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Abstract
Atomistic or ab-initio molecular dynamics sim-
ulations are widely used to predict thermody-
namics and kinetics and relate them to molec-
ular structure. A common approach to go be-
yond the time- and length-scales accessible with
such computationally expensive simulations is
the definition of coarse-grained molecular mod-
els. Existing coarse-graining approaches define
an effective interaction potential to match de-
fined properties of high-resolution models or ex-
perimental data. In this paper, we reformulate
coarse-graining as a supervised machine learn-
ing problem. We use statistical learning the-
ory to decompose the coarse-graining error and
cross-validation to select and compare the per-
formance of different models. We introduce
CGnets, a deep learning approach, that learns
coarse-grained free energy functions and can be
trained by a force matching scheme. CGnets
maintain all physically relevant invariances and
allow one to incorporate prior physics knowl-
edge to avoid sampling of unphysical structures.
We show that CGnets can capture all-atom

explicit-solvent free energy surfaces with mod-
els using only a few coarse-grained beads and no
solvent, while classical coarse-graining methods
fail to capture crucial features of the free en-
ergy surface. Thus, CGnets are able to capture
multi-body terms that emerge from the dimen-
sionality reduction.

Introduction
Recent technological and methodological ad-
vances have made possible to simulate macro-
molecular systems on biologically relevant
timescales1–3. For instance, one can simu-
late binding, folding and conformation changes
of small to intermediate-size proteins on
timescales of milliseconds, seconds or be-
yond4–8. However, the extensive sampling of
large macromolecular complexes on biological
timescales at atomistic resolution is still out of
reach. For this reason, the design of simplified,
yet predictive models is of great interest9–11, in
particular, to interpret the experimental data
that are becoming increasingly accessible in
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high throughput and resolution. Experimental
data provide a partial view of certain aspects
of a macromolecular system but do not directly
give a full dynamical representation and sim-
ulation can help obtain a more comprehensive
understanding12–14. As it is clear that not ev-
ery single atom is important in determining
the relevant collective features of biomolecu-
lar dynamics and function, simplified models
could provide more insights into the general
physicochemical principles regulating biophysi-
cal systems at the molecular level. Here we use
recent advances in machine learning to design
optimal reduced models to reproduce the equi-
librium thermodynamics of a macromolecule.
Significant effort has been devoted in the last

few years to apply machine learning (e.g., deep
neural network or kernel methods) to learn ef-
fective models from detailed simulations15–19,
and specifically to learn potential energy sur-
faces from quantum mechanical calculations on
small molecules20–36. In principle a similar phi-
losophy could be used to define models at lower
resolutions, that is to learn the effective poten-
tial energy of coarse-grained (CG) models from
fine-grained (e.g., atomistic) molecular dynam-
ics (MD) simulation data37–41.
There are however important differences. In

the definition of potential energy surfaces from
quantum calculations, the relevant quantity to
reproduce is the energy, and it is relatively
straightforward to design a loss function for a
neural network to minimize the difference be-
tween the quantum mechanical and classical
energy (and forces25,33) over a sample of con-
figurations. In contrast, in the definition of
a CG model, the potential energy can not be
matched because of the reduction in dimension,
and it is important to define what are the prop-
erties of the system that need to be preserved
by the coarse-graining. The approximation of
free-energy surfaces, e.g. from enhanced sam-
pling simulations, is therefore a related prob-
lem42–44.
Several approaches have been proposed

to design effective CG energy functions for
large molecular systems that either repro-
duce structural features of atomistic models
(bottom-up)45–50 or reproduce macroscopic

properties for one or a range of systems
(top-down)12–14,51–54. Popular bottom-up ap-
proaches choose that the CG model reproduce
the canonical configuration distribution deter-
mined by the atomistic model. For instance,
one may want to be able to represent the dif-
ferent metastable states populated by a protein
undergoing large conformational changes. One
of the difficulties in the practical application
of these methods has been that, in general, a
CG potential optimally reproducing selected
properties of a macromolecular system includes
many-body terms that are not easily modeled
in the energy functions.
Here, we formulate the well-known force

matching procedure for coarse-graining as a su-
pervised machine learning problem. Previously,
coarse-graining has been mostly discussed as a
fitting procedure, but the aim of machine learn-
ing is to find a model that has minimal predic-
tion error on data not used for the training. We
use classical statistical learning theory to show
that the force matching error can be decom-
posed into Bias, Variance and Noise terms and
explain their physical meaning. We also show
that the different CG models can be ranked us-
ing their cross-validation score.
Second, we discuss a class of neural networks,

which we refer to as CGnets, for coarse-graining
molecular force systems. CGnets have a lot of
similarities with neural networks used to learn
potential energy surfaces from quantum data,
such as enforcing the relevant invariances (e.g.,
rotational and translational invariance of the
predicted energy, equivariance of the predicted
force). In contrast to potential energy net-
works, CGnets predict a free energy (potential
of mean force) and then use the gradient of this
free energy with respect to the input coordi-
nates to compute a mean force on the CG co-
ordinates. As the CG free energy is not known
initially, only the force information can be used
to train the network.
Third, CGnets are extended to regularized

CGnets. Using a generic function approxima-
tor such as a neural network to fit the CG force
field from training data only may lead to force
predictions that are “catastrophically wrong”
for configurations not captured by the training
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data, i.e., predictions of forces in the direction
of increasingly unphysical states that lead to di-
verging and unrealistic simulation results. We
address this problem by adding a prior energy
to the free energy network that does not com-
promise the model accuracy within the training
data region, but ensures that the free energy ap-
proaches infinity for unphysical states, resulting
in a restoring force towards physically meaning-
ful states.
Finally, we demonstrate that CGnets succeed

in learning the CG mean force and the CG free
energy for a 2D toy model, as well as for the
coarse-graining of all-atom explicit-solvent sim-
ulations of (i) alanine dipeptide to a CG model
with 5 particles and no solvent, and (ii) the
folding/unfolding of the polypeptide Chignolin
to a CG model consisting only of the protein
Cα atoms and no solvent. We show explic-
itly that CGnets achieve a systematically bet-
ter performance than classical CG approaches
which construct the CG free energy as a sum
of few-body terms. In the case of the Chignolin
protein, the classical few-body model can not
reproduce the folding/unfolding dynamics. On
the contrary, the inherently multi-body CGnet
energy function approximates the all-atom fold-
ing/unfolding landscape well and captures all
free energy minima. This study highlights the
importance of machine learning and generic
function approximators in the CG problem.

Theory and methods
Here we introduce the main theoretical con-
cepts and define the machine learning prob-
lems involved in coarse-graining using the force
matching principle, and introduce CGnets and
regularized CGnets. The more practically in-
clined reader may skip to the Section “CGnets:
Learning CG force fields with neural networks”.

Coarse-graining with thermody-
namic consistency

We first define what we mean by coarse-graining
and which physical properties shall be pre-
served in the coarse-grained model.

