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Abstract. In this paper we present a stochastic homogenization result for

a class of Hilbert space evolutionary gradient systems driven by a quadratic

dissipation potential and a Λ-convex energy functional featuring random and
rapidly oscillating coefficients. Specific examples included in the result are

Allen-Cahn type equations and evolutionary equations driven by the p-Laplace

operator with p ∈ (1,∞). The homogenization procedure we apply is based
on a stochastic two-scale convergence approach. In particular, we define a sto-

chastic unfolding operator which can be considered as a random counterpart of

the well-established notion of periodic unfolding. The stochastic unfolding pro-
cedure grants a very convenient method for homogenization problems defined

in terms of (Λ-)convex functionals.

1. Introduction. Homogenization theory deals with the derivation of effective,
macroscopic models for problems that involve two or more length (or time) scales.
In stochastic homogenization the considered models are described in terms of co-
efficient fields that are randomly varying on a small scale, say 0 < ε � 1. A
typical situation involves stationary random coefficient fields of the form Rd 3 x 7→
a(ω, xε ) = a0(τ x

ε
ω) where ω ∈ Ω stands for a “random configuration” and a0 is

defined on a probability space (Ω,F , P ) that is equipped with a measure preserving
action τx : Ω→ Ω, see Section 2 for the precise description of random coefficients.

In this paper we consider stochastic homogenization of gradient flows defined in
terms of two integral functionals with random and rapidly-oscillating integrands—a
quadratic dissipation functional Rε : Y → R and a Λ-convex energy functional
Eε : Y → R ∪ {∞}. In particular, these functionals are defined on a state space
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Y = L2(Ω × Q) (the dual space is denoted by Y ∗), where Q ⊂ Rd is open and
bounded, and they admit the form

Rε(ẏ) =
1

2

∫
Ω

∫
Q

r(τ x
ε
ω, x)|ẏ(ω, x)|2dxdP (ω),

Eε(y) =

∫
Ω

∫
Q

V (τ x
ε
ω, x,∇y(ω, x)) + f(τ x

ε
ω, x, y(ω, x))dxdP (ω).

Besides usual measurability statements, the main assumptions for V (ω, x, ·) are
convexity and p-growth conditions with p ∈ (1,∞), and we assume that f(ω, x, ·)
has θ-growth with θ ∈ [2,∞) and it is λ-convex, i.e., there exists λ ∈ R such
that f(ω, x, ·) − λ

2 | · |
2 is convex. The latter implies that Eε(·) − ΛRε(·) is convex

for suitable Λ ∈ R, i.e., Eε is Λ-convex w.r.t. Rε. We remark that the rapidly
oscillating weight r(τ x

ε
ω, x) in the dissipation potential represents heterogeneities

in the dissipation mechanism of the considered model. We assume that there exists
c > 0 such that 1

c ≤ r ≤ c a.e. For the precise definitions and assumptions, see
Section 2.

The evolution of the gradient flow is described by a state variable y ∈ H1(0, T ;Y )
and it is determined by the following differential inclusion

0 ∈ DRε(ẏ(t)) + ∂FEε(y(t)) for a.e. t ∈ (0, T ), y(0) = y0 ∈ Y. (1)

Above, ∂FEε : Y → 2Y
∗

denotes the Frechét subdifferential (see [26]), which is, in
the specific case of a Λ-convex energy Eε, given by: ξ ∈ ∂FEε(y) if

Eε(y) ≤ Eε(ỹ) + 〈ξ, y − ỹ〉Y ∗,Y − ΛRε(ỹ − y) for all ỹ ∈ Y.

In this regard, the differential inclusion from (1) is equivalent to the evolutionary
variational inequality (EVI )

〈DRε(ẏ(t)), y(t)− ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ), (EVI)

for all ỹ ∈ Y . We refer to the textbooks [10, 52, 43, 3] for a general and de-
tailed theory of gradient flows. In the simple case V (ω, x, F ) = A(ω, x)F · F and
f(ω, x, α) = α4 − α2, (1) corresponds to the weak formulation of an Allen-Cahn
equation. Also, in the case that V (ω, x, F ) = a(ω, x)|F |p with p ∈ (1,∞), the
evolution is driven by the p-Laplace operator with oscillatory coefficients.

In the limit ε → 0, we derive an effective gradient flow given in terms of a
state space Y0 = L2

inv(Ω) ⊗ L2(Q) and homogenized functionals Rhom : Y0 → R,
Ehom : Y0 → R ∪ {∞}. Here L2

inv(Ω) =
{
ϕ ∈ L2(Ω) : ϕ(τx·) = ϕ(·) ∀x ∈ Rd

}
is

the space of shift-invariant functions, which assuming ergodicity of the probability
space boils down to the space of constant functions, i.e. L2

inv(Ω) ' R. For the
precise definitions, see Section 2. In particular, we obtain the following statement
for the limit ε→ 0:

If yε(0)→ y(0) strongly in Y, Eε(yε(0))→ Ehom(y(0)),

then for all t ∈ [0, T ], yε(t)→ y(t) strongly in Y, Eε(yε(t))→ Ehom(y(t)),

where yε and y denote the unique solutions to the gradient flows given in terms
of (Y, Eε,Rε) and (Y0, Ehom,Rhom), respectively (see Theorem 2.3). Such a state-
ment is called well-prepared E-convergence in the terminology of [31], which is an
evolutionary Γ-convergence notion.

The proof of this homogenization result relies on a general approach for asymp-
totic analysis of gradient flows and on the stochastic unfolding procedure, which we
briefly explain in the following:
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General approach. In the last decades, a number of general strategies for asymp-
totic analysis of sequences of abstract gradient systems were developed, we refer to
[31] for a comprehensive overview. In particular, an early contribution in this field
is obtained in [5, 6], where gradient flows on an abstract Hilbert space with fixed
dissipation potential Rε = R and convex energy functionals Eε are considered. In

this setting, e.g., Mosco convergence Eε
M→ E0 is sufficient to conclude well-prepared

E-convergence. Novel strategies have been developed in [44, 46] and [33], which
allow the treatment of very general problems with varying (nonquadratic, convex)
dissipation potentials Rε and possibly nonconvex energy functionals Eε. They are
based on De Giorgi’s (R,R∗) formulation (see, e.g., [31, Introduction]). Also, using
an integrated version of the (EVI) formulation, in [15] a method for sequences with
Λ-convex energies is proposed (see also [30]). In [48], the Brezis-Ekeland-Nayroles
principle is utilized for the development of a procedure for E-convergence for convex
dissipation and energy functionals.

Many approaches for proving E-convergence for problems with nonconvex en-
ergy functionals rely on the relative compactness in Y of the energy “sublevels”
{y ∈ Y : Eε(y) ≤ c, ∀ε} (or a similar strong-type compactness property). In our
specific problem (which involves a nonconvex, Λ-convex energy functional) we only
have compactness in weak topologies at our disposal. The lack of compactness in
a strong topology is due to two reasons. The first reason comes from the fact that
we consider convergence in the L2-probability space: While in the deterministic pe-
riodic case (i.e., when x 7→ τxω is periodic almost surely), the compact embedding
H1(Q) ⊂⊂ L2(Q) yields strong compactness of the energy sublevels if p = 2, in the
general stochastic setting, the embedding of L2(Ω)⊗H1(Q) into L2(Ω×Q) is not
compact. The second reason is a possible mismatch between the growth of f and
the growth control via V : If p < 2 and d is large, then even in the deterministic
periodic case we are not able to obtain apriori strong L2-type compactness. For this
reason, we consider a modified approach that we briefly describe in the following
and we refer to Sections 2 and 4 for details.

We define a new time-dependent energy functional Ẽε : [0, T ]× Y → R ∪ {∞},

Ẽε(t, u) = e2ΛtEε(e−Λtu)− ΛRε(u),

for which Ẽε(t, ·) is convex. If yε satisfies (EVI) a.e., then using the Fenchel equiv-
alence the new variable uε(t) := eΛtyε(t) fulfills (cf. Lemma 4.1)

〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y + Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t))) = 0, (2)

where Ẽ∗ε (t, ·) denotes the convex conjugate of Ẽε(t, ·). Using the chain rule and
the quadratic structure of Rε in form of (DRε)∗ = DRε, we have d

dtRε(uε(t)) =
〈DRε(uε(t)), u̇ε(t)〉Y ∗,Y = 〈DRε(u̇ε(t)), uε(t)〉Y ∗,Y . Hence, an integration of (2)

over (0, T ) yields

Rε(uε(T )) +

∫ T

0

Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (3)

This formulation is equivalent to (EVI) and it is convenient for passing to the limit
ε → 0 by only using weak convergence of the solution yε (resp. uε). In fact, (3) is
the analogue of the formulation used in the general convex case in [5, 6] with the
difference that in our case the energy functionals are time dependent and that the
dissipation functionals feature oscillations on scale ε.
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Stochastic unfolding. In order to conduct the limit passage ε → 0 in (3), we
are required to treat objects with random and rapidly oscillating coefficients. For
this task, we introduce the stochastic unfolding method that allows a straightfor-
ward analysis and it presents a random counterpart of the well-established periodic
unfolding method.

The notion of periodic two-scale convergence [39, 2] (see also [28]) and the peri-
odic unfolding procedure [13] (see also [14, 50, 34]) are prominent and useful tools
in multiscale modeling and homogenization suited for problems involving periodic
coefficients. We refer to some of the many problems treated using these methods
[28, 12, 21, 34, 35, 32, 27, 22]. In the stochastic setting, the notion of two-scale
convergence is generalized in [9] (see also [4, 45]) and in [54] (see also [29, 19, 23]).
Yet, as far as we know, the concept of unfolding has not been investigated earlier
in the stochastic case.

We extend the idea of the periodic unfolding procedure to the stochastic case.
Namely, we introduce a linear isometric operator, the stochastic unfolding operator,
that enjoys many similarities to the periodic unfolding operator. Also, similarly to
the periodic case, stochastic two-scale convergence in the mean from [9] might be
equivalently characterized as weak convergence of the unfolded sequence. In this
respect, we develop a general procedure for stochastic homogenization problems, see
also [49] for a detailed analysis of this method, and [37] for an extension to abstract,
linear evolution systems in an operator theoretic framework. Stochastic unfolding
has first been introduced by the second and third author in a discrete version in [36]
where the discrete-to-continuum limit of a rate-independent evolution is analyzed.

Related results. In the periodic setting homogenization results of this type are
obtained for quasilinear parabolic equations, e.g., in [38, 51, 20] (via two-scale
convergence and unfolding), for reaction-diffusion systems with different diffusion
length scales in [32] (via unfolding), for Cahn-Hilliard type gradient flows in [27]
(via unfolding). In the stochastic case, parabolic type equations are treated in
[53, 16, 24, 17]. However, the approach we consider is different, it relies on the
more general gradient flow formulation and we do not rely on differentiability of the
integrands V and f and on continuity assumptions on their derivatives.

