Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019 7
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Proof: (sketch)
The idea of the proof is to show that the solution xt of 2.6 can be written as

xt =

∞∑
j=−∞

ψjwt−j

if φ 6= 0 for |z| = 1. This is done by showing that φ−1 exists and can be defined as the
linear filter with absolutely summable coefficients

χ(B) :=
1

φ(B)
=

∞∑
j=−∞

χjB
j .

Applying the operator χ(B) to both sides of φ(B)xt = θ(B)wt we get

xt = χ(B)φ(B)xt

= χ(B)θ(B)wt

= ψ(B)wt

where ψ(z) := χ(z)θ(z) =
∑∞

j=−∞ ψjz
j . It can be shown that xt =

∑∞
j=−∞ ψjwt−j is

indeed the unique solution and stationary.

Further details are for example given in Brockwell (2016) and Brockwell (1991).

We say that the solution {xt} of an ARMA process is causal or a causal function of
{wt} if {xt} can be expressed in terms of the current and past values of {ws}, s ≤ t. If
{wt} can be expressed in terms of {xs}, s ≤ t we say the ARMA process is invertible.

Definition 2.1.10. (causality) [Brockwell (2016)]
An ARMA(p,q) process {xt} is causal, or a causal function of {wt}, if there exist con-
stants {ψj} such that

∑∞
j=0 |ψj | <∞ and

xt =
∞∑
j=0

ψjwt−j for all t.

Causality is equivalent to the condition

φ(z) = 1− φ1z − ...− φpzp 6= 0 for all |z| ≤ 1. (2.7)

The proof of the equivalence between causality and 2.7 is for example given in the book
by Shumway (2017).

8 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019
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Definition 2.1.11. (invertibility) [Brockwell (2016)]
An ARMA(p,q) process {xt} is invertible if there exist constants {πj} such that∑∞

j=0 |πj | <∞ and

wt =

∞∑
j=0

πjxt−j for all t.

Invertibility is equivalent to the condition

θ(z) = 1 + θ1z + ...+ θqz
q 6= 0 for all |z| ≤ 1. (2.8)

The proof of the equivalence between invertibility and 2.7 is analogous to the one of the
equivalence between causality and 2.7.

2.2. Modeling with ARMA Processes

In chapter 4 it will be essential to determine the best fitting ARMA(p,q) model to
represent an observed stationary time series. This involves several interrelated problems
like the choice of p and q (order selection) and the estimation of the mean, the coefficients
{φi, i = 1, ..., p}, {θi, i = 1, ..., q}, and the white noise variance σ2

w. Especially the
selection of the appropriate order of the ARMA(p,q) model is crucial for applying the
method defined in chapter 4. However, there are several procedures for selecting the
model which fits best. The ones used in chapter 4 are information criteria. The criteria
are based on the assumption that for a fixed number of observations the successive
increase of the orders p and q increases the fit of the model. In order to compensate for
the criteria’s tendency to over fitting a penalty is introduced. This penalty term depends
on the number of free parameters and on the number of observations. The criteria uses
the Maximum Likelihood estimator. This is a method to estimate an unknown value θ
which is in a given set Θ after observing random variables x1, ..., xn whose distribution
can be different for different values of θ.

Definition 2.2.1. (likelihood function, maximum likelihood estima-
tor)[Dudewicz (1976)]
Let x1, ..., xn be random variables (not necessarily independent or identically dis-
tributed) with joint distribution function F (c1, ..., cn; θ) = Pr{x1 ≤ c1, ..., xn ≤ cn; θ}
where θ ∈ Θ is unknown. The likelihood function is

L(θ) =

{
f(x1, ..., xn; θ) if F has a density f

p(x1, ..., xn; θ) if F has a probability mass function p
(2.9)

Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019 9
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Any θ̂MLE = θ̂MLE(x1, ..., xn) ∈ Θ such that

L(θ̂MLE) = sup{L(θ)|θ ∈ Θ} (2.10)

is called a maximum likelihood estimator (MLE) of θ.

Often the natural logarithm of L is used instead of L as it simplifies calculations. The
logarithm is a monotone transformation thus the values that maximise L(θ) also max-
imise l(θ) := ln(L(θ)). This function is referred to as the log-likelihood function.

To calculate the maximum likelihood estimator for an ARMA(p,q) process we must make
some assumptions (the same as in chapter 4). Namely, we require {xt} to be a linear,
causal and invertible process and {wt} to be a Gaussian white noise process.

Definition 2.2.2. (linear process)[Brockwell (2016)]
The time series {xt} is a linear process if it has the representation

xt =
∞∑

j=−∞
ψjwt−j

for all t, where {wt} ∼ wn(0, σ2
w) and {ψj} is a sequence of constants with

∞∑
j=−∞

|ψj | <∞.

Let β := (φ1, ..., φp, θ1, ..., θq) and θ := (β, σ2
w) be the vector of unknown and to be esti-

mated parameters and X := (x1, ..., xn)T . Under the given assumptions the admissible
set for β, Θ, is given by

Θ = {β ∈ Rp+q|φ(z)θ(z) 6= 0 for |z| ≤ 1, φp, θq 6= 0, φ(z) and θ(z) have no common zeros}

The idea of the maximum likelihood method is to find β and σ2
w so that the probability

to observe X is maximal. Given the above made assumptions the likelihood function of
the ARMA(p,q) model is

L(θ) =
1√

(2π)n det(Σ)
exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
(2.11)

where µ is the expected value and Σ the non-singular covariance matrix of X depending
on θ.

10 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019
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Note: In Appendix C we show that a linear process {xt} is stationary and Gaussian
if {wt} is Gaussian.

Without loss of generality we can also assume that E(xt) = 0, i.e. µ = 0, because
we can easily transform the data to fit this requirement. This assumption always holds
for a linear process. Thus,

L(θ) =
1√

(2π)n det(Σ)
exp

(
−1

2
XTΣ−1X

)
=

1√
(2πσ2

w)n det(Γ)
exp

(
− 1

2σ2
w

XTΓ−1X

)
, (2.12)

where Γ = 1
σ2
w

Σ, and

l(θ) = ln

[
1√

(2π)n det(Σ)
exp

(
−1

2
XTΣ−1X

)]
= −1

2

[
n ln(2π) + ln(det(Σ)) +XTΣ−1X

]
= −1

2

[
n ln(2πσ2

w) + ln(det(Γ)) +
1

σ2
w

XTΓ−1X

]
(2.13)

Note: Γ, contrary to Σ, does not depend on σ2
w and only on β.

The optimal value for σ2
w can be derived by

δl(θ)

δσ2
w

= −n
2

1

σ2
w

+
1

(2σ2
w)2

XTΓ−1X = 0. (2.14)

Solving equation 2.14 we get σ̂2
wMLE

= 1
nX

TΓ−1X. Inserting this in equation 2.13 we
get

l(β) = −1

2

[
n ln(2π

1

n
XTΓ−1X) + ln(det(Γ)) +

1
1
nX

TΓ−1X
XTΓ−1X

]

= −1

2

[
n ln(2π) + n ln(

1

n
XTΓ−1X) + ln(det(Γ)) + n

]
(2.15)

To get the maximum likelihood estimator for β, β̂MLE , we need to find the maximum
of this equation. But the computation of det(Γ) and Γ−1 are numerically expensive and
are therefore often avoided in practice. This problem can be circumvented by using an
innovation algorithm. For the innovation algorithm we need the least squares predictor
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Pt−1 of xt given xt−1, . . . , x1 and the mean squared forecast error vt−1.

Pt−1 = at−1,1xt−1 + · · ·+ at−1,t−1x1 with P0x1 = 0,

vt−1 = E[(xt − Pt−1xt)
2],

X := (x1, . . . , xn)T and

X̂ := (0,P1x2, . . . ,Pt−1xt)
T .

Therefore, X − X̂ = AX with

A :=


1 0 0 . . . 0
−a1,1 1 0 . . . 0
−a2,2 −a2,1 1 . . . 0

...
...

...
. . . 0

−at−1,t−1 −at−1,t−2 −at−1,t−3 . . . 1


and the inverse of A is

C :=


1 0 0 . . . 0
c1,1 1 0 . . . 0
c2,2 c2,1 1 . . . 0

...
...

...
. . . 0

ct−1,t−1 ct−1,t−2 ct−1,t−3 . . . 1

.

Thereby, we can write

X̂ = X − (X − X̂)

= A−1(x− X̂)− (X − X̂)

= (C − I)(X − X̂).

Due to the fact that the first row of C − I, I being the identity matrix, is 0 it follows

Ptxt+1 =

{
0 for t = 0∑t

j=1 ct,j(xt+1−j − Pt−jxt+1−j) for t = 1, 2, . . . , t− 1.
(2.16)

Thus, we can calculate P0x1,P1x2, . . . recursively if the coefficients ci,j are known. These
coefficents can be again recursively calculated by

v0 = γ(0)

ct,t−k = v−1
k (γ(t− k)−

k−1∑
j=0

ck,k−jct,t−jvj) 0 ≤ k < t

vt = γ(0)−
t−1∑
j=0

c2
t,t−jvj
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FromX = C(X−X̂) it follows that Σ = cov(X) = CDCT , whereD = diag(v0, v1, . . . , vn) =
E[(X − X̂)(X − X̂)T ] and thus

XTΣ−1X = XT (CDCT )−1X

= XT [X(X − X̂)−1D(X(X − X̂)−1)T ]−1X

= (X − X̂)TD−1(X − X̂)

=

n∑
t=1

(xt − Pt−1xt)
2

vt−1

and

det(Σ) = det(C)2 det(D)

= v0v1vn−1.

Inserting this in the Likelihood function 2.12 gives

L(θ) =
1√

(2πσ2
w)n(r0r1 · · · rn−1)

exp

(
− 1

2σ2
w

n∑
t=1

(xt − Pt−1xt)
2

rt−1

)

with rt := vt
σ2
w

. Pt−1xt and rt do not depend on σ2
w so that the partial differentiation

of the log-likelihood function with respect to the parameters leads to the maximum
likelihood estimator. This estimator fulfils the following equations:

σ̂2
wMLE

=
1

n
S(β̂MLE)

=
1

n

n∑
t=1

(xt − Pt−1xt)
2

rt−1
)

where β̂MLE denotes the value of β ∈ Θ that maximizes the log-likelihood function l(β).
This optimization problem must be solved numerically.