The starting point in the design of a molecu-
lar model with resolution coarser than atomistic
is the definition of the variables. The choice of
the coarse coordinates is usually made by re-
placing a group of atoms by one effective par-
ticle. Because of the modularity of a protein
backbone or a DNA molecule, popular models
coarse-grain a macromolecule to a few interac-
tion sites per residue or nucleotide, e.g., the Cα
and Cβ atoms for a protein51,54–56. Alternative
schemes have also been proposed for the parti-
tioning of the atoms into coarse-grained coordi-
nates57,58. In general, given a high-dimensional
atomistic representation of the system r ∈ R3N ,
a CG representation is given by a coordinate
transformation to a lower-dimensional space:

x = ξ(r) ∈ R3n (1)

with n < N . Here we assume that ξ is linear,
i.e. there is some coarse-graining matrix Ξ ∈
R3n×3N that clusters atoms to coarse-grained
beads: x = Ξr.
The aim is to learn a coarse-grained energy

function U(x;θ) that will be used in conjunc-
tion with a dynamical model, e.g., Langevin dy-
namics, to simulate the CG molecule. θ are
the parameters of the coarse-grained model –
in classical CG approaches these are parame-
ters of the potential energy function, such as
force constants and partial charges, while here
they denote the weights of the neural network.
A common objective in coarse-graining meth-

ods is to preserve the equilibrium distribution,
i.e. the equilibrium distribution of the coarse-
grained model shall be as close as possible to the
equilibrium distribution of the atomistic model
when mapped to the CG coordinates. We will
be using a simulation algorithm for the dynam-
ics such that the system’s equilibrium distribu-
tion is identical to the Boltzmann distribution
of the employed potential U ; therefore this ob-
jective can be achieved by enforcing the ther-
modynamic consistency:

U(x;θ) ≡ −kBT ln pCG(x) + const, (2)

where kBT is the thermal energy with Boltz-
mann constant kB and temperature T , and
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the probability distribution pCG(x) is the equi-
librium distribution of the atomistic model,
mapped to the CG coordinates:

pCG(x) =

∫
µ(r)δ (x− ξ(r)) dr∫

µ(r)dr
(3)

and µ(r) = exp (−V (r)/kBT ) is the Boltz-
mann weight associated with the atomistic en-
ergy model V (r). Note that the additive con-
stant in (2) can be chosen arbitrarily. Therefore
this constant will be omitted in the expressions
below, which means that it will absorb normal-
ization constants that are not affecting the CG
procedure, such as the logarithm of the parti-
tion function.
Several methods have been proposed for

defining a coarse-grained potential U(x) that
variationally approximates the consistency
relation (3) at a particular thermodynamic
state (temperature, pressure etc.) Two pop-
ular approaches are the multi-scale coarse-
graining (force-matching)48,59 and the relative
entropy method50 (the two approaches are con-
nected60).

CG parameter estimation as a ma-
chine learning problem

Here, we follow the force-matching scheme. It
has been shown that thermodynamic consis-
tency (2) is achieved when the CG model pre-
dicts the instantaneous CG forces with minimal
mean square error48,59. We call the instanta-
neous atomistic forces F(r), and the instanta-
neous force projected on the CG coordinates
ξ(F(r)). At the same time, the CG model pre-
dicts a force −∇U(x;θ) for a CG configuration
x. The force matching error is defined as:

χ2(θ) =
〈
‖ξ(F(r)) +∇U(ξ(r);θ)‖2

〉
r
. (4)

The average 〈·〉r is over the equilibrium distri-
bution of the atomistic model, i.e., r ∼ µ(r).
We reiterate a result shown in59 that has im-

portant consequences for using (4) in machine
learning. For this, we introduce the mean force:

f(x) = 〈ξ(F(r))〉r|x (5)

where r | x indicates the equilibrium distribu-
tion of r constrained to the CG coordinates x,
i.e. the ensemble of all atomistic configurations
that map to the same CG configuration. Then
we can decompose expression (4) as follows (see
SI for derivation):

χ2(θ) = PMF error(θ) + Noise (6)

with the terms

PMF error(θ) = 〈‖f(ξ(r)) +∇U(ξ(r);θ)‖2〉r
Noise = 〈‖ξ(F(r))− f(ξ(r))‖2〉r. (7)

This loss function differs from the force match-
ing loss function used in the learning of force
fields from quantum data by the Noise term.
The Noise term is purely a function of the CG
map ξ (and when training with finite simula-
tion data also of the dataset), and it cannot
be changed by varying the parameters θ. As
a result, the total force matching error cannot
be made zero but it is bounded from below
by χ2 (θ) ≥ Noise59. On the contrary, when
matching force fields from quantum data, the
error χ2 approaches zero for a sufficiently pow-
erful model. Physically, the Noise term arises
from the fact that instantaneous forces on the
CG coordinates vary in the different atomistic
configurations associated with the same CG
configuration. Here, we call this term Noise
as it corresponds to the noise term known in
statistical estimator theory for regression prob-
lems61.
The learning problem is now to find a CG

model and its parameters θ that minimizes the
PMF error term. In order to obtain a physi-
cal interpretation, we apply (1) and write the
average purely in CG coordinates:

PMF error(θ) = 〈‖f(x) +∇U(x;θ)‖2〉x
= 〈‖f(x)− f̂(x;θ)‖2〉x

This error term is the matching error between
the mean force at the CG coordinates, f(x) and
the CG forces predicted by the CG potential,

f̂(x;θ) = −∇U(x;θ). (8)

Hence, the machine learning task is to find the
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free energy U whose negative derivatives best
approximate the mean forces in Eq (5), and U
is thus called a potential of mean force (PMF).
Eq. (8) implies that the mean force field f̂ is
conservative, as it is generated by the free en-
ergy U(x).
Machine learning the CG model is compli-

cated by two aspects: (i) As the PMF error
cannot be computed directly, its minimization
in practice is accomplished by minimizing the
variational bound (6). Thus, to learn f(x) accu-
rately, we need to collect enough data “close” to
every CG configuration x such that the learn-
ing problem is dominated by the variations in
the PMFerror term and not by the variations in
the Noise term. As a result, machine learning
CG models typically requires more data points
than force matching for potential energy sur-
faces; (ii) The free energy U(x) is not known a
priori, but must be learned. In contrast to fit-
ting potential energy surfaces we can therefore
not directly use energies as inputs.
For a finite dataset R = (r1, ..., rM) with M

samples, we define the force matching loss func-
tion by the direct estimator:

L(θ;R) =
1

3Mn

M∑
i=1

‖ξ(F(ri)) +∇U(ξ(ri);θ)‖2

(9)

=
1

3Mn
‖ξ(F(R)) +∇U(ξ(R);θ)‖2F .

(10)

Where ξ(R) = [ξ(r1), ..., ξ(rM)]> ∈ RM×3n and
ξ(F(R)) = [ξ(F(r1)), ..., ξ(F(rM))]> ∈ RM×3n

are data matrices of coarse-grained coordinates
and coarse-grained instantaneous forces that
serve as an input to the learning method, and
F denotes the Frobenius norm.

CG hyper-parameter estimation as
a machine learning problem

While Eq. (9) defines the training method, ma-
chine learning is not simply about fitting pa-
rameters for a given dataset, but rather about
minimizing the expected prediction error (also
called “risk”) for data not used for training.

