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Abstract
Interacting-Particle Reaction Dynamics (iPRD) simulates the spatiotemporal evolution of particles

that experience interaction forces and can react with one another. The combination of interaction
forces and reactions enable a wide range of complex reactive systems in biology and chemistry, but
give rise to new questions such as how to evolve the dynamical equations in a computationally
efficient and statistically correct manner. Here we consider reversible reactions such as A + B � C
with interacting particles and derive expressions for the microscopic iPRD simulation parameters
such that desired values for the equilibrium constant and the dissociation rate are obtained in the
dilute limit. We then introduce a Monte-Carlo algorithm that ensures detailed balance in the iPRD
time-evolution (iPRD-DB). iPRD-DB guarantees the correct thermodynamics at all concentrations
and maintains the desired kinetics in the dilute limit, where chemical rates are well-defined and
kinetic measurement experiments usually operate. We show that in dense particle systems, the
incorporation of detailed balance is essential to obtain physically realistic solutions. iPRD-DB is
implemented in ReaDDy 2 (https://readdy.github.io).
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I. INTRODUCTION

Particle based reaction diffusion (PBRD) dynamics is a detailed model for simulating
the spatiotemporal evolution of reactive particles [1–4]. Resolving the trajectories of every
reactive particle is important in applications where the reactants cannot be assumed to be
spatially well-mixed [5, 6] or always sufficiently abundant to be described by a continuous
concentration [7, 8] – e.g., consider many cases of cellular signalling and reactions in nontrivial
architectures [9–11]. A common implementation of PBRD is to propagate particle positions
with overdamped Langevin dynamics (Brownian motion) in discrete time steps, and execute
discrete reaction events such as A + B → C with a certain probability when two reactive
particles A and B are close in space. When the system is sufficiently dilute, such simulations
can be sped up by exploiting solutions of the one- or two-particle diffusion equation [2, 12–15].

A recent extension of PBRD is the interacting-Particle Reaction Dynamics (iPRD)
method [16–18], in which particles are additionally subject to interaction forces. Alternatively,
iPRD could be characterized as a form of coarse-grained Molecular Dynamics (MD) simulation
with reactions between particles. Particle interaction forces are useful to model order and
structure on mesoscopic lengthscales, such as the space-exclusion in dense particle systems [16,
19], the restriction of diffusing particles to arbitrarily-shaped membranes [16, 20, 21], the
large-scale structure of polymers [22] and membranes [23], and the clustering of attractive
proteins [24]. The combination of interaction forces and reactions allow an even wider
range of complex reactive systems in biology and chemistry to be modeled, such as the
dynamics of phototransduction that involve protein diffusion in particle-dense photoreceptor
membranes [21], the effect of transmembrane protein oligomers on these dynamics [20], the
recruitment of proteins to endosomes [25, 26], and the assembly, diffusion, and dissociation
of polymers [22]. The idea of combining PBRD with particle interaction forces is also
found in MD-GFRD [27, 28], where the close particle interactions are simulated by MD
and the reaction-diffusion model is used to derive an efficient way to propagate particles
while they are not-interacting. In contrast, in iPRD particle interactions and reactions
occur simultaneously, with the idea that reaction events are a suitable way to coarse-grain
complicated events such as protein-protein binding, whose kinetics might be obtained from
Markov State Models of all-atom MD simulations [29]. MD-GFRD simulations can be used
to speed up iPRD simulations when the system is sufficiently dilute [27, 28, 30], and with
free-propagator reweighting, this speedup can also be obtained in the regime where particles
are interacting [31].

An open question is: What is the statistically correct way to model the dynamical
evolution of simultaneously interacting and reacting particles? Specifically, we consider
reversible reactions, such as A + B � C, as they are found in nature, but also in technological
applications. Examples include reversible protein-drug binding [32, 33], reversible protein-
protein association that can now be simulated at atomistic detail [34], and metal ion deposition
to / removal from electrodes in batteries that are driving charging and discharging [35, 36].
To derive a statistically correct simulation scheme of A + B � C via iPRD, we need to
answer the following questions:

1. Which bimolecular reaction scheme should be used, i.e. under which conditions will
two particles A and B fuse into a C particle?

2. How do we choose the microscopic parameters of this reaction scheme such that the
iPRD simulation samples the macroscopic kinetic quantities that have been obtained
from experiments or more detailed MD simulations?
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3. When executing A + B → C or C → A + B, where should the product particles be
placed, such that the simulation obeys detailed balance?

The answers to these three questions are coupled.
Question 1: For the sake of analytical computations, the best-studied reaction scheme is

the Smoluchowski model where diffusing particles react instantly when they establish contact,
defined by a reaction distance 𝑅 [37]. The Collins-Kimball model [38] reduces the probability
of reacting upon contact to a finite value ≤ 1. Reversible reactions in the Collins-Kimball
model are discussed in [39], for interacting particles of isolated pairs an analytical description
is found in [40]. In iPRD simulations we instead use the Doi model [41, 42]:

A + B � AB � C

Here two particles A and B form a reactive complex AB when their distance is less or equal
to 𝑅. This process is simulated by the dynamical model that propagates particles (e.g.
overdamped Langevin equation). Whenever a reactive complex AB exists, it can decay to a C
particle with a microscopic rate constant 𝜆. The reverse process happens with a microscopic
rate constant 𝑘off . The Doi model is well compatible with a finite-time-stepping simulation
scheme, where the formation of AB can be easily checked in every time-step as part of the
particle neighbor list update.

Question 2: When using the Doi model, how should the parameters in this model be
chosen? The dissociation rate constant 𝑘off can be directly obtained from kinetic experiments
or all-atom MD simulations with accelerated sampling methods [33, 34, 43]. For the Doi
model where A and B encounter from a long distance via normal diffusion without interaction
forces, the association parameters 𝑅 and 𝜆 can be computed from an equation derived
in [1, 44]. When A and B interact, such a result can still be obtained numerically [45]. In
Sec. II we develop a theory for the A+B � C reaction of an isolated pair, that is independent
of the diffusion coefficient 𝐷. This enables to choose 𝜆 for given dissociation rate constant
𝑘off , interaction radius 𝑅, and A− B interaction potential such that the iPRD simulation
will produce a desired equilibrium constant and association rate constant at low particle
concentrations, as they are typically found in experiments measuring these constants.