The Bayesian information criterion (BIC) is one of the most widely known and used
tools in statistical model selection. It was derived by Schwarz [Schwarz (1978)] to be
used as an asymptotic approximation to a transformation of the Bayesian posterior prob-
ability of a candidate model [Neath & Cavanaugh (2012)]. It is a modified version of the
Akaike information criterion (AIC). The computation of the BIC is based on the maxi-
mum likelihood function. Suppose we have a collection of candidate models M1, . . . ,Mk.
These models can be based of different means, variance, covariance and even different
distributions. We aim to find the best fitting ARMA(p,q) model for our data. The BIC
for a candidate model is defined as

BIC = −2ln(L(β̂MLE)) + kln(n)

= −2ln(L(β̂MLE)) + (p+ q + 1)ln(n), (2.17)
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where k is the number of unknown and to be estimated parameters and n the length of
the time series.
In practice, every BIC for every considered model M1, . . . ,Mk is calculated and then the
one corresponding to the minimal BIC is selected. The original derivation assumes that
the observations are independent, identically distributed and come from an exponential
family. The concept of exponential families is credited to E. J. G. Pitman, G. Darmois
and B. O. Koopman in 1935–36. Exponential families are for example important in
Bayesian statistics.

Definition 2.2.3. (exponential family) [Olive (2014)]
A family of joint probability density functions or joint probability mass functions
{f(x; θ)|θ ∈ Θ} for a random vector X, x ∈ X, is an exponential family if

f(x; θ) = h(x)c(θ)exp[

l∑
i=1

ai(θ)bi(x)]

for all x where c(θ) ≥ 0 and h(x) ≥ 0. The functions c, h, bi and ai are real valued
functions.

With the above mentioned assumptions the conditions for the application of the BIC
are given and therefore we can use it in chapter 4.

As mentioned beforehand the BIC is very similar to the AIC. This information criterion
is also based on the maximum likelihood estimator but the penalty term is different

AIC = −2L(β̂MLE) + 2k

= −2ln(L(β̂MLE)) + 2(p+ q + 1). (2.18)

The third information criterion that is relevant in chapter 4 is the corrected Akaike
information criterion, AICc,

AICc = −2ln(L(β̂MLE))− 2(p+ q + 1)n

n− p− q − 2
. (2.19)

A comparison of the BIC, AIC and AICc is done in section 4.
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3. Regime Transitions in Near-Surface
Temperature Inversions: A Conceptual
Model

In the paper by van de Wiel et al. (2017) a conceptual model is introduced to study
regime transitions of near-surface temperature inversions in the nocturnal and polar
atmospheric boundary layer. The authors were able to determine a connection between
the dynamic stability of the inversion and the ambient wind speed U through their model
and measurements. This is for example shown when plotting the temperature inversion

Figure 3.1.: Temperature inversion between
10m and the surface, as a func-
tion of wind speed as observed
at Dome C, Antarctica, for the
period 2014/2015. Each points
corresponds to a 30 min av-
eraged measurement. [van de
Wiel et al. (2017)]

between 10m and the surface, as a func-
tion of wind speed observed at Dome C,
Antarctica, for the period 2014/2015 (see
figure 3.1). The wind speed at height 10m
is represented by U10m, T10m is the tem-
perature at height 10m and Ts the temper-
ature at surface height. The plot shows a
sign of two metastable states: one when
the wind is weak and ∆T = T10m − Ts is
big and one for strong wind where ∆T is
small. The model itself is an initial value
problem with a first order ordinary differ-
ential equation, abbreviated ODE, which
describes the difference between the sur-
face temperature Ts and the one at a ref-
erence height Tr in one time step. In
chapter 4, we present a statistical indi-
cator that was introduced in Nevo et al.
(2017) to estimate the dynamical equilib-
rium properties of time series, based on
a combination of dynamical systems con-
cepts and stochastic processes tools intro-
duced in chapter 2. The present concep-
tual model is used to produce time series
of controlled data for which the theoretical
equilibrium properties are known. In this chapter we present a linear stability analysis
of equilibrium points of the ODE for different values of a bifurcation parameter.
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It is assumed that the wind speed and temperature is constant at a given height zr. Then,
the following equation describes the evolution of the near-surface inversion strength,
based on a simple energy balance at the ground surface:

cv
d∆T

dt
= Qn −G−H

with

• cv: heat capacity of the soil,

• ∆T = Tr−Ts: inversion strength between the temperature at height zr and at the
surface zs,

• Qn: net long wave radiative flux (an energy loss at the surface that will be set as
a constant),

• G: soil heat flux (an energy storage term that will be parametrised as a linear
term) and

• H: turbulent sensible heat flux (a non-linear energy transport term that will be
parametrised in the following).

After parametrizing the fluxes the model has the form:

cv
d∆T

dt
= Qi − λ∆T − ρcpcDU∆Tf(Rb)

with

• Qi: isothermal net radiation,

• λ: lumped parameter, represents feedbacks from soil heat conduction,

• ρ: density of air at constant pressure,

• cp: heat capacity of air at constant pressure,

• cD = ( κ
ln(zr/z0))2: neutral drag coefficient with κ ≈ 0.4 the von Kármán constant,

z0 the roughness length and zr the reference height,

• U : wind speed at height zr,

• Rb = zr(
g
Tr

)∆T
U2 : bulk Richardson number and

• f(Rb): stability function.

The lumped parameter λ corresponds to the linear term in the model as the soil is as-
sumed to respond linearly to the temperature inversion. Moreover, ∆T · f(Rb) is the
non-linear term due to the non-linear dependence of turbulent diffusion on the vertical
temperature gradient.
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The model is simplified to an initial value problem

dx(t)

dt
=

{
Qi − λx(t)− Cx(t)(1− x(t)) for x(t) ≤ 1

Qi − λx(t) for x(t) > 1
(3.1)

x(t0) = x0

where x represents ∆T,C := ρcpcDU and f(x) = 1 − x the linear form of the stability
function of the model, truncated for x > 1 → f(x) = 0. Note that similar types
of stability functions are typically used in numerical weather prediction tools. For a
deeper discussion of the model, its simplifications and the model parameters the reader
is referred to the paper by van de Wiel et al. (2017). In the following, we analyse the
behaviour of equilibrium solutions depending on the values of the parameters C,Qi and
λ.

3.1. Derivation of the Solution of the Simplified Model

The differential equation g(t, x) := dx
dt , g : R → R, in the simplified model 3.1 is a

first order non-linear ordinary differential equation. As it does not depend on t it is an
autonomous ODE, i.e. we can write g(t, x) = g(x). Moreover, g(x) is continuous for all
x ∈ R and differentiable for all x ∈ R \ {1} (see Appendix B for the proof).

Theorem 3.1.1. (existence and uniqueness of solutions)[Hale (1991)]

1. If g ∈ C0(R,R), then, for any x0 ∈ R, there is an interval (possibly infinite)
Ix0 = (αx0 , βx0) containing t0 = 0 and a solution ϕ(t, x0) := x(t) of the initial
value problem

dx

dt
= g(x) (3.2)

x(0) = x0

defined for all t ∈ Ix0, satisfying the initial condition ϕ(0, x0) := x0.

2. If in addition, g ∈ C1(R,R), then ϕ(t, x0) is unique in Ix0 and ϕ(t, x0) is a C1

function.

Thus there exists a unique solution of equation 3.1.

Note: We use t0 = 0 in all of the examples. Nonetheless, we derive the solution x(t) for
an arbitrary t0. We first derive it analytically and afterwards numerically.
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3.1.1. Analytic Derivation

Recall that the model is:

dx(t)

dt
=

{
Qi − λx(t)− Cx(t)(1− x(t)) for x(t) ≤ 1

Qi − λx(t) for x(t) > 1

x(t0) = x0

We will look at the two cases x ≤ 1 and x > 1 separately and derive the solution for
each of these cases.
1. case: x ≤ 1

dx

dt
= Qi − λx− Cx(1− x)

= Cx2 − x(λ+ C) +Qi

⇔ 1 =
1

Cx2 − x(λ+ C) +Qi

dx

dt

⇔
∫

1dt =

∫
1

Cx2 − x(λ+ C) +Qi
dx (3.3)

After completing the square in the right hand side integral, the integral has the form:

=

∫
1

C(x− λ+C
2C )2 +Qi − (λ+C)2

4C

dx

We substitute u := x− λ+C
2C , du = dx

=

∫
du

Cu2 − (C+λ)2

4C +Qi

We factor Qi − (C+λ)2

4C out

=

∫
du(

Qi − (C+λ)2

4C

)(
1− 4C2u2

C2+2Cλ−4CQi+λ2

)
=

1

Qi − (C+λ)2

4C

∫
du

1− 4C2u2

C2+2Cλ−4CQi+λ2

We substitute again s = 2iCu√
C2+2C(λ−2Qi)+λ2

, ds = 2iCdu√
C2+2C(λ−2Qi)+λ2

= −
i
√
C2 + 2C(λ− 2Qi) + λ2

2C
(
Qi − (C+λ)2

4C

) ∫
ds

s2 + 1
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The integral
∫

1
s2+1

= tan−1(s)

= −
itan−1(s)

√
C2 + 2C(λ− 2Qi) + λ2

2C
(
Qi − (C+λ)2

4C

) + c1

We substitute back for s

= −
2tanh−1

(
2Cu√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

+ c1

and for u

= −
2tanh−1

(
C(2x−1)−λ√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

+ c1

Hence,

dx

dt
= Qi − λx− C(1− x)

⇔
∫

1dt =

−2tan−1

(
C(2x−1)−λ√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

+ c1

⇔ t+ c2 =

−2tan−1

(
C(2x−1)−λ√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

+ c1

⇔ c̃ =

−2tan−1

(
C(2x−1)−λ√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

− t (3.4)

with c̃ = c2 − c1 where c1 and c2 are arbitrary numbers. By using the initial condition
x(t0) = x0 we get:

c̃ =

−2tan−1

(
C(2x0−1)−λ√

C2+2(λ−2Qi)+λ2

)
√
C2 + 2(λ− 2Qi) + λ2

− t0

Rearranging equation 3.4 gives:

x(t) =
1

2

[√
C2 + 2(λ− 2Qi) + λ2tanh

(
−
√
C2 + 2(λ− 2Qi) + λ2(t+ c̃)

2

)
+ λ

]
+

1

2
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2. case: x > 1

dx

dt
= Qi − λx

⇔
∫

1dt =

∫
1

Qi − λx
dx

⇔ t+ a = − log(Qi − λx)

λ
⇔ −λ(t+ a) = log(Qi − λx)

⇔ exp(−λ(t+ a)) = Qi − λx

Thus,

x(t) =
Qi − exp(−λ(t+ a))

λ

with a some arbitrary number. Again by using the initial condition x(t0) = x0 we get

a = − log(Qi − λx0)

λ
− t0

Figure 3.2 is a plot of x(t) with Qi = 3, λ = 2 and C = 8 for three different initial
conditions. We can see that all solutions, for the three initial conditions, converge to the

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

x

x(0)=0.5
x(0)=0.625
x(0)=0.7

Figure 3.2.: Plot of x(t)

constant solution x(t) = 0.5. This behaviour is explained in section 3.2.
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3.1.2. Numerical Integration

To approximate the solution numerically we use a Runge-Kutta method [Corless (2013)].
The idea of Runge-Kutta methods is to evaluate the derivative function g(t, x) more than
once, at different points, and then to use a weighted average of the obtained values as an
approximation of the slope of the secand. The general Runge-Kutta method is defined
as

xk+1 = xk + h
s∑
i=1

biki

ki = g(tk + cih, xk + h

i−1∑
j=1

ai,jkj)

where h is step size, s number of stages, bi weights and the matrix A = [ai,j ] is called
the Runge-Kutta matrix. The information for explicit methods can be summarized in a
tableau, called a Butcher tableau, of the form

c A

bT
=

0 0 0 0 · · · 0

c2 a2,1 0 0 · · · 0

c3 a3,1 a3,2 0 · · · 0
...

