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A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to
project the trajectories onto a space of slowly-varying collective variables, where subsequent analyses are made, such as
clustering or estimation of free energy profiles or Markov state models (MSMs). However, existing “dynamical” dimen-
sion reduction methods, such as the time-lagged independent component analysis (TICA) are only valid if the dynamics
obeys detailed balance (microscopic reversibility) and typically require long, equilibrated simulation trajectories. Here
we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed Variational
Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional de-
scription of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations
of the KcsA channel protein in an external electrochemical potential. This analysis provides detailed insights into the
coupling of conformational dynamics, the configuration of the selectivity filter, and the conductance of the channel. We
recommend VAMP as a replacement for the less general TICA method.

I. INTRODUCTION

Much understanding about molecular kinetics has been
gained by modeling kinetics with Markov state models
(MSMs),1–4 rate equation models5 or diffusion map-based
models.6–8 A key element in all of these methods is that the
dynamics are modeled in a low-dimensional space of collec-
tive variables.9–11 In MSMs and rate equation models, there
is a direct link between the kinetic model, consisting of a set
of states and transition probabilities, and the underlying mi-
croscopic dynamical equations via the spectral decomposition
of Markov operators.12 As a result of this theory, the natu-
ral collective variables to describe the long-time dynamics are
the eigenfunctions of the Markov operator.11 In practice, the
eigenfunctions and eigenvalues of the (Markov) transfer op-
erator can be approximately computed directly from molec-
ular dynamics (MD) simulation data by means of the Noé-
Nüske variational approach.13,14 This has led to wide appli-
cation of spectral methods in the molecular dynamics com-
munity, in particular the time-lagged independent component
analysis (TICA).15–17

However, application of TICA is only truly justified if the
dynamics fulfill the principle of detailed balance (microscopic
reversibility) and if the dynamical equations are stationary,
i.e. do not change as a function of time. Moreover, since
TICA is a data-driven method, the reversibility and stationar-
ity must be approximately met in the (finite) simulation data.
Ignoring this limitation can result in systematic errors. For
instance, if TICA is applied to non-equilibrium data (such as
data that consist of short trajectories that were not initialized
from the equilibrium distribution) the computed eigenvalues
and eigenfunctions incur large biases.18 A valid alternative
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method that can be applied to non-equilibrium data is Koop-
man reweighting.18 This method removes estimation bias, but
empirically induces a large variance as seen in the results of
Ref.18.

The restriction to equilibrium data impedes the analysis of
interesting and biologically relevant molecular systems whose
function relies on non-reversible dynamics. Ion conduction in
channel proteins is an example for such a process, since the
ion current is driven by external and perhaps time-dependent
electric fields and chemical potentials. Therefore, a dynami-
cal dimension reduction method that is similar to TICA, but
is directly applicable to non-equilibrium dynamics or even to
non-equilibrium data would be desirable.

Recently, a new approach for dimensionality reduction of
dynamic systems was proposed by Wu and Noé.19 The varia-
tional approach to Markov processes (VAMP) dispenses with
the assumptions of stationarity and reversibility. This was
made possible by reformulating the problem of dimension-
ality reduction as a regression problem. Similarly to the re-
versible methods like TICA, VAMP can be directly applied to
MD simulation data; it is hence a data-driven method. Wu et
al. showed that there exists an optimal low-rank approxima-
tion to the solution of the above regression problem. This
gives rise to a low-dimensional space of order parameters
that are chosen such that the regression error is minimized.
Mathematically this space can be found by performing a re-
stricted singular value decomposition20,21 of a regression ma-
trix learned from the simulation data.

Mardt et al.22 showed that VAMP can be used to train a deep
neural network to find informative order parameters and de-
rive a coarse-grained MSM for the conformational dynamics
of the alanine dipeptide and the folding of the N-terminal do-
main of ribosomal protein L9 (NTL9). In their work, Mardt et
al. focused on demonstrating that VAMP can be successfully
used to select highly non-linear transformations to approxi-
mate the singular functions. However the MD simulations that
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they used were reversible and stationary.
In this work, we show that VAMP works as a dimension

reduction method for non-equilibrium data that may or may
not originate from an equilibrium system. The goal is to es-
tablish an alternative to TICA which can be applied to re-
duce the dimension of the data and keep the slow processes,
no matter whether the data are too short to be equilibrated,
or if the underlying process is fundamentally out of equilib-
rium. We also extend the Chapman-Kolmogorov test, which
is frequently used to validated MSMs,4 to validate the Markov
property of the dimensionality-reduced model obtained with
VAMP. We demonstrate VAMP by identifying the slow collec-
tive variables for two non-equilibrium systems: 1) the asym-
metric simple exclusion process (ASEP) which is a simple
model of single file diffusion. 2) non-equilibrium MD sim-
ulation data23 of the KcsA potassium ion channel in which an
ion current is driven through the channel pore. Furthermore,
using a simple model of diffusion in a low-dimensional energy
landscape, we compare the biases of VAMP and TICA when
applied to a ensemble of short trajectories that were initiated
from an non-equilibrium distribution.

II. THEORY

We first lay a theoretical framework with the most im-
portant mathematical results. The more practically inclined
reader is advised to skip to the Methods section. The theo-
retical framework is formulated in the language of dynamical
operators. The advantage of this formulation is that theoreti-
cal properties can be obtained by using linear methods - albeit
in infinite many dimensions. The main theoretical result is a
variational principle, which can then be used for the formula-
tion of linear or nonlinear solvers (such as VAMPnets22). In
order to go into even more theoretical detail, please refer to
Ref.19.

A. Exact dynamics in full configuration space

Let x be the coordinates in which the MD algorithm is
Markovian (atom positions, velocities, box coordinates etc.)
Let p(x, t) be the probability density of finding the system in
state x at time t. We are interested in p(x,τn), the density
at times τn that are integer multiples of some lag time τ . At
these times, the time evolution of p can be described with the
following integral equation:

p(x′, t + τ) =
∫

p(x′ | x)p(x, t)dx = Pτ [p] (1)

Here Pτ stands for the propagation operator (or propaga-
tor) which can be thought of as the discrete-time analog of
the Fokker-Planck operator. p(x′ | x) denotes the conditional
probability density of visiting an infinitesimal phase space
volume around point x′ at time t+τ given that the phase space
point x was visited at the earlier time t.

An equivalent description of the time evolution is given by
the following integral equation which defines the Koopman

operator Kτ :

g(x, t + τ) =
∫

p(x′ | x) f (x′)dx′ = Kτ [ f ] (2)

f is an observable, i.e. in general a function of positions and
momenta. The result g(x, t + τ) can be interpreted as the ex-
pectation value of f at time t +τ computed from an ensemble
that was propagated for a time τ after having been started at
time t from the single point x:

Kτ [ f ](x) = Et+τ ( f | p(x, t) = δ (x)) (3)

Here δ is the (vectorial) Dirac delta function.
Both the propagator and the Koopman operator fulfill the

Chapman–Kolmogorov equation

Pτ1+τ2 = Pτ1Pτ2 (4)
Kτ1+τ2 = Kτ1Kτ2 (5)

For stationary dynamics, this implies that expectations of any
observable f can be computed for all times from the Koopman
operator.

g(x,nτ) = Enτ ( f | p(x,0) = δ (x)) = K n
τ f (6)

Expectations for an ensemble, that was started from an arbi-
trary probability density p0, can be computed from the fol-
lowing scalar product:

Enτ ( f | p(x,0) = p0(x)) =
∫

p0(x)g(x,nτ)dx (7)

For the computation of instantaneous and time-lagged vari-
ances and covariances,24 similar equations that use the Koop-
man operator can be derived.

B. Formulation of ensemble propagation as a regression
problem

Can a dynamic model be built using only expectation values
that were computed from simulation data? This question has
been addressed in a series of papers preceding our VAMP the-
ory that have developed the so-called Koopman analysis.25,26

We seek a small matrix Kτ ∈ Rk×k, called the Koopman ma-
trix, that fulfills the equation

Kτ g≈K>τ f (8)

in a sense that we explain below. Here f and g are vectors of
observables, that can be arbitrary functions of the conforma-
tion. f(x) = ( f1(x), f2(x), . . .)> and similarly for g. We use
the shorthand notation (Ktg)i := Ktgi which means that the
Koopman operator is applied element-wise to g.