Question 3: Time-reversible processes evolving in thermodynamic equilibrium obey detailed
balance [46]. For example, consider that we have system with one particle A and B each at
positions x𝐴, x𝐵 and we perform the forward reaction to a system with one particle C at
position x𝐶 . Detailed balance implies that the equilibrium probability of being in the A, B
system at x𝐴, x𝐵 times the forward reaction rate must be equal to the equilibrium probability
of being in the C system at x𝐶 times the backward reaction rate, and this must be true for all
system configurations. Vice versa, enforcing detailed balance is a technically convenient way
to automatically achieve a desired equilibrium distribution. It implies a relationship between
forward and backward reaction rates and also that the reaction scheme that allows for a
forward reaction x𝐴, x𝐵 → x𝐶 must also allow for the reverse reaction, and vice versa. For
non-interacting PBRD, a detailed balance scheme was first introduced in [47]. Other schemes
have been developed more recently [48, 49]. In Sec. III, we develop a general detailed-balance
scheme for iPRD (iPRD-DB). The scheme includes a Metropolis-Hastings [50, 51] acceptance
step that ensures the resulting dynamics fulfill detailed balance for abitrary configurations
of interacting particles. In the dilute limit (one A and B particle pair reacting to a single
C particle and back), the proposal steps are designed such that they are always accepted
and the desired equilibrium association and dissociation rate constants are obtained. When
the so-parametrized particles enter a dense phase, the kinetics and equilibria will naturally
change, but do so in a physically realistic manner. In particular, we show that in a dense
particle system where the reaction A + B � C involves a change in effective particle volume,
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the iPRD-DB scheme leads to a solution that is consistent with Le Chatelier’s principle,
while a regular Doi scheme that ignores detailed balance produces unphysical solutions.

The implementation of the iPRD-DB scheme is included in the ReaDDy 2 software
package [22].

II. BIMOLECULAR REACTION IN EQUILIBRIUM

We consider a system of molecules with three species, in which molecules A and B
reversibly form a complex C. We want to simulate particle dynamics involving such reactions
with iPRD, where particles interact with a potential when they are close, and a certain
microscopic reaction scheme is employed, see Fig. 1. This section answers the question
how the microscopic parameters of this reaction scheme need to be chosen such that the
equilibrium constant and the dissociation rate measurable in a bulk experiments will be
reproduced. This result will be used in the next section as part of designing a scheme obeying
detailed balance.

A. Macroscopic rate model

The macroscopic reaction dynamics is described by the scheme

A + B
𝑘on
�
𝑘off

C, (1)

where 𝑘on is a macroscopic bimolecular association rate constant, measured in units of per
time and per concentration, while 𝑘off is the dissociation rate constant, measured in units of
per time. These are related to the macroscopic dissociation constant 𝐾𝑑, measured in units
of concentration:

𝐾𝑑 = 𝑘off

𝑘on
. (2)

We assume that both the association- and the dissociation process obey a linear rate law [52],
according to the law of mass action (LMA). We define the effective association rate 𝐾on

𝐾on = 𝑘on𝑉 −1, (3)

which is the frequency of association per AB complex. Likewise we define the effective
dissociation rate 𝐾off

𝐾off = 𝑘off , (4)

which is the frequency of dissociation per C molecule. We denote 𝜋𝑖 as the stationary
probability of state 𝑖. The ratio of stationary probabilities 𝜋𝐴𝐵/𝜋𝐶 is given by the ratio of
effective rates in equilibrium, where the number of association events per time is equal to
the number of dissociation events per time

𝜋𝐴𝐵

𝜋𝐶

= 𝐾off

𝐾on
= [𝐴]eq[𝐵]eq

[𝐶]eq
𝑉 = 𝐾𝑑𝑉. (5)
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B. Microscopic distribution

For the following we will assume that there is only either one pair of A and B particles or one
C particle which live inside the volume 𝑉 . The vectors x ∈ R9, contain the euclidean positions
for three particles. Individual positions are denoted by x𝑎, x𝑏, and x𝑐 for particles A, B, and
C respectively. Additionally there is a phase 𝑖 ∈ {𝐴𝐵, 𝐶}, where 𝐴𝐵 is the dissociated phase
and 𝐶 is the associated phase. The joint distribution for states 𝑥𝑖 = (x, 𝑖) ∈ R9 × {𝐴𝐵, 𝐶}
of finding the system in phase 𝑖 and particle positions x is

𝑝(𝑥𝑖) =
{︃

𝜋𝐴𝐵 𝑝𝐴𝐵(x) for 𝑖 = 𝐴𝐵
𝜋𝐶 𝑝𝐶(x) for 𝑖 = 𝐶

(6)

Note that in phase 𝐴𝐵 there is still a position for the C particle, such that the dimension of
the microscopic phase space is equal for both phases. The same occurs for the positions of A
and B in the phase 𝐶. In both cases, the residual variables have no effect. In phase space
integrals these will be accounted for by a volume factor. Hence all phase space integrals
use the measure dx = dx𝑎dx𝑏dx𝑐, where each dx𝑗 has units of volume. Introducing a Fock
space for treatment of changing number of particles is circumvented by considering at most
three particles - the isolated pair and the complex - and having the non existing particles
contribute a constant factor to the partition function.

In phase 𝐴𝐵 the two particles A and B are subject to an interaction potential 𝑈(x) =
𝑈(|x𝑏 − x𝑎|) = 𝑈(𝑟) depending only on the distance 𝑟 = |x𝑏 − x𝑎| of A and B. The potential
is cut off at 𝑅int, i.e. 𝑈(𝑟) = 0, if 𝑟 > 𝑅int. The stationary distribution of positions x in
phase 𝐴𝐵 is

𝑝𝐴𝐵(x) = 𝑍−1
𝐴𝐵 exp(−𝛽𝑈(𝑟)) with 𝑟 = |x𝑏 − x𝑎|

where 𝛽−1 = 𝑘𝐵𝑇 is the thermal energy of the system which is coupled to a heat bath with
temperature 𝑇and the normalization constant can be computed as follows (see Appendix A),

𝑍𝐴𝐵 = 𝑉 2(𝑉 − 𝑉ex) (7)
𝑉ex = 𝑉int − 𝑉 eff

int (8)

𝑉int = 4
3𝜋𝑅3

int (9)

𝑉 eff
int =

∫︁ 𝑅int

0
𝑒−𝛽𝑈(𝑟)4𝜋𝑟2d𝑟, (10)

where 𝑉int is the interaction volume of the reactive particles, 𝑉 eff
int the effective accessible

volume due to particle interaction and 𝑉ex is the reduction of the accessible volume.
In phase 𝐶 the stationary distribution of positions y is

𝑝𝐶(y) = 𝑍−1
𝐶

with the partition function

𝑍𝐶 =
∫︁

dy =
∫︁∫︁∫︁

dy𝑎dy𝑏dy𝑐 = 𝑉 3.