Structure of the paper. In Section 2 we present the main stochastic homogeniza-
tion result of this paper. Section 3 is dedicated to the introduction of the stochastic
unfolding procedure. In Section 4 we present the proof of the main Theorem 2.3.

Notation. (Ω,F , P ) denotes a complete and separable probability space, the cor-
responding mathematical expectation is denoted by 〈·〉 =

∫
Ω
·dP (ω). For Q ⊂ Rd

open, we denote by L(Q) the Lebesgue σ-algebra. For a Banach space X, its dual
space is denoted by X∗ and the Borel σ-algebra on X is given by B(X). For
p ∈ (1,∞), Lp(Ω) and Lp(Q) are the usual Banach spaces of p-integrable functions
defined on (Ω,F , P ) and Q, respectively. We introduce function spaces for functions
defined on Ω×Q as follows: For closed subspaces X ⊂ Lp(Ω) and Z ⊂ Lp(Q), we
denote by X ⊗ Z the closure of

X
a
⊗ Z :=

{
n∑
i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}
in Lp(Ω×Q). Note that in the case X = Lp(Ω) and Z = Lp(Q), we have X ⊗Z =
Lp(Ω × Q). Up to isometric isomorphisms, we may identify Lp(Ω × Q) with the
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Bochner spaces Lp(Ω;Lp(Q)) and Lp(Q;Lp(Ω)). Slightly abusing the notation, for
closed subspaces X ⊂ Lp(Ω) and Z ⊂W 1,p(Q), we denote by X ⊗Z the closure of

X
a
⊗ Z :=

{
n∑
i=1

ϕiηi : ϕi ∈ X, ηi ∈ Z, n ∈ N

}
in Lp(Ω;W 1,p(Q)). In this regard, we may identify u ∈ Lp(Ω)⊗W 1,p(Q) with the
pair (u,∇u) ∈ Lp(Ω × Q)1+d. We mostly focus on the space Lp(Ω × Q) and the
above notation is convenient for keeping track of its various subspaces.

2. Homogenization of gradient flows. First, we briefly recall the standard func-
tional analytic setting for stochastic homogenization introduced by Papanicolaou
and Varadhan in [40] (see also [25]). In the second part of this section we present
the main homogenization result. We start with a motivation for the below abstract
setting. In stochastic homogenization coefficients of equations are assumed to be
random and can be viewed as a family of random variables, say {a(x)}x∈Rd . Minimal
assumptions required for stochastic homogenization are stationarity and ergodicity.
Stationarity means that the coefficients are statistically homogeneous: for any finite
number of points x1, ..., xn the joint distribution of (a(x1 + z), ..., a(xn + z)) is in-
dependent of the shift z ∈ Rd. On the other hand, ergodicity means that long-range
correlations become negligible on large scales. As shown in [40], if the random field
{a(x)}x∈Rd is stochastically continuous, then the above can be rephrased in the fol-
lowing functional analytic setting: There exists a probability space (Ω,F , P ), where
Ω denotes a set of parameter fields on Rd, say Ω :=

{
ω : Rd → R measurable

}
, and

F and P are constructed according to [40]. We can equip Ω with a natural shift
operator τx : Ω→ Ω, τxω(y) = ω(y − x). The notion of stationarity and ergodicity
can now be defined with help of τ , see below. In this setting stationary and ergodic
coefficients, say for an elliptic PDE of the form −∇ · (aε(x)∇u) = f , are described
by a random variable a0 : Ω → Rd×d with a0 ∈ L∞(Ω) being uniformly positive-
definite, and setting aε(x) = a0(τ x

ε
ω), where ω is distributed according to P . The

parameter ε > 0 describes the length scale of the “typical correlations”. A simple
example is a random checkerboard, where ω ∈ Ω is of the form

ω(x) =
∑
z∈Zd

1z+[0,1)d (x− y)ωz,

with y a [0, 1)d-valued random variable and {ωz}z∈Zd a family of independent and
identically distributed random variables. In that case aε is a stationary random
coefficient field that is uncorrelated on scales larger than ε.

Assumption 2.1. Let (Ω,F , P ) be a complete and separable probability space.
Let τ = {τx}x∈Rd denote a group of invertible measurable mappings τx : Ω → Ω
such that:

(i) (Group property). τ0 = Id and τx+y = τx ◦ τy for all x, y ∈ Rd.
(ii) (Measure preservation). P (τxE) = P (E) for all E ∈ F and x ∈ Rd.

(iii) (Measurability). (ω, x) 7→ τxω is
(
F ⊗ L(Rd),F

)
-measurable.

Throughout the paper we assume that (Ω,F , P, τ) satisfies Assumption 2.1. The
separability assumption on the measure space implies that Lp(Ω) is separable. We
say that (Ω,F , P, τ) is ergodic (〈·〉 is ergodic), if

every shift invariant E ∈ F (i.e., τxE = E for all x ∈ Rd) satisfies P (E) ∈ {0, 1} .
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We introduce two auxiliary subspaces of Lp(Ω) that are important for the ho-
mogenization procedure. We consider the group of isometric operators {Ux}x∈Rd ,
Ux : Lp(Ω) → Lp(Ω) defined by Uxϕ(ω) = ϕ(τxω), which is strongly continuous
(the argument for this fact can be found in [25, Section 7.1]). For i = 1, ..., d,
we consider the one-parameter group of operators {Uhei}h∈R ({ei} being the usual

basis of Rd) and its infinitesimal generator Di : Di ⊂ Lp(Ω)→ Lp(Ω),

Diϕ = lim
h→0

Uheiϕ− ϕ
h

,

which we refer to as the stochastic derivative. Di is a linear and closed op-
erator and its domain Di is dense in Lp(Ω) (see, e.g., [18, Section 7.4]). We
set W 1,p(Ω) = ∩di=1Di and define for ϕ ∈ W 1,p(Ω) the stochastic gradient as
Dϕ = (D1ϕ, ...,Ddϕ). In this manner, we obtain a linear, closed and densely
defined operator D : W 1,p(Ω)→ Lp(Ω)d, and we denote by

Lppot(Ω) := ran(D) ⊂ Lp(Ω)d

the closure of the range of D in Lp(Ω)d. We denote the adjoint of D by D∗ :
D∗ ⊂ Lq(Ω)d → Lq(Ω) which is a linear, closed and densely defined operator (see,
e.g., [11, Section 2.6]), D∗ denotes the domain of D∗ and q = p

p−1 . Note that

W 1,q(Ω)d ⊂ D∗ and for all ϕ ∈ W 1,p(Ω) and ψ ∈ W 1,q(Ω) we have the integration
by parts formula, i = 1, ..., d,

〈ψDiϕ〉 = −〈ϕDiψ〉 , (4)

and thus D∗ψ = −
∑d
i=1Diψi for ψ ∈ W 1,q(Ω)d. We define the subspace of shift-

invariant functions in Lp(Ω) by

Lpinv(Ω) =
{
ϕ ∈ Lp(Ω) : Uxϕ = ϕ for all x ∈ Rd

}
,

and denote by Pinv : Lp(Ω) → Lpinv(Ω) the conditional expectation with respect
to the σ-algebra of shift invariant sets

{
E ∈ F : τxE = E for all x ∈ Rd

}
. Pinv is

a contractive projection and for p = 2 it coincides with the orthogonal projection
onto L2

inv(Ω). Also, if 〈·〉 is ergodic, then it holds Lpinv(Ω) ' R and Pinvϕ = 〈ϕ〉.
Heterogeneous system. Let Q ⊂ Rd be open and bounded. Let p ∈ (1,∞) and
θ ∈ [2,∞). The system that we consider is defined on a state space

Y = L2(Ω×Q).

The dissipation functional is given by Rε : Y → [0,∞),

Rε(ẏ) =
1

2

〈∫
Q

r(τ x
ε
ω, x)|ẏ(ω, x)|2dx

〉
.

The energy functional Eε : Y → R ∪ {∞} is defined as

Eε(y) =

〈∫
Q

V (τ x
ε
ω, x,∇y(ω, x)) + f(τ x

ε
ω, x, y(ω, x))dx

〉
,

for y ∈ (Lp(Ω)⊗W 1,p
0 (Q))∩Lθ(Ω×Q) =: dom(Eε) and Eε =∞ otherwise. Above,

r : Ω×Q→ R, V : Ω×Q× Rd → R and f : Ω×Q× R→ R and we consider the
following assumptions: There exists c > 0 such that:

(A1) r is F⊗L(Q)-measurable and for a.e. (ω, x) ∈ Ω×Q, we have 1
c ≤ r(ω, x) ≤ c.
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(A2) V (·, ·, F ) is F ⊗ L(Q)-measurable for all F ∈ Rd, V (ω, x, ·) is convex for a.e.
(ω, x) ∈ Ω×Q and

1

c
|F |p − c ≤ V (ω, x, F ) ≤ c(|F |p + 1) (5)

for a.e. (ω, x) ∈ Ω×Q and all F ∈ Rd.
(A3) f(·, ·, α) is F ⊗ L(Q)-measurable for all α ∈ R. There exists λ ∈ R such that

for a.e. (ω, x) ∈ Ω×Q

f(ω, x, ·) is λ-convex, i.e., α 7→ f(ω, x, α)− λ

2
|α|2 is convex,

1

c
|α|θ − c ≤ f(ω, x, α) ≤ c(|α|θ + 1) for all α ∈ R. (6)

We remark that the above assumptions imply that there exists Λ ∈ R such that
y 7→ Eε(y)−ΛRε(y) is convex, i.e. Eε is Λ-convex w.r.t. Rε. In particular, if λ < 0,
then we set Λ = λc, and in the case λ ≥ 0, Λ = λ

c .
Let T > 0 be a finite time horizon. We consider the evolutionary variational

inequality (EVI) formulation of the gradient flow (Y, Eε,Rε): Find y ∈ H1(0, T ;Y )
such that for a.e. t ∈ (0, T ),

〈DRε(ẏ(t)), y(t)− ỹ〉Y ∗,Y ≤ Eε(ỹ)− Eε(y(t))− ΛRε(y(t)− ỹ) for all ỹ ∈ Y. (7)

Remark 2.2 (Existence and uniqueness). Assumptions (A1)-(A3) imply that Eε is
proper, l.s.c., coercive and Λ-convex w.r.t. Rε. In this respect, the classical theory
of maximal monotone operators with Lipschitz perturbations implies that for an
initial datum y0 ∈ dom(Eε), there exists a unique y ∈ H1(0, T ;Y ) which satisfies
(7) and y(0) = y0, see [10, Proposition 3.12], [7, Theorem 4.4], where the Yosida
regularization technique is used for the proof of this result. In view of the continuous
embedding H1(0, T ;Y ) ⊂ C([0, T ], Y ), we identify functions in H1(0, T ;Y ) by their
continuous representatives. Moreover, the following standard apriori estimate holds

2

∫ t

0

Rε(ẏ(s))ds ≤ Eε(y0)− Eε(y(t)) for all t ∈ [0, T ], (8)

which follows by testing (1) with ẏ(s) and by the chain rule for the Λ-convex func-
tional Eε. (8) in combination with the growth conditions (5) and (6) yields

‖y(t)‖p
Lp(Ω)⊗W 1,p

0 (Q)
+ ‖y(t)‖θLθ(Ω×Q) ≤ c

(
Eε(y0) + 2c

)
. (9)

Effective system. In the limit ε → 0, we derive an effective gradient flow which
is described as follows. The state space is given by

Y0 = L2
inv(Ω)⊗ L2(Q).