This concept is important in order to be able to
select an optimal model, i.e. in order to choose
the hyper-parameters of the model, such as the
type and number of neurons and layers in a neu-
ral network, or even to distinguish between dif-
ferent learning models such as a neural network
and a spline model.
Statistical estimator theory is the field that

studies optimal prediction errors61. To com-
pute the prediction error, we perform the fol-
lowing thought experiment: We consider a fixed
set of CG configurations X = [x1, ...,xM ]> at
which we want to fit the mean forces. We as-
sume that these configurations have been gener-
ated by MD or MCMC such that the full atom-
istic configurations, R = (r1, ..., rM), are Boltz-
mann distributions conditioned on the CG con-
figurations, i.e. ri ∼ r | xi. Now we ask: if
we repeat this experiment, i.e. in every itera-
tion we produce a new set of all-atom config-
urations ri ∼ r | xi, and thereby a new set of
instantaneous forces on the CG configurations,
what is the expected prediction error, or risk
of the force matching error, E [L(θ;R)]? More
formally:

1. Given CG coordinates X, generate train-
ing set Rtrain ∼ R | X and find θ̂ =
arg minθ L(θ;Rtrain).

2. Generate test set Rtest ∼ R | X and com-
pute L(θ̂;Rtest)

where Rtrain and Rtest are two independent re-
alizations. Although we cannot execute this
thought experiment in practice, we can approx-
imate it by cross-validation, and we can obtain
insightful expressions for the form of the ex-
pected prediction error. As the loss function
in force matching is a least squares regression
problem, the form of the expected prediction er-
ror is well known (see SI for a short derivation),
and can be written as:

E [L(θ;R)] = Bias2 + Var + Noise (11)

with the Noise term as given in Eq. (7) and the
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bias and variance terms given by:

Bias2 =
∥∥f(X)− f̄(X)

∥∥2
F

(12)

Var = E
[∥∥f̄(X) +∇U(X)

∥∥2
F

]
(13)

where
f̄(X) = E [−∇U(X)]

is the mean estimator, i.e. the average force
field learnt when the training is repeated many
times for different data realizations. The terms
in (12-13) have the following meaning: Eq. (12)
is the expected error between the mean forces
and the average predicted force field, it is there-
fore the systematic bias of the machine learn-
ing model. The variance (13) is the fluctuation
of the individual estimates from single train-
ing procedures around the mean estimator and
thus represents the estimator’s fluctuation due
to finite-sample effects.
As the optimal model minimizes the PMF er-

ror, it must balance bias and variance. These
contributions are typically counteracting: A too
simple model (e.g., too small neural network)
typically leads to low variance but high bias,
and it corresponds to “underfitting” the data. A
too complex model (e.g., too large neural net-
work) leads to low bias but large variance, and
it corresponds to “overfitting” the data. The
behavior of bias, variance and estimator error
for a fixed data set size is illustrated in Fig. 1.
The optimum at which bias and variance bal-

ance depends on the amount of data used, and
in the limit of an infinitely large dataset, the
variance is zero and the optimal model can be
made very complex so as to also make the bias
zero. For small datasets, it is often favorable to
reduce the model complexity and accept signif-
icant bias, in order to avoid large variance.
In order to implement model selection, we ap-

proximate the “ideal” iteration above by the
commonly used cross-validation method62,63

and then choose the model or hyper-parameter
set that has the minimal cross-validation score.
In cross-validation, the estimator error (11) is
estimated as the validation error, averaged over
different segmentations of all available data into
training and validation data.

Model complexity

Er
ro

r

Mean prediction error

Bias2 Variance

Noise

Figure 1: Typical bias-variance tradeoff for fixed data
set size, indicating the balance between underfitting and
overfitting. The noise level is defined by the CG scheme
(i.e., which particles are kept and which are discarded)
and is the lower bound for the mean prediction error.

CGnets: Learning CG force fields
with neural networks

It is well known that the CG potential U(x;θ)
defined by thermodynamic consistency may be
a complex multi-body potential even if the un-
derlying atomistic potential has only few-body
interactions59. To address this problem, we use
artificial neural networks (ANNs) to represent
U(x;θ) as ANNs can approximate any smooth
function on a bounded set of inputs, including
multi-body functions64.
Therefore, we use ANNs to model U(x), train

them by minimizing the loss (9) and select opti-
mal models by minimizing the cross-validation
loss. For the purpose of training CG molecu-
lar models, we would like to have the following
physical constraints and invariances, which de-
termine parts of the architecture of the neural
network:

• Differentiable free energy function:
In order to train U(x;θ) and simulate
the associated dynamics by means of
Langevin simulations, it must be contin-
uously differentiable. As the present net-
works do not need to be very deep, van-
ishing gradients are not an issue and we
select tanh activation functions here. Af-
ter D nonlinear layers we always add one
linear layer to map to one output neuron
representing the free energy.

• Invariances of the free energy: The
energy of molecules that are not subject
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to an external field only depends on in-
ternal interactions and is invariant with
respect to translation or rotation of the
entire molecule. The CG free energy may
also be invariant with respect to permuta-
tion of certain groups of CG particles, e.g.
exchange of identical molecules, or cer-
tain symmetric groups within molecules.
Compared to quantum-mechanical poten-
tial energies, permutation invariance is
less abundant in CG. For example, per-
mutation invariance does not apply to
the α-carbons in a protein backbone (not
even for identical amino acids), as they
are ordered by the MD bonding topology.
CGnets include a transformation:

y = g(x)

from CG Cartesian coordinates x to a
set of features that contain all desired
invariances, and use the features y as
an input to the network that computes
the free energy, U(g(x);θ). This trans-
formation can be chosen in many differ-
ent ways, e.g. by using local coordi-
nate systems34, two- or three-body corre-
lation functions20, permutation-invariant
distance metrics65–67, or by a learned rep-
resentation29. In this work, only transla-
tion and rotation invariances are needed,
and we hence choose the following fea-
tures: distances between all pairs of CG
atoms, the angles between three consec-
utive CG atoms, and the cos and sin of
torsion angles defined by the CG atoms.

• Conservative PMF: The PMF is a con-
servative force field generated by the free
energy (8). As in quantum potential en-
ergy learning25,29, we enforce this require-
ment by computing the free energy U with
a neural network and then adding a gradi-
ent layer to compute the derivatives with
respect to the input coordinates:

f̂(x;θ) = −∇xU(g(x);θ).

Fig. 2a shows the neural network architecture
resulting from these choices. The free energy

network is D layers deep and each layer is W
neurons wide. Additionally, we use L2 Lips-
chitz regularization68 in the network, with a
tunable parameter λ that regulates the strength
of the regularization. Thus, (D,W, λ) are the
remaining hyper-parameters to be selected (as
discussed in the Results section).
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Figure 2: Neural network schemes. a) CGnet. b)
Regularized CGnet with prior energy. c) Spline model
representing a standard CG approach, for comparison.
Each energy term is a function of only one feature, and
the features are defined as all the bonds, angles, dihe-
drals, and non-bonded pairs of atoms.

Simulating the CGnet model

Once the neural network has been trained to
produce a free energy U(x), it can be used
to simulate dynamical trajectories of the CG
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model. Here we use over-damped Langevin dy-
namics to advance the coordinates of the CG
model from xt at time t to xt+τ after a time-
step τ :

xt+τ = xt − τ
D

kBT
∇U(xt) +

√
2τDξ (14)

where xt is the CG configuration at time t
(e.g., the x coordinate in the toy model, a
15-dimensional vector in the alanine dipeptide,
and a 30-dimensional vector in the Chignolin
applications presented below). ξ is Gaussian
random noise with zero mean and identity as co-
variance matrix, τ is the integration time step,
D is the diffusion constant of the system. In
the following, we use reduced energy units, i.e.
all energies are in multiples of kBT .
Since the implementation of CGnet is vec-

torized, it is more efficient to compute free
energies and mean forces for an entire batch
of configurations, rather than a single config-
uration at a time. Therefore, we run simula-
tions in parallel for the examples shown below.
This is done by sampling 100 starting points
randomly from atomistic simulations, coarse-
graining them and then integrating (14) step-
wise.