More formally, for fixed f and g, the optimal data-dependent
matrix Kτ can be computed by minimizing the following error

ε = Eρ0

[∥∥∥Kτ g−K>τ f
∥∥∥

2
]
. (9)
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ρ0 is the empirical distribution of the simulation data, exclud-
ing time steps ti > T − τ where T is the length of the (single)
time series. By inserting the definitions of ρ0 and Kτ into (9),
one finds that

ε = ∑
t s.t.

0≤t≤T−τ

∥∥∥g(x(t + τ))−K>τ f(x(t))
∥∥∥

2
(10)

which shows that the error is purely data-dependent.
Eqs. 9 and 10 have the form of a regression problem: a

future window from the time series is regressed against the
current window of the time series. This formulation avoids
any assumption of microscopic reversibility.

C. Optimal low-dimensional observables

Unlike the Koopman matrix, the observable functions f and
g cannot be chosen by only minimizing the regression error
defined by (9), because the minimal ε = 0 can be trivially
obtained by an uninformative model with f(x)≡ g(x)≡ 1.

In Ref.19, the error of the approximate Koopman opera-
tor provided by model (8) was analyzed. It was shown that
the model with the smallest approximation error in Hilbert-
Schmidt norm is given by f = ψ = (ψ1, . . . ,ψk)

>, g = φ =
(φ1, . . . ,φk)

> and Kτ = diag(σ) = diag(σ1, . . . ,σk) for a given
k, and the corresponding approximation of the Koopman op-
erator is

Kτ g≈
k

∑
i=1

σi〈g,φi〉ρ1ψi, (11)

where σi is the i’th largest singular value of Kτ , ψi and φi
are the corresponding left and right singular functions respec-
tively. (The singular value decomposition is to be understood
of being applied after a whitening transformation of f and g.
See method subsection III A for details.) ρ1 is the empirical
distribution of simulation data excluding time steps ti < τ , and
〈 f ,g〉ρ1 =

∫
f (x)g(x)ρ1(x)dx.

It can be shown that the largest singular value σ1 is always
1 and that the corresponding left and right singular functions
are constant and identical to 1 for all x.18 Only the singular
components σi, ψi, φi with i> 1 contain kinetic information.

If ψ and φ are approximated with a finite linear combina-
tion of ansatz functions, a corresponding finite-dimensional
singular value decomposition of the whitened Koopman ma-
trix can be used to compute the optimal superposition coeffi-
cients (see subsection III A for details).

D. The kinetic map induced by the singular functions

For a Markov process, we can measure the difference be-
tween two points x and y by the kinetic distance27 Dτ(x,y)
where

D2
τ(x,y) =

∫
(p(z|x)− p(z|y))2

ρ1(z)
dz. (12)

Dτ(x,y) = 0 means x and y are equivalent for predicting the
future evolution of the process. By using the singular compo-
nents of Kτ , the square of the kinetic distance can be written
as

D2
τ(x,y) = ∑

i
σ2

i (ψi(x)−ψi(y))2 (13)

(see Appendix A for proof). If all but the k leading singular
values are close 0, we have

D2
τ(x,y)≈ ‖diag(σ)ψ(x)−diag(σ)ψ(y)‖2 , (14)

where diag(σ) denotes the k×k diagonal matrix with the sin-
gular values on its diagonal. That means, all the points x can
be embedded into a k-dimensional Euclidean space by the ki-
netic map x→ diag(σ)ψ(x) with the structure of the kinetic
distance preserved. Note that the extension of Ref.27 to the
commute distance28 is not directly applicable to VAMP be-
cause the commute distance relies on the computation of re-
laxation timescales, which relies on the eigenvalue decompo-
sition of the Markov operator and cannot be directly done with
the singular value decomposition.

Also note that the kinetic distance defined in Eq. 12 de-
pends on the empirical distribution of the data ρ1. Therefore,
D2

τ(x,y) in general depends on how the system dynamics were
sampled. For systems that possess an unique stationary distri-
bution (see for example the ASEP model in subsection IV A),
ρ1 can be set to the stationary distribution to define a kinetic
distance that is independent from the sampling.

Furthermore, it is worth noting that the coherent sets of non-
reversible Markov processes can also be identified from the k
dominant singular components, and more details can be seen
in Ref.29. Also, note that the right singular functions φ induce
a kinetic map with respect to time-reversed propagation of the
dynamics (unlike the kinetic map induced by ψ that uses con-
ventional forward-time propagation).

III. METHODS

In this work we use VAMP as a method for computing op-
timal kinetic order parameters for non-equilibrium dynamics
using a linear combination of input features. However, in gen-
eral, the scope of VAMP is larger: order parameters are not re-
stricted to be linear combinations but can also be formed from
a non-linear combination of features as was demonstrated by
Mardt et al.22 by training a deep neural network (VAMPnet) to
capture the conformational dynamics of the alanine dipeptide
and the N-terminal domain of ribosomal protein L9 (NTL9).
Another application of VAMP is the scoring of input features
(see publication “Variational Selection of Features for Molec-
ular Kinetics” by Scherer et al. in this issue).

Using VAMP to find kinetic order parameters from a linear
combination of molecular features is also called time-lagged
canonical covariance analysis (TCCA)22 and works as fol-
lows.
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A. Dimension reduction using the Variational Approach for
Markov Processes (VAMP)

Let χ(t) be a multivariate time series where every element
χi(t) is the time series of one molecular feature. Features can
be Cartesian or internal coordinates (such as distances or di-
hedral angles) of the molecular system or functions thereof
(such as the sine and cosine of dihedral angles or a step func-
tion that converts a distance into a contact). From the input
features χ(t), first the means µ0 and µ1 are computed from
all data excluding the last and first τ steps of every trajectory,
respectively:

µ0 :=
1

T − τ

T−τ

∑
t=0
χ(t) (15)

µ1 :=
1

T − τ

T

∑
t=τ
χ(t) (16)

Next, the instantaneous covariance matrices C00 and C11 and
the time-lagged covariance matrix C01 are computed as fol-
lows:

C00 :=
1

T − τ

T−τ

∑
t=0

[χ(t)−µ0] [χ(t)−µ0]
> (17)

C11 :=
1

T − τ

T

∑
t=τ

[χ(t)−µ1] [χ(t)−µ1]
> (18)

C01 :=
1

T − τ

T−τ

∑
t=0

[χ(t)−µ0] [χ(t + τ)−µ1]
> (19)

After that, a Koopman matrix K̄ is computed in the basis of
whitened19,30 input features

K̄ := C−
1
2

00 C01C−
1
2

11 (20)

Then, the singular value decomposition (SVD) of K̄ is per-
formed, giving orthonormal matrices U′ and V′ as well as
S = diag(σ) such that

K̄ = U′SV′ (21)

Finally, the input conformations are mapped to the left singu-
lar functions ψ and right singular functions φ as follows:

ψ(t) := U′>C−
1
2

00 [χ(t)−µ0] (22)

φ(t) := V′>C−
1
2

11 [χ(t)−µ1] (23)

ψ(t) and φ(t) are the sought-after kinetic order parameters.
Since the left singular functions ψ(t) induce a kinetic map
for the (conventional) forward-time propagator, they are the

natural choice of order parameters if one wants to perform a
clustering of space to obtain state definitions. For simplicity,
we will call them VAMP components.

Note that the algorithm above performs a Canonical Cor-
relation Analysis (CCA)31 in time, and is hence also called
Time-lagged CCA (TCCA)19. The singular value decom-
position in the whitened basis (20), (21) is also called the
generalized21 or restricted20 SVD of C01 under constraints
imposed by C00 and C11.

B. The variational score

In the previous subsection III A, VAMP was used to linearly
combine molecular features to compute kinetic order parame-
ters. A question that remained unanswered is how to select
the best molecular features to use as input. This question
can be answered by computing the variational score of the
dimensionality-reduced kinetic model. The VAMP-r score is
defined as the sum of the leading m largest singular values
that have been taken to the power of r (see Ref.19 and the
publication “Variational Selection of Features for Molecular
Kinetics” by Scherer et al. in this issue).

VAMPr,train =
m

∑
i=1

σ r
i (24)

In a situation with infinite sampling, where the singular
values are known without statistical error, the best selection
of molecular features is the one that maximizes the VAMP-
r score. In a practical setting however where the time series
data is finite, direct maximization of the VAMP-r score is not
possible due to model overfitting.32 That is why the VAMP-r
score needs to be computed in a cross-validated manner.