The effective dissipation potential is given by Rhom : Y0 → [0,∞),

Rhom(ẏ) =

〈∫
Q

r(ω, x)|ẏ(ω, x)|2dx
〉
.

The energy functional is Ehom : Y0 → R ∪ {∞},

Ehom(y) = inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫
Q

V (ω, x,∇y(ω, x) + χ(ω, x)) dx

〉
+

〈∫
Q

f(ω, x, y(ω, x))dx

〉 (10)
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for y ∈ (Lpinv(Ω) ⊗ W 1,p
0 (Q)) ∩

(
Lθinv(Ω)⊗ Lθ(Q)

)
=: dom(Ehom) and Ehom = ∞

otherwise. We remark that Ehom(·) − ΛRhom(·) is convex with the same Λ ∈ R as
for Eε.

The gradient flow (Y0, Ehom,Rhom) in the EVI formulation also admits a unique
solution, i.e., for an initial datum y0 ∈ dom(Ehom), there exists a unique y ∈
H1(0, T ;Y0) such that y(0) = y0 and for a.e. t ∈ (0, T ),

〈DRhom(ẏ(t)), y(t)− ỹ〉Y ∗0 ,Y0
≤ Ehom(ỹ)− Ehom(y(t))− ΛRhom(y(t)− ỹ), (11)

for all ỹ ∈ Y0.
The main result of this paper is the following homogenization theorem. In partic-

ular, the proof relies on the modified abstract strategy discussed in the introduction
and on the stochastic unfolding procedure that is explained in Section 3.

Theorem 2.3 (Homogenization). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ Rd be open
and bounded. Assume (A1)-(A3), and consider y0 ∈ dom(Ehom), y0

ε ∈ dom(Eε)
such that, as ε→ 0,

y0
ε → y0 strongly in Y, lim sup

ε→0
Eε(y0

ε) <∞.

Let yε ∈ H1(0, T ;Y ) be the unique solution to the EVI (7) with yε(0) = y0
ε . Then,

for all t ∈ (0, T ], as ε→ 0,

yε(t)→ y(t) strongly in Y,

where y ∈ H1(0, T ;Y0) is the unique solution to the EVI (11) with y(0) = y0.
Moreover, if we additionally assume that Eε(y0

ε) → Ehom(y0), then it holds that
ẏε → ẏ strongly in L2(0, T ;Y ) and Eε(yε(t))→ Ehom(y(t)) for all t ∈ [0, T ].
(For the proof see Section 4.)

Remark 2.4 (Convergence of gradients). We remark that in the proof we addi-

tionally show that yε(t)
2
⇀ y(t) in Lθ(Ω × Q) and in Lp(Ω × Q), where “

2
⇀” is

weak stochastic two-scale convergence in the mean defined in Definition 3.2. Also,
it holds Pinv∇yε(t) ⇀ ∇y(t) weakly in Lp(Ω×Q)d. If we additionally assume that
V (ω, x, ·) is strictly convex, we may obtain that for all t ∈ (0, T ] it holds

∇yε(t)
2
⇀ ∇y(t) + χ(t) in Lp(Ω×Q)d,

where χ(t) ∈ Lppot(Ω)⊗ Lp(Q) is the unique minimizer in the corrector problem

inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫
Q

V (ω, x,∇y(t, ω, x) + χ(ω, x))dx

〉
.

Remark 2.5 (Ergodic case). If we additionally assume that 〈·〉 is ergodic, the limit
system is driven by deterministic functionals. In particular, the state space reduces
to Y0 = L2(Q). The dissipation potential is given by

Rhom(ẏ) =

∫
Q

rhom(x)|ẏ(x)|2dx,

where rhom(x) = 〈r(ω, x)〉. The energy functional boils down to

Ehom(y) =

∫
Q

Vhom (x,∇y(x)) + fhom(x, y(x))dx

in W 1,p
0 (Q) ∩ Lθ(Q) and otherwise ∞. Above, fhom(x, α) = 〈f(ω, x, α)〉 for x ∈ Q

and α ∈ R, and Vhom(x, F ) = infχ∈Lppot(Ω) 〈V (x, ω, F + χ(ω))〉 for x ∈ Q, F ∈ Rd.
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Moreover, Vhom satisfies analogous p-growth conditions as V . The identification of
Ehom can be obtained by a measurable selection argument from Remark A.5 (cf.
proof of Lemma 4.4).

3. Stochastic unfolding method. In this section we introduce the stochastic
unfolding method. In particular, in Section 3.1 we define the unfolding operator
and present its main properties. In Section 3.2 we obtain weak two-scale type
compactness statements and we construct suitable recovery sequences. To keep the
exposition simple, the proofs are presented in the end, in Section 3.3.

3.1. Stochastic unfolding operator and two-scale convergence in the mean.
We recall that we generally assume Assumption 2.1.

Lemma 3.1. Let ε > 0, p ∈ (1,∞), q = p
p−1 , and Q ⊂ Rd be open. There exists a

unique linear isometric isomorphism

Tε : Lp(Ω×Q)→ Lp(Ω×Q)

which satisfies

for all u ∈ Lp(Ω)
a
⊗ Lp(Q), (Tεu)(ω, x) = u(τ− xε ω, x) a.e. in Ω×Q.

Moreover, its adjoint is the unique linear isometric isomorphism T ∗ε : Lq(Ω×Q)→
Lq(Ω×Q) that satisfies for all u ∈ Lq(Ω)

a
⊗Lq(Q), (T ∗ε u)(ω, x) = u(τ x

ε
ω, x) a.e. in

Ω×Q.
(For the proof see Section 3.3.)

Definition 3.2 (Unfolding operator and two-scale convergence in the mean). The
operator Tε : Lp(Ω × Q) → Lp(Ω × Q) from Lemma 3.1 is called the stochastic
unfolding operator. We say that a sequence (uε) ⊂ Lp(Ω × Q) weakly (strongly)
two-scale converges in the mean in Lp(Ω×Q) to u ∈ Lp(Ω×Q) if, as ε→ 0,

Tεuε → u weakly (strongly) in Lp(Ω×Q).

In this case we write uε
2
⇀ u (resp. uε

2→ u) in Lp(Ω×Q).

Remark 3.3 (A technical remark about measurability). We remark that an element

u ∈ Lp(Ω × Q) is an F ⊗ L(Q)-measurable function, i.e., measurable w.r.t. the
P ⊗ dx-completion of the product σ-algebra F ⊗ L(Q). On the other hand, the
transformation Tε : (ω, x) 7→ (τ− xε ω, x) is (F⊗L(Q),F⊗L(Q))-measurable. In this
respect, a priori the composition (u ◦ Tε)(ω, x) = u(τ− xε ω, x) does not necessarily

define an F ⊗ L(Q)-measurable function. We avoid the (fruitless) discussion of
such measurability issues by defining the unfolding operator on a dense subset of
Lp(Ω×Q) (where measurability is clear) and by extending it to the entire space.

The below lemma directly follows from the isometry property of Tε and the usual
properties of weak and strong convergence in Lp(Ω×Q), where we also use the fact
that Lp-spaces are uniformly convex for p ∈ (1,∞). Therefore, we do not present
its proof.

Lemma 3.4 (Basic properties). Let p ∈ (1,∞), q = p
p−1 and Q ⊂ Rd be open.

Consider sequences (uε) in Lp(Ω×Q) and (vε) in Lq(Ω×Q).

(i) If uε
2
⇀ u in Lp(Ω×Q), then lim supε→0 ‖uε‖Lp(Ω×Q) <∞ and

‖u‖Lp(Ω×Q) ≤ lim inf
ε→0

‖uε‖Lp(Ω×Q) .



436 MARTIN HEIDA, STEFAN NEUKAMM AND MARIO VARGA

(ii) If lim supε→0 ‖uε‖Lp(Ω×Q) < ∞, then there exist a subsequence ε′ and u ∈
Lp(Ω×Q) such that uε′

2
⇀ u in Lp(Ω×Q).

(iii) uε
2→ u in Lp(Ω×Q) if and only if uε

2
⇀ u in Lp(Ω×Q) and ‖uε‖Lp(Ω×Q) →

‖u‖Lp(Ω×Q).

(iv) If uε
2
⇀ u in Lp(Ω×Q) and vε

2→ v in Lq(Ω×Q), then〈∫
Q

uε(ω, x)vε(ω, x)dx

〉
→
〈∫

Q

u(ω, x)v(ω, x)dx

〉
.

For homogenization of variational problems, in particular problems driven by con-
vex integral functionals, the following transformation and (lower semi-)continuity
properties are very useful.

Proposition 3.5. Let p ∈ (1,∞) and Q ⊂ Rd be open and bounded. Let V :
Ω×Q×Rm → R be such that V (·, ·, F ) is F ⊗L(Q)-measurable for all F ∈ Rm and
V (ω, x, ·) is continuous for a.e. (ω, x) ∈ Ω ×Q. Also, we assume that there exists
c > 0 such that for a.e. (ω, x) ∈ Ω×Q

|V (ω, x, F )| ≤ c(1 + |F |p), for all F ∈ Rm.

Then the following statements hold:

(i) For all u ∈ Lp(Ω×Q)m, we have〈∫
Q

V (τ x
ε
ω, x, u(ω, x))dx

〉
=

〈∫
Q

V (ω, x, Tεu(ω, x))dx

〉
. (12)

(ii) If uε
2→ u in Lp(Ω×Q)m, then

lim
ε→0

〈∫
Q

V (τ x
ε
ω, x, uε(ω, x))dx

〉
=

〈∫
Q

V (ω, x, u(ω, x))dx

〉
.