...

cs as,1 as,2 · · · as,s−1 0

b1 b2 · · · · · · bs

The classical Runge-Kutta method, RK4 (s=4), has the following Butcher tableau:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

It is a fourth order accurate method [Corless (2013)]. The major advantage of the Runge-
Kutta 4 method is the ease of implementation, which will be especially important in
section 4, while still being accurate. Figure 3.3 shows that the classical Runge-Kutta
method, unlike the Euler method, gives a very good approximation for x(t) and the

relative error, err := |x(tk)−xk|
k , k = 1, · · · , n, is close to zero for h = 0.01 which is due

to the fact the RK4 method has better stability properties than the Euler method and
is therefore a good choice to integrate the nonlinear ODE from the simplified model.
Consequently, we use the RK4 method in chapter 5.
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Figure 3.3.: comparison of the analytically and numerically derived solution (top) and
their relative errors (bottom) (Qi, λ, C from example 2 in the paper by van de
Wiel et al. (2017)). From left to right: h = 1 and h = 0.01.
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3.2. Bifurcation Analysis

The next step is to find the equilibrium solutions of the simplified model and to char-
acterize their stability properties. Roughly speaking an equilibrium point xe is stable if
all solutions starting near xe stay nearby in the course of time. If, in addition, nearby
solutions tend to xe as t→∞, then xe is asymptotically stable [Hale (1991)]. A precise
definition is given later in this section.

Definition 3.2.1. (equilibrium point)[Hale (1991)]

An equilibrium point is a solution x(t) = xe for which dx(t)
dt = 0.

Recall:

dx(t)

dt
=

{
Qi − λx(t)− Cx(t)(1− x(t)) for x(t) ≤ 1

Qi − λx(t) for x(t) > 1

x(t0) = x0

We look at the cases x ≤ 1 and x > 1 separately when calculating the equilibria.

1. case: x ≤ 1

0 =
dx

dt
= Cx2 − x(λ+ C) +Qi

= x2 − x
(
λ

C
+ 1

)
+
Qi
C

⇒ xe1 =
λ
C + 1

2
−

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

(3.5)

xe2 =
λ
C + 1

2
+

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

(3.6)

2. case: x > 1

0 =
dx

dt
= Qi − λx

⇒ xe3 =
Qi
λ

(3.7)
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Example 3.2.2. Let λ = 2, Qi = 3 and C = 8. With the given parameters the simplified
model 3.1 has the form

dx

dt
=

{
3− 2x− 8x(1− x) for x ≤ 1

3− 2x for x > 1

x(t0) = x0

The equilibrium solutions for the model with the given parameters are xe1 = 1
2 , xe2 = 3

4
and xe3 = 3

2 . They can also be found by plotting the energy demand = Qi = 3 (dashed
line) and the energy supply = λx−Cx(1−x) = 2x+ 8x(1−x) (solid line) as a function
of x (see figure 3.4a) or by plotting dx

dt (see figure 3.4b). Equilibria are represented by
the two intersection points of the energy demand and supply graphs or respectively the
intersection points with the x-Axis.

(a) energy demand (dashed line) and supply
(solid line) as function of x

(b) plot of ẋ = dx
dt

Figure 3.4.: plots of dx
dt

The paper by van de Wiel et al. (2017) presents more examples of the derivation of the
equilibrium points for the simplified model with different parameter values.

Now, we define the stability of the equilibrium solutions.

Definition 3.2.3. (stable) [Hale (1991)]
An equilibrium point xe of equation 3.2 is said to be stable if, for any given ε > 0, there
is a δ > 0, depending on ε, such that, for every x0 for which |x0 − xe| < δ, the solution
ϕ(t, x0) of equation 3.2 through x0 at 0 satisfies the inequality |ϕ(t, x0)− xe| < ε for all
t ≥ 0. The equilibrium point xe is said to be unstable if it is not stable.
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Definition 3.2.4. (asymptotically stable) [Hale (1991)]
An equilibrium point xe is said to be asymptotically stable if it is stable and, in addition,
there is an r > 0 such that |ϕ(t, x0)−xe| → 0 as t→ +∞ for all x0 satisfying |x0−xe| < r.

These two definitions indicate that the stability of an equilibrium point xe is a local
property of the flow near the equilibrium. In fact, the Grobman-Hartman theorem [Hale
(1991)] justifies the use of a linear approximation in a neighbourhood of the fixed point
for hyperbolic fixed points (see definition 3.2.6). For a one-dimensional system, that
leads to the following theorem.

Theorem 3.2.5. (asymptotically stable) [Hale (1991)]
Suppose g is a C1 function and xe is an equilibrium point of dx

dt = g(x), that is g(xe) = 0.

Suppose also that dg
dx(xe) 6= 0. Then, the equilibrium point xe is asymptotically stable if

dg
dx(xe) < 0 and unstable if dg

dx(xe) > 0.

Proof: Assuming xe is an equilibrium point of

ẋ(t) =
dx

dt
= g(x)

the Taylor expansion of g(x) at xe is

g(x) = g(xe) + g′(xe)(x− xe) + o(||x− xe||)
= g′(xe)(x− xe) + o(||x− xe||). (3.8)

We use the Landau notation because

lim
x→xe

o(||x− xe||)
||x− xe||

= 0.

We set x̄ = x− xe and thus the linearisation of 3.8 is

˙̄x = g′(xe)x̄. (3.9)

From this the statement follows directly.

If not differently specified we will use the term stable instead of asymptotically sta-
ble in the rest of this master thesis.
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Here,

dg

dx
=

{
C(2x− 1)− λ for x < 1

−λ for x > 1

We exclude the case x = 1 because g(x) is not differentiable in x = 1.
Obviously, xe3 is stable for all λ > 0 and unstable for λ < 0. The stability of xe1,2 is
determined by the following calculations.

dg

dx
(xe1,2) = 2C

 λ

2C
+

1

2

±
√

1

4

(
λ

C
+ 1

)2

− Qi
C

− λ− C
= λ+ C

±
√
C2

(
λ

C
+ 1

)2

− 4CQi

− λ− C
= ±

√
C2

(
λ

C
+ 1

)2

− 4CQi (3.10)

Thus xe1 is stable and xe2 unstable for all C with the exception when

C2

(
λ

C
+ 1

)2

− 4CQi = 0

⇔ C2 + C(2λ− 4Qi) + λ2 = 0

Thus, for C1,2 = 2Qi−λ±2
√
Qi(Qi − λ) xe1,2 = 0. In example 3.2.2 xe2 = 3

4 is unstable
and the first, xe1 = 1

2 , and third equilibria points, xe3 = 3
2 , are stable.

Definition 3.2.6. (hyperbolic equilibrium point)[Hale (1991)]
An equilibrium point xe of dxdt = g(x) is called a hyperbolic equilibrium point if dg

dx(xe) 6=
0. Otherwise it is called non-hyperbolic.

For λ 6= 0 xe3 is hyperbolic and for C 6= C1,2 xe1,2 are also hyperbolic.

Equilibrium points can be created or destroyed, or their stability can change depending
on the used parameters. These qualitative changes in the dynamics are called bifurca-
tions, and the parameter values at which they occur are called bifurcation points. In the
simplified model 3.1 C := ρcpcDU , where U is the wind speed. Considering the wind
speed U or C as a bifurcation parameter is equivalent. In the following discussion we use
C as the bifurcation parameter. Changing C, the bifurcation parameter of the simplified
model, leads to a change of the stability of an equilibrium.
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In the next part we want to find all bifurcation points that, depending on Qi, λ and
C, occur. Bifurcations can occur when one of the following three cases is given.

1. xe1 = xe2

2. xe1 = xe3

3. xe2 = xe3

Reminder: xe are the equilibrium points of the simplified model.

Note that the conditions xe1,2 < 1 and xe3 > 1 must be met and that xe1,2,3 have
to be real. Again we exclude the case when xe1,2 = 1. First we look at xe1 = xe2

λ
C + 1

2
−

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

=
λ
C + 1

2
+

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

⇔ −

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

=

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

⇔ 0 = 2

√(
1

2

[
λ

C
+ 1

])2

− Qi
C

⇔ 0 =

(
1

2

[
λ

C
+ 1

])2

− Qi
C

⇔ 0 = λ2 + 2λC + C2 − 4QiC

⇔ 0 = C2 + C(2λ− 4Qi) + λ2

⇒ C1,2 = −2λ− 4Qi
2

±

√(
2λ− 4Qi

2

)2

− λ2

= 2Qi − λ± 2
√
Qi(Qi − λ)

Hence, for
C1 = 2Qi − λ− 2

√
Qi(Qi − λ)

and

C2 = 2Qi − λ+ 2
√
Qi(Qi − λ) (3.11)

it holds that xe1 and xe2 are equal.

Moreover, xe1 = xe3 and xe2 = xe3 can never hold because xe1,2 < 1 and xe3 > 1.
Furthermore, we have shown earlier that xe1,2 do not change their stability for C 6= C1,2.
In conclusion, it is sufficient to restrict our analysis to the case when xe1 = xe2 . Addi-
tionally, we make the following assumptions
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1. C1,2 ∈ R

2. C1,2 > 0

3. 0 ≤ xe1,2(C1) < 1

4. 0 ≤ xe1,2(C2) < 1

Note: For physical reasons λ ≥ 0. Nonetheless, for the sake of completeness we allow
negative λ in the following calculations. The reasoning for the assumptions 1-4 is ex-
plained in the following paragraphs. Given the fact that the calculations consist mostly
of basic, but lengthy, transformations they are omitted to shorten this section.

To ensure that C1 and C2 are real it has to hold that

Qi(Qi − λ) ≥ 0.

If we choose

λ = 0 and Qi ∈ R or• λ < 0 and Qi ≤ λ or•

λ < 0 and Qi ≥ 0 or• λ > 0 and Qi ≤ 0 or•

λ > 0 and Qi ≥ λ•

assumption 1 is given.