C. Doi reaction model

The microscopic reaction model is defined by the association rate function 𝜆+(x) and
the dissociation rate function 𝜆−(y). The former describes the probability per unit time
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with which two particles A and B can react when the system is in phase 𝐴𝐵 and depends
on positions x. The latter describes the probability per unit time with which a C particle
dissociates into A and B when the system is in phase 𝐶. We assume that 𝜆+(x) is radially
symmetric, i.e. it only depends on 𝑟 = |x𝑏 − x𝑎|. Any microscopic reaction model, described
by 𝜆+(x) will result in an effective association rate 𝐾micro

on which reads

𝐾micro
on =

∫︁
𝜆+(x)𝑝𝐴𝐵(x)dx (11)

For 𝜆+(x) and 𝜆−(y) we use the Doi reaction model as depicted in Fig. 1, i.e. the microscopic
association reaction rate function is a constant 𝜆on, when particles A and B are closer than
the reaction radius 𝑅reac

𝜆+(x) = 𝜆on 𝜒reac(𝑟) with 𝑟 = |x𝑏 − x𝑎|, (12)

where 𝜒reac(𝑟) indicates that A and B are within reactive distance

𝜒reac(𝑟) =
{︃

1, if 𝑟 < 𝑅reac
0, otherwise.

(13)

The microscopic dissociation rate function is constant and chosen equal to the macroscopic
dissociation rate constant

𝜆−(y) = 𝑘off . (14)

We evaluate the effective microscopic association rate (11) for the Doi reaction model (12)
and obtain

𝐾micro
on = 𝜆on𝑍−1

𝐴𝐵𝑉 2
∫︁ 𝑅reac

0
𝑒−𝛽𝑈(𝑟)4𝜋𝑟2d𝑟

= 𝜆on
𝑉 eff

reac
𝑉 − 𝑉ex

(15)

where the effective reaction volume 𝑉 eff
reac takes a similar form as the effective interaction

volume , but with another radius 𝑅reac

𝑉 eff
reac =

∫︁ 𝑅reac

0
𝑒−𝛽𝑈(𝑟)4𝜋𝑟2d𝑟. (16)

D. Computing the microscopic association rate constant that reproduces the
macroscopic equilibrium

For the following we will assume a given dissociation constant 𝐾𝑑 and a given dissociation
rate constant 𝑘off . Using Eqs. (3, 2) we state the effective association rate according to the
law of mass action

𝐾on = 𝑘off

𝐾𝑑𝑉
. (17)

We require that the micro- and macroscopic effective rates match

𝐾micro
on

!= 𝐾on (18)
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and find the restrictions on the microscopic reaction model. This results in a choice for the
microscopic association rate constant 𝜆on, that will yield the desired equilibrium as in Eq. (5).
We will call this specific value 𝜆̃on

𝜆̃on = 𝑘off

𝐾𝑑𝑉

𝑉 − 𝑉ex

𝑉 eff
reac

. (19)

The relation of this expression to other diffusion influenced rate calculations is discussed in
Appendix B.

III. INTERACTING-PARTICLE REACTION DYNAMICS WITH DETAILED
BALANCE

Transition rates 𝑘+ and 𝑘− of association (+) and dissociation (−) respectively between
states 𝑥𝐴𝐵 and 𝑦𝐶 , with stationary probability distributions 𝑝 defined in Eq. (6) shall obey
detailed balance

𝑝(𝑥𝐴𝐵)𝑘+(y|x) = 𝑝(𝑦𝐶)𝑘−(x|y). (20)
We split the transition rates 𝑘 into proposal rate and acceptance probability

𝑘+(y|x) = 𝜆+(x)𝑞+(y|x) 𝛼+(y|x) association
𝑘−(x|y) = 𝜆−(y)𝑞−(x|y)⏟  ⏞  

proposal

𝛼−(x|y)⏟  ⏞  
acceptance

dissociation (21)

where 𝜆+(x) is the absolute rate of proposing a transition A + B → C when in particle
configuration x. 𝑞+(y|x) is the normalized density to propose the positions y, given that the
positions were x . 𝛼+(y|x) is the absolute probability of accepting the proposed positions.
Similarly 𝜆−(y) is the absolute rate of proposing a transition C → A + B, 𝑞−(x|y) is the
according proposal density and 𝛼−(x|y) the absolute probability of accepting the proposal.
All 𝑞 and 𝛼 satisfy ∫︁

𝑞𝑖(y|x)dy = 1 and 𝛼𝑖(y|x) ≤ 1 for 𝑖 ∈ {+,−}

A. Derive the backward proposal from the forward proposal

We assume the association proposal density 𝑞+ as given, and want to derive the dissociation
proposal density 𝑞− and both 𝛼+ and 𝛼− subject to detailed balance. Therefore we include
all terms that depend on the particle positions into the reverse proposal density 𝑞−, such
that most terms in Eq. (20) cancel and acceptances 𝛼+ and 𝛼− become independent of the
particle positions of the dissociated phase. The reverse proposal density reads

𝑞−(x|y) = 𝑄(y)−1𝑞+(y|x)𝜆+(x)
𝜆−(y)

𝑝𝐴𝐵(x)
𝑝𝐶(y) (22)

with the normalization function 𝑄(y) such that

𝑄(y) = 1
𝜆−(y)𝑝𝐶(y)

∫︁
𝑞+(y|x)𝜆+(x)𝑝𝐴𝐵(x)dx (23)
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Note that 𝑄 must depend on y to fulfil the normalization ∀y (in the Doi model it will reduce
to a constant). Inserting Eqs. (22, 21) into Eq. (20), the detailed balance condition reduces
to

𝛼+(y|x)
𝛼−(x|y) = 𝜋𝐶

𝜋𝐴𝐵

1
𝑄(y) (24)

Reminding that 𝛼 ≤ 1 naturally leads to using the Metropolis-Hastings [50, 51] acceptance
function

𝛼+(y|x) = min
{︃

1,
𝜋𝐶

𝜋𝐴𝐵 𝑄(y)

}︃

𝛼−(x|y) = min
{︃

1,
𝜋𝐴𝐵 𝑄(y)

𝜋𝐶

}︃ (25)

which fulfils the given detailed balance condition (24). For a practical implementation
one needs to know both proposal densities 𝑞+(y|x) and 𝑞−(x|y), and the corresponding
acceptance probabilities 𝛼+(y|x) and 𝛼−(x|y).