(iii) We additionally assume that for a.e. (ω, x) ∈ Ω × Q, V (ω, x, ·) is convex.

Then, if uε
2
⇀ u in Lp(Ω×Q)m,

lim inf
ε→0

〈∫
Q

V (τ x
ε
ω, x, uε(ω, x))dx

〉
≥
〈∫

Q

V (ω, x, u(ω, x))dx

〉
.

(For the proof see Section 3.3.)

Remark 3.6 (Comparison to the notion of [9]). The notion of weak two-scale con-
vergence in the mean of Definition 3.2, i.e., weak convergence of unfolded sequences,
coincides with the convergence notion introduced in [9] (see also [4]). More precisely,

for a bounded sequence (uε) ⊂ Lp(Ω × Q) we have uε
2
⇀ u in Lp(Ω × Q) (in the

sense of Definition 3.2) if and only if uε stochastically two-scale converges in the
mean to u in the sense of [9], i.e.

lim
ε→0

〈∫
Q

uε(ω, x)ϕ(τ x
ε
ω, x)dx

〉
=

〈∫
Q

u(ω, x)ϕ(ω, x)dx

〉
, (13)

for any ϕ ∈ Lq(Ω×Q) that is admissible (in the sense that the mapping (ω, x) 7→
ϕ(τ x

ε
ω, x) is well-defined). Indeed, with help of Tε (and its adjoint) we might

rephrase the integral on the left-hand side in (13) as〈∫
Q

uε(T ∗ε ϕ) dx

〉
=

〈∫
Q

(Tεuε)ϕdx
〉
, (14)
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which proves the equivalence. For the reason of this equivalence, we use the terms
weak and strong stochastic two-scale convergence in the mean instead of talking
about weak or strong convergence of unfolded sequences.

The arguments in this paper are inspired by both, the unfolding approach—
we transform intregrals with oscillations into integrals without (or controllable)
oscillations—and two-scale convergence in the sense that we make use of oscillating
test-functions.

3.2. Two-scale limits of gradients. The following proposition presents a weak
two-scale compactness statement for sequences of gradient fields.

Proposition 3.7 (Compactness). Let p ∈ (1,∞) and Q ⊂ Rd be open. Let (uε) be
a bounded sequence in Lp(Ω)⊗W 1,p(Q). Then, there exist u ∈ Lpinv(Ω)⊗W 1,p(Q)
and χ ∈ Lppot(Ω)⊗ Lp(Q) such that, up to a subsequence,

uε
2
⇀ u in Lp(Ω×Q), ∇uε

2
⇀ ∇u+ χ in Lp(Ω×Q)d. (15)

If, additionally, 〈·〉 is ergodic, then u = Pinvu = 〈u〉 ∈ W 1,p(Q) and 〈uε〉 ⇀ u
weakly in W 1,p(Q).
(For the proof see Section 3.3.)

We remark that the above result is already established in [9] in the context of
two-scale convergence in the mean in the L2-space setting. We recapitulate its short
proof from the perspective of stochastic unfolding, see Section 3.3.

Remark 3.8. Note that the proof of the above proposition reveals that Pinvuε ⇀ u
weakly in Lpinv(Ω) ⊗W 1,p(Q) (see Lemma 3.13). If we consider a closed subspace
X ⊂ W 1,p(Q) and assume that uε(ω) ∈ X P -a.e., then Pinvuε ∈ Lpinv(Ω) ⊗ X.
Therefore, it follows that u ∈ Lpinv(Ω)⊗X. This observation is useful if we consider

boundary value problems, e.g., if X = W 1,p
0 (Q). We may argue similarly for closed

convex subsets in W 1,p(Q).

Lemma 3.9 (Recovery sequence). Let p, θ ∈ (1,∞) and Q ⊂ Rd be open. For

χ ∈ Lppot(Ω)⊗Lp(Q) and δ > 0, there exists a sequence gδ,ε(χ) ∈ Lp(Ω)⊗W 1,p
0 (Q)

such that

‖gδ,ε(χ)‖Lθ(Ω×Q) ≤ εc(δ), lim sup
ε→0

‖Tε∇gδ,ε(χ)− χ‖Lp(Ω×Q)d ≤ δ,

where c(δ) > 0 does not depend on ε.
(For the proof see Section 3.3.)

3.3. Proofs of the statements in section 3. Before presenting the proofs, we
recall some basic facts from functional analysis which will be helpful in the following.

Remark 3.10. Let p ∈ (1,∞) and q = p
p−1 .

(i) 〈·〉 is ergodic ⇔ Lpinv(Ω) ' R ⇔ Pinvf = 〈f〉.
(ii) The following orthogonality relations hold (for a proof see [11, Section 2.6]):

We identify the dual space Lp(Ω)∗ with Lq(Ω), and define for a set A ⊂ Lq(Ω)
its orthogonal complement A⊥ ⊂ Lp(Ω) as

A⊥ = {ϕ ∈ Lp(Ω) : 〈ϕψ〉 = 0 for all ψ ∈ A} .
It holds

ker(D) = ran(D∗)⊥, Lppot(Ω) = ran(D) = ker(D∗)⊥. (16)

Above, ker(·) denotes the kernel and ran(·) the range of an operator.
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Proof of Lemma 3.1. We first define an operator Tε : Lp(Ω)
a
⊗Lp(Q)→ Lp(Ω×Q):

For u =
∑
i ϕiηi ∈ Lp(Ω)

a
⊗ Lp(Q) with ϕi ∈ Lp(Ω) and ηi ∈ Lp(Q), let

(Tεu)(ω, x) =
∑
i

ϕi
(
τ− xε ω

)
ηi(x) = u(τ− xε ω, x).

Tε is a linear operator which is isometric by the following observation: For u ∈
Lp(Ω)

a
⊗ Lp(Q),

‖Tεu‖pLp(Ω×Q) =

∫
Q

〈
|u(τ− xε ω, x)|p

〉
dx =

∫
Q

〈|u(ω, x)|p〉 dx = ‖u‖pLp(Ω×Q) ,

where the first and last equality is Fubini’s theorem and in the middle, for fixed
a.a. x ∈ Q, we use a change of variables τ− xε ω  ω and the P -preserving property
of this transformation (Assumption 2.1 (ii)).

Since Lp(Ω)
a
⊗Lp(Q) is dense in Lp(Ω×Q), Tε extends to a linear isometry from

Lp(Ω×Q) to Lp(Ω×Q). We define a linear isometry T−ε : Lq(Ω×Q)→ Lq(Ω×Q)

analogously as Tε, with ε replaced by −ε. Then for any ϕ ∈ Lp(Ω)
a
⊗ Lp(Q) and

ψ ∈ Lq(Ω)
a
⊗ Lq(Q) we have (thanks to the measure preserving property of τ):〈∫

Q

(Tεϕ)ψ dx

〉
=

∫
Q

〈
ϕ(τ− xε ω, x)ψ(ω, x)

〉
dx

=

∫
Q

〈
ϕ(ω, x)ψ(τ x

ε
ω, x)

〉
dx =

〈∫
Q

ϕ(T−εψ)dx

〉
.

Since Lp(Ω)
a
⊗ Lp(Q) and Lq(Ω)

a
⊗ Lq(Q) are dense in Lp(Ω×Q) and Lq(Ω×Q),

respectively, we conclude that T ∗ε = T−ε. Since T ∗ε is an isometry, it follows that
Tε is surjective (see [11, Theorem 2.20]). Analogously, T ∗ε is also surjective.

Proof of Proposition 3.5. We first note that V is a Carathéodory integrand in the
sense of Remark A.2 (if necessary we tacitly redefine it by V (ω, x, ·) = 0 for (ω, x) in
a set of measure 0) and therefore it follows that V is a normal integrand (see Appen-
dix A). For fixed ε > 0, the mapping (ω, x) 7→ (τ x

ε
ω, x) is (F ⊗ L(Q),F ⊗ L(Q))-

measurable and therefore (ω, x, F ) 7→ V (τ x
ε
ω, x, F ) defines as well a Carathéodory

and thus normal integrand. Hence, with the help of the growth condition, all the
integrals in the statement of the proposition are well-defined.

Proof of (i): We first consider the case u ∈ Lp(Ω)
a
⊗Lp(Q)m. By Fubini’s theorem,

the measure preserving property of τ , and by the transformation ω 7→ τ− xε ω, we
have 〈∫

Q

V (τ x
ε
ω, x, u(ω, x))dx

〉
=

∫
Q

〈
V (τ x

ε
ω, x, u(ω, x))

〉
dx

=

∫
Q

〈
V (ω, x, u(τ− xε ω, x))

〉
dx.

Since u ∈ Lp(Ω)
a
⊗ Lp(Q), we have u(τ− xε ω, x) = Tεu(ω, x), and thus (12) follows.

The general case follows by an approximation argument. Indeed, for any u ∈
Lp(Ω×Q)m we can find a sequence uk ∈ Lp(Ω)

a
⊗Lp(Q)m such that uk → u strongly

in Lp(Ω×Q)m, and by passing to a subsequence (not relabeled) we may additionally
assume that uk → u pointwise a.e. in Ω×Q. By continuity of V in its last variable,
we thus have V (τ x

ε
ω, x, uk(ω, x))→ V (τ x

ε
ω, x, u(ω, x)) for a.e. (ω, x) ∈ Ω×Q. Since
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|V (τ x
ε
ω, x, uk(ω, x))| ≤ c(1 + |uk(ω, x)|p) a.e. in Ω×Q, the dominated convergence

theorem ([8, Theorem 2.8.8]) implies that

lim
k→∞

〈∫
Q

V (τ x
ε
ω, x, uk(ω, x))dx

〉
=

〈∫
Q

V (τ x
ε
ω, x, u(ω, x))dx

〉
.

In the same way we conclude that

lim
k→∞

〈∫
Q

V (ω, x, Tεuk(ω, x))dx

〉
=

〈∫
Q

V (ω, x, Tεu(ω, x))dx

〉
.

Since the integrals on the left-hand sides are the same, (12) follows.

Proof of (ii): We get
〈∫

Q
V (τ x

ε
ω, x, uε(ω, x))dx

〉
=
〈∫

Q
V (ω, x, Tεuε(ω, x))dx

〉
by part (i). Since by assumption Tεuε → u strongly in Lp(Ω×Q)m, using the growth
conditions of V and the dominated convergence theorem, it follows, similarly to part

(i), that limε→0

〈∫
Q
V (ω, x, Tεuε(ω, x))dx

〉
=
〈∫

Q
V (ω, x, u(ω, x))dx

〉
.

Proof of (iii): The functional Lp(Ω × Q)m 3 u 7→
〈∫

Q
V (ω, x, u(ω, x))dx

〉
is

convex and lower semi-continuous, therefore it is weakly lower semi-continuous (see
[11, Corollary 3.9]). Combining this fact with the transformation formula from (i)
and the weak convergence Tεuε ⇀ u (by assumption), the claim follows.