Cross-validation works by splitting the trajectory data into
two sets: the training set, from which a dimensionality-
reduced model is estimated, and the test set, against which
the model is tested. From the training set, the matrices

Utrain =C−
1
2

00 U′ and Vtrain =C−
1
2

11 V′ are computed, where C00,
C11, U′, and V′ are computed from the training data according
to Eqs. 17, 18, and 21. Next, the test score is computed from
the equation

VAMPr,test = ∑
i
κr

i (25)

where κi is the i’th singular value of the matrix product
ABC33 with

A = (Utrain>Ctest
00 Utrain)−

1
2 (26)

B = Utrain>Ctest
01 Vtrain (27)

C = (Vtrain>Ctest
11 Vtrain)−

1
2 (28)

and where Ctest
00 , Ctest

01 , and Ctest
11 have been computed from the

test data via Eqs. 17, 19, and 18 (with the caveat that the
means µ0, µ1 of the training data have to be subtracted). Fi-
nally, the k-fold cross-validated test score is computed by re-
peating the splitting of the data into test and training data k
times, computing one test score for each partition of the data
and then taking the average of the individual test scores.
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C. The non-equilibrium Chapman-Kolmogorov test

For stationary (but possibly non-reversible) dynamics the
full-state-space Koopman operator fulfills the Markov prop-
erty (5). It shares this property with the propagator and with
the transition matrix of MSMs.

In the context of molecular dynamics simulation, the
Markov property is often exploited to calculate long-time-
scale properties (Knτ ) from short-lag-time estimates (Kτ ).
One of the most important long-time-scale properties is the
stationary distribution that can be computed from a MSM by
applying the transition matrix an infinite number of times to
an initial probability distribution.

To extrapolate to higher multiples of the lag-time, the
Markov property needs to hold. While this property is guaran-
teed for the full-state-space dynamical operators, it is not nec-
essarily fulfilled for dimensionality-reduced dynamical mod-
els like the transition matrix of a MSM or an approximated
Koopman operator. Therefore, the Markov property is typi-
cally tested by comparing Knτ to K n

τ for the multiples of the
lag time nτ .

The standard way to perform this test is to compare the di-
rect estimate of a time-lagged covariance

covest( f ,g; nτ) = 〈 f ,Knτ g〉ρ (29)

from the simulation data to the model-prediction of the same
covariance

covpred( f ,g; nτ) = 〈 f ,K n
τ g〉ρ . (30)

f and g are some functions of the configuration-space coordi-
nates. When f and g are indicator function, this test is known
under the name Chapman-Kolmogorov test.34 Here we pro-
pose to perform the same comparison for the data-driven es-
timate of the dimensionality-reduced Koopman operator. See
appendix C 1 for details.

To make the test independent on the subjective choice of the
functions f and g, the left and right singular functions of the
Koopman operator estimated at the lowest multiple of the lag
time 1×τ , can be used as f and g respectively. This choice is
in the spirit of the Chapman-Kolmogorov test as it is typically
applied to Markov models of metastable molecular kinetics.
There, the test is typically applied to the probability of staying
in one of the metastable states, which constitutes a particular
hard test that requires data that thoroughly samples exit and
entry events into the metastable states.4,34 Characteristic (in-
dicator) functions of the metastable states are related by a lin-
ear transform to the eigenfunctions of the transfer operator.12

By analogy, we assume here that using the singular functions
in the Chapman-Kolmogorov test also constitutes a particular
hard test.

D. Interpretation of the VAMP components and spectral
clustering

For reversible dynamics, the theory of conformation dy-
namics describes how the leading eigenfunctions can be used

to understand which structural changes are associated to the
slowest processes and to find the metastable states via spec-
tral clustering.12,35

For non-equilibrium dynamics, we can replace the eigen-
functions by the left singular functions found by VAMP. As
for TICA16, we can interpret the ith kinetic order parameter in
terms of structural changes by computing its correlation with
all features χ j:

corr(ψi,χ j) =
1

T−τ ∑0≤t<T−τ ψi(t)(χ j(t)− χ̄ j)√
1

T−τ ∑0≤t<T−τ (χ j(t)− χ̄ j)
2

(31)

=
(C

1
2
00U′) ji√
(C00) j j

(32)

and by visualizing the most-correlated features. In the last
equation χ̄ j denotes the empirical mean of feature χ j com-
puted from the data in time steps 0≤ ti < T − τ .

Furthermore, we can compute the long-lived states of non-
equilibrium dynamics by performing spectral clustering in the
VAMP components, in a similar way as it is done with the
dominant eigenspace for equilibrium dynamics in Ref.36. Let
ψ be the vector that contains the nspec leading singular func-
tions (with singular values close to one, including the constant
singular function). Let A ∈ Rnspec×nspec . Then the vector of
macro-state memberships m ∈ Rnspec is given by

m(t) = Aψ(t). (33)

See appendix C 2 or Ref.36 for the algorithm to compute A.
The element mi(t) encodes the degree of membership of the
conformation sampled at time t in the macro-state i. The
memberships at every time step always sum to one (which ex-
presses the necessity of belonging to some macro-state with
certainty) and, depending on the specific algorithm that was
used to compute A, are confined between 0 and 135 or not36.
The memberships define the macro-states in a fuzzy manner;
that is every conformation belongs to macro-state i with a
degree of membership given by mi(t). Fuzzy states can be
converted into crisp states by imposing a cutoff on the mem-
berships and treating conformations with memberships larger
than the cutoff as being part of the crisp state. Structural dif-
ferences between states can, e.g., be found using significant
distance analysis.37

IV. RESULTS

A. Model of single file diffusion: the asymmetric simple
exclusion process

The asymmetric simple exclusion process (ASEP) is a
generic model for single file diffusion. It was originally for-
mulated by MacDonald et al.38 as a model for the kinetics
of protein synthesis and was independently introduced by
Spitzer39 in the mathematical literature. Since then it has
been extensively analyzed and applied to model phenomena
such as macromolecular transport, conductivity, traffic flow,
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sequence alignment, and molecular motors (see Refs.40,41 and
references therein).

The ASEP consists of a linear chain of Nsites sites each of
which can either be empty or occupied by exactly one particle,
resulting in a large state space with 2Nsites elements (Fig. 1a).
If the first site is empty, a particle is inserted with a rate α .
Particles can move to adjacent unoccupied sites with rate p
in the forward and rate q in the backward direction. In the
last site, particles are annihilated with rate β . Hence, the
ASEP is a driven (non-reversible) Markovian multi-particle
system. Here we show that VAMP can be used to train a low-
dimensional model that allows to reproduce the time-lagged
covariances and auto-covariances for a large range of lag-
times.

Figure 1. a) The asymmetric exclusion process is a model for single
file diffusion. It consists of a linear chain of Nsites sites along which
particles can move. Particles are inserted at position 1 with rate α and
annihilated at site Nsites with rate β . b) the first 120 time steps of an
exemplary realization of a occupancy time trace for the ASEP with
parameters Nsites = 8, α = β = p= 1, and q= 1/3. c) singular values
of the 17×17 Koopman model trained on the time series (blue, upper
spectrum) and singular values of the full ASEP model (orange, lower
spectrum).

We use the master equation formulation of the ASEP as our
true reference (Appendix B 1). The model parameters are cho-
sen as Nsites = 8, α = β = p = 1, and q = 1/3. Since VAMP
works with a finite lag-time, we convert the master equation
model to a transition matrix by taking the matrix-exponential
of the master equation coefficient matrix. From the transition
matrix we generate a long trajectory with Nsteps = 106 steps.
The trajectory is encoded as a matrix of shape Nsteps×Nsites
where every row represents the occupancy pattern at a given
time point (see Fig. 1b for an example of a transposed trajec-
tory matrix).

We estimate an empirical Koopman matrix using VAMP at
a lag time of τ = 1steps and using a basis consisting of two

groups of features. The first group consists of the site occu-
pancy vectors (the columns of the matrix shown in Fig. 1b).
The second set of features is an 9 dimensional vector that con-
tains the “one-hot” encoded number of occupied sites. That is,
element i in the second feature set is 1 if and only if there are
i occupied sites. Our selection of features already constitutes
a dimensionality-reduction, since we estimate the Koopman
model in the 8+9-dimensional space of feature vectors and
not in the 28-dimensional state space. As a consequence, the
spectrum of the empirical Koopman model consists of only
17 singular values. Not all singular values of the true model
can be reproduced (see Fig. 1c), still, large singular values ap-
proximately agree. The singular values of the empirical model
decay quickly with increasing rank (see top part of Fig. 1c).
Therefore we discard the very small singular components and
further reduce the rank of the model to 11 dimensions (not
counting the first singular function which is the constant func-
tion). Despite these two dimension reductions, we will show
later that physically interesting observables are correctly cap-
tured by the 11-dimensional model.

