
Reactive SINDy: Discovering governing reactions from
concentration data

Moritz Hoffmann,∗ Christoph Fröhner,† and Frank Noé‡
Freie Universität Berlin, Fachbereich Mathematik und Informatik,

Arnimallee 6, 14195 Berlin, Germany
Abstract

The inner workings of a biological cell or a chemical reaction can be rationalized by the network
of reactions, whose structure reveals the most important functional mechanisms. For complex
systems, these reaction networks are not known a priori and cannot be efficiently computed with ab
initio methods, therefore an important approach goal is to estimate effective reaction networks from
observations, such as time series of the main species. Reaction networks estimated with standard
machine learning techniques such as least-squares regression may fit the observations, but will
typically contain spurious reactions. Here we extend the sparse identification of nonlinear dynamics
(SINDy) method to vector-valued ansatz functions, each describing a particular reaction process.
The resulting sparse tensor regression method “reactive SINDy” is able to estimate a parsimonious
reaction network. We illustrate that a gene regulation network can be correctly estimated from
observed time series.
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I. INTRODUCTION

Mapping out the reaction networks behind biological processes, such as gene regulation in
cancer [1], is paramount to understanding the mechanisms of life and disease. A well-known
example of gene regulation is the lactose operon whose crystal structure was resolved in [24]
and dynamics were modeled in [43]. The system’s “combinatorial control” in E. coli cells was
quantitatively investigated in [22], in particular studying repression and activation effects.
These gene regulatory effects often appear in complex networks [35] and there exist databases
resolving these for certain types of cells, e.g., E. coli cells [11] and yeast cells [23]. Another
example where mapping the active reactions is important is that of chemical reactors [30],
where understanding which reactions are accessible for a given set of educts and reaction
conditions is important to design synthesis pathways [7, 20].

The traditional approach to determine a reaction network is to propose the structure of
the network based on chemical insight and subsequently fit the parameters given available
data [32]. To decipher complex reaction environments such as biological cells, it would be
desirable to have a data-driven approach that can answer the question which reactions are
underlying a given observation, e.g., the time series of a set of reactants. However, in
sufficiently complex reaction environments the number of reactive species and possible
reactions is practically unlimited – as an illustration, consider vast amount of possible
isomerizations and post-translational modifications for a single protein molecule. Therefore,
the more specific formulation is “given observations of a set of chemical species, what is the
minimal set of reactions necessary to explain their time evolution?”. This formulation calls
for a machine learning method that can infer the reaction network underlying the observation
data.

Knowledge about the reaction network can be applied to parameterize other numerical
methods to further investigate the processes at hand. Such methods include particle-
based approaches derived from the chemical master equation [13, 18, 41, 42], as well as
highly detailed but parameter-rich methods such as particle-based or interacting-particle
reaction dynamics [2, 8, 10, 17, 33, 39, 40] capable of fully resolving molecule positions in
space and time – see [3, 34] for recent reviews.

Existing methods to infer regulatory networks include ARCANE [26] that uses experimental
essay data and information theory, as well as the likelihood approach presented in [37] that
takes the stochasticity of observed reactant time series into account.

The method presented in this work can identify underlying complex reaction networks
from concentration time series by following the law of parsimony, i.e., by inducing sparsity in
the resulting reaction network. This promotes the interpretability of the model and avoids
overfitting. We formulate the problem as data-driven identification of a dynamical system,
which renders the method consistent with and an extension of the framework of sparse
identification of nonlinear dynamics (SINDy) [5]. Specifically, the problem of identifying
a reaction network from time traces of reactant concentrations can be solved by finding a
linear combination from a library of nonlinear ansatz functions that each corresponds to
a reaction acting on a set of reactants. With this formulation, the reaction rates can be
determined via regression. Sparsity is induced by equipping the regression algorithms with a
sparsity inducing regularization. SINDy was investigated, generalized, and applied in many
different ways, e.g., including control [6] (SINDYc), in the context of partial differential
equations [31], updating already existing models [29] (abrupt-SINDy), and looking into
convergence properties [44].