Before stating the proof of Proposition 3.7, we present some auxiliary lemmas.

Lemma 3.11. Let p ∈ (1,∞) and q = p
p−1 .

(i) If ϕ ∈
{
D∗ψ : ψ ∈W 1,q(Ω)d

}⊥
, then ϕ ∈ Lpinv(Ω).

(ii) If ϕ ∈
{
ψ ∈W 1,q(Ω)d : D∗ψ = 0

}⊥
, then ϕ ∈ Lppot(Ω).

Proof. Proof of (i). First, we note that

ϕ ∈ Lpinv(Ω) ⇔ Uheiϕ = ϕ for all h ∈ R, i = 1, ..., d.

We consider ϕ ∈
{
D∗ψ : ψ ∈W 1,q(Ω)d

}⊥
and we show that ϕ ∈ Lpinv(Ω) using the

above equivalence. Let ψ ∈ W 1,q(Ω) and i ∈ {1, ..., d}. Classical semigroup theory
arguments (cf. [18, Section 7.4.1]) imply that d

dhUheiψ = DiUheiψ = UheiDiψ =
−UheiD∗i ψ, where the last inequality follows by (4). Therefore, an integration over

(0,−h) yields U−heiψ − ψ =
∫ h

0
U−teiD

∗
i ψdt and thus

〈(Uheiϕ− ϕ)ψ〉 = 〈ϕ(U−heiψ − ψ)〉 = 〈ϕ
∫ h

0

U−teiD
∗
i ψdt〉 =

∫ h

0

〈ϕD∗i (U−teiψ)〉 dt.

Since U−teiψ ∈ W 1,q(Ω) for any t ∈ [0, h] and D∗(U−teiψei) = D∗i (U−teiψ), we
obtain 〈ϕD∗i (U−teiψ)〉 = 0 and thus Uheiϕ = ϕ.

Proof of (ii). In view of Lppot(Ω) = ker(D∗)⊥ (see (16)), it is sufficient to prove

that the set
{
ϕ ∈W 1,q(Ω)d : D∗ϕ = 0

}
is dense in ker(D∗). This follows by an

approximation argument as in [25, Section 7.2]. Let ϕ ∈ ker(D∗) and we define for
t > 0

ϕt(ω) =

∫
Rd
pt(y)ϕ(τyω)dy, where pt(y) =

1

(4πt)
d
2

e−
|y|2
4t .

Then the claimed density follows, since ϕt ∈ W 1,q(Ω)d, D∗ϕt = 0 for any t > 0
and ϕt → ϕ strongly in Lq(Ω)d as t → 0. The last statement can be seen as
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follows. By the continuity property of Uy, for any ε > 0 there exists δ > 0 such
that 〈|ϕ(τyω)− ϕ(ω)|q〉 ≤ ε for any y ∈ Bδ(0). It follows that〈
|ϕt − ϕ|q

〉
=

〈∣∣∣∣ ∫
Rd
pt(y) (ϕ(τyω)− ϕ(ω)) dy

∣∣∣∣q〉
≤
∫
Rd
pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy

=

∫
Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy +

∫
Rd\Bδ

pt(y) 〈|ϕ(τyω)− ϕ(ω)|q〉 dy.

The first term on the right-hand side of the above inequality is bounded by ε as
well as the second term for sufficiently small t > 0.

Lemma 3.12. Let p ∈ (1,∞) and Q ⊂ Rd be open. Let uε ∈ Lp(Ω) ⊗W 1,p(Q)

be such that uε
2
⇀ u in Lp(Ω × Q) and ε∇uε

2
⇀ 0 in Lp(Ω × Q)d. Then u ∈

Lpinv(Ω)⊗ Lp(Q).

Proof. Consider a sequence vε = εT ∗ε (ϕη) such that ϕ ∈ W 1,q(Ω) and η ∈ C∞c (Q).
Note that Tεvε = εϕη and we have, for i = 1, ..., d and as ε→ 0,〈∫

Q

∂iuεvεdx

〉
=

〈∫
Q

(Tε∂iuε)(Tεvε)dx
〉

=

〈∫
Q

(Tε∂iuε)εϕηdx
〉
→ 0.

Moreover, it holds that ∂ivε = T ∗ε (Diϕη + εϕ∂iη) and therefore〈∫
Q

∂iuεvεdx

〉
= −

〈∫
Q

uε∂ivεdx

〉
= −

〈∫
Q

uεT ∗ε (Diϕη + εϕ∂iη)dx

〉
= −

〈∫
Q

(Tεuε)Diϕη + ε(Tεuε)ϕ∂iηdx
〉
.

The last expression converges to −
〈∫

Q
uDiϕηdx

〉
as ε → 0. As a result of this,

〈u(x)Diϕ〉 = 0 for almost every x ∈ Q and therefore u ∈ Lpinv(Ω)⊗Lp(Q) by Lemma
3.11 (i).

Lemma 3.13. Let p ∈ (1,∞) and Q ⊂ Rd be open. Let uε be a bounded sequence
in Lp(Ω) ⊗W 1,p(Q). Then there exists u ∈ Lpinv(Ω) ⊗W 1,p(Q) such that (up to a
subsequence)

uε
2
⇀ u in Lp(Ω×Q), Pinvuε

2
⇀ u in Lp(Ω×Q), Pinv∇uε

2
⇀ ∇u in Lp(Ω×Q)d.

In particular, it holds that Pinvuε ⇀ u weakly in Lpinv(Ω)⊗W 1,p(Q).

Proof. Step 1. Proof of the identity Pinv ◦Tε = Tε ◦Pinv = Pinv. The second identity
holds by definition of Pinv. To show that Pinv◦Tε = Pinv, we consider v ∈ Lp(Ω×Q),
ϕ ∈ Lq(Ω) and η ∈ Lq(Q). We have〈∫

Q

(PinvTεv)(ϕη)dx

〉
=

〈∫
Q

(Tεv)P ∗inv(ϕη)dx

〉
=

〈∫
Q

vP ∗inv(ϕη)dx

〉
=

〈∫
Q

(Pinvv)(ϕη)dx

〉
, (17)

where we use the fact that T ∗ε P ∗inv = P ∗inv since P ∗inv = Pinv : Lq(Ω) → Lqinv(Ω).
The last equality follows by a density argument and the fact that for ϕ ∈ L2(Ω)
it holds Pinvϕ = P ∗invϕ, which is obtained by 〈P ∗invϕ,ψ〉 = 〈ϕ, Pinvψ〉 = 〈ϕ,ψ〉 for
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all ψ ∈ L2
inv(Ω). Finally, Pinv ◦ Tε = Pinv follows by (17) and an approximation

argument since Lq(Ω)
a
⊗ Lq(Q) is dense in Lq(Ω×Q).

Step 2. Convergence of Pinvuε. Since uε is bounded in Lp(Ω)⊗W 1,p(Q), we may
extract a (not relabeled) subsequence such that uε ⇀ v weakly in Lp(Ω)⊗W 1,p(Q).
Pinv is a linear and bounded operator and thus we conclude that

Pinvuε ⇀ Pinvv weakly in Lp(Ω×Q), Pinv∇uε ⇀ Pinv∇v weakly in Lp(Ω×Q)d.

Moreover, since Pinv commutes with ∇, it follows that Pinvuε ⇀ Pinvv weakly in
Lp(Ω)⊗W 1,p(Q). Furthermore, by Tε ◦ Pinv = Pinv, we have

Pinvuε
2
⇀ Pinvv in Lp(Ω×Q), Pinv∇uε

2
⇀ Pinv∇v = ∇Pinvv in Lp(Ω×Q)d.

Step 3. Convergence of uε. Since uε is bounded, using Lemma 3.4 (ii) and

Lemma 3.12 there exists u ∈ Lpinv(Ω)⊗Lp(Q) such that uε
2
⇀ u in Lp(Ω×Q). Also,

Pinv is a linear and bounded operator which, together with Pinv◦Tε = Pinv from Step
1, implies that Pinvuε ⇀ Pinvu = u. Using this, we conclude that u = Pinvv.

Proof of Proposition 3.7. Lemma 3.13 implies that uε
2
⇀ u in Lp(Ω × Q) (up to a

subsequence), where u ∈ Lpinv(Ω)⊗W 1,p(Q). Moreover, it follows that there exists

v ∈ Lp(Ω × Q)d such that ∇uε
2
⇀ v in Lp(Ω × Q)d (up to another subsequence).

We show that χ := v −∇u ∈ Lppot(Ω)⊗ Lp(Q).

Let ϕ ∈W 1,q(Ω)d with D∗ϕ = 0 and η ∈ C∞c (Q). We have, as ε→ 0,〈∫
Q

∇uε · T ∗ε (ϕη)dx

〉
=

〈∫
Q

Tε∇uε · ϕηdx
〉
→
〈∫

Q

v · ϕηdx
〉
. (18)

On the other hand,〈∫
Q

∇uε · T ∗ε (ϕη)dx

〉
= −

〈∫
Q

uε

d∑
i=1

T ∗ε (
1

ε
ηDiϕi + ϕi∂iη)dx

〉

=
1

ε

〈∫
Q

(Tεuε)(ηD∗ϕ)dx

〉
−

〈∫
Q

(Tεuε)
d∑
i=1

ϕi∂iηdx

〉
.

(19)

Above, the first term on the right-hand side vanishes by assumption and the second

converges to
〈∫

Q
∇u · ϕη

〉
as ε → 0. Using (19), (18) and Lemma 3.11 (ii) we

complete the proof.

Proof of Lemma 3.9. For χ ∈ Lppot(Ω)⊗Lp(Q) and δ > 0, by definition of the space

Lppot(Ω)⊗Lp(Q) and by density of ran(D) in Lppot(Ω), we find gδ =
∑n(δ)
i=1 ϕ

δ
i η
δ
i with

ϕδi ∈W 1,p(Ω) and ηδi ∈ C∞c (Q) such that

‖χ−Dgδ‖Lp(Ω×Q)d ≤ δ.