To gain some physical understanding of the true singular
functions of the ASEP model, we cluster the space of the lead-
ing 9 VAMP components of the true transition matrix with
the PCCA+ algorithm without using any further approxima-
tion (see KcsA application below for more details on PCCA+
clustering). This allows to group all the possible site occu-
pancy patterns (micro-states) into 9 macro-states. We select
9 states because in the true spectrum, a relatively large gap
follows a denser cluster of singular values at position 9 (see
lower part of Fig. 1c). Macro-states are shown in Fig. 2, with
the micro-states ordered from low macro-state membership to
high macro-state membership (from left to right). The top-
membership micro-states are characterized by long uninter-
rupted segments with the same occupancy (long occupied /
long empty segments) and show only one alternation from oc-
cupied to unoccupied (shock) along the queue. Macro-states
differ in the position of the shock. Micro-states with lower
memberships resemble the top membership states but show
a noisier shock profile with more alternations between occu-
pied and unoccupied. Macro-states also differ in the average
number of occupied sites.

Next, we test whether our choice of the 17-dimensional ba-
sis that consists of the occupancy vector and the one-hot en-
coded occupancy affects the capability of PCCA+ to find the
correct macro-states. Therefore we repeat the PCCA+ cluster-
ing using the singular functions that were approximated with
the Koopman model. Since the simple-basis does not allow to
capture all leading 9 singular components correctly, we per-
form the comparison in the space of the leading 3 compo-
nents (counting the constant component). Results are shown
in Suppl. Fig. 5 and show good agreement between macro-
states computed from the true and the approximate model.
With an increased number of macro-states, the results devi-
ate.

To test the predictive power of the reduced model, we com-
pare observed time-lagged covariances to the model predic-
tion of the same covariance using the Chapman-Kolmogorov
test. We pick one of the observables f = Nfront to be the num-
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Figure 2. The nine dominant long-lived macro-states of the ASEP
with parameters Nsites = 8, α = β = p = 1 and q = 1/3. In each
subfigure (a-i), one macro-state is shown. Occupancy vectors of all
microstates in a macro-state are ordered along the micro-state axis
(x-axis) with increasing memberships. Dark blue squares mark oc-
cupied sites, white squares mark empty sites. The microstates with
the highest macro-state memberships (right-most patterns) are char-
acterized by long uninterrupted segments with the same occupancy
and a single jump from occupied to unoccupied (shock) for states (c)
to (i). Macro-states differ in the location of the shock.

ber of particles in the first half of the queue and the second
observable g = Nback the number particles in the second half.
Estimates for the observed and the predicted time-lagged co-
variance of Nfront and Nback computed from Eqs. 29 and 30 for
multiple lag times are shown in Fig. 3b-e. For comparison we
also show the true covariances computed from the full ASEP
model without using the VAMP approximation (shown in gray
in Fig. 3). The Chapman-Kolmogorov test shows that pre-
dictions from the dimensionality-reduced VAMP model agree
with the observed covariances computed from the time series
data as well as with the results from the full model.

To make the Chapman-Kolmogorov test less dependent
on the subjective choice of observables f and g, we re-
peat the test but this time selecting the observables to be
identical to the singular functions ψ(1)

i and φ (1)
i , respec-

tively, that were estimated from the dimensionality-reduced
model estimated at lag time τ = 1steps. That is, we com-
pare covest(ψ

(1)
i ,φ (1)

i ; nτ) to covpred(ψ
(1)
i ,φ (1)

i ; nτ). Results
are shown in Fig. 4. The figure shows that the Chapman-
Kolmogorov test succeeds for the all pairs of singular func-
tions, that is model predictions of covariances are consistent
with the re-estimated covariances for all lag times. Predictions
from the VAMP model are in good agreement with the true
covariances that were computed from the full ASEP model.
The dimensionality-reduced model does not correctly repro-
duce the second and third true singular function but repro-
duces the fourth true singular function (see Suppl. Fig. 1).
To obtain this approximate agreement of the leading singu-
lar functions, it was necessary to include the one-hot-encoded
count of occupied sites into the set of input features to VAMP.
The mismatch between the remaining singular functions and
singular values of the true and reduced model (see Fig. 1c
and Suppl. Fig. 1) is a consequence of the very simple set
of input features that was used to estimate Kτ . Had the re-
duced model not been trained on the 17-dimensional occu-
pancy vectors but on the 28-dimensional full state space, the

Figure 3. Chapman-Kolmogorov test results for the low-dimensional
Koopman matrix estimated from the ASEP model with parameters
N = 8, α = β = p = 1, and q = 1/3. Nfront is the total particle count
in the first half of the chain (blue shaded area in Fig. 1a). Nback is the
total particle count in the second half (green shaded area in Fig. 1a).
The true reference is computed from the full ASEP model, by using
Eq. 30 with the true Koopman operator.

agreement would have been exact. Also using a more expres-
sive set of basis functions22,42,43 could be have produced a
richer reduced model that captures more singular components
of the full model. Despite the simple approach, some observ-
ables can be modeled correctly.

Besides the estimation of a Koopman model, the typical use
of VAMP will be to compute kinetic order parameters for non-
reversible kinetics. To assess the improvement of these order
parameters over the independent components obtained from
TICA, we compare the kinetic distance obtained from TICA
and VAMP to the true reference. We compute the true ref-
erence of the kinetic distance by applying Eq. 14 to the true
ASEP transition matrix in a complete basis. We set ρ1 in Eq.
14 to the true stationary distribution. We compare this refer-
ence to the VAMP estimate computed from Eq. 12 using the
same full basis as well as to the TICA estimate. The TICA
estimate of the kinetic distance is computed from a modified
Eq. 12 with the singular values replaced by the TICA eigen-
values and the right singular functions replaced by the TICA
eigenfunctions. That version is the default in the PyEMMA
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Figure 4. Same as Fig. 3 but with singular functions chosen as ob-
servables. ψi and φi are left and right singular functions respectively
of the Koopman matrix estimated at the smallest lag time τ = 1. In
(c) cov(ψ4,φ4;τ) of the true ASEP transition matrix serves as the
reference, since the third singular function of the dimensionality-
reduced VAMP model predominantly matches the fourth true sin-
gular function (see Suppl. Fig 1).

Figure 5. Comparison of the median difference between the exact
kinetic distance computed with Eq. 12 to its low-rank VAMP ap-
proximation and to its low-rank TICA approximation as a function
on the retained number of spectral components. ρ1 in Eq. 12 was set
to the stationary distribution of the ASEP model.

software.44 Results are shown in Fig. 5. As implied by VAMP
theory, the VAMP estimate converges to the true reference as
the number of singular components is increased. In contrast
to that, the TICA estimate does not converge to the true ref-
erence. This is expected, since for non-equilibrium dynamics
the kinetic distance cannot be expressed using only the right
eigenfunctions alone that TICA provides.27 Full kinetic dis-
tances between all states are given in Suppl. Fig. 4.

In summary, the application of VAMP to the ASEP model
shows that VAMP can accurately capture the dominant sin-
gular functions and can be used to accurately compute time-
lagged auto-covariances and cross-covariances of physical
quantities like the occupancy of the first and second half of
the queue. The ASEP is a genuinely non-reversible model.
Therefore its dimension-reduction can only be accomplished
with methods like VAMP that are capable of modeling non-
reversible processes and do not rely on detailed balance. A
decomposition of the state space into 9 macro-states shows

that the location of the shock (jump from occupied to un-
occupied segments) allows to approximately distinguish the
macro-states for the ASEP parameter settings that we chose.

B. Application of VAMP to a reversible system in the limit
of non-equilibrium sampling

While the ASEP system is intrinsically non-equilibrium as
its dynamical equations violate detailed balance, we now in-
vestigate the performance of VAMP when the underlying dy-
namics obey detailed balance, but the data does not reflect
the equilibrium distribution. In cases where the metastable
states are reversibly connected, reweighting methods18,45 and
reversible maximum-likelihood MSMs4,46 have been shown
to provide unbiased estimates and to recover the equilibrium
kinetics from non-equilibrium data. When transitions be-
tween states have only been sampled in one direction, the
current MSM practice is simply to discard the not reversibly
connected states.4,46 In VAMP, this is not necessary because
VAMP does not require a stationary distribution to be com-
puted.