Regularizing the free energy with a
baseline energy model

Training the free energy with a network as
shown in Fig. 2a and subsequently using it in
order to simulate the dynamics with Eq. (14)
produces trajectories of new CG coordinates
xt. When parts of the coordinate space are
reached that are very different from any point in
the training set, it is possible that the network
makes unphysical predictions.
In particular, the atomistic force-field used to

produce the training data has terms that ensure
the energy will go towards infinity when depart-
ing from physical states, e.g. when stretching
bonds or when moving atoms too close to each
other. These regions will not be sampled in
the underlying MD simulations, and therefore
result in “empty” parts of configuration space

that contain no training data. Simulating a net-
work trained only on physically valid training
data via Eq. (14) may still produce points xt
that enter this “forbidden regime” where bonds
are overstretched or atoms start to overlap. At
this point the simulation can become unstable
if there is no regularizing effect ensuring that
the predicted free energy U(x;θ) will increase
towards infinity when going deeper into the for-
bidden regime.
Methods to modify a learning problem so

as to reduce prediction errors are collectively
known as “regularization” methods.69 In order
to avoid the catastrophically wrong prediction
problem described above, we introduce regular-
ized CGnets (Fig. 2b). In a regularized CGnet,
we define the energy function as

U(x;θ) = U0(x) + Unet(x;θ) (15)

where Unet(x;θ) is a neural network free en-
ergy as before and U0(x) is a baseline energy
that contains constraint terms that ensure ba-
sic physical behavior. Such baseline energies to
regularize a more complex multi-body energy
function have also been used in the machine
learning of QM potential energy functions70–72.
Note that (15) can still be used to represent
any smooth free energy because Unet(x;θ) is a
universal approximator. The role of U0(x) is to
enforce U →∞ for unphysical states x that are
outside the training data.
As for many other regularizers, the baseline

energy U0(x) in Eq. (15) takes the role of a
prior distribution in a probabilistic interpreta-
tion: The equilibrium distribution generated by
(15) becomes:

pCG(x) ∝ exp (−βU0(x))︸ ︷︷ ︸
prior

exp (−βUnet(x; θ)) .

Here, U0(x) is simply a sum of harmonic and
excluded volume terms. For the 2d toy model, a
harmonic term in the form U0(x) = 1

2
k(x−x0)2

is used, and the parameters k and x0 are deter-
mined by the force matching scheme restricted
to the scarcely populated regions defined by the
100 sampled points with highest and the 100
with lowest x-value (see Fig. 3).

8



For alanine dipeptide, we use harmonic terms
for the distance between atoms that are adja-
cent (connected by covalent bonds) and for an-
gles between three consecutive atoms. For each
bond i, we use U bond

0,i (ri; ri0, kb,i) = 1
2
kb,i(ri −

ri0)
2, where ri is the instantaneous distance be-

tween the two consecutive atoms defining the
bond, ri0 is the equilibrium bond length, and
kb,i is a constant. Analogously, for each angle
j, we use Uangle

0,j (θj; θj0, ka,j) = 1
2
ka,j(θj − θj0)2,

where θj is the instantaneous value of the an-
gle, θj0 is the equilibrium value for the angle,
and ka,j is a constant. When statistically in-
dependent, each such term would give rise to a
Gaussian equilibrium distribution:

p(ri) � exp

(
−kb,i(ri − ri0)

2

2kBT

)
p(θj) � exp

(
−ka,j(θj − θj0)

2

2kBT

)
with mean µ = ri0 (or µ = θj0), and vari-
ance σ2 = kBT/kb,i (or σ2 = kBT/ka,j ). The
prior energy is obtained by assuming indepen-
dence between these energy terms and estimat-
ing these means and variances from the atom-
istic simulations.
For the application of CGnet to the protein

Chignolin, an additional term is added to the
baseline energy to enforce excluded volume and
penalize clashes between non-bonded CG par-
ticles. In particular, we add a term Urep(r) for
each pairwise distances between CG particles
that are more distant than two covalent bonds,
in the form:

Urep(r) =
(σ
r

)c
(16)

where the exponent c and effective ex-
cluded volume radius σ are two additional
hyper-parameters that are optimized by cross-
validation.
We note that in general one could use classi-

cal CG approaches with predefined energy func-
tions to first define the prior CG energy U0 ,
then use an ANN to correct it with multi-body
terms.

Results

2-dimensional toy model

As a simple illustration, we first present
the results on the coarse-graining of a two-
dimensional toy model. The potential energy
is shown in Fig. 3 and given by the expression:

V (x, y)

kBT
=

1

50
(x− 4)(x− 2)(x+ 2)(x+ 3)+

+
1

20
y2 +

1

25
sin (3(x+ 5)(y − 6)) . (17)

The potential corresponds to a double well
along the x-axis and a harmonic confinement
along the y-axis. The last term in Eq. (17) adds
small-scale fluctuations, appearing as small rip-
ples in Fig. 3a.
The coarse-graining mapping is given by the

projection of the 2-dimensional model onto the
x-axis. In this simple toy-model, the coarse-
grained free energy (potential of mean force)
can be computed exactly (Fig. 3b):

U(x)

kBT
= − ln

[∫ +∞

−∞
exp

(
−V (x, y)

kBT

)
dy

]
.

We generate a long (one million time steps)
simulation trajectory of the 2-dimensional
model and use the x component of the forces
computed along the trajectories in the loss
function (9). We report below the resulting
CG potential obtained by 1) using a feature re-
gression, i.e. least square regression with a set
of feature functions defined in SI Section B, and
2) a CGnet (regularized and unregularized).
Cross-validation is used to select the best

hyper-parameters for the least square regression
and the CGnet architectures. For the feature
regression, the same cross-validation procedure
as introduced in1 was used, and returned a lin-
ear combination of four basis functions among
the selected set (see Fig. S1a and SI for de-
tails). For the regularized CGnet, a two stage
cross-validation is conducted, first choosing the
depth D with a fixed width of W = 50 , and
then choosing the widthW (Figs. S1b and S1c).
The minimal prediction error is obtained with
D = 1 (one hidden layer) and W = 50. For
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Figure 3: Machine-learned coarse-graining of dynam-
ics in a rugged 2D potential. (a) 2D potential used
as toy system. (b) Exact free energy along x. c) In-
stantaneous forces and the learned mean forces using
feature regression and CGnet models (regularized and
unregularized) compared to the exact forces. The unit
of the force is kBT , with the unit of length equal to
1. d) Free energy (PMF) along x predicted using least
feature regression, and CGnet models compared to the
exact free energy. Free energies are also computed from
histogramming simulation data directly, using the un-
derlying 2D trajectory, or simulations run with the fea-
ture regression and CGnet models (dashed lines).

the unregularized CGnet, a similar procedure
is performed, and the best hyper-parameters
are selected as D = 1,W = 120. Note that

the prediction error cannot become zero, but is
bounded from below by the chosen CG scheme
(Fig. 1, Eq. 11) – in this case by neglecting the
y variable.
Fig. 3c,d shows the results of the predicted

mean forces and free energies (potentials of
mean force) in the x-direction. The instanta-
neous force fluctuates around the mean, but
serves to accurately fit the exact mean force
in the x range where sampling is abundant us-
ing both feature regression and CGnet (Fig.
3c). At the boundary where few samples are
in the training data the predictors start to di-
verge from the exact mean force and free energy
(Fig. 3c, d). This effect is more dramatic for
the unregularized CGnet, in particular at large
x values the CGnet makes an arbitrary predic-
tion: here the force tends to zero. In the present
example, reaching these states is highly improb-
able. However a CGnet simulation reaching
this region can fail dramatically, as the simu-
lation may continue to diffuse away from the
low energy regime. As discussed above, this
behavior can be avoided by adding a suitable
prior energy that ensures that the free energy
keeps increasing outside the training data, while
not affecting the accuracy of the learned free
energy within the training data (Fig. 3c, d).
Note that the quantitative mismatch in the low-
probability regimes is not important for equilib-
rium simulations.
The matching mean forces translate into

matching free energies (potentials of mean
force, Fig. 3d). Finally, we conduct simula-
tions with the learned models and generate tra-
jectories {xt} using Eq. (14). From these, free
energies can be computed by

Ũ(x) = −kBT ln p̃X(x) (18)

where p̃X(x) is a histogram estimate of the
probability density of x in the simulation tra-
jectories. As shown in Fig. 3d, free energies
agree well in the x range that has significant
equilibrium probability.
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CG

Figure 4: Mapping of alanine dipeptide from an all-
atom solvated model (top) to a CG model consisting of
the five central backbone atoms (bottom).