Note that we can choose ϕδi above so that ϕδi ∈ Lθ(Ω). This can be seen by a
standard truncation and mollification argument (see [9, Lemma 2.2] for the L2-case)
that we present here for the convenience of the reader. For a given ϕ ∈ W 1,p(Ω),
by density of L∞(Ω) in Lp(Ω), we find a sequence ϕk ∈ L∞(Ω) such that ϕk → ϕ
in Lp(Ω). For a sequence of standard mollifiers ρn ∈ C∞c (Rd), ρn ≥ 0, we define

ϕnk =

∫
Rd
ρn(y)Uyϕkdy, ϕn =

∫
Rd
ρn(y)Uyϕdy.
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It holds that ϕnk ∈ L∞(Ω) ∩W 1,p(Ω), Diϕ
n
k =

∫
Rd −∂iρn(y)Uyϕkdy and Diϕ

n =∫
Rd −∂iρn(y)Uyϕdy =

∫
Rd ρn(y)UyDiϕdy. Similarly to the proof of Lemma 3.11

(ii), it follows that Dϕn → Dϕ in Lp(Ω)d as n→∞. In the following we show that
for fixed n ∈ N, Diϕ

n
k → Diϕ

n in Lp(Ω) as k → ∞, which yields the claim (up to
extraction of a subsequence k(n)). We have, as k →∞,

〈|Diϕ
n
k −Diϕ

n|p〉 =

〈∣∣ ∫
Rd
−∂iρn(y) (Uyϕk − Uyϕ) dy

∣∣p〉 ≤ c(n) 〈|ϕk − ϕ|p〉 → 0,

where in the last inequality we use that ∂iρn is compactly supported and L∞, and
Jensen’s inequality. This means that in the definition of gδ above, we can choose
ϕδi ∈ Lθ(Ω) ∩W 1,p(Ω).

We define gδ,ε = εT −1
ε gδ and note that gδ,ε ∈ Lp(Ω) ⊗W 1,p

0 (Q) ∩ Lθ(Ω × Q)
and ∇gδ,ε = T −1

ε Dgδ + T −1
ε ε∇gδ. As a result of this and with help of the isometry

property of T −1
ε (which is a consequence of the measure preserving property of τ

Assumption 2.1 (ii)), the claim of the lemma follows.

4. Proof of Theorem 2.3. Before presenting the main proof, we provide three
auxiliary lemmas. Lemma 4.1 provides the reduction of the Λ-convex gradient flows
to convex gradient flows. Lemmas 4.3 and 4.4 provide a suitable recovery sequence

that is helpful in the treatment of the term
∫ T

0
Ẽ∗ε (t,−DRε(u̇ε(t)))dt in (3) (cf.

(20)).

Lemma 4.1 (Convex reduction). Let T > 0 be fixed. Let the assumptions of

Theorem 2.3 be satisfied. Let Ẽε : [0, T ] × Y → R ∪ {∞} and Ẽhom : [0, T ] × Y0 →
R ∪ {∞} be given by

Ẽε(t, u) = e2ΛtEε(e−Λtu)− ΛRε(u), Ẽhom(t, u) = e2ΛtEhom(e−Λtu)− ΛRhom(u).

Then:

(i) Ẽε and Ẽhom are convex normal integrands (see Definition A.1).
(ii) y ∈ H1(0, T ;Y ) satisfies (7) if and only if u(t) := eΛty(t) satisfies

Rε(u(T )) +

∫ T

0

Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t)))dt = Rε(u(0)), (20)

where Ẽ∗ε (t, ·) denotes the convex conjugate of Ẽε(t, ·).
(iii) y ∈ H1(0, T ;Y0) satisfies (11) if and only if u(t) := eΛty(t) satisfies

Rhom(u(T )) +

∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt = Rhom(u(0)),

where Ẽ∗hom(t, ·) denotes the convex conjugate of Ẽhom(t, ·).

Proof. Proof of (i). For fixed t, convexity of Ẽε(t, ·) follows from Λ-convexity of

Eε. Ẽε(t, ·) is proper and l.s.c. Indeed, this follows by continuity of Rε and by
the fact that Eε is proper and l.s.c. (cf. Remark 2.2). In the following we show

that Ẽε is L(0, T )⊗ B(Y )-measurable that implies the claim for Ẽε. First, we note
that −ΛRε is B(Y )-measurable since it is continuous, therefore it is sufficient to
show that the mapping (t, u) 7→ e2ΛtEε(e−Λtu) is L(0, T ) ⊗ B(Y )-measurable. We
note that Eε(e−Λtu) is the composition of the continuous mapping (t, u) 7→ e−Λtu
(thus (B(0, T )⊗ B(Y ),B(Y ))-measurable) and the l.s.c. functional Eε that is, thus,
B(Y )-measurable. As a result of this, it is B(0, T ) ⊗ B(Y )-measurable. Finally,
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the expression e2ΛtEε(e−Λtu) is a product of a continuous and a measurable func-

tional and therefore it is L(0, T ) ⊗ B(Y )-measurable. For Ẽhom, the claim follows
analogously.

Proof of (ii). Since Rε is quadratic we have Rε(ỹ) = 1
2 〈DRε(ỹ), ỹ〉Y ∗,Y . Com-

bined with (7), a simple rearrangement yields for all ỹ ∈ Y ,

〈DRε (ẏ(t) + Λy(t)) , y(t)− ỹ〉Y ∗,Y + Eε(y(t))− ΛRε(y(t)) ≤ Eε(ỹ)− ΛRε(ỹ).

We multiply the above inequality with e2Λt and use linearity of DRε (resp. quadratic
structure of Rε) to obtain,〈

DRε
(
eΛtẏ(t) + ΛeΛty(t)

)
, eΛt(y(t)− ỹ)

〉
Y ∗,Y

+e2ΛtEε(e−ΛteΛty(t))− ΛRε(eΛty(t))

≤ e2ΛtEε(e−ΛteΛtỹ)− ΛRε(eΛtỹ) for all ỹ ∈ Y.

With u(t) = eΛty(t), the definition of Ẽε, and with the test-function ỹ = e−Λtŷ, the
above inequality reads

〈DRε(u̇(t)), u(t)− ŷ〉Y ∗,Y + Ẽε(t, u(t)) ≤ Ẽε(t, ŷ) for all ŷ ∈ Y,

where we used that u̇(t) = eΛtẏ(t) + ΛeΛty(t). Since Ẽε(t, ·) is convex for each t, the
Fenchel equivalence implies that u satisfies for a.e. t ∈ (0, T ),

〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t))) = 0. (21)

Since d
dtRε(u(t)) = 〈DRε(u(t)), u̇(t)〉Y ∗,Y = 〈DRε(u̇(t)), u(t)〉Y ∗,Y , integration of

the above identity over (0, T ) yields (20). On the other hand, if (20) holds, then we
have ∫ T

0

〈DRε(u̇(t)), u(t)〉Y ∗,Y + Ẽε(t, u(t)) + Ẽ∗ε (t,−DRε(u̇(t)))dt = 0.

The integrand on the left-hand side is nonnegative by the definition of the convex
conjugate and therefore it follows that u satisfies (21). This completes the proof.

Proof of (iii). The argument is the same as in part (ii).

Remark 4.2 (Extended unfolding). For p ∈ (1,∞), the stochastic unfolding opera-
tor Tε : Lp(Ω×Q)→ Lp(Ω×Q) can be extended to a (not relabeled) linear isometry
Tε : Lp(0, T ;Lp(Ω×Q))→ Lp(0, T ;Lp(Ω×Q)). In particular, for functions of the
form u = ηϕ ∈ Lp(0, T ;Lp(Ω×Q)) with η ∈ Lp(0, T ) and ϕ ∈ Lp(Ω×Q), we define
the unfolding by

Tεu(t, ·) = η(t)Tεϕ(·).
By the density of {

∑
i ηiϕi : ηi ∈ Lp(0, T ), ϕi ∈ Lp(Ω×Q)} in Lp(0, T ;Lp(Ω ×

Q)) we may extend the unfolding operator to a uniquely determined isometry on
Lp(0, T ;Lp(Ω×Q)). In the following, we use this extension.

Lemma 4.3 (Recovery sequence). Let p ∈ (1,∞), θ ∈ [2,∞) and Q ⊂ Rd be open

and bounded. Let w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p
0 (Q))∩Lθ(0, T ;Lθinv(Ω)⊗Lθ(Q)) and

χ ∈ Lp(0, T ;Lppot(Ω)⊗Lp(Q)). Then, there exists wε ∈ Lp(0, T ;Lp(Ω)⊗W 1,p
0 (Q))∩

Lθ(0, T ;Lθ(Ω×Q)) such that, as ε→ 0,

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω×Q)),

Tε∇wε → ∇w + χ strongly in Lp(0, T ;Lp(Ω×Q)d).
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Proof. Since χ ∈ Lp(0, T ;Lppot(Ω)⊗Lp(Q)), we find a sequence ψk =
∑k
i=1 η

k,iχk,i

with ηk,i ∈ C∞c (0, T ) and χk,i ∈ Lppot(Ω)⊗ Lp(Q), such that

‖ψk − χ‖Lp(0,T ;Lp(Ω×Q)d) → 0 as k →∞.

In view of Lemma 3.9, for each χk,i we find gk,iδ,ε ∈ (Lp(Ω)⊗W 1,p
0 (Q)) ∩ Lθ(Ω×Q)

such that

‖gk,iδ,ε‖Lθ(Ω×Q) ≤ εck,i(δ), lim sup
ε→0

‖Tε∇gk,iδ,ε − χ
k,i‖Lp(Ω×Q)d ≤ δ.

We define wkδ,ε = w +
∑k
i=1 η

k,igk,iδ,ε and we estimate

‖Tεwkδ,ε − w‖Lθ(0,T ;Lθ(Ω×Q)) + ‖Tε∇wkδ,ε − (∇w + χ)‖Lp(0,T ;Lp(Ω×Q)d)

≤ ‖
k∑
i=1

ηk,igk,iδ,ε‖Lθ(0,T ;Lθ(Ω×Q)) + ‖
k∑
i=1

ηk,i
(
Tε∇gk,iδ,ε − χ

k,i
)
‖Lp(0,T ;Lp(Ω×Q)d)

+
∥∥ψk − χ∥∥

Lp(0,T ;Lp(Ω×Q)d)

≤ ε

k∑
i=1

ck,i(δ) +

k∑
i=1

ck,i

∥∥∥Tε∇gk,iδ,ε − χk,i∥∥∥
Lp(Ω×Q)d

+
∥∥ψk − χ∥∥

Lp(0,T ;Lp(Ω×Q)d)
.

Letting first ε → 0, secondly δ → 0, and finally k → ∞, the right-hand side above
vanishes. As a result of this, we can extract diagonal sequences k(ε) and δ(ε) such

that wε := w
k(ε)
δ(ε),ε satisfies the claim of the lemma.

Lemma 4.4 (Measurable selection). Let the assumptions of Lemma 4.1 be sat-

isfied. Let ξ ∈ L2(0, T ;Y ∗0 ). There exists w ∈ Lp(0, T ;Lpinv(Ω) ⊗ W 1,p
0 (Q)) ∩

Lθ(0, T ;Lθinv(Ω)⊗ Lθ(Q)) such that∫ T

0

Ẽ∗hom(t, ξ(t))dt =

∫ T

0

〈ξ(t), w(t)〉Y ∗0 ,Y0
dt−

∫ T

0

Ẽhom(t, w(t))dt.

