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Figure 5. Convergence of estimation error of reaction schemes from noisy gene-regulation data
starting from two different initial conditions under decreasing levels of noise. The minimization
problem (10) was solved for α = 0 (LSQ) and with regularization. This was repeated 10 times on
different sets of observation data generated by Gillespie SSA, giving rise to mean and standard
deviation (solid lines and shaded areas, respectively). (a): Concentration time series corresponding
to the initial conditions, generated by integrating the reaction-rate equations. The first initial
condition is identical to the one used in Sec. III A and Sec. III B. The second initial condition
(Tab. Ib) prescribes positive initial concentrations for mRNAA, B, and C species. The gray graphs
are sample realizations of integration using the Gillespie SSA. (b),(c): Analogously to Fig. 4 with
the difference that 20-fold cross validation was used for hyperparameter estimation.
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obtaining a tensor linear regression problem. We have applied this method on data generated
from a gene regulation network and could successfully recover the underlying model.

The studies of Sec. III B and Sec. III C have shown that the applied regularization terms
can mitigate noise up to a certain degree compared to the unregularized method, so that
identification of the reaction network is more robust and closer to the ground truth.

Potentially, this method could be used to identify reaction networks from time series mea-
surements even if the initial conditions are not always exactly identical, as was demonstrated
in Sec. III C. One apparent limitation is that the method can only be applied if the data
stems from the equilibration phase, as the concentration-based approach has derivatives equal
zero in the equilibrium, which precludes the reaction dynamics to be recovered. In future
work, we will consider the identification of reaction schemes from instantaneous fluctuations
of particle numbers in equilibrium.
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V. APPENDIX
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Figure 6. Reaction rates sorted by their magnitude to determine the cutoff κ = 0.22 of Sec. III A.
The rates were estimated using the regularized minimization problem.
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Reaction rate description

DNAA ⇀ DNAA +mRNAA k1 = 1.8 transcription of mRNAA

mRNAA ⇀ mRNAA +A k2 = 2.1 translation of A proteins
mRNAA ⇀ ∅ k3 = 1.3 mRNAA decay

A ⇀ ∅ k4 = 1.5 decay of A proteins
DNAB ⇀ DNAB +mRNAB k5 = 2.2 transcription of mRNAB

mRNAB ⇀ mRNAB +B k6 = 2.0 translation of B proteins
mRNAB ⇀ ∅ k7 = 2.0 mRNAB decay

B ⇀ ∅ k8 = 2.5 decay of B proteins
DNAC ⇀ DNAC +mRNAC k9 = 3.2 transcription of mRNAC

mRNAC ⇀ mRNAC +C k10 = 3.0 translation of C proteins
mRNAC ⇀ ∅ k11 = 2.3 mRNAC decay

C ⇀ ∅ k12 = 2.5 decay of C proteins
mRNAA +A ⇀ A k13 = 0 self regulation of A proteins
mRNAB +B ⇀ B k14 = 0 self regulation of B proteins
mRNAC +C ⇀ C k15 = 0 self regulation of C proteins
mRNAB +A ⇀ A k16 = 0 regulation of mRNAB

mRNAC +B ⇀ B k17 = 0 regulation of mRNAC

mRNAA +C ⇀ C k18 = 0 regulation of mRNAA

mRNAC +A ⇀ A k16 = 6.0 regulation of mRNAC

mRNAB +C ⇀ C k17 = 4.0 regulation of mRNAB

mRNAA +B ⇀ B k18 = 3.0 regulation of mRNAA

mRNAA +A ⇀ mRNAA k19 = 0 artificial fusion
mRNAB +B ⇀ mRNAB k20 = 0 artificial fusion
mRNAA +B ⇀ mRNAA k21 = 0 artificial fusion
mRNAB +C ⇀ mRNAB k22 = 0 artificial fusion
mRNAC +A ⇀ mRNAC k23 = 0 artificial fusion
mRNAA +C ⇀ mRNAA k24 = 0 artificial fusion
mRNAB +A ⇀ mRNAB k25 = 0 artificial fusion

A+A ⇀ A k26 = 0 A regulates A

B+ B ⇀ B k27 = 0 B regulates B

C+ C ⇀ C k28 = 0 C regulates C

B+A ⇀ A k29 = 0 artificial fusion
C+ B ⇀ B k30 = 0 artificial fusion
A+C ⇀ C k31 = 0 artificial fusion
C+A ⇀ A k32 = 0 artificial fusion
B+ C ⇀ C k33 = 0 artificial fusion
A+ B ⇀ B k34 = 0 artificial fusion

A ⇀ B k35 = 0 artificial conversion
B ⇀ C k36 = 0 artificial conversion
C ⇀ A k37 = 0 artificial conversion
A ⇀ C k38 = 0 artificial conversion
C ⇀ B k39 = 0 artificial conversion
B ⇀ A k40 = 0 artificial conversion

mRNAB +mRNAC ⇀ mRNAA k41 = 0 artificial fusion
mRNAC +mRNAB ⇀ mRNAC k42 = 0 artificial fusion

mRNAC +A ⇀ C k43 = 0 artificial fusion

Table II. Full set of ansatz reactions Θ used in Sec. III. The given rate constants define the ground
truth reaction model. 12
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