Here we study the performance of VAMP on non-
equilibrium data generated from a 1-D double-well energy
landscape (Fig. 6a). Trajectories were generated from the
transition matrix which is provided in the PyEMMA exam-
ple datasets/models package44 using a lag time of τ = 6 steps.
To produce non-equilibrium sampling, we start all trajectories
from the left well. The trajectory lengths are 500τ to 4000τ ,
which is on the order of the mean-first-passage time to the
right well. For each trajectory length, the aggregate data over
all trajectories is 90000 τ . Each run is repeated 100 times to
compute means and uncertainties.

We compare VAMP with TICA in terms of the kinetic dis-
tance between the two energy wells. The kinetic distance is
one of the few quantities that can be computed from both
VAMP and TICA, whereas eigenvalues and singular values
cannot directly be compared.
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Figure 6. a) Double-well energy landscape (parameters from
PyEMMA44) used to test VAMP in the limit of non-equilibrium sam-
pling. Trajectories were all started from the minimum of the left well
(star). b) Kinetic distance between the two local minima of the en-
ergy landscape depending on the trajectory length used for its esti-
mation with VAMP or TICA. Plot markers mark the median. Tips of
the error bars mark the 10th and the 90th percentile.

All estimates converge to the true reference value, as the
trajectory length is increased, when the sampling becomes in-
creasingly representative of the equilibrium kinetics (Fig. 6).
The true reference is computed with Eq. 12 and with ρ1
set to the true stationary distribution of the model transition
matrix. For non-equilibrium data (short trajectories), neither
TICA nor VAMP reproduce the equilibrium kinetic distance.
In VAMP this is due to the weighting of points with respect
to the empirical distributions ρ1 which is in general different
from the stationary distribution. Strikingly, the results from
VAMP and TICA are almost identical, both in terms of the
medians and of their statistical errors. This example indicates
no particular advantage of using VAMP over using TICA but
also no disadvantage.

Both VAMP and TICA can handle completely disconnected
datasets (if transitions in both directions between a pair of
states are missing). Every disconnected set leads to an ad-
ditional singular value / eigenvalue of value 1 (or close to one,
due to projection errors). However, the strength of VAMP lies
elsewhere - in the analysis of inherently non-equilibrium sys-
tems such as driven ion motion as exemplified by the ASEP
model.

C. Conformational changes of the KcsA potassium ion
channel

Ion channels are pore-forming transmembrane proteins that
enable ions to cross biomembranes. Ion channels are found
both in the outer cell membrane and in the membranes of the
cell organelles. They are important for functions such as cellu-
lar signaling, the regulation of osmotic activity, and the prop-
agation of action potentials in nerves and muscle cells.47

The first potassium channel protein to be crystallized is the
bacterial channel KcsA.48 The structure can be subdivided

into three consecutive parts: following the pore from the ex-
tracellular to the intracellular side, one finds (1) the selectivity
filter, (2) a hydrophobic cavity and (3) the intracellular gate.
The selectivity filter (see Fig. 11a) is formed by a conserved
Thr-Val-Gly-Tyr-Gly motif. The backbone carbonyls of this
motif and the Oγ -atoms of the Thr side chains form five cubic
cages each of which is able to coordinate one potassium ion.
The structure of the selectivity filter found in KcsA is con-
served even in eukaryotic channels. That is why KcsA acts as
a general model system that is used to study potassium chan-
nel function.

Many channels can open and close their pore via a confor-
mational change. This so-called gating takes place in a con-
trolled way and can be provoked by the interaction of the pore-
forming protein domain with other domains, other molecules
or in response to electric forces.47,49 In the KcsA channel and
its homologs, gating can take place via the intracellular gate
or via conformational changes in the selectivity filter.50 Here
we investigate the motions of the filter and their influence on
conductance. The intracellular gate remains in the open state.

We reanalyze the non-equilibrium molecular dynamics
simulation data of the KcsA channel protein that were pre-
viously published by Köpfer et al.23 and consists of a to-
tal amount of 15.1 µs of MD simulation in 20 short trajec-
tories with individual lengths ranging between 541.4ns and
793.5ns. In their simulations, a steady potassium ion cur-
rent is maintained by the computational electrophysiology ap-
proach of Kutzner et al.51. The simulations are therefore in-
trinsically non-reversible and the applications of methods that
were developed for reversible dynamics, like TICA, is not jus-
tified.

In the following, we compute the VAMP components, de-
fine long-lived states in this space using PCCA+ and charac-
terize the thus-obtained states.

Dynamic modes of the selectivity filter and surrounding
residues We compute the leading singular functions of the
Koopman operator that describe the KcsA dynamics at a lag
time of 40ns using VAMP. The input features (ansatz func-
tions) χ(t) for VAMP consist of two groups: a) all inverse
pairwise distances between heavy atoms of the selectivity fil-
ter (residues 75 to 79 in the first subunit using the numbering
scheme of PDB file 1K4C52 and their corresponding residues
in the other three subunits). b) the inverse distance to the
closest potassium cation for every heavy atom in the selec-
tivity filter. This results in a total number of 7750 features.
In the computation of distances, atoms that are symmetric
under a rotation of the side chain dihedral by π are treated
as one atom. In this analysis this applies to the atom pairs
(Cδ1, Cδ2) and (Cε1, Cε2) in tyrosine residues, (Cγ1, Cγ2) in
valine residues, the pair (Oδ1,Oδ2) in aspartic acid residues
and the pair (Oε1, Oε2) in glutamic acid residues.

We discarded the first 18ns of every trajectory. That is be-
cause in the first 18ns, we observed conformational changes
at the N-terminal end of the intracellular gate. We see these
conformational changes at the beginning of every trajectory.
We suspect that this might be due the pulling procedure that
was used to prepare the open-gate conformation in Ref.23.

The spectrum of singular values (Fig. 7a) shows jumps at
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positions 1, 2, 6, 7, 8 and 14 (not counting the constant sin-
gular value σ0 = 1, see Suppl. Fig. 12) and become quasi-
continuous afterwards. We therefore restrict the analysis to
the dynamics within the space of the leading 14 singular
functions. To validate this decomposition, we perform the
non-equilibrium Chapman-Kolmogorov test. Results show
(see Suppl. Fig. 13) good agreement between estimates and
predictions for the fast processes (with smaller singular val-
ues) and deviations between predictions and estimates for the
slower processes (with large singular values). As elaborated
in the next paragraphs, the KcsA trajectories contain many
unique transition events, which explains the failure of the
dynamic model to provide accurate predictions of the long
timescale kinetics.

Figure 7. a) Leading 40 singular values obtained with VAMP. b)-
e) Projection of the simulation data on pairs of singular functions
(VAMP components). Data points were colored according to the
macro-state to which they have the highest membership. Data points
that do not clearly belong to any of the macro-states (maximum
membership to any state < 0.6) are shown as small gray points.

Detection of long-lived states with PCCA+ Projections of
the MD data points x (conformations) onto pairs of left singu-
lar functions (ψi(x), ψ j(x)) show that the data points form
clearly separated clusters (see Fig. 7b-e). Such clustering has
been observed for many other molecular systems and indicates
the presence of long-lived states.53 This motivates us to group
the conformation into a small number of macro-states.

We assign the data points to 15 macro-states using the
PCCA+ algorithm. We apply the PCCA+ variant of Ref.53

to the data points in the space of the leading 14 singular func-

tions (see methods subsection III D and appendices C 2, C 3).
We observe that the macro-states defined with PCCA+ match
well with the “density blobs” that one would assign intuitively
by looking at the projections (see Fig. 7b-e). This indicates
that the space of the singular functions is a suitable space for
clustering with PCCA+.

Transitions between long-lived states and their populations
We compute the number of transitions between the macro-
states using the mile-stoning method (also called transition-
based assignment or core set approach, see appendix C 4 and
Refs.5,54,55). The network of transitions between the macro-
states (Fig. 8) shows that most transitions occur only once.
States 0, 6, 7, 11 and 14 are in the reversibly connected set
(ergodically visited macro-states). Most of the simulation data
is assigned to macro-state number 0 (see Fig. 8).

The present MD simulation data does not allow to make any
statements about asymptotic state occupancies in the steady
state equilibrium that might possibly be reached at 100s of
microseconds and above. Most conformational changes ob-
served in the MD data occur only in one direction. This might
indicate a lack of sampling of state transitions in the short MD
data and longer MD simulation might reveal that the transi-
tions are in fact reversible.