We extend and apply SINDy to the case of learning reaction networks from non-equilibrium
concentration data. Similar approaches make use of SINDy but do not resolve specific
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reactions [25], use weak formulations to avoid numerical temporal derivatives [28], or use
compressive sensing and sparse Bayesian learning [27].

Our extension of the original SINDy method mostly involves estimating parameters which
are coupled across the equations of the arising dynamical system. In the context of learning
reaction networks this means that we look for specific reactions and their rate constants
that might have lead to the observations instead of net flux across species. We demonstrate
the algorithm on a gene regulatory network in three different scenarios of measurement:
When there is no noise in the data we can find, given sufficient amounts of data, all relevant
processes of the ground truth. If there is noise in the data we converge to the correct reaction
network and rates with decreasing levels of noise. The final scenario generalizes the method
to two measurements with different initial conditions, also converging to the correct model
with decreasing levels of noise.

II. REACTIVE SINDY: SPARSE LEARNING OF REACTION KINETICS

We are observing the concentrations of S chemical species in time t:

x(t) =

x1(t)
...

xS(t)

 ∈ RS. (1)

We assume that their dynamics are governed by classical reaction-rate equations subject to
the law of mass action. A general expression for the change of concentration of reactant s
as a result of order-0 reactions (creation or annihilation), order-1 reactions (transitions of
other species into s or transitions of s into other species), order-2 reactions (production or
consumption of s by the encounter of two species), etc, is given by:

ẋs =
∑
i

β
(i)
s,0 +

∑
i

β
(i)
s,1xi +

∑
i,j

β
(i,j)
s,2 xixj + . . . (2)

where the β(...)
s,k -values are constants belonging to the reactions of order k. These rate constants

however can incorporate several underlying reactions at once. For example, the two reactions

s1
ξ1−⇀ s2 (3)

s1
ξ2−⇀ s3 (4)

both contribute to ẋ1 = β
(1)
1,1x1 = −(ξ1 + ξ2)x1. To disentangle (2) into single reactions, we

choose a library of R possible ansatz reactions that each represent a single reaction:

yr(x(t)) =

yr,1(x(t))
...

yr,S(x(t))

 , r = 1, . . . , R. (5)

With this ansatz, the reaction dynamics (2) becomes a set of linear equations with unknown
parameters ξr that represent the sought macroscopic rate constants:

ẋi(t) =
R∑

r=1

yr,i(x(t))ξr, i = 1, . . . , S, (6)
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where ξr are the to-be estimated macroscopic rate constants. The two reactions in the
previous example (3-4) would be modeled by the ansatz functions

y1(x) = (−x1, x1, 0)
>

y2(x) = (−x1, 0, x1)
>,

illustrating that the values of the coefficients ξ1 and ξ2 can be used to decide whether a single
reaction is present and to what degree.

Now suppose we have measured the concentration vector (1) at T time points t1 < · · · < tT .
We represent these data as a matrix

X =
(
x(t1) x(t2) · · · x(tT )

)> ∈ RT×S. (7)

Given this matrix, a library Θ : RT×S → RT×S×R, X 7→
(
θ1(X) θ2(X) · · · θR(X)

)
of R

ansatz reactions can be proposed with corresponding reaction functions

θr(X) =

yr(X1∗)
>

...
yr(XT∗)

>

 ∈ RT×S, r = 1, . . . , R, (8)

where Xi∗ denotes the i-th row in X. Applying the concentration trajectory to the library
yields Θ(X) ∈ RT×S×R.

The goal is to find coefficients Ξ =
(
ξ1 ξ2 · · · ξR

)>, so that

Ẋ = Θ(X)Ξ =
R∑

r=1

θr(X)ξr. (9)

In particular, the system is linear in the coefficients Ξ, which makes regression tools such
as elastic net regularization [45] applicable. To this end, one can consider the regularized
minimization problem (reactive SINDy):

Ξ̂ = argmin
Ξ

(
1

2T

∥∥∥Ẋ −Θ(X)Ξ
∥∥∥2
F

(10)

+ αλ‖Ξ‖1 + α(1− λ)‖Ξ‖22

)
subject to Ξ ≥ 0.