B. Apply DB to Doi model

Assuming the Doi model (12, 14), we state the association proposal density 𝑞+(y|x) and
derive the dissociation proposal density 𝑞−(x|y) (22). The normalized association proposal
density reads

𝑞+(y|x) = 𝑉 −2𝛿
(︂

y𝑐 −
x𝑎 + x𝑏

2

)︂
(26)

where the Dirac delta function 𝛿(·) assures that the C particle’sproposed position y𝑐 is in
the middle between the A and B particles from the initial positions x. The volume term
𝑉 −2 is required for normalization, due to the measure dy = dy𝑎dy𝑏dy𝑐. Additionally the
volume term can be understood as a uniform placement of A and B in the final positions
y. Since A and B are not considered in the associated state, it is irrelevant where they are.
Hence Eq. (26) fulfils

∫︀
𝑞+(y|x)dy = 1. The normalization 𝑄 of the dissociation proposal

density from Eq. (23) can be evaluated and reduces to a constant (see Appendix C)

𝑄 = 𝜆on

𝑘off

𝑉 eff
reac

𝑉 − 𝑉ex
. (27)

The dissociation proposal density (22) then becomes

𝑞−(x|y) =
(︁
𝑉 𝑉 eff

reac

)︁−1
𝛿
(︂

y𝑐 −
x𝑎 + x𝑏

2

)︂
. . .

× 𝜒reac(𝑟)𝑒−𝛽𝑈(𝑟),
(28)

with 𝑟 = |x𝑏 − x𝑎|. This density can be read as: given a C particle at position y𝑐, positions
x𝑎 and x𝑏 of particles A and B are restricted to radial shells concentric around y𝑐 due to the
delta function. These shells must not be larger than the reaction radius due to the indicator
function. The distance is additionally weighted with the Boltzmann factor of the interaction
potential 𝑈 .

Using the normalization constant 𝑄 from Eq. (27) the acceptance probabilities from
Eq. (25) are directly obtained. Using the microscopic association rate given in Eq. (19)
results in an acceptance probability of unity in both directions

𝛼+(y|x) = 𝛼−(x|y) = 1 for 𝜆on = 𝜆̃on from (19).
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C. Generalize for other types of reactions

The presented Metropolis-Hastings Monte Carlo method can be performed for other types
of reversible reactions, namely reversible conversion reactions of the type

A⏟ ⏞ 
x

𝑘on
�
𝑘off

B⏟ ⏞ 
y

with 𝜆+(x), 𝜆−(y) (29)

as well as reversible enzymatic reactions of the type

A + C⏟  ⏞  
x

𝑘on
�
𝑘off

B + C⏟  ⏞  
y

with 𝜆+(x), 𝜆−(y) and 𝑅reac, (30)

with macroscopic forward and backward rates 𝑘on and 𝑘off . For those two reactions we can
also construct a microscopic probability density for positions x and y for the dilute case in
the fashion of Eq. (6). Here the microscopic phase space only has positions for A and B
particles, the C particle in reaction (30) can be placed at the origin without loss of generality.
The reaction functions 𝜆+(x) and 𝜆−(y) for the conversion reaction (29) are constants 𝜆on
and 𝜆off respectively. For the enzymatic reaction (30) both reaction functions are additionally
multiplied with an indicator function depending on the reaction radius 𝑅reac. As in Sec. II D
we can compute the microscopic rate constants 𝜆 that reproduce the macroscopic kinetics in
the dilute limit. In the case of the enzymatic reaction (30), there appear excluded volumes
𝑉ex,A, 𝑉ex,B and effective reaction volumes 𝑉 eff

reac,A, 𝑉 eff
reac,B. These are defined analogously

to the volumes 𝑉ex, see Eq. (8), and 𝑉 eff
reac, see Eq. (16), with the difference that 𝑉ex,A and

𝑉 eff
reac,A are calculated based on the interaction potential of A and C, and 𝑉ex,B and 𝑉 eff

reac,B
are calculated based on the interaction potential of B and C. To assure detailed balance
we make the same ansatz for transition rates as in Eq. (21). The proposal densities 𝑞 are
constructed much simpler, because in these types of reactions no new positions must be
generated, i.e. the 𝑞 are delta functions. However during the species conversion, molecules
might be subject to potentials with respect to educt and product states. We gather the
change of potential energy during the reaction in the variable Δ𝐸. We summarize all of
these findings in Tab. III.

IV. RESULTS

We have proposed a method of executing reversible reactions according to detailed balance.
It can be used to perform reactions in a stochastic reaction-diffusion simulation. A schematic
implementation is shown in the pseudo code Alg. 1.

In order to illustrate our method, we perform many-particle simulations with molecular
species A, B and C engaging in the reversible association reaction shown in Eq. (1). The
simulation is performed using overdamped Langevin dynamics in the particle interaction
potential with a fixed time-step integrator. The potential 𝑈(𝑟) between the particles A and
B is chosen as a harmonic repulsion with cutoff 𝑅int and force constant 𝜅, that only depends
on the distance 𝑟 = |x𝑏 − x𝑎| between A and B

𝑈(𝑟) =
{︃

1
2𝜅(𝑟 −𝑅int)2, if 𝑟 < 𝑅int

0, otherwise (31)
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For this choice of potential the effective interaction volume from Eq. (10) yields an expression
containing errorfunctions. In general the effective interaction volume can be determined
numerically.

During one time step of length 𝜏 , we first integrate the diffusive motion of particles and
then perform the reactions. The boundaries of the system are periodic, obeying the minimum
image convention and wrapping positions upon crossing the border.

In the reaction step all possible reaction events are determined, this depends on the
considered reactions, reaction radii and the current particle configuration. Then the list of
reaction events is processed. An event is selected from the list. The event will be proposed
with absolute probability 𝑝 = 1 − exp(−𝜆𝜏) depending on the microscopic rate constant
𝜆 of the associated type of reaction. The event is performed, generating another particle
configuration drawn from the proposal densities in Eqs. (26, 28). From the change in potential
energy and the type of reaction the acceptance probability 𝑎 is calculated. If the event is
accepted the new configuration is kept. If the event is rejected the old configuration has to
be restored. Then the processed event is removed from the list of events. Additionally any
event is removed that would propose an event with the same particles as the processed one,
since these might not exist anymore.