Inspection of the trajectories shows that transition between
the cores can take relatively long (e.g., see the transition from
macro-state 0 to macro-state 14 in Fig. 12). For some of the
states, the transition in/out of the state can take roughly the
same amount of time that the system spends in the state. This
may indicate either that the description of the dynamics re-
quires more macro-states or that the approximation of the sin-
gular functions with VAMP is not accurate enough. (That is,
there exists a better approximation that would lead to a more
metastable kinetics of the reduced model.)

Ion permeation (except for the blocked states) is faster than
the life-times of the macro-states. The time between ion tran-
sition events is typically on the order of 10ns while dwell
times of the macro-states are typically on the order of 100ns
(see Suppl. table 2 and for example permeation in macro-state
5 and 14 in Fig. 12). Therefore transitions between macro-
states do not seem to describe the individual ion movement
steps in the permeation mechanism. Rather the macro-states
appears more related to the protein conformation (see next
sections).

Long-lived macro-states differ in the occupancy of the se-
lectivity filter We compute histograms of the ion occupancy
of the selectivity filter (Fig. 9). One histogram is computed
for each macro-state separately. The most frequent state (0,
blue), and states 2, 7 and 13 have an evacuated ion binding
site S1 that is neither occupied by a potassium ion nor by a
water molecule (see Suppl. Fig. 6). This means that ions do
a long jump from S2 to S0 during conduction in these macro-
states and S1 is only visited transiently, with a dwell time that
is much shorter than the dwell time in S2 and S0 (see for in-
stance the part of the trajectory that is assigned to core 0 in
Fig. 12 and Suppl. Figs. 7 to 10). In other macro-states, e.g.
state 11 (violet), S1 is more frequently occupied. States 1 (red)
and 9 (pink) show an ion binding site S1 that is occupied with
water. Furthermore, these states a characterized by a flipped
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Figure 8. Connectivity network for the 15 long-lived states that were
identified with VAMP and PCCA+. Long-lived states are shown as
disks with areas proportional to the frequency of the state in the MD
simulation data. Macro-states that are kinetically connected by tran-
sitions in the data are connected by an arrow in this figure. Numbers
on the arrows denote the number of transition events observed in the
MD data. Numbers inside the disks are state labels.

Tyr78 conformation and a drastically distorted selectivity fil-
ter (see Fig. 11.1 and next section). No ion permeation events
are observed in these states (see below). In state 10 (cyan) S1
is partially occupied by water. Still, this state is conductive.
In state 8 (light gray), the ion binding site S3 is occupied by
a water molecule. No ion conduction takes place in this state
(see below).

Long-lived macro-states differ in ion conduction We
compute the potassium ion current through the pore by count-
ing the net number of forward ion transitions from the S1 to
the S0 binding site (see appendix C 5 for details). The ion cur-
rent for each macro-state is shown in Fig. 10. Computing the
ion current from the transitions from S4 to S3 gave identical
results. Ion current differs significantly between macro-states.
However it should be noted that there is only little simulation
data for the different macro-states. For many states less than
20 permeation events are observed (see also Suppl. table 2).
In states 1 (red), 8 (light gray) and 9 (pink) no permeation is
observed. In states 1 and 9, the filter is in the Tyr78-flipped
conformation. In state 8 a water molecule was threaded into
the ion file. The most frequently visited state in the MD simu-
lation (state number 0) conducts little compared to most other
states. Since the free energies of the states cannot be com-
puted from the present simulation data, no statement can be
made about the contribution of the different states to the over-
all conduction.

Differences in Tyr78 conformation, Glu71-Asp80 interac-
tion and presence of buried water To characterize the struc-

Figure 9. Histogram of ion occupancy along the channel pore for
each macro-state. Black vertical lines mark the positions of the car-
bonyl oxygens that demarcate the ion binding sites Scav, S4, S3, S2,
S1 and S0. In state 8 (light gray), the ion binding site S3 is occupied
by a water molecule. In states 1 (red), 9 (pink) and 10 (cyan) the ion
binding site S1 is occupied by water.

Figure 10. Potassium ion current for each macro-state. Error bars
show standard deviations and were computed by assuming that the
number of permeation evens is Poisson-distributed (see appendix
C 5). In states 1, 8 and 9, no permeation events took place. (States
1 and 9 are in the Tyr78-flipped conformation. In state 8, a water
molecule is located in S3.) In the most frequent state 0, the ion cur-
rent is relatively low.

tural features of the macro-states, we sampled randomly with
replacement 1000 conformations from every state. Average
conformations for every macro-state are shown in Fig. 11.

In states 1 (red) and 9 (pink) Tyr78 is in a flipped confor-
mation (compared to to state 0). The Tyr78 flip coincides with
a disruption of the selectivity filter structure and zero conduc-
tion.

The Glu71-Asp80 contact56 can either be formed, or it can
be broken in one or in two subunits of the channel. It is formed
in all subunits in state 0. It is open in one subunit in states 2,
3, 4, 7, 8, 10, 12, and 14. The contact is open in two subunits
in states 1, 5, 6, 9, 11, and 13 (see Suppl. table 1). Opening
and closing of the Glu71-Asp80 contact is a reversible process
(since there are reversible transitions between states 0, and 6,
7, 11, 14). We observe opening of two Glu71-Asp80 contacts
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Figure 11. (a) KcsA seen from the extracellular side, atoms of the se-
lectivity filter are shown as sticks. (b) Cross-section through the fil-
ter (side view). Filter atoms are shown as sticks, surrounding atoms
are shown with lines. Ion binding sites are labeled Scav through S0.
(1) View of the selectivity filter from the extracellular side. Struc-
tures (conformations) in blue are drawn from macro-state 0. Super-
imposed on that are structures from macro-state 1. A remarkable
deviation from state 0 in the Tyr78 conformation is marked with a
black circle. (4), (6), (8): Side view of the selectivity filter and sur-
rounding amino acids. Structures (conformations) in blue are drawn
from macro-state 0. Superimposed on that are structures from dif-
ferent macro-states (4, 6, 8). 20 structures are shown per macro-
state where every conformations is an average over 50 conformations
drawn randomly from the macro-state. Residues forming the pore of
the selectivity filter are shown as sticks, residues surrounding the fil-
ter (including Glu71 and Asp80) with thin lines. Water density is
shown as semi-transparent isosurfaces. The tiny blue sphere marks
the oxygen atom in Gly79 of the first subunit of the channel. Sig-
nificant deviations (compared to state 0) in the Glu71-Asp80 contact
and buried water presence are indicated with black circles. All states
except 0 show disruption of the Glu71-Asp80 interaction in one or
two subunits. This disruption can be accompanied by the absence of
a buried water molecule like in state 4 (yellow), state 6 (light gray)
and state 5 (tan, not shown).

only in adjacent subunits of the channel which may hint to
cooperativity.

In contrast to what is known about the KcsA channel,56

opening of the Glu71-Asp80 contact in these MD simula-
tion does not inactivate the channel. Instead ion current in
the open-contact states is slightly increased (exceptions: 1, 8,
9; see explanations above) over the ion current in the closed-

contact state 0.
The water molecule that is involved in the Glu71-Asp80 in-

teraction can either be present or absent. We observe at most
one absent water molecule. Breaking of the Glu71-Asp80 in-
teraction does not strictly coincide with the absence of water.

In state 2 we observe a highly tilted Glu71 side chain con-
formation where the side chain points toward the filter pore.
The tilt is larger than in the crystal structures and NMR struc-
tures of the KcsA protein that are available in the Protein
Data Bank. This conformation might be stabilized by elec-
trostatic attraction between the carboxyl groups of Glu71 and
the potassium ions.

In summary our analysis of the MD data of Köpfer et al.23

reveals 15 long-lived states. While the most frequent state
shows a crystal-like conformation of the selectivity filter other
states show flipping of the Tyr86 side chain or opening of the
Glu71-Asp80 contact in one or more subunits. The different
identified states display distinct ion conductances, establish-
ing a direct link between channel function and the the confor-
mations identified with VAMP and PCCA+.

V. CONCLUSION

We have used the Variational Approach to Markov Pro-
cesses (VAMP) to formulate a dynamical dimension reduction
method for identifying the collective variables of the “slow”
or “rare” processes in many-body systems. In this formula-
tion, VAMP can replace the TICA method that is only de-
fined for statistically reversible and stationary dynamics, and
in practice often only usable when the probability distribution
sampled by the simulation trajectories is close to equilibrium.

We have applied VAMP-based dimension reduction to the
asymmetric simple exclusion process toy model for single file
ion diffusion and to non-equilibrium molecular dynamics data
of the KcsA potassium channel protein. Both systems have
high-dimensional state spaces and follow non-equilibrium dy-
namics that do not comply with the principle of detailed bal-
ance (microscopic reversibility). For both systems, we could
construct a low-dimensional model that captures physically
interesting processes.