Here, ‖ · ‖F denotes the Frobenius norm, λ ∈ [0, 1] is a hyperparameter that interpolates
linearly between LASSO [15, 38] and Ridge [16] methods, and α ≥ 0 is a hyperparameter
that, depending on λ, can induce sparsity and give preference to smaller solutions in the L1

or L2 sense. For α = 0 the minimization problem reduces to standard least-squares (LSQ)
with the constraint Ξ ≥ 0. Reactive SINDy (10) is therefore a generalization of the SINDy
method to to the vector-valued ansatz functions.

Since only the concentration data X is available but not its temporal derivative, Ẋ is
approximated numerically by second order finite differences with the exception of boundary
data. Once the pair (X, Ẋ) is obtained, the problem becomes invariant under temporal
reordering. Hence, when presented with multiple trajectories the data matrices Xi and Ẋi

can simply be concatenated.
In order to solve (10) the numerical sequential least-squares minimizer SLSQP [21] is

applied via the software package SciPy [19]. Code related to this paper can be found under
https://github.com/readdy/readdy_learn.
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III. RESULTS

We demonstrate the method by estimating the reactions of a gene-regulatory network
from time series of concentrations of the involved molecules. Let S := {A,B,C} be a set
of three species of proteins which are being translated each from their respective mRNA
molecule. Each mRNA in turn has a corresponding DNA which it is transcribed from. The
proteins and mRNA molecules decay over time whereas the DNA concentration remains
constant. The network contains reactions of the following form [36]

DNAi ⇀ DNAi +mRNAi (transcription),
mRNAi ⇀ mRNAi + i (translation),
mRNAi ⇀ ∅ (decay of mRNA),

i ⇀ ∅ (decay of protein),
i+mRNAj ⇀ i (regulation of protein j ∈ S),

for each of the species i ∈ S. These reactions model a regulation of species j by virtue of
the fact that the transcription product inhibits the transcription processes. In our example
proteins of type A regulate the mRNAB molecules, proteins of type B regulate the mRNAC

molecules and proteins of type C regulate the mRNAA molecules (Fig. 1). Using this reaction
model, time series of concentrations are generated using the rates given in Tab II under the
initial condition described in Tab Ia, which were chosen so that all the reactions in the reaction
model significantly contribute to the temporal evolution of the system’s concentrations.
The generation samples the integrated equations equidistantly with a discrete time step of
τ = 3 · 10−3 yielding 667 frames which amounts to a cumulative time of roughly T = 2.

DNAA DNAB DNAC

mRNAA mRNAB mRNAC

A B C

Translation

Regulation

Transcription

DNAA DNAB DNAC

mRNAA mRNAB mRNAC

A B C

Translation

Regulation

Transcription

Figure 1. The regulation network example described in Sec. III. Each circle depicts a species, each
arrow corresponds to one reaction. Blue arrows denote transcription from DNA to mRNA, green
arrows denote translation from mRNA to protein, and red arrows denote the regulatory network.

The proposed estimation method is applied to analyze these time series of concentrations
in order to recover the underlying reaction network from data. To this end we use the library
of ansatz functions given in Tab. II, which contains a large number of possible reactions, only
few of which are actually part of the model.
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DNAA mRNAA A DNAB mRNAB B DNAC mRNAC C

(a) 1 2 0 1 0 3 1 0 0

(b) 1 1.5 0 1 0 2 1 0 1

Table I. Initial conditions (a) and (b) used to generate concentration time series. Reaction rates
can be found in Tab. II.

0

2 A mRNAA

0
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in
a.
u.

B mRNAB

0.0 0.5 1.0 1.5 2.0
Time in a.u.

0.0

0.5

C mRNAC

Figure 2. Concentration time series generated from integrating the reaction network shown in Fig. 1a.
The initial condition prescribes positive concentration values only for B protein and mRNAA species
(Tab. Ia). This initial condition is used in the subsequent sections for further analysis. Gray dots
depict concentration time series yielded from the LSQ rates estimated in Sec III A.