The total probability of performing a particular event is 𝑝𝑎. If 𝑎 is chosen according to
Eq. (25) and Eq. (27) and the proposal density of the dissociation reaction includes the
Boltzmann factor as in Eq. (28), we will refer to this as the proposed DB reaction scheme.
We refer to the Doi reaction scheme if 𝑎 = 1, regardless of the energy difference, and if the
proposal density does not include the Boltzmann factor of the interaction potential of the
reactants.

A. Dilute limit

We validate Alg. 1 by performing it on the system of particles A, B and C. These particles
are subject to the reaction (1) and a harmonic repulsion potential as in Eq. (31). At any
point in time there is either the C particle or two particles A and B, i.e. there is only one
instance of each molecule species. Thus these simulations are in the dilute limit. The only
interactions occur between the A and B particle.

1. Validation of reaction kinetics

We show that the proposed detailed balance reaction scheme always yields the desired
macroscopic equilibrium distribution 𝜋𝐴𝐵/𝜋𝐶 from Eq. (5). Additionally we demonstrate
under which circumstances the simulated effective on- and off-rates, 𝐾on and 𝐾off , will match
those given by Eq. (3) and Eq. (4). The results are seen in Fig. 2. The simulation parameters
are given in Tab. I.

Fig. 2a shows that for very low 𝜆on, the effective association rate 𝐾on cannot exceed
a certain value because the proposal frequency is limited and 𝐾off is in turn diminished
by rejection of dissociation events in order to reproduce the desired equilibrium constant
𝜋𝐴𝐵/𝜋𝐶 = 𝐾𝑑𝑉 . For very high 𝜆on, association events will be rejected, thus limiting 𝐾on
to the LMA value, while dissociation events are executed with frequency 𝐾off = 𝑘off . The
transition between these two regimes is where 𝜆on = 𝜆̃on as in Eq. (19). Fig. 2b shows that,
when one uses the appropriate association rate constant from Eq. (19), one can reproduce
the expected reaction kinetics for varying 𝐾𝑑.
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2. Microscopic reversibility

We now demonstrate that the proposed DB reaction scheme (Alg. 1) indeed produces
trajectories in thermodynamic equilibrium, while the naive Doi scheme leads to periodic
cycles in phase space, corresponding to an unintended nonequilibrium scenario. To this end,
we distinguish three substates of the dissociated state, defined by the inter-particle distance
𝑟 of particles A and B, and the reaction radius 𝑅. We define states 1-4 as follows:

1. The complex state, C

2. A and B are very close 𝑟 ≤ 3
4𝑅

3. A and B are still in reactive range 3
4𝑅 < 𝑟 ≤ 𝑅

4. A and B are not within reactive range 𝑟 > 𝑅

Using again a reversibly reacting system with a single A, B pair or a single C complex, we
determine the stationary distribution 𝜋 for this definition of states, and the transition rates
𝐾 connecting them. A process that fulfils detailed balance must yield

𝜋𝑖𝐾𝑖𝑗 = 𝜋𝑗𝐾𝑗𝑖 (32)

for all pairs of states 𝑖, 𝑗. We measure 𝜋 and 𝐾 from simulations and compare the Doi
reaction scheme and the proposed DB reaction scheme in the presence of a harmonic repulsion
potential between A and B. In this comparison all system parameters are identical, only the
reaction mechanism differs. Results are presented in Fig. 3 and simulation parameters are
given in Tab. I.

From Fig. 3 it is evident that for the present case of interacting particles, the naive Doi
reaction scheme produces a cyclic probability flux that violates DB. In the proposed DB
reaction scheme, this is not the case and all given probability fluxes obey Eq. (32).

Note that for both reaction schemes, there occurs a unidirectional transition 4→ 1 due to
the time splitting we employ during one simulation step (first the diffusion step and then the
reaction step). This artificial transition is a result of the time-step discretization error and
not related to the DB scheme. It occurs with an absolute rate of less than 10−6, all other
transitions have 𝐾𝑖𝑗 > 10−5∀(𝑖, 𝑗) ̸= (4, 1). Thus its probability flux is not shown here.

B. System of many particles

Finally, we study how a dense mixture of interacting particles behaves when the DB
algorithm is employed, and we compare this behavior with the naive Doi algorithm and what
is expected from physical intuition. The Algorithm 1 is performed for a system of many A, B
and C particles confined to the volume 𝑉 with periodic boundaries. In this scenario we assign
physical radii 𝑟𝐴, 𝑟𝐵, and 𝑟𝐶 to the particles. Particles are subject to harmonic repulsion
potentials (31) acting between all pairs of species A, B, and C, where the interaction radius
is chosen as the sum of the particles’ radii. See parameters in Tab. II. Particles are subject
to the reaction (1). Employing the DB reaction scheme introduced in Sec. III can therefore
result in rejected Monte-Carlo moves, which will affect the thermodynamics and kinetics of
the simulation system in the dense limit.

In Sec. II B and following we had assumed that phase space consists of only three particles
A, B and C. In the case of many possible reactants one is presented with multiple possible

11



reaction events. For one particular event we will use the proposal densities from Eqs. (26, 28)
to treat the particles taking part in the event. All other particles will be considered static
excess objects. This means that the microscopic distributions from Eq. (6) gain another
Boltzmann factor from interactions with the excess particles. Note that the partition functions
𝑍𝐴𝐵 and 𝑍𝐶 will differ from their “dilute” values. In Sec. III B we have seen that a particular
choice of parameters leads to the prefactor in the acceptance becoming unity. Hence, the
advantage of such a Markov Chain Monte Carlo algorithm is that one does not need to know
constant factors of the stationary distribution to draw samples from said distribution. Along
these lines we construct an acceptance function for the many particle case, that includes a
Boltzmann factor of the energy difference and a prefactor of unity, assuming that internal
reaction parameters correspond to a certain but unknown macroscopic equilibrium. We will
use the association rate constant derived in Eq. (19). Obviously this equilibrium will differ
from the one in Eq. (5). But one can guarantee detailed balance never the less.

The change of potential energy is Δ𝜖. It does not include the interaction between A and
B as this is already accounted for by the proposal probabilities 𝑞+ and 𝑞−. We may write Δ𝜖
as the total change of potential energy Δ𝐸 minus the interaction energy 𝑈𝐴𝐵. We formulate
the acceptance for the many particle case:

𝛼+(y|x) = min
{︁
1, exp(−𝛽Δ𝜖+)

}︁
𝛼−(x|y) = min

{︁
1, exp(−𝛽Δ𝜖−)

}︁ (33)

where the changes of energies are given by

Δ𝜖+ = 𝐸(y)− [𝐸(x)− 𝑈𝐴𝐵(x)]
Δ𝜖− = [𝐸(x)− 𝑈𝐴𝐵(x)]− 𝐸(y).