We have demonstrated that VAMP is superior to TICA in
correctly estimating kinetic distances for the intrinsically non-
reversible ASEP model. Based on theoretical insights, we ex-
pect this to be true for any non-reversible system. For the anal-
ysis of non-equilibrium data that originates from simulating a
reversible system with a non-equilibrium initial condition, we
empirically showed that TICA and VAMP give similar results.

We have shown that the space of the leading singular func-
tions is a suitable space for identification of long-lived macro-
states even for the case of non-reversible dynamics. This was
confirmed twice for the KcsA protein data: (1) the PCCA+
macro-states appear as well-separated density-clusters when
projected to the space of the singular functions, (2) counting
exit end entry events with the core-set (or transition-based)
approach confirms that transitions between macro-states are
rare events.
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Figure 12. Exemplary time series of potassium ion positions and assignment to metastable states. A pair of plots is shown, which share the
time axis. The top plot shows the z positions of all ions in the selectivity filter. The bottom plot shows the metastable state visited at time t.
Metastable states are color-coded and the index of every state is shown in a circle on the first core entry. Two variants (core-based assignment
and transition-based assignment, TBA) of metastable state assignments are shown. The trajectory of cores only shows frames where the
conformation can be assigned with a high probability (membership) to a macro-state. Frames that were left unassigned in the core trajectory
are assigned to the most recent or most proximate core in the TBA trajectories by splitting transitions at the midpoint.5

We proposed to extend the scope of the Chapman-
Kolmogorov test from an application to probabilities4 to gen-
eral observables. We further proposed to use the singular
functions as observables for the Chapman-Kolmogorov test.
In fact it has been shown that the singular functions span the
space of indicator functions for coherent sets29. Coherent sets
are particular stable sets in time-space.57 Examples for co-
herent sets are oceanic57,58 or atmospheric59 eddies. Reliably
simulating their formation and dissolution should be equally
challenging as sampling the exit from metastable states in sys-
tems with reversible dynamics. Testing whether a reduced dy-
namical model captures these rare events seem worthwhile.

Software availability The linear Variational Approach to
Markov Processes has been implemented in the publicly avail-
able PyEMMA software package http://emma-project.org.
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Appendix A: Proof of (13)

The SVD of Kτ is

Kτ g = ∑
i

σi〈g,φi〉ρ1ψi, (A1)

then the transition density can be expressed as

p(z|x) = Kτ δz(x) (A2)
= ∑

i
σiψi(x)φi(z)ρ1(z). (A3)

Considering the orthonormality of singular functions, we have

D2
τ(x,y) =

∫
(∑i σi (ψi(x)−ψi(y))φi(z)ρ1(z))2

ρ1(z)
dz

= ∑
i, j

σiσ j (ψi(x)−ψi(y))(ψ j(x)−ψ j(y))
〈
φi,φ j

〉
ρ1

= ∑
i

σ2
i (ψi(x)−ψi(y))2 . (A4)

Appendix B: Models

1. Koopman matrix for the ASEP model

Let ∧ denote the bitwise AND operator. Let L ∈ R2N×2N
.

For all 0≤ i< 2N , 0≤ j < 2N , i 6= j, let

Li j = α if i∧1 = 0 and j∧1 = 1 (B1)

Li j = β if i∧2N−1 = 1 and j∧2N−1 = 0 (B2)

Li j = p if ∃0≤ k < N−1 : i∧2k = 1 and

i∧2k+1 = 0 and j∧2k = 0 and j∧2k+1 = 1 (B3)

Li j = q if ∃0≤ k < N−1 : i∧2k = 0 and

i∧2k+1 = 1 and j∧2k = 1 and j∧2k+1 = 0 (B4)
Li j = 0 otherwise (B5)

and Lii =−∑ j 6=i Li j.
The model transition matrix Tτ ∈ R2N×2N

is computed by
taking the matrix exponential of τL where τ is the lag time.
The full Koopman operator Kτ is finite-dimensional for this
model and is identical to Tτ
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Appendix C: Methods

1. Implementation of the non-equilibrium
Chapman-Kolmogorov test

In the Chapman-Kolmogorov test, the estimate of the time-
lagged cross-correlation covest( f ,g; nτ) and its model predic-
tion covpred( f ,g; nτ) are compared.

Using Eq. 11, it is possible to express the covariance at the
unit lag time 1× τ as

covpred( f ,g; τ) =covest( f ,g; τ) (C1)
=〈 f ,Kτ g〉ρ0 (C2)

=∑
i
〈g,φi〉ρ1σi〈ψi, f 〉ρ0 (C3)

=q>r (C4)

where we have defined qi := 〈g,φi〉ρ1 and ri := σi〈ψi, f 〉ρ0 .
By combining Eqs. 11 and 5, the prediction for higher mul-

tiples n> 1 of the lag time of can be computed as

covpred( f , g;nτ) := 〈 f ,K n
τ g〉ρ0 = q>Pn−1r (C5)

where Pi j := σi〈ψi,φ j〉ρ1 . The quantities P, q, and r can all be
computed from the data and from the spectral quantities that
VAMP provides an approximation for.

2. Computing the metastable memberships

We use the “inner simplex” algorithm of the PCCA+
method36 to compute the linear map A from the space of sin-
gular functions to the space of macro-state memberships. The
“inner simplex” algorithm was motivated by the observation
that reversible metastable systems show a clustering of data
points close to the N most distant points in the space of the
dominant N eigenfunctions (counting the constant eigenfunc-
tion). This so called “simplex structure” forms the basis for
many spectral clustering algorithms.36

The algorithm in the version of Ref.36 consist of two
stages: 1) localizing the N most distant points (the vertices)
{ψ(ex)

1 , . . . ,ψ
(ex)
N−1} in the N−1-dimensional space of the dom-

inant eigenfunctions (excluding the constant eigenfunction)
and 2) computing barycentric coordinates for every pointψ(t)
with respect to the vertices by solving the following equations
for mi(t)

ψ(t) =
N

∑
i

mi(t)ψ
(ex)
i (C6)

1 =
N

∑
i

mi(t). (C7)

The solution of this linear problem implicitly defines the linear
map A from ψ to m.

If the data points {ψ(t)}t indeed form clusters close to the
vertices, the coefficient mi(t) can be understood as the mem-
bership of point ψ(t) in the macro-state number i. Here we
apply the “inner simplex” algorithm not in the space of the
eigenfunctions of the MSM transition matrix as initially sug-
gested in Ref.36 but in the space of the singular functions.

Note that in its conventional use, PCCA+ is applied to clus-
ter the space of MSM eigenvectors. For MSMs, only one
representative value of the eigenfunctions is needed for every
micro-state, because the approximations to the eigenfunctions
are constant on every micro-state by definition. This is dif-
ferent in our application of PCCA+ to the continuous order
parameters computed with VAMP. Hence, all data points have
to be used here.

3. Defining macro-states and core sets

In order to interpret the macro-states that originate from
VAMP and PCCA+, we investigate representative molecular
conformations from every macro-state. To this, we first define
the core set Ci of the macro-state number i as

Ci := {x(t) | i = argmax jm j(t) and mi(t)≥ f} (C8)

where 0.5 ≤ f ≤ 1 is some arbitrary cut-off on the member-
ships. We chose f = 0.6. From each core set, we draw 1000
random samples of molecular conformations with replace-
ment. A subset of these conformations are shown Fig. 11.

4. Counting transitions and finding the largest connected set
of macro-states

We count transitions at a lag time of τ = 40ps according
to the transition-based assignment (TBA) algorithm or mile-
stoning algorithm.5,54 In the TBA algorithm, every conforma-
tion x(t) is first assigned to the either the last core set that
was hit by the trajectory or the next core set that will hit by
the trajectory, whichever is closer in time. We thus obtain a
sequence of core labels {s(t)}t=0,...,T , s(t) ∈ N for every MD
trajectory. For every trajectory, we compute a count matrix c
from {s(t)}t using the standard approach4 as follows

ci j =
T−τ

∑
t=0

δis(t)δ js(t+τ) (C9)

where δi j is the Kronecker delta. The count matrix for all
trajectories C is computed by summing the individual count
matrices of each trajectory.

The largest connected set of macro-states4 is computed
from C and consists of the five states 0, 6, 7, 11 and 14.