A. Learning the reaction network in the low-noise limit

We first demonstrate that the true reaction network can be reconstructed when using a
finite amount of observation data without additional measurement noise, i.e., the observations
are reflecting the true molecule concentrations at any given time point. The minimization
problem (10) is solved using the concentration time series shown in Fig. 1b.

We first set the hyperparameter α = 0 in the minimization problem (10), which results in
constrained least-squares regression without any of the regularization terms. In this case
we estimate a reaction network that can reproduce the observations almost exactly (Fig. 2).
However, the result is mechanistically wrong as the sparsity pattern does not match the
reaction network used to generate the data. On the one hand many spurious reactions are
estimated that were not in the true reaction scheme and would lead to wrong conclusions
about the mechanism, such as A+A ⇀ A and A+ C ⇀ C. More dramatically, the reaction
responsible for the decay of A particles is completely ignored (Fig. 3).

Next, we sought sparse solutions by using α > 0 and additionally eliminating reactions
with rate constants smaller than a cutoff value κ. For a suitable choice of hyperparameters
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mRNAA + C

A + mRNAC

mRNAB + C

mRNAA + B
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Desired rates
Other ansatz reactions
Least squares
L1 regularized

Cutoff

Figure 3. Estimated reaction rates in the system described in Sec. III A. The y and x axes contain
reaction educts and products, respectively. A circle at position (i, j) represents a reaction i ⇀ j

whose rate has a linear relation with the area of the circle. The black outlines denote the reactions
with which the system was generated and contain the respective rate value. Red crosses denote
reactions that were used as additional ansatz reactions. Blue circles are estimated by LSQ and
orange circles depict rates which were obtained by solving the minimization problem (10). The
latter rates are subject to a cutoff κ = 0.22 corresponding to the green circle’s area under which a
sparse solution with the correct processes can be recovered. If a certain rate was estimated in both
cases, two wedges instead of one circle are displayed.
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α ≈ 1.91 · 10−7, λ = 1, and κ = 0.22, a sparse solution is obtained that finds the correct
reaction scheme and also recovers the decay reaction (Fig. 3).

The value of the cutoff was determined by comparing the magnitude of estimated rates
and finding a gap, see Fig. 6. The hyperparameter pair (α, λ) was obtained by a grid
search and evaluating the difference ‖Ξ̂α,λ − Ξ‖1, where Ξ̂α,λ is the estimated model under a
particular hyperparameter choice and Ξ is the ground truth. If the ground truth is unknown,
a hyperparameter pair can be estimated by utilizing cross-validation as in the following
sections.

B. Learning the reaction network from data with stochastic noise

In contrast to Sec. III A, we now employ data that includes measurement noise. Such
noise can originate from uncertainties in the experimental setup or from shot noise in single-
or few-molecule measurements. In gene regulatory networks such noise is commonly observed
when only few copy numbers of mRNA are present [4, 9, 14]. In order to simulate noise from
few copies of molecules, the system of Sec. III with initial conditions as given in Tab. Ia is
integrated using the Gillespie stochastic simulation algorithm (SSA) [12, 13]. In the limit of
many particles and realizations, the Gillespie SSA converges to the integrated reaction-rate
equations subject to the law of mass action. As our model is based on exactly these dynamics,
the initial condition’s concentrations are interpreted in terms of hundreds of particles. Each
realization is then transformed back to a time series of concentrations. We define the noise
level as the mean-squared deviation of the concentration time series from the integrated
reaction-rate equations. Data with different noise levels are prepared by averaging multiple
realizations of the time series obtained by the Gillespie SSA.

It can be observed that decreasing levels of noise lead to fewer spurious reactions when
applying reactive SINDy (10), see Fig. 4a. Also the estimation error ‖ξ − ξ̂‖1 with respect to
the ground truth ξ decreases with decreasing levels of noise (Fig. 4b). In both cases, the
regularized method with a suitable hyperparameter pair (α, λ) performs better than LSQ.

The hyperparameters (α, λ) are obtained by shuffling the data and performing a 10-fold
cross validation.