(34)

We set up the system with a certain number of A and B particles and no C particles. We
control the quantity 𝑛 = (𝑁𝐴 + 𝑁𝐵)/2 + 𝑁𝐶 which is conserved during a simulation. The
system equilibrates without the reaction, we then switch the reaction on and let the system
equilibrate again.

We compute three observables in the equilibrated state, i.e. when observables are stable
and converged: the equilibrium constant 𝜋𝐴𝐵/𝜋𝐶 = 𝑉 [𝐴][𝐵]/[𝐶], the total potential energy
of the system 𝑈 in units of 𝑘𝐵𝑇 and the pressure 𝑃 in units of 𝑉 −1𝑘𝐵𝑇 . The pressure is
measured from evaluating the virial term of acting forces as described in [53]. Individual
reactions are integrated with either the proposed DB scheme or the Doi reaction scheme.

Fig. 4a shows the results for the case when an association reaction of A and B increases
the total volume occupied by particles such that 𝑟3

𝐴 + 𝑟3
𝐵 < 𝑟3

𝐶 . The associated state is
energetically less favourable. In the dilute limit both methods Doi and DB reproduce the
macroscopic equilibrium population 𝜋𝐴𝐵/𝜋𝐶 = 𝐾𝑑𝑉 . For increasing number of particles
both methods differ significantly. The Doi reaction scheme favours the energetically higher
associated configuration C. The Doi scheme produces an equilibrium constant of roughly
𝜋𝐴𝐵/𝜋𝐶 ≈ 80 for the highest density simulated. The DB scheme adjusts the effective
association probability by rejecting association events. This results in a steady state, where
almost no C particles exist with an equilibrium constant exceeding 𝜋𝐴𝐵/𝜋𝐶 > 3× 103. For
all 𝑛 > 50, the DB scheme finds a steady state of lower energy and lower pressure compared
to the Doi scheme. Fig. 5a and b show representative simulation snapshots of the steady
states for Doi and DB scheme.

Fig. 4b shows the case when a C particle occupies less volume than A and B combined such
that 𝑟3

𝐴 + 𝑟3
𝐵 > 𝑟3

𝐶 , which could correspond to two proteins A and B, which only fully fold in
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a bound state. In the dilute case both methods Doi and DB reproduce the same behaviour in
all three observables. For increasing number of particles the Doi method produces a similar
steady state population as in Fig. 4a where the 𝐶 state is favoured. The DB scheme produces
states favouring the 𝐶 state even stronger thus reducing the system’s potential energy and
pressure compared to the Doi scheme. Fig. 5c and d show representative simulation snapshots
of the steady states for Doi and DB scheme.

V. CONCLUSION

We have derived an algorithm to perform iPRD simulations of molecules undergoing
reversible reactions of the form A + B � C according to detailed balance. This method is
called iPRD-DB.

Detailed balance guarantees that simulations of an isolated system generate samples
according to thermodynamic equilibrium. We have shown that in a dense reactive mixture
of particles, that exhibit volume exclusion due to pair-wise potentials, the steady state of the
system simulated with iPRD-DB is in agreement with Henri Le Chatelier’s principle [52],
i.e. that the achieved steady state concentrations strongly depend on the interaction of
molecules. Biochemical pathways often show switch-like behavior, and are thus sensitive to
such changes in concentrations of agents [54–56]. Sampling the correct equilibrium is crucial
when simulating such processes.

The iPRD-DB method can be generalized for other types of reactions, such as a reversible
change of molecule species A � B, or a reversible enzymatic reaction A + C � B + C, which
describes a Michaelis-Menten experiment when the backwards rate becomes very small.

Furthermore the iPRD-DB method is accompanied by an equation for the microsopic
rate constant 𝜆 that assures the correct macroscopic reaction kinetics. This equation, see
Eq. (19), relates the macroscopic kinetic parameters 𝐾𝑑 and 𝑘off in a dilute environment with
the microscopic iPRD model parameters: microscopic rate constant 𝜆, reaction radius 𝑅,
and force parameters that determine the excluded volume 𝑉ex. Thus, it provides a choice for
𝜆, which in the iPRD-DB algorithm functions as the absolute proposal rate. For this choice
the acceptance probability reduces to the Boltzmann factor describing the change of energy
with respect to educt and product states. We also provide proposal densities such that the
acceptance becomes unity in the dilute case.

Having measured 𝐾𝑑 and 𝑘off in an in vitro scenario, a microscopic iPRD model can
be constructed subject to Eq. (19) and can then be analyzed numerically to gain insights
about the in vivo process, where molecules may occur in very low copy numbers and diffuse
anomalously due to complex geometries, making experimental measurements cumbersome
in this regime. Note that the expression relating 𝐾𝑑 and 𝑘off with 𝜆 and 𝑅 is independent
of the diffusion coefficient 𝐷, i.e. an iPRD model can be adjusted to resemble the in vivo
effective diffusion, which may, e.g. be obtained from Förster resonance energy transfer
(FRET) experiments [57].

An open question is what the analytical reference chemical equilibrium is when going to
dense particle mixtures.
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APPENDIX

A. Normalization constant 𝑍𝐴𝐵

The normalization is

𝑍𝐴𝐵 =
∫︁

𝑒−𝛽𝑈(x)dx

=
∫︁

dx𝑐

∫︁∫︁
𝑒−𝛽𝑈(x𝑏−x𝑎)dx𝑎dx𝑏

=𝑉 (𝐼1 + 𝐼2)

If there are no external potentials present, the latter integral factorizes

𝐼2 =
∫︁∫︁
|x𝑏−x𝑎|>𝑅int

dx𝑎dx𝑏

=
∫︁ (︃∫︁

|x𝑏−x𝑎|>𝑅int
dx𝑏

)︃
dx𝑎

= (𝑉 − 𝑉int)
∫︁

dx𝑎 = (𝑉 − 𝑉int) 𝑉

where 𝑉int is the interaction volume, that only depends on the cut-off distance of the potential
𝑅in, not the potential itself. Since the potential 𝑈 only depends on the relative position
x𝑏 − x𝑎, one can fix the position of one particle without changing the value of the integral 𝐼1