Coarse-graining of alanine dipep-
tide in water

We now demonstrate CGnets on the coarse-
graining of an all-atom MD simulation of ala-
nine dipeptide in explicit solvent at T = 300K
to a simple model with 5 CG particles lo-
cated at the five central backbone atoms of the
molecule (Fig. 4). One trajectory of length
1 microsecond was generated using the sim-
ulation setup described in74, coordinates and
forces were saved every picosecond, giving rise
to one million data points. The CG model has
no solvent, therefore the CG procedure must
learn the solvation free energy for all CG con-
figurations.
We compare two different CG models. The

first model, called “spline model”, uses the state-
of the art approach established in MD coarse-
graining11,49,59: to express the CG potential
as a sum of few-body interaction terms, sim-
ilar as in classical MD forcefields. The most
flexible amongst these approaches is to fit one-
dimensional splines for each of the pairwise dis-
tance, angle and dihedral terms in order to
parametrize two-, three- and four-body interac-
tions75. In order to ensure a consistent com-
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Figure 5: (a), (b), (c) Cross-validated force matching
error in [kcal/(mol·̊A)]2 for the selection of the optimum
structure of the network, and (d), (e), (f) difference be-
tween the two-dimensional free energy surfaces obtained
from the CG models and from the reference all-atom
simulations (see Fig. 6) for the regularized CGnet and
the spline model of alanine dipeptide. (a) Selection of
the number of layers, D. (b) Selection of the number of
neurons per layer, W . (c) Selection of the Lipschitz reg-
ularization strength, λ. The selected hyper-parameters,
corresponding to the smallest cross-validation error are
highlighted by orange boxes. Blue dashed lines repre-
sent the regularized CGnet, red dashed lines represent
the spline model, vertical bars represent the standard
error of the mean. Panels (d), (e), and (f) show the dif-
ference between the reference all-atom free energy sur-
face and the free energy surfaces corresponding to the
choices of hyper-parameters indicated in panels (a), (b),
and (c) as (C1, C2, C3, C4, C5) for CGnet, and as (S1,
S2, S3, S4) for the spline model.

parison, we represent 1D splines with neural
networks that map from a single input feature
(pairwise distance, angle or dihedral) to a single
free energy term, resulting in the spline model
network shown in Fig. 2c. We use the same reg-
ularization and baseline energy for spline model
networks and CGnets.
The second model uses a regularized multi-

body CGnet, i.e., a fully connected neural net-
work shown in Fig. 2b to approximate the CG
free energy. The comparison of the results from
the two models allows us to evaluate the impor-
tance of multi-body interactions that are cap-
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Figure 6: Free energy profiles and simulated struc-
tures of alanine dipeptide using all-atom and machine-
learned coarse-grained models. (a)Reference free energy
as a function of the dihedral angles, as obtained from di-
rect histogram estimation from all-atom simulation. (b)
Standard coarse-grained model using a sum of splines of
individual internal coordinates. (c) Regularized CGnet
as proposed here. (d) Unregularized CGnet. (e) Repre-
sentative structures in the six free energy minima, from
atomistic simulation (ball-and-stick representation) and
regularized CGnet simulation (licorice representation).

tured by the CGnet but are generally absent in
CG models that use interaction terms involving
a few atoms only.
The hyper-parameters for both models consist

of the number of layers (depth, D), the num-
ber of neurons per layer (width, W ) of the net-
work, and the Lipschitz regularization strength
(λ)68, and are optimized by a three-stage cross-
validation. In the first stage, we find the opti-
mal D at fixed W = 30 and λ = ∞ (no Lip-
schitz regularization), subsequently we choose
W at the optimalD, and λ at the optimalW,D.
This results in D = 5 , W = 160, and λ = 4.0
for CGnet, and D = 4 , W = 30 (for each fea-

ture), and λ = 10.0 for the spline model (Fig.
5). The cross-validation error of CGnet is sig-
nificantly lower than the cross-validation error
of the spline model (Fig. 5a-c). We point out
that the cross-validation error cannot become
zero, but is bounded from below by the cho-
sen CG scheme (Fig. 1, Eq. 11) – in this case
by coarse-graining all solvent molecules and all
solute atoms except the five central backbone
atoms away. Hence, the absolute numbers of
the cross-validation error in Fig. 5a-c are not
meaningful, only differences matter.
CG MD simulations are generated for the

selected models by iterating Eq. (14). For
each model, one hundred independent simu-
lations starting from structures sampled ran-
domly from the atomistic simulation are per-
formed for 1 million steps each, and the aggre-
gated data are used to produce the free energy
as a function of the dihedral coordinates. Fig.
6 compares the free energy computed via (18)
from the underlying atomistic MD simulations
and the free energy resulting from the selected
CG models. Only the regularized CGnet model
can correctly reproduce the position of the all
main free energy minima (Fig. 6a, c). On the
contrary, the spline model is not able to capture
the shallow minima corresponding to positive
values of the dihedral angle φ, and introduces
several spurious minima (Fig. 6b). This com-
parison confirms that selecting CG models by
minimal mean force prediction error achieves
models that are better from a physical view-
point.
As an a posteriori analysis of the results

we have performed MD simulation for the
CG models corresponding to different choices
of hyper-parameters, both for the spline
model and CGnet. For each choice of hyper-
parameters, we have computed the difference
between the free energy as a function of the
dihedral angles resulting from the CG simula-
tions and the one from the all-atom models.
Differences in free energy were estimated by
discretizing the space spanned by the two di-
hedral angles and computing the mean square
difference on all bins. The difference between
a given model and CGnet was computed by
shifting the free energy of CGnet by a constant
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value that minimizes the overall mean square
difference. The free energy difference for the
spline models is always significantly larger than
for the CGnet models (Fig. 5d-f). Interestingly,
the minima in the difference in free energy cor-
respond to the minima in the cross-validation
curves reported in Fig. 5a-c, and the optimal
values of hyper-parameters selected by cross-
validation yield the absolute minimum in the
free energy difference (indicated in Fig. 5f as
C5 for CGnet and S4 for the spline model).
This point is illustrated more explicitly in the
SI (Section E, Figs. S4, S5), and demonstrates
that the cross-validation error of different mod-
els are correlated with errors in approximating
the two-dimensional free energy surface of ala-
nine dipeptide.
For the CGnet, regularization is extremely

important: without regularization the free en-
ergy only matches near the most pronounced
minima and unphysical structures are sampled
outside (Fig. 6d and SI Section D). With
regularization, these unphysical regimes are
avoided, all sampled structures appear chemi-
cally valid (Fig. 6e) and the distributions of
bonds and angles follow those in the atomistic
simulations (SI Section D, Fig. S3).