C. Learning the reaction network from multiple initial conditions

Preparing the experiment that generates the data in different initial conditions can help
identifying the true reaction mechanisms as a more diverse dataset makes it easier to confirm
or exclude the participation of specific reactions. This section extends the analysis of Sec. III B
to two initial conditions, where the first initial condition is identical to the one used previously
and the second initial condition is given in Tab. Ib.

The corresponding time series are depicted in Fig. 5a. The gray graph corresponds to a
sample trajectory generated by the Gillespie SSA. For both initial conditions the same time
step of τ = 3 · 10−3 has been applied, amounting to 2 · 667 = 1334 frames. Once the data
matrices

X1 =
(
x1(t1) · · · x1(t667)

)
, X2 =

(
x2(t1) · · · x2(t667)

)
and the corresponding derivatives Ẋ1, Ẋ2 have been obtained, the frames are concatenated
so that

X =
(
x1(t1) x2(t1) · · · x1(t667) x2(t667)

)
,

analogously for Ẋ.
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Figure 4. Convergence of the estimation error when estimating the system described in Sec. III A
with varying levels of noise by application of reactive SINDy (10) with and without regularization
in blue and orange, respectively. The procedure was independently repeated 10 times with different
realizations giving rise to the mean and standard deviation depicted by solid lines and shaded areas,
respectively. (a): The number of detected spurious reactions up to the cutoff value introduced in
Sec. III A over different levels of noise. (b): The estimation error given by the mean absolute error
between the generating reaction rates ξ and the estimated reaction rates ξ̂ over different levels of
noise.

Similarly to Sec. III B, decreasing levels of noise lead to fewer spurious reactions (Fig. 5b)
and a smaller L1 distance to the ground truth (Fig. 5c). Again applying the optimization
problem with a suitable set of parameters (α, λ, κ) performs better than LSQ. Compared
to the previous section the convergence is better due to twice as much available data. At
noise levels of smaller than roughly 10−6 the model can reliably be recovered when using the
regularized method.

The hyperparameters (α, λ) are obtained by shuffling the data and performing a 20-fold
cross validation.

IV. CONCLUSION

In this work we have extended the SINDy method to reactive SINDy, not only parsi-
moniously detecting potentially nonlinear terms in a dynamical system from noisy data,
but also yielding, in this case, a sparse set of rates with respect to generating reactions
(8). Mathematically this has been achieved by permitting vector-valued basis functions and

9

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/442095doi: bioRxiv preprint first posted online Oct. 13, 2018; 

http://dx.doi.org/10.1101/442095
http://creativecommons.org/licenses/by/4.0/


0

2
A mRNAA

0

2

C
on

ce
nt
ra
ti
on

in
a.
u.

B mRNAB

0 1 2 3 4
Time in a.u.

0

1

C mRNAC

0

5

10

15

20

#
sp
ur
io
us

re
ac
ti
on

s regularized
LSQ
Optimal value

10−6 10−5 10−4 10−3

Noise level

0

10

20

E
st
im

at
io
n
er
ro
r
‖ξ
−
ξ̂‖

1

regularized
LSQ

(a)

(b)

(c)

Figure 5. Convergence of estimation error of reaction schemes from noisy gene-regulation data
starting from two different initial conditions under decreasing levels of noise. The minimization
problem (10) was solved for α = 0 (LSQ) and with regularization. This was repeated 10 times on
different sets of observation data generated by Gillespie SSA, giving rise to mean and standard
deviation (solid lines and shaded areas, respectively). (a): Concentration time series corresponding
to the initial conditions, generated by integrating the reaction-rate equations. The first initial
condition is identical to the one used in Sec. III A and Sec. III B. The second initial condition
(Tab. Ib) prescribes positive initial concentrations for mRNAA, B, and C species. The gray graphs
are sample realizations of integration using the Gillespie SSA. (b),(c): Analogously to Fig. 4 with
the difference that 20-fold cross validation was used for hyperparameter estimation.
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obtaining a tensor linear regression problem. We have applied this method on data generated
from a gene regulation network and could successfully recover the underlying model.

The studies of Sec. III B and Sec. III C have shown that the applied regularization terms
can mitigate noise up to a certain degree compared to the unregularized method, so that
identification of the reaction network is more robust and closer to the ground truth.