𝐼1 =
∫︁∫︁
|x𝑏−x𝑎|≤𝑅int

𝑒−𝛽𝑈(x𝑏−x𝑎)dx𝑎dx𝑏

=
∫︁ (︃∫︁

|x𝑏−x𝑎|≤𝑅int
𝑒−𝛽𝑈(x𝑏−x𝑎)dx𝑏

)︃
dx𝑎

= 𝑉 eff
int

∫︁
dx𝑎 = 𝑉 eff

int 𝑉

The effective accessible volume inside the interaction radius is given by:

𝑉 eff
int = 𝑉int − 𝑉ex,

which defines the excluded volume 𝑉ex due to interaction

B. Relation to diffusion-influenced rate constant derivations

To understand Eq. (19) we formulate the association rate constant for our problem using
Eq. (2)

𝑘on = 𝜆̃on𝑉
𝑉 eff

reac
𝑉 − 𝑉ex

. (35)
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This rate is linearly dependent on the effective reaction volume from Eq. (16), i.e. if one
increases the repulsion force between particles A and B the association rate will decrease.
One further notices that the diffusion of particles is not considered in this equation, since we
assume they are at all times distributed according to Eq. (6). This is true only because of
the reversible reaction that the isolated pair is subject to. The diffusion approach of A and
B need not be considered here. It is therefore crucial in an algorithm to generate samples
from the stationary distribution we assumed.

At this point we can establish a connection with other treatments of diffusion influenced
reaction rates. The formula derived by Doi [44] describes the association rate constant for
particles approaching each other via diffusion from the far-field. It includes the relative
diffusion constant of the two particles 𝐷 and reads

𝑘on,Doi = 4𝜋𝐷𝑅

⎛⎝1−
√︃

𝐷

𝜆on𝑅2 tanh
⎛⎝√︃𝜆on𝑅2

𝐷

⎞⎠⎞⎠
Assuming the fast diffusion limit of this yields [1]

𝜆≪ 𝐷

𝑅2 → 𝑘on,Doi ≈ 𝜆on
4
3𝜋𝑅3. (36)

If we on the other hand assume the large volume limit of the expression from Eq. (35) we
arrive at

𝑅3 ≪ 𝑉 → 𝑘on = 𝜆̃on𝑉 eff
reac. (37)

Comparing Eqs. (36,37) we see that they match if the term 4𝜋𝑅3/3 is identified as the
effective reaction volume without potentials.

C. Normalization of dissociation proposal density

Additionally we need 𝑄(y) from 23

𝑄(y) = 𝜆on𝑉

𝑘off𝑍𝐴𝐵

∫︁∫︁∫︁
𝛿
(︂

y𝑐 −
x𝑎 + x𝑏

2

)︂
𝜒reac(x) . . .

× 𝑒−𝛽𝑈(|x𝑏−x𝑎|)dx𝑎dx𝑏dx𝑐

= 𝜆on𝑉 2

𝑘off𝑍𝐴𝐵

∫︁∫︁
|x𝑏−x𝑎|≤𝑅

𝛿
(︂

y𝑐 −
x𝑎 + x𝑏

2

)︂
. . .

× 𝑒−𝛽𝑈(|x𝑏−x𝑎|)dx𝑎dx𝑏

The delta function can be reformulated in relative coordinates of A and B, that have to
placed symmetric around y𝑐. This eliminates another integral, which yields 1, due to the
delta function. The only remaining degree of freedom is the distance of A and B, which
results in an integral, that is identical to the effective reaction volume 𝑉 eff

reac from Eq. (16).
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Figure 1. Schematic time evolution of a reaction-diffusion system of an isolated pair subject to the
reaction A + B � C with the Doi model. Particles A and B diffuse and can form a complex particle
C when they are closer than a certain reaction radius, here depicted as the sum of the radii of the
two particles. The complex particle C diffuses as well and can dissociate into A and B again.

Algorithm 1: Reaction diffusion algorithm for 𝑛 integration steps with time step size 𝜏

initialize list of particles/system state 𝑝

repeat
𝑓 ← calculate forces for state 𝑝

𝑝← propagate diffusion subject to 𝑓 and 𝜏

𝐿← list of possible reaction events in 𝑝

while 𝐿 not empty do
select next event 𝑙 from 𝐿

𝑢1 ← random-uniform
𝜆← microscopic rate constant of 𝑙

if 𝑢1 < 1− exp(𝜆𝜏) then
𝐸1 ← calculate energy of state 𝑝

𝑝← propose event 𝑙 according to density 𝑞

𝐸2 ← calculate energy of state 𝑝

𝑎← acceptance for 𝑙 and energies 𝐸1 and 𝐸2
𝑢2 ← random-uniform
if 𝑢2 < 𝑎 then

accepted, keep the state 𝑝

else
𝑝← revert the event 𝑙

remove 𝑙 out of 𝐿

remove all events out 𝐿, that shared particles with event 𝑙

until 𝑛 steps performed
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Figure 2. Validation of the proposed detailed balance reaction scheme in dilute systems by stochastic
particle-based reaction-diffusion simulations (see Alg. 1). Shown are observables of the macroscopic
reaction kinetics: the effective association rate 𝐾on, the effective dissociation rate 𝐾off and the
equilibrium constant 𝜋𝐴𝐵/𝜋𝐶 . Reference values (law of mass action - LMA) for 𝐾on, 𝐾off and
𝜋𝐴𝐵/𝜋𝐶 correspond to macroscopic behaviour described in Sec. II. See simulation parameters
in Tab. I. (a) Microscopic association rate constant 𝜆on is varied. 𝜆̃on corresponds to Eq. (19).
(b) The given dissociation constant 𝐾𝑑 is varied. The microscopic association rate constant is
𝜆on = 𝜆̃on(𝐾𝑑).
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Quantity Symbol Value

Dissociation constant 𝐾𝑑 3.125× 10−4

Dissociation rate constant 𝑘off 10−4

Volume 𝑉 16× 16× 16
Diffusion constant of each particle 𝐷 5
Reaction radius 𝑅reac 2
Interaction radius 𝑅int 2
Force constant 𝜅 5
Time step length

in Fig. 2 𝜏1 10−4

in Fig. 3 𝜏2 1.25× 10−5

Number of integration steps
in Fig. 2 𝑚1 3× 1010

in Fig. 3 𝑚2 4.8× 1011

Table I. Unitless parameters used in the simulations of dilute systems, see Fig. 2 and 3.