Coarse-graining of Chignolin fold-
ing/unfolding in water

Finally, we test the CGnet on a much more chal-
lenging problem: the folding/unfolding dynam-
ics of the polypeptide Chignolin in water. Chig-
nolin consists of 10 amino acids plus termini
and exhibits a clear folding/unfolding transi-
tion. The all-atom model contains 1881 water
molecules, salt ions and the Chignolin molecule,
resulting in nearly 6000 atoms. To focus on the
folding/unfolding transition, data was gener-
ated at the melting temperature 350 K, mimick-
ing the setup used for the Anton supercomputer
simulation in4. To obtain a well-converged
ground truth, we generated 3742 short MD sim-
ulations with an aggregate length of 187.2 µs on
GPUgrid9 using the ACEMD program5. The
free energy landscape is computed on the two
collective variables describing the slowest pro-
cesses, computed by the TICA method17. Since

Figure 7: Free energy landscape of Chignolin for the
different models. (a) The free energy as obtained from
all-atom simulation, as a function of the first two TICA
coordinates. (b) The free energy as obtained from the
spline model, as a function of the same two coordinates
used in the all-atom model. (c) The free energy as
obtained from CGnet, as a function of the same two
coordinates. (d) Comparison of the one dimensional
free energy as a function of the first TICA coordinate
(corresponding to the folding/unfolding transition) for
the three models: all-atom (blue), spline (green), and
CGnet (red). (e) Representative Chignolin configura-
tions in the three minima from all-atom simulation (a,
b, c) and CGnet (a’, b’, c’).

the individual MD simulations are too short to
reach equilibrium, the equilibrium distribution
was recovered by reweighting all data using a
Markov state model12. See SI for details on the
MD simulation and Markov model analysis.
Fig. 7a shows the free energy as a func-

tion of the first two TICA coordinates. Three
minima are clearly identifiable on this free en-
ergy landscape: states a (folded), b (unfolded)
and c (partially misfolded), ordered alphabeti-
cally from most to least populated. Represen-
tative configurations in these minima as shown
in Fig. 7e. As a result, the first TICA mode is a
folding-unfolding coordinate, while the second
is a misfolding coordinate.
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Using a regularized CGnet, we coarse-grain
the 6000-atom system to 10 CG beads repre-
senting the α-carbons of Chignolin. Thus, not
only the polypeptide is coarse-grained, but also
the solvation free energy is implicitly included
in the CG model. Similar to what was done
for alanine dipeptide, roto-translational invari-
ance of the energy was implemented by using
a CGnet featurization layer that maps the Cα
Cartesian coordinates to all pairwise distances
between CG beads, all angles defined by three
adjacent CG beads, and the cos and sin of all
the dihedral angles defined by four CG adja-
cent beads. The regularizing baseline energy
includes a harmonic term for each bond and
angle, and an excluded volume term for each
pairwise distance between CG particles that are
separated by more than two bonds.
Similar to the case of alanine dipeptide, a

classical few-body spline model was defined
for comparison whose CG potential is a sum
of bonded and non-bonded terms, where each
term is a nonlinear function of a single feature
(pairwise distances, angles, dihedrals).
Both CGnet and spline model are optimized

through a five-stage cross-validation search for
the hyper-parameters, in the following order:
Depth D, Width W , exponent of the excluded
volume term c, radius of the excluded volume
term σ, and Lipschitz regularization strength
λ. The results of the cross-validation are shown
in Fig. S8. This optimization resulted in the
hyper-parameter values D = 5, W = 250, c =
6, σ = 5.5 and λ = 4.0. For the spline model,
the optimal values of the hyper-parameters are
D = 3, W = 12 (for each feature), c = 10,
σ = 4.0, and λ = 5.0 (Fig. S8). The poten-
tial resulting from CGnet and the spline model
is then used to run long simulations with Eq.
(14). One hundred simulations of 1 million
steps each were generated using randomly sam-
pled configurations from the training data as
starting points. For comparison, the aggre-
gated data are projected on the TICA coordi-
nates obtained from all-atom simulations and
free energy landscapes are computed directly
using Eq. (18) (Fig. 7b, c). For a more quan-
titative comparison, the free energies are also
reported along the first TICA coordinate that

indicates folding / unfolding (Fig. 7d).
These figures clearly show that the spline

model cannot reproduce the folding/unfolding
dynamics of Chignolin, as the folded and un-
folded states are not well defined (Fig. 7b, d).
On the contrary, CGnet not only can consis-
tently fold and unfold the protein but also cor-
rectly identifies three well defined minima: the
folded (a’), unfolded (b’), and partially mis-
folded (c’) ensembles corresponding to the min-
ima a, b, and c in the all-atom fully solvated
model (Fig. 7c,d). Representative structures
in the three minima are shown in Fig. 7e: the
structures obtained from the CGnet simulations
are remarkably similar to the ones obtained in
the all-atom simulations. These results rein-
force what has been already observed for ala-
nine dipeptide above: the multi-body interac-
tions captured by CGnet are essentialy for cor-
rect reproduction of the free energy landscape
for the protein Chignolin. The absence of such
interactions in the spline model dramatically al-
ters the corresponding free energy landscape to
the point that the model can not reproduce the
folding/unfolding behavior of the protein.

Conclusions
Here we have formulated coarse-graining based
on the force-matching principle as a machine
learning method. An important consequence of
this formulation is that coarse-graining is a su-
pervised learning problem whose loss function
can be decomposed into the standard terms of
statistical estimator theory: Bias, Variance and
Noise. These terms have well-defined physi-
cal meanings and can be used in conjunction
with cross-validation in order to select model
hyper-parameters and rank the quality of dif-
ferent coarse-graining models.
We have also introduced CGnets, a class of

neural networks that can be trained with the
force matching principle and can encode all
physically relevant invariances and constraints:
(1) invariance of the free energy and mean force
with respect to translation of the molecule, (2)
invariance of the free energy and equivariance
of the mean force with respect to rotation of the
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molecule, (3) the mean force is a conservative
force field generated by the free energy, and (4)
a prior energy can be applied in order to prevent
the simulations with CGnets to diverge into un-
physical state space regions outside the training
data, such as states with overstretched bonds or
clashing atoms. Future CGnets may include ad-
ditional invariances, such as permutational in-
variance of identical CG particles, e.g. permu-
tation of identical particles in symmetric rings.
The results presented above show that CGnet

can be used to define effective energies for CG
models that optimally reproduce the equilib-
rium distribution of a target atomistic model.
CGnet provides a better approximation than
functional forms commonly used for CG models
as it automatically includes multi-body effects
and non-linearities. The work presented here
provides a proof of principle for this approach
on relatively small solutes, but already demon-
strates that the complex solvation free energy
involved in the folding/unfolding of a polypep-
tide such as Chignolin can be encoded in a
CGnet consisting of only the Cα atoms. The
extension to larger and more complex molecules
presents additional challenges and may require
to include additional terms to enforce physical
constraints.
Additionally, the CG model considered here

is designed ad hoc for a specific molecule and
is not transferable to the study of different
systems. Transferability remains an outstand-
ing issue in the design of coarse grained mod-
els11 and its requirement may decrease the abil-
ity to reproduce faithfully properties of spe-
cific systems49,81–84. In principle, transfer-
able potentials can be obtained by designing
input features for CGnet imposing a depen-
dence of the energy function on the CG par-
ticle types and their environment82, similarly
to what is done in the learning of potential en-
ergy functions from quantum mechanics data
(see e.g.20,24,27,33,66). This approach may be able
to define transferable functions if enough data
are used in the training27,33. We leave the inves-
tigation on the trade-off between transferability
and accuracy for future studies.
It is also important to note that the formula-

tion used here to define an optimal CG poten-

tial aims at reproducing structural properties
of the system, but it does not determine the
equations for its dynamical evolution. If one is
interested in designing CG models that can re-
produce molecular dynamical mechanisms, e.g.
to reproduce the slow dynamical processes of
the fine-grained model, alternative approaches
need to be investigated.
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Supplementary Material