We set C1,2 ≥ 0 because C := ρcpcDU where ρ, cp and cD ∈ R≥0 and we assume that
the wind comes from the same direction which means that U ∈ R≥0. But for C1,2 = 0
xe1,2(C1,2) is equal to infinity. To account for this we only allow C1,2 > 0. By calculating
C1 and C2 for each case, in which assumption 1 is fulfilled, and checking if C1,2 > 0 we
get

λ < 0 and Qi = 0 or• λ < 0 and Qi > 0 or•

λ > 0 and Qi = λ or• λ > 0 and Qi > λ•

and for C2 only

λ = 0 and Qi > 0•

In addition, we want xe1,2(C1) ∨ xe1,2(C2) ∈ [0, 1). Even though, mathematically there
is no reason not to allow negative equilibrium points it disagrees with the context of
the model by Van de Wiel. x represents ∆T which is the difference of the temperature
at reference height and the one at the surface. If this is negative the temperature at
the surface is higher than the one at reference height. But this model was specifically
defined for a temperature inversion, i.e. the exact opposite. Furthermore, we do not
allow xe1,2(C1,2) = 1 because in this case g(x) is not differentiable. We only consider the
four plus one cases in which C1,2 ∈ R>0. This gives us that a bifurcation point exists
only when C = C1, λ < 0 and Qi = 0 or when C = C2 and
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λ < 0 and Qi = 0 or(i) λ < 0 and Qi > 0 or(ii)

λ > 0 and Qi > λ or(iii) λ = 0 and Qi > 0.(iv)

When λ < 0 and Qi = 0 it follows that C1 = C2.

In conclusion, we have shown that there can only exist maximal one bifurcation point
for fixed λ and Qi. Moreover, λ and Qi have to be chosen according to the before made
assumptions for the bifurcation point to exist.

After finding the bifurcation points we want to classify the bifurcation that occurs.

Definition 3.2.7. (bifurcation diagram)[Seydel (1994)]
A diagram depicting x(t) versus C, where (x,C) solves equation g(x) = 0 (Note: g(x)
depends on C.) is called a bifurcation diagram.

Equilibria may form continuous curves in a bifurcation diagram. These curves are called
branches. A branch or a part of a branch is called stable (unstable) if all its solutions
are stable (unstable). By convention, stable branches are denoted by a solid line and
unstable ones by a doted one.
By looking at the bifurcation diagram (figure 3.5) with λ and Qi according to ii)-iv)
we can see that for C > C2 there are two equilibria and at C = C2 the stable and
unstable equilibrium collide and annihilate each other, i.e. there are no equilibria for
C < C2. This type of bifurcation is called a saddle-node bifurcation (see the book by
Seydel (1994)).

To make the behaviour of the equilibria in case i) more obvious we plot the bifurcation
diagram for xe ∈ R and C ∈ R \ 0 (figure 3.5), meaning we allow negative equilibria and
C.
Doing this we can see that we have one unstable branch, which is equal to zero, for
C < C1 and one stable branch. At C = C1 they collide and the former unstable branch
turns into a stable one and conversely. This is called a transcritical bifurcation (see
Seydel (1994)).

Note: The only physical relevant cases are the two plots at the bottom of figure 3.5.

We proceed by looking at C → ∞ and Qi and λ ∈ R. Again, the equilibrium solutions
are:

xe =


λ
C

+1

2 ±
√(

1
2

[
λ
C + 1

])2 − Qi
C for x ≤ 1

Qi
λ for x > 1

(3.12)
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C

x
e

-1
0

1
stable
unstable

(i) λ < 0 and Qi = 0

C

x
e

0
1

stable
unstable

(ii) λ < 0 and Qi > 0

C

x
e

0
1

stable
unstable

(iii) λ > 0 and Qi > λ

C

x
e

0
1
stable
unstable

(iv) λ = 0 and Qi > 0

Figure 3.5.: bifurcation plot of 3.12 with λ and Qi according to i) - iv)

Thus, as long as λ 6= 0 and Qi
λ > 1 xe3 exists and is constant. For x < 1, C → ∞ and

Qi, λ ∈ R, but fixed, we get

limC→∞xe =
1

2
±

√(
1

2

)2

=
1

2
± 1

2

Consequently, for C → ∞, λ 6= 0 and Qi
λ > 1 we have three equilibrium solutions

xe1 = 0, xe2 = 1 and xe3 = Qi
λ .
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To conclude this chapter we examine the behaviour after a perturbation. For this we
first calculate the solution of equation 3.9 ( ˙̄x = g′(xe)x̄ with x̄ = x − xe) which is the
linearisation of the Taylor series expansion of dx

dt = g(x) at an equilibrium xe. The
solution is given by

x̄ = x̄0 exp(g′(xe)t). (3.13)

With the initial value x̄0 = x̄(t0). Rearranging equation 3.13 gives

exp(g′(xe)t) =
x̄

x̄0

⇔ g′(xe)t = ln

(
x̄

x̄0

)
⇔ t =

1

g′(xe)
ln

(
x̄

x̄0

)
.

This t is called the recovery time scale. It gives us an estimate of the amount of time it
takes the systems to return to equilibrium after a perturbation. For x close to xe, i.e.
||x− xe|| < ε for ε > 0, it follows that x̄ is nearly 0 and therefore t→ ±∞ depending on

the sign of g′(xe) and for x further away from xe, x̄ gets big and therefore ln
(
x̄
x̄0

)
→ 1

which gives t→ 1
g′(xe)

.

Note that g′(xe) depends on C (see equation 3.10) for the first two equilibria in the
simplified model. Therefore, when C is approaching the bifurcation point it follows that
g′(xe(C)) approaches 0 and therefore 1

g′(xe)
→ ±∞. Which means that it takes an infi-

nite amount of time to damp an initial perturbation. This is called critical slowing down.

The concepts of return time closely connects with ARMA(p,q) modelling. Intuitively p
and q are related to the memory lag of the process. The longer the system takes to return
to the equilibrium after a perturbation, the more memory we expect to observe in the
process. Far from the transition (i.e shift from one dynamical regime to another), the
time series of a generic physical observable can be described by an ARMA(p,q) model
with a reasonably low number of p, q parameters and coefficients. On the other hand,
close to a transition the statistical properties (such as the shape and/or the persistence
of the autocorrelation function) of the system change, leading to an increase of the value
p+ q [Faranda et al. (2014)]. Thus, we use ARMA(p,q) models in the following chapter
to analyse the stability of a dynamical system.
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4. Dynamical Stability of Near-Surface
Temperature Inversions

In the last chapter we analysed the simplified model by van de Wiel et al. (2017) which
was developed to understand regime transitions in near-surface temperature inversions.
Moreover, a hypothesis to explain the existence of two metastable equilibria of the tem-
perature inversion was given. In this chapter the goal is to statistically detect critical
transitions between the two possible equilibria predicted by the model. For the detection
we apply an indicator for the dynamical stability (i.e. the resilience to perturbations)
which was defined by Nevo et al. (2017). It uses different methods from dynamical sys-
tems and statistical modelling. Especially, ARMA(p,q) processes play a key role (see
chapter 2). Additionally, in chapter 5 we apply the indicator to a controlled data set
and observation data to test its reliability.

4.1. The Stability Indicator

The idea of the stability indicator is to use ARMA(p,q) models to detect local stability in
a time series. For this we slice the time series with a moving time window of length τ . In
other words, we obtain subsequences {x1, . . . , xτ}, {x2, . . . , xτ+1}, . . . , {xt−τ+1, . . . , xt} of
the original time series that overlap. We assume that for this time scale τ of interest, the
time series represents a stationary phenomenon and we then fit every ARMA(p,q) model
with p ≤ pmax and q ≤ qmax to these subsequences, where pmax and qmax are predefined
thresholds. Afterwards we choose the best fitting ARMA(p,q) model by choosing the
one with the minimal BIC. By slicing the original time series we obtain shorter time
series which satisfy the requirements for ARMA modelling. That is, we assume that the
subsequences are realizations of linear processes with Gaussian white noise which then
implies that the process is stationary (see Appendix C).

For the definition of the stability indicator it is necessary that the dynamics near a
metastable state can be modelled by an AR(1)-process. To prove this statement we
proceed by

1. defining a metastable system and a potential,

2. showing that the potential near a stable state can be approximated by a quadratic
function,

3. proving that the system near a stable state can be modelled by a Langevin equation
with a quadratic potential and
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4. showing that the Langevin equation from step 3 is an AR(1)-process.

Proof:
Step 1: A metastable system is one with at least two stable states. We call the stable
states in a metastable system metastable. Generally, for C > C2 and λ > 0, Qi > λ the
simplified model by van de Wiel et al. (2017) is a metastable system.

The dynamics of a first order system dx
dt = g(x) can be visualized based on the physical

idea of potential energy [Strogatz (1994)]. For this we picture a particle sliding down
the walls of a potential well, where the potential V (x) is defined as

g(x) = −dV
dx

.

Equilibrium points xe correspond to extrema of the potential, i.e.

dx

dt
(xe) = −dV

dx
= 0.

The potential of the simplified model 3.1 has the form

V (x) =

{
1
2x

2(λ+ C)− C
3 x

3 −Qix for x ≤ 1
1
2λx

2 −Qix+ 1
6C for x > 1

(4.1)

Figure 4.1 shows the plot of a potential with the parameters we use in chapter 5, i.e.
λ = 2, Qi = 2.5, C = 6.4. The red line is the linearisation of the potential around xe1
(see step 2) with V0 being a minimum of the potential.

0.0 0.5 1.0 1.5 2.0

-0
.4

0.
0

0.
2

0.
4

x

V
(x

)

stable
unstable
Ṽ (x)

Figure 4.1.: example of a potential V (x) (4.1) and the linearisation Ṽ (x) (4.2)

We can clearly see that minima of V correspond to the stable equilibria xe1 = 0.46, xe3 =
1.25 the maximum to the unstable one xe2 = 0.86.
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Step 2: To show that the potential V (x) is quadratic near a stable equilibrium we
use the Taylor series expansion of V at x = x̃

V (x) = V (x̃) +
dV

dx
|x̃(x− x̃) +

1

2

d2V

dx2
|x̃(x− x̃)2 + . . .

where dV
dx |x̃ is the first derivative of V evaluated at x = x̃.

Let x̃ be an equilibrium point. Then dV
dx |x̃ = 0. We can set V (x̃) = V0, V0 ∈ R as

V (x̃) is constant. For x close to a stable equilibrium x− x̃ is small and thus d2V
dx2

is the
dominant term in the expansion and we do not need to include derivatives of higher
order. We define k := d2V

dx2
|x̃, k ∈ R. Therefore, we obtain the following approximate

potential

Ṽ (x) =
1

2
k(x− x̃)2 + V0. (4.2)

Consequently we can approximate the curve of the potential, close to a stable equilib-
rium, with a parabola.