Figure 3. Probability fluxes between associated and dissociated states measured from particle-based
reaction-diffusion simulations (see Alg. 1) in the dilute limit. Compared are the Doi reaction scheme
and the proposed detailed balance reaction scheme (DB). Definitions of the states 1-4 are given in
Sec. IV A 2. Arrows depict transitions between these states as observed in the simulations. The
width of the arrows encodes the probability flux 𝜋𝑖𝐾𝑖𝑗 , also given as numeric values measured from
multiple independent simulations giving rise to the standard error of the mean. The widths of two
adjacent arrows are normalized with respect to each other (not globally). See parameters in Tab. I.
(a) Doi reaction scheme. The probability fluxes for the transitions 1→ 2 and 1→ 3 are imbalanced
compared to their respective counterparts, resulting in a circular flux of probability. (b) Detailed
balance reaction scheme.
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Quantity Symbol Value

Dissociation constant 𝐾𝑑 2× 10−2

Dissociation rate constant 𝑘off 10−3

Volume 𝑉 20× 20× 20
Particle radii

case 𝑟3
𝐴 + 𝑟3

𝐵 < 𝑟3
𝐶 (𝑟𝐴, 𝑟𝐵, 𝑟𝐶) (1, 1, 1.4)

case 𝑟3
𝐴 + 𝑟3

𝐵 > 𝑟3
𝐶 (𝑟𝐴, 𝑟𝐵, 𝑟𝐶) (1, 1, 1.1)

Diffusion constants per radius
for species 𝑖 ∈ {𝐴, 𝐵, 𝐶} 𝐷/𝑟𝑖 5

Interaction radius for pair
of species (𝑖, 𝑗)∀𝑖, 𝑗 ∈ {𝐴, 𝐵, 𝐶} 𝑅int(𝑖, 𝑗) 𝑟𝑖 + 𝑟𝑗

Reaction radius 𝑅reac 2
Force constant 𝜅 10
Time step length 𝜏 5× 10−4

Time steps until equilibrated
dilute system with 𝑛 = 50 𝑚dilute 1.2× 108

dense system with 𝑛 = 900 𝑚dense 9× 106

Table II. Unitless parameters used in the simulations of dense systems, see Fig. 4 and 5.

A + B⏟  ⏞  
x

𝑘on
�
𝑘off

C⏟ ⏞ 
y

𝐴⏟ ⏞ 
x

𝑘on
�
𝑘off

B⏟ ⏞ 
y

A + C⏟  ⏞  
x

𝑘on
�
𝑘off

B + C⏟  ⏞  
y

𝜆+(x) 𝜆on𝜒reac(x) 𝜆on 𝜆on𝜒reac(x)
𝜆−(y) 𝜆off 𝜆off 𝜆off𝜒reac(y)
𝑞+(y|x) 𝑉 −2𝛿

(︁
y𝑐 − x𝑎+x𝑏

2

)︁
𝛿(y− x) 𝛿(y− x)

𝑞−(x|y)
(︁
𝑉 𝑉 eff

reac

)︁−1
𝛿
(︁
y𝑐 − x𝑎+x𝑏

2

)︁
. . .× 𝜒reac(x)𝑒−𝛽𝑈𝐴𝐵(x)

𝛿(x− y) 𝛿(x− y)

𝑓+(y|x) 𝑒−𝛽(𝐸(y)−[𝐸(x)−𝑈𝐴𝐵(x)]) 𝑒−𝛽(𝐸(y)−𝐸(x)) 𝑉 eff
reac,A

𝑉 eff
reac,B

𝑒−𝛽(𝐸(y)−𝐸(x))

𝑓−(x|y) 𝑒−𝛽([𝐸(x)−𝑈𝐴𝐵(x)]−𝐸(y)) 𝑒−𝛽(𝐸(x)−𝐸(y)) 𝑉 eff
reac,B

𝑉 eff
reac,A

𝑒−𝛽(𝐸(x)−𝐸(y))

constraints 𝑘on = 𝜆on𝑉 𝑉 eff
reac

𝑉−𝑉ex
𝑘off = 𝜆off

𝑘on = 𝜆on
𝑘off = 𝜆off

𝑘on = 𝜆on𝑉
𝑉 eff

reac,A
𝑉−𝑉ex,A

𝑘off = 𝜆off𝑉
𝑉 eff

reac,B
𝑉−𝑉ex,B

Table III. Summary of the iPRD-DB quantities for three different kinds of reversible reactions:
reversible association (see Sec. II B), reversible unimolecular conversion, and reversible bimolecular
enzymatic reaction (see Sec. III C). Quantities are: absolute proposal rates 𝜆, proposal densities 𝑞,
and acceptance probabilities 𝛼 = min{1, 𝑓}, as described in Sec. III. Superscript + and − denote
the “on” and “off” process respectively, corresponding to the definition of the reaction. x and y are
the microscopic positions of particles. Constraints describe for which microscopic parameters the
acceptance probabilities will be unity in the dilute limit.
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Figure 4. Steady state observables measured in particle-based reaction-diffusion simulations with
multiple particles. The quantity 𝑛 = (𝑁𝐴 + 𝑁𝐵)/2 + 𝑁𝐶 is conserved during a simulation. Shown
are ensemble- and time-averaged values of the equilibrium constant 𝜋𝐴𝐵/𝜋𝐶 = 𝑉 [𝐴][𝐵]/[𝐶], the
potential energy 𝑈 in units of 𝑘𝐵𝑇 , the pressure 𝑃 in units of 𝑉 −1𝑘𝐵𝑇 . Compared are the two
reaction schemes Doi and DB, see Sec. IV. See simulation parameters in Tab. II (a) An association
reaction of A and B increases the total volume occupied by particles such that 𝑟3

𝐴 + 𝑟3
𝐵 < 𝑟3

𝐶 .
(b) The C particle occupies less volume than A and B combined such that 𝑟3

𝐴 + 𝑟3
𝐵 > 𝑟3

𝐶
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Figure 5. Steady state configurations of particle-based reaction-diffusion simulations subject to
the reaction A + B � C for different densities in terms of the number of particles 𝑛 initially in
the system. Compared are the two reaction schemes Doi and DB, see Sec. IV at different particle
radii respectively. See simulation parameters in Tab. II. (a) The associated state occupies more
volume than the dissociated state, reactions are handled with the Doi scheme. (b) The associated
state occupies more volume than the dissociated state, reactions are handled with the DB scheme
(c) The associated state occupies less volume than the dissociated state, reactions are handled with
the Doi scheme. (d) The associated state occupies less volume than the dissociated state, reactions
are handled with the DB scheme.
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