Decomposition of the force matching error

The decomposition of the force matching error (4) can be achieved by adding and subtracting the
mean force (5) and splitting the norm:

χ2 [U(x)] =
〈〈
‖ξ(F(r))− f(x) + f(x) +∇U(x)‖2

〉
r|x

〉
x

=
〈〈
‖ξ(F(r))− f(x)‖2

〉
r|x

〉
x

+
〈
‖f(x) +∇U(x)‖2

〉
x

+2
〈〈

(ξ(F(r))− f(x))>(f(x) +∇U(x))
〉
r|x

〉
x
.

This expression is equivalent to Eq. (6). as the mixed term is zero:〈〈
(ξ(F(r))− f(x))>(f(x) +∇U(x))

〉
r|x

〉
x

=
〈
f(x)>f(x)

〉
x

+
〈
f(x)>∇U(x)

〉
x

−
〈
f(x)>f(x)

〉
x
−
〈
f(x)>∇U(x)

〉
x

= 0

The decomposition of the expected prediction error in the form of Eq. (11) can be achieved by
adding and subtracting the mean estimator f̄(X) = E [−∇U(X;θ)]:

E [L(θ;R)] = ER|X
[
‖f(X) +∇U(X;θ)‖2F

]
+ Noise

= E

∥∥∥∥∥∥(f(X)− f̄(X)
)︸ ︷︷ ︸

A

+
(
f̄(X) +∇U(X;θ)

)︸ ︷︷ ︸
B

∥∥∥∥∥∥
2

F

+ Noise

= E
[
‖A‖2F

]
+ E

[
‖B‖2F

]
+ 2E

[∑
i,j

(A ∗B)i,j

]
+ Noise,

where ∗ is the element-wise product. We follow standard results for regression. For the mixed term
we can use

E

[∑
i,j

(A ∗B)i,j

]
=
∑
i,j

E
[
(A ∗B)i,j

]
=
∑
i,j

(E [A ∗B])i,j

and this expectation value disappears:

E [A ∗B] = E
[(
f(X)− f̄(X)

)
∗
(
f̄(X) +∇U(X;θ)

)]
= E [f(X)] ∗ f̄(X) + E [f(X) ∗ ∇U(X;θ)]− E

[
f̄(X) ∗ f̄(X)

]
− f̄(X) ∗ E [∇U(X;θ)]

= f(X) ∗ f̄(X)− f(X) ∗ f̄(X)− f̄(X) ∗ f̄(X) + f̄(X) ∗ f̄(X)

= 0.

The remaining terms define bias and variance.
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Cross-validation for the coarse-graining of the 2d toy model

We report here the results from cross-validation for the choice of hyper-parameters for the coarse-
graining of the 2d toy model discussed in the main text.
The feature regression for the coarse-graining of the 2 dimensional toy model is performed with the

twenty basis functions listed in Table S1 selected as features. Cross-validation is performed with the
Stepwise Sparse Regressor introduced in1. The minimum cross-validation error is obtained when
the first four functions are used as features, as shown in Fig. S1.

Table S1: Twenty elementary basis functions.

function ID function, f(x) function ID function, f(x)

1 1 11 x10

2 x 12 sin(x)
3 x2 13 cos(x)
4 x3 14 sin(6x)
5 x4 15 cos(6x)
6 x5 16 sin(11x)
7 x6 17 cos(11x)
8 x7 18 tanh(10x)
9 x8 19 tanh2(10x)

10 x9 20 e−50x
2

The results from the cross-validation of the CGnet for the toy 2 dimensional system are reported
in Tables S2 and Fig. S1.

Table S2: Hyper-parameter optimization for unregularized CGnet of two-dimensional model system.
D: network depth, W : network width. The unit of the cross-validation error is (kBT )2 , with the
unit of length equal to 1.

D (W = 20) Cross-validation error
1 0.3785 ± 0.0024
2 0.5457 ± 0.0973
3 0.7339 ± 0.0298
4 0.5695 ± 0.0172
5 0.8543 ± 0.1227

W (D = 1) Cross-validation error
5 0.5674 ± 0.0044
10 0.8762 ± 0.0048
20 0.3785 ± 0.0024
40 0.3729 ± 0.0017
60 0.3703 ± 0.0013
80 0.3682 ± 0.0013
100 0.3671 ± 0.0013
120 0.3661 ± 0.0012
150 0.3661 ± 0.0012
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Figure S1: Model selection for CG model of 2D system using cross-validation. a) Choice of the set of feature
functions for feature regression. b) First stage of regularized CGnet hyper-parameter selection: the optimal number
of layers, D. c). Second stage of regularized CGnet hyperparameter selection: the optimal number of neurons per
layer, W . Red dashed lines indicate the minimal cross-validation error. Error bars represent the standard error of
the mean cross-validation error over five cross-validation folds, in panels a) and c) the error bars are invisible as they
are smaller than the marker. The unit of the cross-validation error is (kBT )2 , with the unit of length equal to 1.
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Training CG models

Networks were optimized using the Adam adaptive stochastic gradient descent method2 with default
settings using the PyTorch program. The batch-size was 128 for the 2D model and 512 for alanine
dipeptide. The convergence of the training error and validation error for the 2d toy model and
alanine dipeptide is shown in Fig. S2 below.
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Figure S2: Training error and validation error for (a) the 2D model and (b) alanine dipeptide. In (a), the model
is the regularized CGnet, in (b), the model is the regularized CGnet and the spline model, which is also regularized.
All errors are averaged over 200000 points – for the training error this is done by averaging over the most recent
batches, while the validation error is shown for a fixed validation set. Note that the hyper-parameter choices are
made via cross-validation. The unit of the error is (kBT )2 in (a) and [kcal/(mol·̊A)]2 in (b).
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Distribution of bond distances and angles for the different models of ala-
nine dipeptide

a) b) c)

d) e) f)

g)
bond1 / Å bond2 / Å bond3 / Å

bond4 / Å

All-atom model
Regularized CGnet model
Unregularized CGnet model
Spline CG model

Figure S3: Probability density distribution for three angles a)- c), and four bonds d)-g) for the alanine dipeptide
models. Each panel contains the distribution from four models: All-atom model (blue), regularized CGnet model
(red), unregularized CGnet model (cyan), spline CG model (green). The distribution for regularized CGnet and
spline model (with regularization) agree with the true all-atom one. The distribution for the unregularized CGnet
has a wide range, which makes the distributions for the other models appear very narrow in d)-g). The insets in
d)-g) present zoomed views of the distributions in the correct range.