Step 3: The Langevin equation is a stochastic differential equation describing the ve-
locity of a microscopic particle undergoing Brownian motion.

dx

dt
= u

du

dt
= − γ

m
u− 1

m

dV

du
+

1

m

dB

dt
(4.3)

x(t0) = x0

dx(t0)

dt
= x1

where

• x0 and x1 are initial distributions independent of Brownian motion,

• m is the mass of the particle,

• γ is the frictional force,

• V is the potential,

• x is the position and u the velocity of the particle and

• B is Brownian motion.
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Definition 4.1.1. (Brownian motion)
A Brownian motion, also called a Wiener process, B = (Bt)t≥0 is a stochastic process
taking values in R such that

(i) B0(ω) = 0 for almost all ω ∈ Ω,

(ii) Btn −Btn−1 , . . . , Bt1 −Bt0 are independent for all n ≥ 0, 0 = t0 ≤ t1 < t2 < · · · <
tn <∞ ,

(iii) Bt −Bs ∼ Bt+h −Bs+h for all 0 ≤ s < t, h ≥ −s,

(iv) Bt −Bs ∼ N (0, t− s) and

(v) t→ Bt(ω) is continuous for all ω ∈ Ω.

Near a stable state we can use the approximate potential Ṽ (x) from step 2. This gives

dx

dt
= u(t)

du

dt
= − γ

m
u− 1

m
ku+

1

m

dB

dt
(4.4)

Step 4: It is important to note that for almost all ω ∈ Ω the sample path t→ Bt(ω) is
in fact differentiable for no t ≥ 0. Thus dB

dt does not really exist. But we can discretize it.

We discretize 4.4 with the Euler-Maryuma scheme. As a grid we use

{0 = t0 < t1 < · · · < tN = T}

with ∆t = tn − tn−1. Then,

ut − ut−1 = − γ
m

∆tut−1 −
1

m
∆tkut−1 +

1

m
(Bt −Bt−1)

⇔ ut = ut−1(1− γ

m
∆t− 1

m
∆tk) +

1

m
(Bt −Bt−1) (4.5)

By defining φ := 1− γ
m∆t− 1

m∆tk and wt := 1
m(Bt −Bt−1) we get

ut = φut−1 − wt.

The last step is to verify that ut is stationary and wt is white noise.

• expected value: E[wt] = E

[
1

m
(Bt −Bt−1)

]
=

1

m
E[Bt −Bt−1]

(iv)
= 0
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• variance: var[wt] =

(
1

m

)2

var(Bt −Bt−1)

(iv)
=

(
1

m

)2

(t− t+ 1)

=

(
1

m

)2

= σ2
w

<∞

Moreover, wt is independent of wt̂ for all t 6= t̂ and normally distributed due to the
definition of Brownian motion. Therefore, wt is Gaussian white noise.
When we assume, |φ| < 1 and suptvar(ut) <∞ we get, according to example 2.1.6, that
{ut} is stationary. Thereby, {ut} is an AR(1) process.

We have thus seen that, in the vicinity of a stable equilibrium, the dynamics can be
approximately described by an AR(1) process. In the following, we will study deviations
from AR(1) processes in the space of ARMA(p,q) processes to quantify the dynamical
stability of our time series. For that, we assume that ARMA(p,q) processes, except
AR(1), can be used to model the dynamics when the system is not close to a stable
state. The idea behind this assumption is that ARMA processes are an important para-
metric family of stationary time series [Brockwell (2016)]. Their importance is due to
their flexibility and their capacity to describe almost all features of stationary time se-
ries. Thereby, as we have to make some Ansatz, choosing ARMA(p,q) processes, except
AR(1), for modelling the dynamics near an unstable state is a good start.

As a summary when the system is close to a metastable state it can be modelled by
an AR(1) process and if it is close to an unstable state higher order ARMA processes
are needed. Therefore, the stability indicator is defined as

Υ(p, q; τ) = 1− exp
(
−|BIC(p, q)−BIC(1, 0)|

τ

)
.

For a stable state Υ = 0 and the limit Υ→ 1 corresponds to a very unstable point. To
simplify the notation we drop the dependence of Υ on p, q and τ .
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4.2. Dependence of Υ on the window length τ

As a reminder: τ is the length of the window which slices the time series in subsequences
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Figure 4.2.

to assure stationarity. The reliability of Υ
highly depends on the choice of τ . This
can easily be seen in figure 4.2. This is a
plot of a process with two stable equilibria
(solid red lines) and an unstable one (dot-
ted red line). The colours ranging from
dark blue to yellow represent the stabil-
ity of the points measured by Υ. It is
important to note that we colour the last
point of the subsequence, i.e. Υk−τ+1 cor-
responds to the subsequence xk−τ , . . . , xk
and xk is coloured according to the value
of Υk−τ+1. We choose this type of colour
coding because an ARMA(p,q) process is
defined by its past values, i.e. for an
AR(1) process xt depends on xt−1. In the tests we use the auto.arima() function from
the ”forecast” R package [Hyndman et al. (2019)]. Grey dotes have one of the following
two meanings:

• The auto.arima() function was not able to find a stationary ARMA(p,q) with
p ≤ pmax and q ≤ qmax that fits the corresponding subsequence.

• t ≤ τ − 1. This is also due to the fact that we always colour the last element of
the subsequence.

In figure 4.2 we clearly see that Υ correctly recognizes the transition but stable points
get marked as unstable. This is due to the fact that in this case τ is chosen too big
(i.e. τ = 350). The points which were marked as unstable actually are endpoints of
subsequences with mainly elements around the unstable equilibrium. At this point we
want to remark that one has to be aware of this characteristic of Υ. Even if we were able
to find the optimal τ the subsequence has to consist of several points around the unstable
equilibrium (We can not apply Υ to only one point.) and consequently Υ always marks
points after the unstable equilibrium as unstable. Nonetheless, it is important to find
a good approach for choosing τ . We suggest two approaches. The first one is based
on the idea that τ should be smaller than the amount of points covering the transition
from one stable state to another and the second one takes into account that we need
subsequences which are sampled from a normal distribution to be able to find the model
with the minimal Bayesian Information Criterion. Both approaches are applicable when
the theoretical model which was used to simulate the data is unknown. This is important
in cases where data showing signs of metastability are available, but an underlying model
is unknown.
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4.2.1. Approach 1: K-Means

We suggest using the K-means algorithm to select a window length for the analysis.
The idea is to cluster the data in different categories for data around each stable fixed
point, and data near the unstable fixed point, or in other words, data covering transition
periods between two metastable states. By that, the goal is to estimate the time needed
by the system to transition between two metastable states. Generally, the aim of the
K-means algorithm by Hartigan & Wong (1979) is to divide M points into K clusters
so that the sum of squares in the clusters is minimized. The clustering is done in the
following steps:

• Input: K = # number of clusters, set of points xi−τ+1, . . . , xi

• Place centroids c1, . . . , ck at random locations.

• Repeat until none of the cluster assignments change:

– for each point xi find nearest centroid cj and assign xi to cluster j

– for each cluster j = 1, . . . , k calculate new centroid cj = mean of all points xi
assigned to cluster j in previous step.

We choose τ such that it is smaller than the minimal mean time spend in one cluster.

When the data points, more precisely the equilibria, are equally distributed over the
k clusters this algorithm gives a good estimation for the amount of points covering the
transition. Otherwise, the approximation of the amount of points covering the transition
might be imprecise. Another limitation of the algorithm is that the number of clusters
has to be chosen before applying the algorithm.

4.2.2. Approach 2: Anderson-Darling Normality Test

Approach 1 does not take into account the statistical properties of the process. But as
mentioned in chapter 2 we need to assume a distribution for the underlying process to be
able to calculate the Bayesian information criterion. We assume that the subsequences
are sampled from a normal distribution. Therefore, we need to choose a τ such that
this assumption holds. Hence, in this approach we use a normality test to find the
biggest window length for which we can conclude that most of the subsequences are in
fact sampled form a normal distribution. The normality test we apply is the Anderson-
Darling Test [Anderson & Darling (1952)], abbreviated AD test, as it is, for example,
more stable than the Kolmogorov-Smirnov test. The AD test statistic is based on the
squared difference between the empirical distribution function estimated based on the
sample, Fn(x), and the normal distribution F ∗(x). The statistic for this test is,

W 2
n = n

∫ ∞
−∞

[Fn(x)− F ∗(x)]2ψ(F ∗(x))dF ∗(x)
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where ψ is a non-negative weight function. We use the modified AD statistic given by
D’Agostino and Stephens (1986) which takes into accounts the sample size n

W 2∗
n = W 2

n(1 + 0.75/n+ 2.25/n2).

The null hypothesis of this normality test is that the data are sampled from a normal
distribution. When the p-value is greater than the predetermined critical value (α =
0.05), the null hypothesis is not rejected and thus we conclude that the data is normally
distributed.

4.3. Alternative Definitions for a Stability Indicator

The accuracy of the stability indicator highly depends on the accuracy of the order se-
lection algorithm. Thus, we want to verify if the BIC is indeed the appropriate choice
for the stability indicator.

We compare the results for the AIC, AICc and the BIC (see chapter 2). For the compari-
son we simulate ARMA(p,q) processes for each combination of p and q, where p, q ∈ [0, 5],
except for the ARMA(0,0) as this is not defined. Furthermore, we use 20 randomly cho-
sen white noise variances with each σw ∈ (0, 10] and time-series length from 10 to 1000.
Hence, for each time-series length we test 700 time series. As coefficients we use the ones
given in tables 4.1 and 4.2. It was ensured that φ(z) and θ(z) have no common factors.