5. Computing the ion current

We estimate the potassium ion current by computing the
number of times some ion transitions from binding site S1 to
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binding site S0 of the selectivity filter. We estimate the num-
ber of transitions using a core-set approach.5 The core region
of the S1 site is defined as 5.7nm ≤ zion ≤ 5.85nm and the
core region of the S0 size as 6.0nm ≤ zion ≤ 6.14nm (in the
coordinate system of the MD data from Ref.23). For all trajec-
tory segments that are assigned to macro-state i, we compute
ni the number of transitions from the core of S1 to the core of
S0 minus the number of reverse transitions (summing up the
number of transitions of all the ions). The error ∆ni of ni is
computed as

√
ni by assuming that ni is Poisson distributed.

The ion current is computed as Ii =
eni
∆ti

where e is the ele-
mentary charge and ∆ti is the length of the trajectory pieces
assigned to macro-state i. The error is estimated as ∆Ii =

e∆ni
∆ti

.
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Suppl. Note 1 Supplementary figures for the ASEP toy model
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Suppl. Fig. 1: Pearson correlations between the true left singular functions computed from the full transition matrix
and the VAMP estimate of the left singular functions using the basis of occupancy vectors and one-hot encoded
occupancy counts (see main text for details). The limitation of the basis does not allow to express all the true
singular functions and leads to inconsistent orderings, if the singular functions are only sorted by the magnitude of
the singular values. Counting of singular functions starts at zero here, so 1 is the first non-constant function.
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Suppl. Fig. 2: Comparison of the singular values computed using VAMP with the eigenvalues computed with TICA
for the ASEP model and using a complete basis. Spectral components were computed from the true transition
matrix for VAMP and TICA. Results in this figure are therefore unaffected by sampling error or errors due to an
inexpressive basis set.
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Suppl. Fig. 3: Comparison of the singular vectors computed with VAMP with the eigenvectors computed with
TICA for the ASEP model and using a complete basis. Spectral components were computed from true transition
matrix for VAMP and TICA. Results in this figure are therefore unaffected by sampling error or errors due to an
inexpressive basis set.
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Suppl. Fig. 4: Comparison of kinetic distance matrices computed with VAMP and TICA respectively to the true
kinetic distances (true distances were computed directly from the transition matrix using the defining equation (11)
from the main text). The dominant 30 spectral components have been used in the case of VAMP and TICA. A
complete basis and the true transition matrix was used for all computations, the only difference being the method.
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Suppl. Fig. 5: Comparison of the three dominant macro-states computed from the true transition matrix of the
ASEP model (A, B, C) and the three dominant macro-states computed from the low-dimensional model that was
estimated form the simulation data and that uses an incomplete basis of input features (a, b, c). Every column in
each subplot corresponds to a system state (micro-state) that is represented here using its occupancy pattern. Dark
squares mark occupied sites and light squares mark unoccupied sites. Micro-states are ordered by increasing macro-
state memberships form the left to the right. We observe qualitative agreement between the true macro-states and
the macro-states approximated from data, in particular for the high-membership micro-states (right-most columns).
We see an empty state, a full state and a state with a shock (jump from occupied to unoccupied) in the middle of
the queue. If the same analysis is carried out with more than three states, the results from the approximated model
start to diverge from the true results.
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Suppl. Note 2 Supplementary figures for the KcsA channel protein
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Suppl. Fig. 6: Histogram of water occupancy along the channel pore for each metastable state.Black vertical lines
mark the positions of the carbonyl oxygens that demarcate the ion binding sites Scav, S4, S3, S2, S1 and S0. In state
8 (light gray), the ion binding site S3 is occupied by a water molecule. In states 1 (red), 9 (pink) and 10 (cyan) the
ion binding site S1 is occupied by water.

state current/pA S0 S1 S2 S3 S4 #open E71-D80 missing H2O Y78 flipped
0 3.1 0.23 0.03 0.24 0.24 0.14 0 0 no
1 0.0 0.01 0.07 0.23 0.30 0.23 2 0 yes
2 13.8 0.25 0.04 0.28 0.25 0.08 1 0 no
3 6.7 0.15 0.12 0.27 0.17 0.14 1 0 no
4 12.5 0.06 0.25 0.30 0.07 0.25 1 1 no
5 9.4 0.12 0.19 0.30 0.13 0.20 2 1 no
6 4.6 0.05 0.18 0.23 0.19 0.20 2 1 no
7 3.2 0.24 0.02 0.25 0.24 0.13 1 0 no
8 0.0 0.02 0.30 0.32 0.00 0.32 1 0 no
9 0.0 0.01 0.05 0.25 0.30 0.17 2 0 yes
10 6.0 0.00 0.17 0.25 0.22 0.20 1 0 no
11 10.6 0.11 0.17 0.29 0.14 0.18 2 0 no
12 11.3 0.15 0.16 0.25 0.14 0.21 1 0 no
13 7.7 0.24 0.01 0.29 0.29 0.02 2 0 no
14 9.5 0.19 0.08 0.26 0.21 0.12 1 0 no

Suppl. Table 1: Characterization of metastable states in terms of selected electrical and structural features. Columns
S0 to S4 contain the occupancy probability of the ion binding sites given that the channel is in one of the metastable
states. The column “#open E71-D80” contains the number of open Glu71-Asp80 contacts (where open is defined
as a conformation with maximal oxygen distance > 0.5 nm). The columns “missing H2O” contains the number of
missing buried water molecules near the extracellular interface of the channel.
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state # ion transition events time spent in state
ns

time spent in state
ns·ion transtion event

dwell time in state
ns

0 165 8562.0 51.9 245.1
1 0 92.7 NA 92.7
2 16 183.6 11.5 92.9
3 4 98.1 24.5 25.5
4 25 323.6 12.9 323.6
5 6 111.8 18.6 64.5
6 37 605.8 16.4 211.5
7 18 744.3 41.3 243.4
8 0 53.4 NA 53.4
9 0 85.7 NA 85.7
10 4 140.5 35.1 140.5
11 19 521.6 27.4 62.5
12 34 484.6 14.2 484.6
13 11 250.7 22.8 126.3
14 34 488.2 14.3 130.6

Suppl. Table 2: For all macro-states: summary of ion transition events, time spent in states, and median dwell
time per state. Values in columns 2 and 3 are used to compute the ion current per macro-state.
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Suppl. Fig. 7: Ion positions and assignment to metastable state for MD trajectories 1 to 5. For every trajectory,
a pair of plots is shown, which share the time axis. The top plot in every row shows the z positions of all ions in
the selectivity filter. The bottom plot in every row shows the metastable state visited at time t. Metastable states
are color-coded and the index of every state is shown in a circle on the first state entry in a given trajectory. Two
variants (core-based assignment and transition-based assignment) of metastable state assignments are shown. The
trajectory of cores only shows frames where the conformation can be assigned with a high probability (membership)
to a metastable state. Frames that were left unassigned in the core trajectory are assigned to the most recent or
most proximate core in the TBA trajectories by splitting transitions at the midpoint.
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Suppl. Fig. 8: Ion positions and assignment to metastable state for MD trajectories 6 to 10. For details see caption
of figure 7.
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Suppl. Fig. 9: Ion positions and assignment to metastable state for MD trajectories 11 to 15. For details see caption
of figure 7.
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Suppl. Fig. 10: Ion positions and assignment to metastable state for MD trajectories 16 to 20. For details see
caption of figure 7.
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Suppl. Fig. 11: Projection of the simulation data on pairs of singular functions (also called independent components)
that were computed with VAMP. Data points were colored according to the metastable state to which they have the
highest membership. Data points that do not clearly belong to any of the metastable states (maximum membership
< 0.6) are shown as small gray points.
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Suppl. Fig. 12: Jumps between successive generalized singular values of the Koopman matrix for the KcsA channel.
We observe larger jumps at positions, 1, 2, 6, 7 8 and 14.
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Suppl. Fig. 13: Non-equilibrium Chapman-Kolmogorov test for the dimensionality-reduced Koopman model of
KcsA filter conformational dynamics. The leading left and right singular functions φ(0)i , ψ(0)

i were computed at
the lowest lag time τ0 = 40ns. For each pair, (φ(0)i , ψ

(0)
i ), the time lagged-autocorrelation is computed at integer

multiples nτ0 in two ways: “Estimates” are computed by re-estimating the complete Koopman model from the MD
data at the new lag time and using it to compute the time-lagged covariance of φ(0)i and ψ(0)

i . “Predictions” of the
time-lagged covariances are from the n’th power of the Koopman matrix that was estimated at τ0. Bold numbers
indicate the index i of the pair of singular functions.
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