S5



Changes in the free energy of alanine dipeptide with different hyper-
parameters

In order to show how the free energy is approximating the atomistic free energy as the hyper-
parameters gradually reach the optimal values, we select five hyper-parameters for CGnet (C1, C2,
C3, C4, C5) and four for the Spline model (S1, S2, S3, S4), as indicated in Fig. 5 in the manuscript.
For each of these combinations of hyper-parameters, we report the corresponding two dimensional
free energy profiles in Fig. S4 and Fig. S5 (in addition to the free energy profile for the global
optima reported in Fig. 6). The figures show that as the hyper-parameters get closer to the optimal
values the model free energy landscape becomes closer to the atomistic free energy landscape.
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Figure S4: Comparison of the free energy profiles of CGnet models of alanine dipeptide with different choices
of hyper-parameters. (a)-(d) Free energy profiles with hyperparameters corresponding to the combination indicated
as C1, C2, C3, C4 in Fig. 5. The choice of hyperparameters C5 correspond to the global optimum and is reported
in Fig. 6c. (e) Comparison between the cross validation error (in [kcal/(mol·̊A)]2) and mean square free energy
difference (in [kBT ]2) for the five selected hyperparameters. The value of 381 is subtracted from the cross validation
error to obtain values in the similar range as the free energy differences.
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Figure S5: Comparison of the free energy profiles of the spline models of alanine dipeptide with different choices
of hyper-parameters. (a)-(d) Free energy profiles with hyperparameters corresponding to the combination indicated
as S1, S2, S3, S4 in Fig. 5. The choice of hyperparameters S4 correspond to the global optimum and is also reported
in Fig. 6b. (e) Comparison between the cross validation error (in [kcal/(mol·̊A)]2) and mean square free energy
difference (in [kBT ]2) for the five selected hyperparameters. The value of 380 is subtracted from the cross validation
error to obtain values in the similar range as the free energy differences.
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Energy decomposition for the CGnet model of alanine dipeptide.

As discussed in the main text, the use of a baseline energy to enforce physical constraints plays
an important role in the CGnet model. Here we report the decomposition of the total CGnet
energy into the contribution of the baseline (prior) energy and the energy of the neural network.
Figs. S6a-c report the decomposition for each point sampled in the simulations performed with
CGnet. Fig. S6d-f report the same quantity averaged over different bins in the space spanned by
the dihedral angles. The figures show that the network energy captures the overall features of the
free energy landscape for this molecule, while the prior energy seems to play an important role to
enforce physical constraints mostly at the edges of the populated regions in the landscape. This
is in agreement with the intuition that the prior energy term makes the system avoid high energy
regions not visited in the training data.

U(x) / kBT U(x) / kBT U(x) / kBT

U(x) / kBTU(x) / kBTU(x) / kBT

a) b) c)

d) e) f)

Total energy Network energy Prior energy

Average total energy Average network energy Average prior energy

Figure S6: CGnet energy decomposition for the alanine dipeptide. In each simulated point, the total CGnet
energy (a) is decomposed in the energy contribution from the dense net (b), and the baseline (or prior) energy (c).
In each bin in the dihedral angles space, the average total total energy (d) is decomposed into the average dense net
energy (e), and average prior energy (f).

Chignolin setup and simulation

The initial structure of Chignolin was generated starting from the cln025 peptide3, with sequence
TYR-TYR-ASP-PRO-GLU-THR-GLY-THR-TRP-TYR. The structure was solvated in a cubic box
of 40 ÃĚ, containing 1881 water molecules and two Na+ ions to neutralize the peptide’s negative
charge, as described in4. MD simulations were performed with ACEMD5, using CHARMM22*6

force field and TIP3P7 water model at 350K temperature. A Langevin integrator was used with a
damping constant of 0.1 ps−1. Integration time step was set to 4 fs, with heavy hydrogen atoms
(scaled up to four times the hydrogen mass) and holonomic constrains on all hydrogen-heavy atom
bond terms8. Electrostatics were computed using Particle Mesh Ewald with a cutoff distance of 9
ÃĚ and grid spacing of 1 ÃĚ. Ten NVT simulations of 1 ns length were carried out, with a dielectric
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constant of 80 and temperature of 350K to generate ten different starting conformations for the
production runs. Production simulations consisted of 3744 independent simulations of 50 ns, for a
total aggregate time of 187.2 µs. All the simulations were run using the GPUGRID9 distributed
computing platform. The first 1000 simulations were spawned from the 10 conformations obtained
previously. The remaining 2744 simulations were spawned using the adaptive sampling10 protocol
implemented in HTMD11. In adaptive sampling, multiple rounds of simulations are performed, and
each round the available trajectories are analyzed to select the initial coordinates for the next round
of simulations. Each round was done every 10 to 20 simulations, respawning an equivalent amount
of new simulations. Initial coordinates for the respawned simulations were selected proportionally to
the inverse of the number of frames per macrostate as explained in11. The Markov State Model12–16
constructed during the analysis was done using atom distances as projected metric, TICA17,18

for dimensionality reduction method and k-Centers for clustering. Force data used for training
CGnet was obtained from the MD simulation trajectories. ACEMD was used to read the Chignolin
trajectories and compute forces for all atoms for each simulation frame, using the same parameters
used for the MD simulations.

Markov State Model analysis of Chignolin all-atom simulations

MD simulation data of Chignolin from GPUGrid was featurized into all pairwise Cα distances
excluding pairs of nearest neighbors residues (a total of 45 distances). Time-lagged independent
component analysis (TICA)17,18 was carried out with a lag τ = 25 ns. By using kinetic-map19,20

and a kinetic variance cutoff of 95%, 4 TICs were retained for further analysis. The 4 TICs were
clustered into 350 discrete states using the k-means algorithm. All MD data was mapped onto
their discrete states and used for Markov state model (MSM) estimation. The implied-timescales,
ti = − τ

log |λi| , become constant as a function of lag-time (τ) within statistical uncertainty for lag-
times above approximately 20 ns. Spectral analysis of a Markov state model estimated at a lagtime
τ = 37.5 ns reveal a spectral gap after the third implied-timescale suggesting 4 meta-stable states
(Fig. S7). Plotting the populations of the meta-stable states as function of lag-time show that these
are stable for τ > 10 ns, and that three of the four meta-stable states have significant probability
mass > 1%. These three most stable meta-stable states were used as reference states a, b and c,
ordered alphabetically from most to least populated (shown in Fig. 7a). To account for the non-
equilibrium nature of the multiple short molecular dynamics trajectories, we used the estimated
MSM (τ = 37.5 ns) to reweighed data prior to calculating the reference free energy profiles. These
analyses were carried out using the PyEMMA21 and MDTraj22 software packages.
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Figure S7: Validation of a convergence of the Chignolin all-atom Markov model, which is estimated
at τ = 37.5 ns. Top: Stationary probabilities of metastable states. Bottom: MSM implied time
scales.
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Hyper-parameter optimization for Chignolin CG models

a) b)

c) d)

e) f)

4 6 8 10 12 14

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Excluded volume radius, σ Lipschitz regularization, λ

Number of neurons, W

Number of neurons/feature, W

Number of layers, D

Exponent, c

Figure S8: Five-stage cross-validation of the hyper-parameters for the CG models of Chignolin. (a) Selection of
the number of layers, D. (b) and (c) Selection of the number of neurons per layer, W. (d) Selection of the exponent
of the excluded volume term, c. (d) Selection of the effective excluded volume radius, σ. (f) Selection of of the
Lipschitz regularization strength, λ. The optimal values are indicated by orange squares and are used to generate
the results reported in Fig. 7.
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