φi AR(1) AR(2) AR(3) AR(4) AR(5)

φ1 0.2 0.2 0.11 0.11 0.109

φ2 0 0.3 0.13 0.13 0.113

φ3 0 0 0.17 0.17 0.127

φ4 0 0 0 0.19 0.131

φ5 0 0 0 0 0.137

Table 4.1.: autoregressive coefficients

θi MA(1) MA(2) MA(3) MA(4) MA(5)

θ1 0.149 0.149 0.149 0.149 0.1031

θ2 0 0.151 0.151 0.151 0.1033

θ3 0 0 0.157 0.157 0.1039

θ4 0 0 0 0.163 0.1049

θ5 0 0 0 0 0.1051

Table 4.2.: moving average coefficients

As an estimation algorithm for the model order we, again, use the auto.arima() function
of the R ”forecast” package (Hyndman et al. (2019)). This function assumes that the
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analysed data is a casual and invertible time series. To ensure causality and invertibility,
we chose φ(z) and θ(z) so that they do not have roots for |z| < 1. When the AR-
polynomial is close to being non-stationary or when the MA-polynomial is close to being
non-invertible, then the model is rejected by setting an infinite value for the AIC, AICc
and BIC related to that model.
The average amount of correctly estimated p and q is for the BIC 6%, AIC 7% and
AICc 7%. But if the model was an ARMA(1,0) it was correctly estimated by the
BIC in 50% of the cases while the AIC and AICc only estimated 31% model orders
correctly. The figures A.1, A.2 and A.3 (Appendix A) show the results of the tests for
τ ∈ seq(from = 10, to = 1000, by = 50). The values in between are omitted in the
figures for clarity purposes. These figures show that the AIC, AICc and the BIC all
depend highly on the time-series length n. Only the BIC estimated 50% or more of the
ARMA(1,0) models correctly as long as n ≥ 430. For the AIC and AICc no threshold
for the time-series length was detected from which on the model was, in more than 50%
of the cases, correctly estimated.
Even though, the AIC and AICc are slightly better in estimating general ARMA(p,q)
process the choice of Nevo et al. (2017) to use the BIC in their method appears to be
valid due to the fact that the BIC is significantly better in the estimation of the order
of an ARMA(1,0) process which is essential for the stability indicator. As the stability
indicator is generally applied to shorter time series, in future research other model order
selection criteria should be taken under consideration.
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5. Testing of Υ on Controlled and
Observational Data

In this chapter we quantify the reliability of the stability indicator introduced in chapter
4. We start by testing it on a controlled dataset generated by the simplified model for
near-surface temperature inversion (see chapter 3) and then proceed by applying Υ, the
stability indicator, to observational data. In the tests we use the auto.arima() function
from the ”forecast” R package [Hyndman et al. (2019)]. The auto.arima() function
calculates all BIC for all ARMA(p,q) models with p ≤ pmax and q ≤ qmax, where pmax
and qmax are the before mentioned thresholds, and then it chooses the ARMA model
with the minimal Bayesian Information Criterion.

5.1. Simplified Model by van de Wiel with Added Noise

We start by using the simplified model by Van de Wiel et. al.,

dx

dt
=

{
Qi − λx− Cx(1− x) for x ≤ 1

Qi − λx for x > 1
(5.1)

x(t0) = x0

which is discussed in detail in chapter 3, to simulate a data set. The “particle” xt needs
to acquire a sufficient amount of energy from noise so that it can surmount the potential
barrier ∆V := max(V (x)) −min(V (x)), where V (x) is the potential, and escape from
one of the metastable states. The escape time depends on the strength of the noise.
When the noise is weak, the particle spends a long time at the metastable state, before
being able to escape from it. Therefore, we use the simplified model with additive noise
to quantify the recognition of transitions:

d̃x

dt
=

{
Qi − λx− Cx(1− x) + w(ω) for x ≤ 1

Qi − λx+ wt(ω) for x > 1
(5.2)

x(t0) = x0

w(ω) ∼ Gaussian wn(0, σ2
w), ω ∈ Ω

The addition of noise is justified by the fact that observational data contains noise and
we aim to apply Υ to observational data. Moreover, due to the additive noise we can
apply a Maximum Likelihood based algorithm (BIC) to identify the best fitting ARMA
order which is essential when applying Υ. For the simulation we fix ω ∈ Ω. Thereby, we



Data-driven approaches to study the dynamical stability
of the stably stratified boundary layer

Amandine Kaiser

can use the standard Runge Kutta 4 method to solve this ODE.

For the simulation we need to choose λ,C ≥ C2 and Qi such that we have two sta-
ble points and an unstable one (see figure 3.5).

To be able to quantify the accuracy of the stability indicator we solve d̃x
dt for several

C, starting with a C close to C2, and apply Υ to the solution x̃(t). The initial parame-
ters are set to t0 = 0 and x(t0) = min{xei |i = 1, 2, 3}. To generate the controlled data
set the following parameters are used:

λ = 2,

Qi = 2.5,

C ∈ seq(min = 5.3,max = 7.2, by = 0.1),

w ∼ Gaussian wn(0, 3.52),

n = 2000 and

h = 0.01.

The standard deviation σw = 3.5 for the white noise process is chosen such that we obtain
several time series which transition. Moreover, by choosing σw this way the resulting
time series resemble the observational data. This range for C is chosen because for these
values the series transitions from one stable state to another. To choose the window
length τ we apply both the K-Means Algorithm (4.2.1) and the Anderson Darling Test
(4.2.2) to the dataset. A detailed description of both algorithms/tests is given in chapter
4.

K-Means Algorithm

The K-Means algorithm can be used to estimate the amount of points covering the
transition time. We set the cluster number to three as we have three equilibria. The
results of the clustering algorithm are exemplarily shown in figure 5.1 for C = 6.4. Note:
t = [0, n · h] = [0, 20].
In this case the equilibria are xe1 = 0.46 (stable), xe2 = 0.97 (unstable) and xe3 =
1.25 (stable). The cluster centers are 0.46, 0.97 and 1.31 which are a close approximation
of the equilibria. Therefore, we expect a good estimation for the amount of points
covering the transition. The mean times spend in each cluster are:

mean(T1) = 112.2

mean(T2) = 94

mean(T3) = 286.67

where Ti is the time spend in cluster i ∈ {1, 2, 3}. The window length τ is chosen such
that it is smaller than the minimal mean time spent in one cluster, i.e. for C = 6.4 we
choose τ < τKMeans := min{mean(Ti)|i = 1, 2, 3} = 94. To simplify the implementation
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Figure 5.1.: Clustered time series

we choose τ = min{mean(Ti)|i = 1, 2, 3} − 5 for all tested C. By applying Υ to the
data generated by the simplified model with 6.4 we get the results which are shown in
figure 5.2. As a reminder: The solid red lines correspond to the stable equilibria and
the dotted red line to the unstable one. The colours ranging from dark blue to yellow
represent the stability of the points measured by Υ and we always colour the last point
of the subsequence (see chapter 4). The first transition through the unstable equilibrium

0.
0

0.
5

1.
0

1.
5

2.
0

t

x̃

0 5 10 15 20

0
0.

2
0.

4
0.

6
0.

8
1

Figure 5.2.: Υ for simplified model with C = 6.4 and added noise (τ = 84).

is well recognised (green dots after the dotted red line) but the second transition is not.
Considering that τ has to be chosen in advance and is fixed for all subsequences this is

Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019 45



Data-driven approaches to study the dynamical stability
of the stably stratified boundary layer

Amandine Kaiser

expected. This is clearly one limitation of the stability indicator as the amount of points
covering the transition may vary in one time series, like in this case. The estimated
amounts of points covering the transition for all values for C are given in table 5.1.

C 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2

τKMeans 59 67 65 46 57 57 68 77 91 70

C 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2

τKMeans 94 94 85 87 88 88 142 114 99 148

Table 5.1.: τ given by K-Means algorithm

Figure 5.3 is a bifurcation diagram for C ∈ seq(min = 5.3,max = 7.2, by = 0.1) and
τ = min{mean(Ti)|i = 1, 2, 3}−10. For this and the following bifurcation plots we use a
different type of colour coding than in the plots for one time series. The darker the dots
the higher is the Υ value. Most of the transitions are well recognised and almost all of
the stable states are recognised as stable. Nonetheless, there are some transitions which
were recognised significantly too late, e.g. for C = 5.4. In future research it could be of
interest to apply a more sophisticated clustering algorithm and to research methods to
adapt the window length dynamically.
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Figure 5.3.: Bifurcation Diagram with τ = min{mean(Ti)|i = 1, 2, 3} − 5.
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Anderson Darling Test

The Anderson Darling Test can be used to find the biggest τ for which we can assume
that most of the subsequences are sampled from a normal distribution. For example, for
C = 6.4 the Anderson Darling Test yields that for τ = 65 the median of the p values for
all subsequences is greater than the significance level 0.05. This can be seen in figure
5.4. The solid line in the grey boxes is the median of the p values for a fixed τ while the
upper and lower border of the grey boxes refer to the upper and lower quartile of the p
values. The dotted horizontal line is the significance level. The values of τ for all values

τ
25 29 33 37 41 45 49 53 57 61 65 69 73 77

0
0.

2
0.

4
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6
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1

Figure 5.4.: Boxplot of the p values from the Anderson Darling Test for C = 6.4.

for C, given by the Anderson Darling Test, are stated in table 5.2.

C 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2

τAD 60 62 64 63 63 63 62 62 65 64

C 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2

τAD 68 67 65 64 65 67 66 65 69 70

Table 5.2.: τ given by Anderson Darling Test

Figure 5.5 and 5.6 show the results for Υ. They are very similar to the ones where we
chose τ according to the K-means algorithm except that for C ≤ 5.6 there are several
points marked as unstable eventhough they are stable. This is due to the fact that for
these C’s the τ ’s chosen by the Anderson Darling Test are bigger than the ones estimated
by the K-Means algorithm. Therefore, they are most likely bigger than the amount of
points covering the transition. For C ≥ 5.9 the τ ’s given by the AD Test are smaller
than the ones of the K-Means algorithm. In these cases Υ gives a good indication for
the stability. The summary for all τ is given in table 5.3 (note: 1 = TRUE) and figure
5.7 is a bifurcation plot with τAD < τKMeans − 5. In this case we see that Υ is capable
of recognizing the location of unstable equilibria for all C and also the one of stable
equilibria. Therefore, we are confident that we can apply Υ to observational data.
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Figure 5.5.: Υ for simplified model with C = 6.4 and added noise (τ = 67).
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Figure 5.6.: Bifurcation Diagram with τ chosen by Anderson Darling Test (see table 5.2).
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Figure 5.7.: Bifurcation Diagram with τAD < τKMeans − 5 (see table 5.3).

Index C τAD τKMeans τAD < τKMeans − 5

1 5.3 60 59 0

2 5.4 62 67 0

3 5.5 64 65 0

4 5.6 63 46 0

5 5.7 63 57 0

6 5.8 63 57 0

7 5.9 62 68 1

8 6.0 62 77 1

9 6.1 65 91 1

10 6.2 64 70 1

11 6.3 68 94 1

12 6.4 67 94 1

13 6.5 65 85 1

14 6.6 64 87 1

15 6.7 65 88 1

16 6.8 67 88 1

17 6.9 66 142 1

18 7.0 65 114 1

19 7.1 69 99 1

20 7.2 70 148 1

Table 5.3.: Summary of the results from the Anderson Darling Test and K-Means algo-
rithm.
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5.2. Dumosa

The first observational data we use to test the stability indicator are temperature mea-
surements from a site in Dumosa, Victoria, Australia. The temperature measurements

Figure 5.8.: Dumosa measurement set up [provided by Danijel Belus̆ić].

were made at height 6 and 3m and the wind measurements at 6m. The frequency of
measurements is 1 minute. As we want to use data where we can expect temperature
inversions to take place we exclusively use evening and night time data from March
until June 2013 (89 days). We apply Υ to two nights, one in May and one in April,
as these two nights exhibit the S-shape dependence between the temperature difference
∆T = T6m − T3m and the wind speed U6m mentioned in chapter 3. Again we use the
K-Means algorithm and the Anderson Darling Test to choose the window length τ .