Potentially, this method could be used to identify reaction networks from time series mea-
surements even if the initial conditions are not always exactly identical, as was demonstrated
in Sec. III C. One apparent limitation is that the method can only be applied if the data
stems from the equilibration phase, as the concentration-based approach has derivatives equal
zero in the equilibrium, which precludes the reaction dynamics to be recovered. In future
work, we will consider the identification of reaction schemes from instantaneous fluctuations
of particle numbers in equilibrium.
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V. APPENDIX
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Figure 6. Reaction rates sorted by their magnitude to determine the cutoff κ = 0.22 of Sec. III A.
The rates were estimated using the regularized minimization problem.
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Reaction rate description

DNAA ⇀ DNAA +mRNAA k1 = 1.8 transcription of mRNAA

mRNAA ⇀ mRNAA +A k2 = 2.1 translation of A proteins
mRNAA ⇀ ∅ k3 = 1.3 mRNAA decay

A ⇀ ∅ k4 = 1.5 decay of A proteins
DNAB ⇀ DNAB +mRNAB k5 = 2.2 transcription of mRNAB

mRNAB ⇀ mRNAB +B k6 = 2.0 translation of B proteins
mRNAB ⇀ ∅ k7 = 2.0 mRNAB decay

B ⇀ ∅ k8 = 2.5 decay of B proteins
DNAC ⇀ DNAC +mRNAC k9 = 3.2 transcription of mRNAC

mRNAC ⇀ mRNAC +C k10 = 3.0 translation of C proteins
mRNAC ⇀ ∅ k11 = 2.3 mRNAC decay

C ⇀ ∅ k12 = 2.5 decay of C proteins
mRNAA +A ⇀ A k13 = 0 self regulation of A proteins
mRNAB +B ⇀ B k14 = 0 self regulation of B proteins
mRNAC +C ⇀ C k15 = 0 self regulation of C proteins
mRNAB +A ⇀ A k16 = 0 regulation of mRNAB

mRNAC +B ⇀ B k17 = 0 regulation of mRNAC

mRNAA +C ⇀ C k18 = 0 regulation of mRNAA

mRNAC +A ⇀ A k16 = 6.0 regulation of mRNAC

mRNAB +C ⇀ C k17 = 4.0 regulation of mRNAB

mRNAA +B ⇀ B k18 = 3.0 regulation of mRNAA

mRNAA +A ⇀ mRNAA k19 = 0 artificial fusion
mRNAB +B ⇀ mRNAB k20 = 0 artificial fusion
mRNAA +B ⇀ mRNAA k21 = 0 artificial fusion
mRNAB +C ⇀ mRNAB k22 = 0 artificial fusion
mRNAC +A ⇀ mRNAC k23 = 0 artificial fusion
mRNAA +C ⇀ mRNAA k24 = 0 artificial fusion
mRNAB +A ⇀ mRNAB k25 = 0 artificial fusion

A+A ⇀ A k26 = 0 A regulates A

B+ B ⇀ B k27 = 0 B regulates B

C+ C ⇀ C k28 = 0 C regulates C

B+A ⇀ A k29 = 0 artificial fusion
C+ B ⇀ B k30 = 0 artificial fusion
A+C ⇀ C k31 = 0 artificial fusion
C+A ⇀ A k32 = 0 artificial fusion
B+ C ⇀ C k33 = 0 artificial fusion
A+ B ⇀ B k34 = 0 artificial fusion

A ⇀ B k35 = 0 artificial conversion
B ⇀ C k36 = 0 artificial conversion
C ⇀ A k37 = 0 artificial conversion
A ⇀ C k38 = 0 artificial conversion
C ⇀ B k39 = 0 artificial conversion
B ⇀ A k40 = 0 artificial conversion

mRNAB +mRNAC ⇀ mRNAA k41 = 0 artificial fusion
mRNAC +mRNAB ⇀ mRNAC k42 = 0 artificial fusion

mRNAC +A ⇀ C k43 = 0 artificial fusion

Table II. Full set of ansatz reactions Θ used in Sec. III. The given rate constants define the ground
truth reaction model. 12
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