Moreover, there exists χ ∈ Lp(0, T ;Lppot(Ω)⊗ Lp(Q)) such that∫ T

0

inf
χ∈Lppot(Ω)⊗Lp(Q)

〈∫
Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ)dx

〉
dt

=

∫ T

0

〈∫
Q

e2ΛtV (ω, x, e−Λt∇w(t) + χ(t))dx

〉
dt. (22)

Proof. First we note that Ẽhom is a convex normal integrand by Lemma 4.1 (i) and∫ T
0
Ẽhom(t, 0)dt <∞. Therefore, Proposition A.4 in Appendix A implies that∫ T

0

Ẽ∗hom(t, ξ(t))dt

= sup
w∈L2(0,T ;Y0)

(∫ T

0

〈ξ(t), w(t)〉Y ∗0 ,Y0
dt−

∫ T

0

Ẽhom(t, w(t))dt

)
.

(23)

The supremum on the right-hand side is attained by some w ∈ L2(0, T ;Y0). Indeed,
the right-hand side of (23) equals

− inf
w∈L2(0,T ;Y0)

(∫ T

0

Ẽhom(t, w(t))dt−
∫ T

0

〈ξ(t), w(t)〉Y ∗0 ,Y0
dt

)
. (24)
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For a minimizing sequence wk ∈ L2(0, T ;Y0) of this problem the growth conditions
of V, f and Rhom imply that

‖wk‖Lp(0,T ;Lpinv(Ω)⊗W 1,p(Q)) + ‖wk‖Lθ(0,T ;Lθinv(Ω)⊗Lθ(Q)) ≤ c(T ).

In this respect, we may extract a weakly convergent subsequence in the correspond-
ing spaces in order to apply the direct method of the calculus of variations and
conclude that the minimum in (24) is attained. We remark that we use that the
functional in (24) is convex and therefore l.s.c. As a result of the above, we also

have
∫ T

0
Ẽhom(t, w(t))dt <∞, which implies that w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p

0 (Q))∩
Lθ(0, T ;Lθinv(Ω)⊗ Lθ(Q)).

To show (22), we define an integrand I : [0, T ]×
(
Lppot(Ω)⊗ Lp(Q)

)
→ R∪ {∞}

by I(t, χ) = e2Λt
〈∫

Q
V (ω, x, e−Λt∇w(t)(ω, x) + χ(ω, x)dx

〉
. We remark that I is

finite everywhere (up to considering a suitable representative of ∇w) and for all
t ∈ [0, T ], I(t, ·) is convex and l.s.c. (using the growth conditions of V ), in fact,
I(t, ·) is continuous. Moreover, for each fixed χ ∈ Lppot(Ω)⊗Lp(Q), I(·, χ) is L(0, T )-
measurable. Indeed, this follows by the observation that I(·, χ) is a composition
of the mappings g1 : [0, T ] → [0, T ] × Lp(Ω × Q)d, g1(t) =

(
t, e−Λt∇w(t) + χ

)
,

and g2 : [0, T ] × Lp(Ω × Q)d → R, g2(t, ϕ) = e2Λt
〈∫

Q
V (ω, x, ϕ(ω, x))dx

〉
. g1 is(

L(0, T ),L(0, T )⊗ B(Lp(Ω×Q)d)
)
-measurable and g2 is a Carathéodory integrand

and therefore
(
L(0, T )⊗ B(Lp(Ω×Q)d)

)
-measurable. The above statements imply

that I is a convex Carathéodory integrand, thus a normal convex integrand (see
Appendix A). As a result of this, Proposition A.4 (and in particular Remark A.5)
in Appendix A implies that∫ T

0

inf
χ∈Lppot(Ω)⊗Lp(Q)

I(t, χ)dt = inf
χ∈Lp(0,T ;Lppot(Ω)⊗Lp(Q))

∫ T

0

I(t, χ(t))dt.

The infimum on the right-hand side is attained at some χ ∈ Lp(0, T ;Lppot(Ω) ⊗
Lp(Q)), which is obtained similarly to the problem (24) using the direct method of
the calculus of variations. This concludes the proof.

Proof of Theorem 2.3. Step 1. Compactness. The apriori estimate (9) and the
boundedness of Eε(y0

ε) yield, for all t ∈ [0, T ],

‖yε(t)‖pLp(Ω)⊗W 1,p(Q) + ‖yε(t)‖θLθ(Ω×Q) ≤ c. (25)

Also, by the isometry property of Tε and since θ ≥ 2, the above implies that

‖Tεyε(t)‖θY ≤ c. We remark that Tεyε ∈ H1(0, T ;Y ) since ˙(·) and Tε commute, i.e.,
d
dt (Tεyε) = Tεẏε, where on the left-hand side Tεyε is pointwise defined as Tεyε(t)
and on the right-hand side Tε is the extension defined on L2(0, T ;Y ). As a result
of this and using the isometry property of Tε, the apriori estimate (8) implies that

‖Tεyε‖2H1(0,T ;Y ) ≤ c, ‖Tεyε(t)− Tεyε(s)‖2Y ≤ c|t− s| for all s, t ∈ [0, T ].

We extract a (not relabeled) subsequence and y ∈ H1(0, T ;Y ) such that Tεyε ⇀ y
weakly in H1(0, T ;Y ), and this implies that Tεẏε ⇀ ẏ weakly in L2(0, T ;Y ). We
apply the Arzelà-Ascoli theorem to the sequence Tεyε to obtain that (up to another
subsequence) for all t ∈ [0, T ],

Tεyε(t) ⇀ y(t) weakly in Y. (26)
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Using (25) and Proposition 3.7, we conclude that y(t) ∈ (Lpinv(Ω) ⊗ W 1,p
0 (Q)) ∩(

Lθinv(Ω)⊗ Lθ(Q)
)

and

Tεyε(t) ⇀ y(t) weakly in Lθ(Ω×Q) and in Lp(Ω×Q). (27)

In particular, here we also used Remark 3.8 to conclude that y(t) has 0 boundary
values. These facts also imply that y ∈ H1(0, T ;Y0). Moreover, for each t ∈ [0, T ]
we find χ(t) ∈ Lppot(Ω)⊗ Lp(Q) and a subsequence ε(t) such that Tε(t)∇yε(t)(t) ⇀
∇y(t)+χ(t) weakly in Lp(Ω×Q)d. This implies that Pinv∇yε(t) ⇀ ∇y(t) weakly in
Lp(Ω×Q)d for the whole (sub)sequence ε. Note that the assumption on the initial
data implies that Tεyε(0)→ y0 strongly in Y and hence we have y(0) = y0.

In the following step, using Lemma 4.1, we restate (7) as a convex problem.
For this reason, we define the new variables uε(t) = eΛtyε(t) and u(t) = eΛty(t).
We remark that since y(t) is in the space of shift invariant functions, u(t) also

inherits this property, i.e. u(t) ∈ (Lpinv(Ω) ⊗W 1,p
0 (Q)) ∩

(
Lθinv(Ω)⊗ Lθ(Q)

)
. Note

that u̇ε(t) = ΛeΛtyε(t) + eΛtẏε(t) and analogously for u̇. The above convergence
statements result in

Tεuε ⇀ u weakly in H1(0, T ;Y ),

Tεuε(t) ⇀ u(t) weakly in Lθ(Ω×Q) and Lp(Ω×Q), for all t ∈ [0, T ].
(28)

Step 2. Reduction to a convex problem. In view of Lemma 4.1 (ii), we have

Rε(uε(T )) +

∫ T

0

Ẽε(t, uε(t)) + Ẽ∗ε (t,−DRε(u̇ε(t)))dt = Rε(uε(0)). (29)

Step 3. Passage to the limit ε→ 0 in (29). Note that uε(0) = y0
ε

2→ y0 = u(0) in
Y and therefore using Proposition 3.5 (ii), for the right-hand side of (29), we have

lim
ε→0
Rε(uε(0)) = Rhom(u(0)). (30)

The first term on the left-hand side is treated similarly, using Proposition 3.5
(iii) and (28), we have

lim inf
ε→0

Rε(uε(T )) ≥ Rhom(u(T )). (31)

We treat the second term on the left-hand side of (29) as follows. By Fatou’s
lemma we have

lim inf
ε→0

∫ T

0

Ẽε(t, uε(t))dt

≥
∫ T

0

lim inf
ε→0

〈∫
Q

e2ΛtV (τ x
ε
ω, x, e−Λt∇uε(t))dx

〉
dt

+

∫ T

0

lim inf
ε→0

〈∫
Q

e2Λtf(τ x
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τ x

ε
ω, x)|uε(t)|2dx

〉
dt.

For fixed t, the lim inf in the first term is a limit for a subsequence ε(t) and as in
Step 1 we find χ(t) ∈ Lppot(Ω) ⊗ Lp(Q) such that, up to another (not relabeled)

subsequence, it holds ∇uε(t)(t)
2
⇀ ∇u(t) + eΛtχ(t) in Lp(Ω × Q)d. Also, we no-

tice that e2ΛtV (ω, x, e−Λt·) is convex and has p-growth properties and therefore
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Proposition 3.5 (iii) implies that

lim inf
ε→0

〈∫
Q

e2ΛtV (τ x
ε
ω, x, e−Λt∇uε(t))dx

〉
≥

〈∫
Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ(t))dx

〉
≥ inf

χ∈Lppot(Ω)⊗Lp(Q)

〈∫
Q

e2ΛtV (ω, x, e−Λt∇u(t) + χ)dx

〉
.

On the other hand, we remark that the integrand e2Λtf(ω, x, e−Λt·) − Λ
2 r(ω, x)| ·

|2 is convex and satisfies θ-growth conditions. As a result of this and by (28),
Proposition 3.5 (iii) yields

lim inf
ε→0

〈∫
Q

e2Λtf(τ x
ε
ω, x, e−Λtuε(t))−

Λ

2
r(τ x

ε
ω, x)|uε(t)|2dx

〉
≥

〈∫
Q

e2Λtf(ω, x, e−Λtu(t))− Λ

2
r(ω, x)|u(t)|2dx

〉
.

Using the above two statements we conclude that

lim inf
ε→0

∫ T

0

Ẽε(t, uε(t))dt ≥
∫ T

0

Ẽhom(t, u(t))dt. (32)

In order to complete the limit passage, it is left to treat the third term on the
left-hand side of (29). Using Lemma 4.4, we find w ∈ Lp(0, T ;Lpinv(Ω)⊗W 1,p

0 (Q))∩
Lθ(0, T ;Lθinv(Ω)⊗ Lθ(Q)) such that∫ T

0

Ẽ∗hom(t,−DRhom(u̇(t)))dt =

∫ T

0

〈−DRhom(u̇(t)), w(t)〉Y ∗0 ,Y0
− Ẽhom(t, w(t))dt.