Night in May

Figure 5.9 shows the results for the Anderson Darling Normality Test and the K-means
clustering algorithm. According to these tests the maximal τ for which we can assume
normality is 27 and the τ which is smaller than the amount of points covering the transi-
tion is 22. Unlike in the previous section we apply Υ to subsequences of length τKMeans,
not τKMeans − 5, because τKMeans is already very small and making the subsequences
shorter can increase the risk of fitting the wrong model. Moreover, τAD is not smaller
than τKMeans. Nonetheless, there are hardly any differences in the results with the two
different τ ’s and this shows that Υ is capable of recognising the stability of the points.
The results for Υ with both τ ’s are given in figures 5.10 - 5.13. Especially, the time
periods with small fluctuations and the transition at time point 800 are well recognised.
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In figures 5.12 and 5.13 the regime shift from a very stable boundary layer (high ∆T
values, small U values) to a weakly stable boundary layer (small ∆T values, high U
values) with an intermittent regime in between is clearly detected by Υ. However, the
very stable regime is not very pronounced. We have two hypothesis for that:

1. The observed night is not long enough to form a distinct very stable regime.

2. The surface cooling is not strong enough to reach a very strong temperature in-
version.
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Figure 5.9.: Left: Boxplot of the p values from the Anderson Darling test.
Right: Clustered data with K-Means.
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Figure 5.10.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in May 2013. τ = 22 (K-Means)
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Figure 5.11.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in May 2013. τ = 27 (AD Test)
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Figure 5.12.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in May 2013. τ = 22
(K-Means)
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Figure 5.13.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in May 2013. τ = 27
(AD Test)
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Night in April

Figure 5.14 shows the results for the Anderson Darling Normality Test and the K-means
clustering algorithm. According to these tests the maximal τ for which we can assume
normality is 30 and the τ which is smaller than the amount of points covering the
transition is 23. Again τAD is not smaller than τKMeans. But, they are still close. The
results for Υ with both τ ’s are given in figures 5.10 - 5.13. Again the results with both
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Figure 5.14.: Left: Boxplot of the p values from the Anderson Darling test.
Right: Clustered data with K-Means.

τ ′s look very similar but the transitions are not as well recognised as in the data set
from May. Moreover, in the bifurcation plot there is no distinct separation into two
stable and one unstable cluster like in the time series from May. In fact, the results
of Υ suggest one stable regime for small ∆T = T6m − T3m and one intermittent for
higher ∆T . Therefore, we assume that, possibly due to the same but more pronounced
reasons mentioned before, the temperature inversion was less notable than during the
measurements in May.
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Figure 5.15.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in April 2013. τ = 23 (K-Means)
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Figure 5.16.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in April 2013. τ = 30 (AD Test)
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Figure 5.17.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in April 2013. τ = 23
(K-Means)
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Figure 5.18.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in April 2013. τ = 30
(AD Test)

56 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019



Amandine Kaiser
Data-driven approaches to study the dynamical stability

of the stably stratified boundary layer

5 min Block Averaged Data for Night in May

Tests of Υ on other data sets (see section 5.3) suggested that the data frequency is
crucial for the reliability of the results. Observational is often stored in block averages,
e.g. measurements for 10 min are averaged into 1 data point. The issue with this can
be that the data frequency can be to low for the observed transition. In more detail,
if the time taken by the system to transition from one metastable state to the next
represents is less than about 25 discrete measurement points (the minimum needed to
have relevant statistical results), then the approach fails. Therefore, we need to find
a criteria to decide if the data frequency is high enough to give reliable results for Υ.
We start by block averaging the temperature measurements for the night in May, we
discussed earlier, such that we have 5 min data instead of 1 min. Thereby, we reduce
the length of the time series from 1020 to 204 data points. Again we choose τ with the
Anderson Darling Test and the K-Means algorithm (see figure 5.19). The results of both
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Figure 5.19.: Left: Boxplot of the p values from the Anderson Darling test.
Right: Clustered data with K-Means.

tests/algorithms are compared to the ones for the 1 min data in table 5.4.

τKMeans τAD
1 min 23 30

5 min 6 37

Table 5.4.: τ given by K-Means algorithm and Anderson Darling Test

There is a clear distinction between the τ estimated by the Anderson Darling Test and
the one given by the K-Means algorithm for the 5 min data contrary to the 1 min data.
The small value for τ given by the K-Means algorithm suggests that there is only a small
amount of points covering the transition time and we can not fit an ARMA(p,q) model
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properly to subsequences this short. This is shown in figures 5.20 and 5.22. Moreover,
as the value for τ given by the Anderson Darling Test is much bigger than the amount
of points covering the transition time we do not expect reliable results for Υ with this
τ . Figures 5.21 and 5.23 confirm this hypothesis. In fact, hardly any transitions are
recognised.
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Figure 5.20.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in May 2013. τ = 6 (K-Means)
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Figure 5.21.: Temperature inversion between 6 and 3m, as a function of time as observed
at Dumosa for the period of one night in May 2013. τ = 37 (AD Test)
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Figure 5.22.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in May 2013. τ = 6
(K-Means)
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Figure 5.23.: Temperature inversion between 6 and 3m, as a function of wind speed at
6m as observed at Dumosa for the period of one night in May 2013. τ = 37
(AD Test)
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5.3. Dome C Data

The Dome C data was measured at the Concordia Research Station which is located
on the Antarctica Plateau. It is a French-Italien research facility that was built 3233
m above sea level. The Dome C dataset contains 10 min mean meteorological data
from 2017. Important for our analysis are measurements of the temperature (Kelvin) at
height 9.4 m and surface, the wind speed (m/s) at height 8 m and the radiation made
in the polar night which is from March to September. We focus on the polar night as
we want to test Υ on a data set with several temperature inversions taking place. The
height of the instruments was measured on 26th of December. Like in the paper by
van de Wiel et al. (2017) the data is classified into two subcategories of radiative forcing
being the sum of net shortwave and incoming longwave radiation: R+ = K↓−K↑+L↓.
When plotting ∆T = T9.4m − Ts over the wind speed U8m we see the before mentioned
S-shape for the measurements with R+ < 80Wm−2. Therefore, we focus on the case
when R+ < 80Wm−2.
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Figure 5.24.: Temperature inversion between 9.4 m and the surface, as a function of wind
speed as observed at Dome C in polar winter 2017. Left: All data points.
Right: Longest consecutive time series with R+ < 80Wm−2.

We apply Υ to the longest consecutive time series with R+ < 80Wm−2 which is from
2017-08-03 10:50 to 2017-08-24 21:50 (see right plot in figure 5.24), i.e. 3091 data points.
Again we choose τ with the Anderson Darling Test and the K-Means algorithm (see figure
5.25 and 5.26). Similar to the results from the 5 min averaged Dumosa data the value
for τ given by the Anderson Darling Test τAD = 43 is much bigger than the one given by
the K-Means algorithm (τKMeans = 10), which is in fact too small to expect a good fit
for the ARMA(p,q) model and again we see that hardly any transitions are recognized
by Υ with τAD but with τKMeans some transitions are noted. In fact, the bifurcation
plot with τKMeans indicates that there was one stable regime and an intermittent one
during the measurement period.
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Figure 5.25.: Boxplot of the p values from the Anderson Darling test.
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Figure 5.26.: Clustered data with K-Means.
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Figure 5.27.: Temperature inversion between 9.4 m and the surface, as a function of time
as observed at Dome C. τ = 10 (K-Means)
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Figure 5.28.: Temperature inversion between 9.4 m and the surface, as a function of time
as observed at Dome C. τ = 43 (AD Test)
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Figure 5.29.: Temperature inversion between 9.4 m and the surface, as a function of wind
speed at 8m as observed at Dome C. τ = 10 (K-Means)
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Figure 5.30.: Temperature inversion between 9.4 m and the surface, as a function of wind
speed at 8m as observed at Dome C. τ = 43 (AD Test)
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6. Outlook

In chapter 5 we estimated the amount of points covering the transition from one stable
state to another by using the K-Means Clustering algorithm. Even though this algorithm
gives a good indication it has its limitations. Therefore, it is desirable to calculate the
exact transition time. In order to do this we can calculate the time it takes on average
for the diffusion process Xt to escape from one of the local minima of the potential V (x),
or more generally, the time it takes on average for a diffusion process to escape from a
metastable state. This mean exit time from a metastable state is an example of a mean
first passage time (MFPT): We want to calculate how long it takes on average for a
diffusion process to reach the boundary of a domain D ∈ R for the first time if it started
at x ∈ D. When the domain is the basin of attraction of one of the local minima of the
potential, the mean first passage time gives us the average time it takes for the diffusing
particle to reach the local maximum of the potential and thereby the transition time
[Pavliotis (2014)]. To calculate the mean first passage time we need to use a different
model than the one used in chapter 5 to simulate the controlled data. In fact, we have
to use a stochastic differential equation

dx(t) = −V ′(x(t))dt+ h(x(t))dB(t), x(0) = x.

Further, let D be a bounded set in R with a smooth boundary and V a confining double
well potential. We define the first exit time as

τD(x) := inf{t ≥ 0|x(t) /∈ D}.

This is an example of a stopping time: the information that we have about the stochastic
process up to time t is sufficient to determine whether the event τ ≤ t has occurred.
The average of this time is called the mean exit time

τ(x) := E(τD(x)) = E(inf{t ≥ 0|x(t) /∈ D}|x(0) = x).

We define D := [a, b] with a < xe1 and b = xe2 (xe1 first stable equilibrium, xe2 unstable
equilibrium). The assumption is that the left boundary of D is reflecting and the right
one absorbing, i.e. τ ′(a) = 0 and τ(b) = 0. The MFPT τ(x) can be written as

τ(x) = −2

∫ x

a

∫ y

a

exp[ψ(z)− ψ(y)]

h(z)2
dzdy + c1

∫ x

a
exp[−ψ(y)]dy + c0

[Pavliotis (2014), Krumscheid et al. (2015)] where ψ(x) := 2
∫ x
a h
−2(z)(−V ′(z))dz and

c0 and c1 are constants given by the boundary conditions. With the before mentioned
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boundary conditions we obtain

c1 = 0 and

c0 = 2

∫ b

a
exp[−ψ(y)]

∫ y

a

exp[ψ(z)]

h(z)2
dzdy

⇒ τ(x) = 2

∫ b

x
exp[−ψ(y)]

∫ y

a

exp[ψ(z)]

h(z)2
dzdy.

Due to time constraints we only briefly discuss this approach. The aim, is to compare the
results with time windows for the stability indicator chosen by the K-Means clustering
algorithm, Anderson-Darling Normality test and the mean first passage time. As a
potential we use the one from the simplified model by van de Wiel et al. (2017), i.e.

V (x) =

{
1
2x

2(λ+ C)− C
3 x

3 −Qix for x ≤ 1
1
2λx

2 −Qix+ 1
6C for x > 1

(6.1)

This leads to

V ′(x) =

{
x(λ+ C)− Cx2 −Qi for x ≤ 1

λx−Qi for x > 1
(6.2)

As we are interested to estimate the time it takes the leave the domain D := [a, xe2 ]
where a < xe1 we are only interested in the case when x ≤ 1 (Note: xe2 ≤ 1). Therefore,

dx = (−x(λ+ C) + Cx2 +Qi)dt+ σ2dB

x(0) = x. (6.3)

As parameters we use,

λ = 2,

Qi = 2.5,

C = 5.7 and 7,

σ2 = 0.62,

n = 2000 and

h = 0.01.

As a starting point x we choose xe1 and as the right boundary a we choose -2. For
C = 5.7 C is close to the bifurcation point and for the other C it is further away. In fact,
this has huge impact on the estimated MFPT. When the system is close to the bifurca-
tion point the estimated MFPT is very small otherwise it is similar to the estimate given
by the K-Means algorithm. This is not surprising as xe1 and xe2 are very close together
close to the bifurcation point while further away from the bifurcation point they differ
much stronger. Hence, in the mean it takes less time leaving [a, xe2 ] when the starting
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C τAD τKMeans τMFPT

5.7 52 69 10

7.0 62 74 52

Table 6.1.: τ given by the Anderson-Darling Normality Test, the K-Means clustering
algorithm and the mean first passage time.

point xe1 is close to the right boundary of the domain. The estimated window length
by the Anderson-Darling Normality Test, the K-Means clustering algorithm and the
mean first passage time are given in table 6.1. Note that all τ ’s are rounded as we need
integers for the window length and we use, like in the previous chapter, τ = τKMeans−5.

Figure 6.1 - 6.3 show the results for Υ with τ = τAD, τKMeans and τMFPT and
C = 5.7 and figure 6.4 - 6.6 for C = 7. We see that for the C close to the bifurcation
point the series fluctuates strongly. This could be a reason why Υ does not pick up
the transitions very well. We clearly see that when τ equals the MFPT Υ does not
give reliable results. This is due to the fact that in this case τ is too small to expect a
good fit for the ARMA models. But when C is further away from the bifurcation point
the transition is noticed with all three τ ’s and τ = τMFPT gives the best results. This
indicates that using the MFPT to choose τ is an approach worth pursuing in the future.
But, we need to point out that this approach is only suitable when the underlying
theoretical model is known.
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Figure 6.1.: Υ for C = 5.7 and τ = 52 (AD).
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Figure 6.2.: Υ for C = 5.7 and τ = 64 (K-Means).
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Figure 6.3.: Υ for C = 5.7 and τ = 10 (MFPT).
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Figure 6.4.: Υ for C = 7 and τ = 62 (AD).
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Figure 6.5.: Υ for C = 7 and τ = 69 (K-Means).
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Figure 6.6.: Υ for C = 7 and τ = 52 (MFPT).
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7. Conclusion

We have analysed an indicator Υ that is able to quantify the dynamical stability of
a system observed through a time series of some dynamical quantity. Moreover, we
studied a conceptual model developed to understand regime transitions in near-surface
temperature inversions in the nocturnal and polar atmospheric boundary layer. The
stability indicator was first applied to a time series of controlled data produced by the
model for near-surface temperature inversions and then to two data sets of observational
meteorological data. The results for the controlled data set showed that Υ is capable
of determining the location of metastable states. This also holds for the nocturnal
data. Additionally, we looked at a block averaged time series of one of the nocturnal
data sets. From this, we concluded that the measurements frequency is of high im-
portance for Υ. This finding was also supported by the results of Υ for the polar data set.

The main advantages of using Υ is the local nature of the stability indicator and
the low requirements in terms of data [Nevo et al. (2017)]. By local we mean that
Υ is applied to subsequences of the original time series. We chose the length of the
subsequences with a clustering algorithm [Hartigan & Wong (1979)] and a normality
test [Anderson & Darling (1952)]. When both approaches gave similar results Υ
correctly detected the change in the stability of the system. If not we could conclude
that the data frequency was too low.
We also suggested using the mean first passage time [Pavliotis (2014), Krumscheid
et al. (2015)] to determine the length of the subsequences when the underlying theo-
retical model is known. Due to time constraints this approach was only briefly discussed.

In further research we plan on having a closer look at the data frequency depen-
dence of Υ and the mean first passage time to choose the length of the subsequences.
It could also be insightful to apply a more sophisticated clustering algorithm than
K-Means. Moreover, it would also be interesting to consider a modified version of the
stability indicator which allows the usage of different window lengths for subsequences
of the same time series. This would potentially improve the recognition of transitions
of different lengths.



Data-driven approaches to study the dynamical stability
of the stably stratified boundary layer

Amandine Kaiser

72 Master Thesis, TU Berlin, Fachgebiet Technomathematik, 2019



8. Acknowledgement

I thank Étienne Vignon (LTE, EPFL, Lausanne, Switzerland) and Christophe Genton
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B. Properties of Equation 3.1

B.1. Continuity

We want to verify if

g(x) =
dx(t)

dt

=

{
Qi − λx(t)− Cx(t)(1− x(t)) for x(t) ≤ 1

Qi − λx(t) for x(t) > 1

x(t0) = x0

is continuous for all x ∈ R.
First of all, for x < 1 and x > 1 g(x) is a sum of continuous functions and therefore
continuous itself. But for x = 1 we have to check whether the left-handed and right-
handed limes exist and coincide.

lim
x→1−

Qi − λx− Cx(1− x) = Qi − λ

and

lim
x→1+

Qi − λx = Qi − λ

Thus, g(x) is continuous for all x ∈ R.

B.2. Differentiability

Now we want to verify if g(x) is also differentiable for all x ∈ R.

case 1: x < 1

lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

1

h
(Qi − λ(x+ h)− C(x+ h)(1− x− h)−Qi + λx+ Cx(1− x))

= lim
h→0

C(2x− 1 + h)− λ

= C(2x− 1)− λ

case 2: x > 1

lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

1

h
(Qi − λ(x+ h)−Qi + λx)

= −λ
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case 3: x = 1
For g(x) to be differentiable in x = 1 the limit from above and below have to be equal.

lim
h→0−

g(1 + h)− g(1)

h
= C − λ

lim
h→0+

g(1 + h)− g(1)

h
= −λ

For C 6= 0 the limits are not the same. Hence, g(x) is not differentiable in x = 1 for
C 6= 0 (but everywhere else). Moreover dg

dx is not continuous in x = 1.
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C. Proof: Linear Process with Gaussian
White Noise is Stationary and Gaussian
Itself

In chapter 4 we assume that the subsequences are realizations of a linear process with
Gaussian white noise. In this chapter we justify the choice of these assumptions and
analyse their implications.

Proposition C.0.1. A linear process {xt} is stationary.

Proof: As {xt} is linear it can be written as

xt =
∞∑

j=−∞
ψjwt−j

with
∞∑

j=−∞
|ψj | <∞.

For stationarity we have to show that

(i) E[xt] is constant,

(ii) var(xt) <∞ and

(iii) cov(xs, xt) only depends on s and t through their difference.

Obviously, (i) follows by the definition of a white noise process. Moreover,

var(xt) = var

 ∞∑
j=−∞

ψjwt−j


=

∞∑
j=−∞

ψ2
j var(wt−j)

= σ2
w

∞∑
j=−∞

ψ2
j

<∞
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and

cov(xt, xt+h) = cov

 ∞∑
j=−∞

ψjwt+h−j ,
∞∑

k=−∞
ψkwt−k


= E

 ∞∑
j=−∞

ψjwt+h−j ·
∞∑

k=−∞
ψkwt−k


= E

 ∞∑
j=−∞

ψjψj+h(wt+h−j)
2


= σ2

w

∞∑
j=−∞

ψjψj+h

Theorem C.0.2. A linear process {xt} with Gaussian white noise {wt} is Gaussian
itself.

Proof: First we note that {wt} is independent of itself at different times as it is uncor-
related per definition and Gaussian per assumption.
We fix t ∈ R and then define

xnt :=

∞∑
j=0

ψjwt−j

for some n ∈ N. Per assumption

xt =

∞∑
j=−∞

ψjwt−j

with
∞∑

j=−∞
|ψj | <∞.

Let m < n, m and n ∈ N and L2(Pr) be the space of all twice differentiable functions
then

||
n∑
j=0

ψjwt−j −
m∑
j=0

ψjwt−j ||2L2 = ||
n∑

j=m+1

ψjwt−j ||2L2

Using the Bienyamé formula and noting that ||wt||2L2 = var(wt) we get

||
n∑
j=0

ψjwt−j −
m∑
j=0

ψjwt−j ||2L2 =
n∑

j=m+1

(ψj)
2σ2
w

→ 0 for n,m→∞.
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Thus, {
∑n

j=0 ψjwt−j}n∈N is a Cauchy sequence in L2(Pr). Consequently,

lim
n→∞

n∑
j=0

ψjwt−j =
∞∑
j=0

ψjwt−j .

We can use the same argumentation to show that x−mt :=
∑−1

j=−m ψjwt−j converges

pointwise to
∑−1

j=−∞ ψjwt−j . Therefore,

lim
m,n→∞

(xnt + x−mt ) = lim
m,n→∞

(
n∑
j=0

ψjwt−j +
−1∑

j=−m
ψjwt−j)

= lim
m,n→∞

n∑
j=−m

ψjwt−j

=
∞∑

j=−∞
ψjwt−j

= xt

exists.
We know x−m,nt :=

∑n
j=−m ψjwt−j is Gaussian because {wt} is Gaussian. The charac-

teristic function of x−m,nt is

ϕx−m,nt
= exp[−1

2
σ2t2]

where σ2 = var(x−m,nt ) =
∑n

j=−m(ψj)
2σ2
w. From this it follows that

lim
m,n→∞

ϕx−m,nt
= exp[−1

2
t2 lim
m,n→∞

n∑
j=−m

(ψj)
2σ2
w]

= exp[−1

2
t2

∞∑
j=−∞

(ψj)
2σ2
w]

which is the characteristic function of xt. By Levy’s continuity theorem it follows that
x−m,nt converges in distribution to xt and therefore is {xt} a Gaussian process.
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