(33)
Moreover, by the second claim of Lemma 4.4, we find χ ∈ Lp(0, T ;Lppot(Ω)⊗Lp(Q))
such that∫ T

0

Ẽhom(t, w(t))dt =

∫ T

0

e2Λt

〈∫
Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))

〉
− ΛRhom(w(t))dt. (34)

For the pair
(
w, eΛ·χ(·)

)
(eΛ· denotes the function t 7→ eΛt) Lemma 4.3 implies the

existence of wε ∈ Lp(0, T ;Lp(Ω)⊗W 1,p
0 (Q)) ∩ Lθ(0, T ;Lθ(Ω×Q)) such that

Tεwε → w strongly in Lθ(0, T ;Lθ(Ω×Q)),

Tε∇wε → ∇w + eΛ·χ strongly in Lp(0, T ;Lp(Ω×Q)d).
(35)

Using the definition of the convex conjugate Ẽ∗ε , we have∫ T

0

Ẽ∗ε (t,−DRε(u̇ε(t)))dt ≥
∫ T

0

〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y − Ẽε(t, wε(t))dt.
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For the first term on the right-hand side we have, using the fact that the extended
unfolding operator is unitary, as ε→ 0,∫ T

0

〈−DRε(u̇ε(t)), wε(t)〉Y ∗,Y dt = −
∫ T

0

〈∫
Q

r(ω, x)Tεu̇ε(t)Tεwε(t)dx
〉
dt (36)

→ −
∫ T

0

〈∫
Q

r(ω, x)u̇(t)w(t)dx

〉
dt =

∫ T

0

〈−DRhom(u̇(t)), w(t)〉Y ∗0 ,Y0
dt.

The above convergence follows since (36) is a scalar product of a strongly and a
weakly convergent sequence. Moreover, by Proposition 3.5 (i),∫ T

0

Ẽε(t, wε(t))dt

=

∫ T

0

e2Λt

〈∫
Q

V (ω, x, e−ΛtTε∇wε(t)) + f(ω, x, e−ΛtTεwε(t))dx
〉
dt

−
∫ T

0

〈∫
Q

Λr

2
|Tεwε(t)|2dx

〉
dt.

As ε→ 0, this expression converges to∫ T

0

e2Λt

〈∫
Q

V (ω, x, e−Λt∇w(t) + χ(t)) + f(ω, x, e−Λtw(t))− Λr

2e2Λt
|w(t)|2dx

〉
dt.

This follows completely analogously to the proof of Proposition 3.5 (ii) using the
strong convergences (35) and the growth conditions of the integrands (standard
argument using the dominated convergence theorem). By (34), the last expression

equals
∫ T

0
Ẽhom(t, w(t))dt and therefore collecting the above statements we conclude

that

lim inf
ε→0

∫ T

0

Ẽ∗ε (t,−DRε(u̇ε(t)))dt ≥
∫ T

0

Ẽ∗hom(t,−DRhom(u̇(t)))dt, (37)

where we also use (33).
Collecting (30), (31), (32) and (37), we obtain that∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt

≤ −Rhom(u(T )) +Rhom(u(0)) =

∫ T

0

〈−DRhom(u̇(t)), u(t)〉Y ∗0 ,Y0
dt.

This inequality is, in fact, an equality by the Fenchel-Young inequality. Since u(t) =
eΛty(t), Lemma 4.1 (iii) implies that y is the unique solution to (11) with y(0) = y0.
Furthermore, using (30) and (31) we obtain

lim sup
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≤ −Rhom(u(T )) +Rhom(u(0)).

Also, exploiting the equality (29) and the liminf inequalities (32), (37), we obtain

lim inf
ε→0

(−Rε(uε(T )) +Rε(uε(0))) ≥
∫ T

0

Ẽhom(t, u(t)) + Ẽ∗hom(t,−DRhom(u̇(t)))dt

= −Rhom(u(T )) +Rhom(u(0)).

This results in

lim
ε→0

e2ΛT

2

〈∫
Q

r(ω, x)|Tεyε(T )|2dx
〉

= lim
ε→0
Rε(uε(T )) = Rhom(u(T )),
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where we use that Rε(uε(0)) converges to Rhom(u(0)). Noting that Rhom(u(T )) =
e2ΛT

2

〈∫
Q
r(ω, x)|y(T )|2dx

〉
, the above and (26) imply that Tεyε(T )→ y(T ) strongly

in Y . Since Tεy(T ) = y(T ) by shift-invariance of y(T ), we obtain that yε(T )→ y(T )
strongly in Y . We may replace T by any t ∈ (0, T ] in the above procedure to obtain
yε(t) → y(t) strongly in Y . Convergence for the entire sequence is obtained by a
standard contradiction argument using the uniqueness of the solution for the limit
problem.

Step 4. Convergence of ẏε and Eε(yε(t)). The EVI (7) is equivalent to the
differential inclusion (cf. (1) in the Introduction)

0 ∈ DRε(ẏε(t)) + ∂FEε(yε(t)) for a.e. t ∈ (0, T ).

This and the chain rule for the Λ-convex functional Eε (see, e.g., [42]) imply that
d
dtEε(yε(t)) = −〈DRε(ẏε(t)), ẏε〉Y ∗,Y . An integration over (0, t), for an arbitrary

t ∈ (0, T ], yields∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds = Eε(yε(0))− Eε(yε(t)).

Since yε(t)→ y(t) strongly in Y and y(t) is shift-invariant, it follows that Tεyε(t)→
y(t) strongly in Y . As a result of this and using the weak convergence in (27),
similarly to the proof of (32), we obtain that lim infε→0 Eε(yε(t)) ≥ Ehom(y(t)) (by
employing Proposition 3.5). As a consequence, using the additional assumption
Eε(yε(0))→ Ehom(y(0)), we obtain

lim sup
ε→0

∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≤ Ehom(y(0))− Ehom(y(t))

=

∫ t

0

〈DRhom(ẏ(s)), ẏ(s)〉Y ∗0 ,Y0
ds,

where in the last equality we use that y is the solution to the limit problem. Note

that it holds
∫ t

0
〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds =

∫ t
0

〈∫
Q
r|Tεẏε(s)|2dx

〉
ds and since

Tεẏε ⇀ ẏ weakly in L2(0, T ;Y ), it follows that

lim inf
ε→0

∫ t

0

〈DRε(ẏε(s)), ẏε(s)〉Y ∗,Y ds ≥
∫ t

0

〈DRhom(ẏ(s)), ẏ(s)〉Y ∗0 ,Y0
ds.

Combining the last two inequalities and the weak convergence Tεẏε ⇀ ẏ, we con-
clude that for all t ∈ (0, T ],

ẏε → ẏ strongly in L2(0, t;Y ), Eε(yε(t))→ Ehom(y(t)).

Appendix A. Normal integrands and integral functionals. In the following
we recall some key facts about measurable integrands and conjugates of integral
functionals. A detailed and more general theory can be found in [41].

Let (S,Σ, µ) be a complete measure space with a σ-finite measure µ and let X
be a separable reflexive Banach space with dual space X∗. The product-σ-algebra
of Σ and B(X) (Borel σ-algebra on X) is denoted by Σ ⊗ B(X). In the following
we refer to a function f : S ×X → R ∪ {∞} as an integrand. For s ∈ S, we denote
the function x 7→ f(s, x) by fs.

Definition A.1 (Normal integrand). We say that an integrand f is normal if the
following two conditions hold:
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(i) f is Σ⊗ B(X)-measurable.
(ii) For each s ∈ S, the function fs is proper and l.s.c.

If additionally, for each s ∈ S, fs is convex, we say that f is a convex normal
integrand.

Note that if f is a normal integrand and x : S → X is a (Σ,B(X))-measurable
function, then s 7→ f(s, x(s)) defines a Σ-measurable mapping.

Remark A.2 (Carathéodory integrand). We call an integrand f Carathéodory if f
is finite everywhere, f(·, x) is Σ-measurable for all x ∈ X, and f(s, ·) is continuous
for all s ∈ S. If an integrand is Carathéodory, then it is normal (for the proof see,
e.g., [1, Lemma 4.51]).

Let f be a normal integrand. We define f∗ : S×X∗ → R∪{∞} to be the convex
conjugate of f in its second variable, i.e., f∗(s, ξ) = f∗s (ξ) is defined by

f∗s (ξ) = sup
x∈X

(
〈ξ, x〉X∗,X − fs(x)

)
.

Proposition A.3 ([41, Proposition 2]). Let f be a normal integrand. If for each
s ∈ S, f∗s is proper (this is true if, e.g., f ≥ −c for some c > 0), then f∗ is a convex
normal integrand. If f is a convex normal integrand, then (f∗)

∗
= f .

Let p ∈ (1,∞) and q = p
p−1 be its dual exponent of integrability. Since µ is

σ-finite, we may identify Lp(S;X)∗ with Lq(S;X∗) (see [47, Theorem 1.5]). For a
given normal integrand f , we define an integral functional If : Lp(S;X)→ R∪{∞}
by

If (x) =

∫
S

f(s, x(s))dµ(s),

if s 7→ f(s, x(s)) defines an element in L1(S) and otherwise we set If to be +∞.
Analogously, we define If∗ : Lq(S;X∗)→ R ∪ {∞}.
Proposition A.4 ([41, Theorem 2]). Let p ∈ (1,∞), q = p

p−1 . Let f be a normal

integrand. If there is an element x ∈ Lp(S;X) such that If (x) < ∞, then for all
ξ ∈ Lq(S;X∗), it holds

If∗(ξ) = sup
x∈Lp(S;X)

(∫
S

〈ξ(s), x(s)〉X∗,X dµ(s)− If (x)

)
. (38)

Remark A.5 (Measurable selection). The above theorem implies a measurable
selection principle for parametrized minimization problems. Namely, setting ξ = 0
above, we have ∫

S

inf
x∈X

f(s, x)dµ(s) = inf
x∈Lp(S;X)

∫
S

f(s, x(s))dµ(s).

In particular, if the minimum on the right-hand side is attained, the latter equality
implies that there exists a (Σ,B(X))-measurable function x : S → X such that
infx∈X f(s, x) = f(s, x(s)) µ-a.e.
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[53] V. V. Zhikov, S. M. Kozlov and O. A. Olěınik, Averaging of parabolic operators, Trudy
Moskovskogo Matematicheskogo Obshchestva, 45 (1982), 182–236.
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