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Markov-chain models are constructed for the probabilistic description of the drift of marine debris from
Malaysian Airlines flight MH370. En route from Kuala Lumpur to Beijing, the MH370 mysteriously disap-
peared in the southeastern Indian Ocean on 8 March 2014, somewhere along the arc of the 7th ping ring
around the Inmarsat-3F1 satellite position when the airplane lost contact. The models are obtained by dis-
cretizing the motion of undrogued satellite-tracked surface drifting buoys from the global historical data bank.
A spectral analysis, Bayesian estimation, and the computation of most probable paths between the Inmarsat
arc and confirmed airplane debris beaching sites are shown to constrain the crash site, near 25◦S on the
Inmarsat arc.

PACS numbers: 02.50.Ga; 47.27.De; 92.10.Fj

Application of tools from ergodic theory on his-
torical Lagrangian ocean data is shown to con-
strain the crash site of Malaysian Airlines flight
MH370 given airplane debris beaching site in-
formation. The disappearance of flight MH370
constitutes one of the most enigmatic episodes
in the history of commercial aviation. The tools
employed have far-reaching applicability as they
are particularly well suited in inverse modeling,
critical for instance in revealing contamination
sources in the ocean and the atmosphere. The
only requirement for their success is sufficient
spatiotemporal Lagrangian sampling.

I. INTRODUCTION

The disappearance in the southeastern Indian ocean
on 8 March 2014 of Malaysian Airlines flight MH370 en
route from Kuala Lumpur to Beijing is one of the biggest
aviation mysteries. With the loss of all 227 passengers
and 12 crew members on board, flight MH370 is the sec-
ond deadliest incident involving a Boeing 777 aircraft. At
a cost nearing $155 million its search is already the most
expensive in aviation history.

In January 2017, almost three years after the air-
plane disappearance, the Australian Government’s Joint
Agency Coordination Centre halted the search after fail-
ing to locate the airplane across more than 120,000 km2

in the eastern Indian Ocean. On May 29th 2018, the
latest attempt to locate the aircraft completed after an
unsuccessful several-month cruise by ocean exploration
company Ocean Infinity through an agreement with the
Malaysian Government.

a)Electronic mail: pmiron@miami.edu

Analysis1,2 of the Inmarsat-3F1 satellite communica-
tion, provided in the form of handshakes between engines
and satellite, indicated that the aircraft had lost contact
along the 7th ping ring around the position of the satel-
lite on 8 March 2014, ranging from Java, Indonesia, to
the southern Indian Ocean, southwest of Australia (Fig.
1). Since then, several pieces of marine debris belonging
to the airplane have been found washed up on the shores
of various coastlines in the southwestern Indian Ocean
(Fig. 1). The first debris piece was discovered on 29 July
2015 on a beach of Reunion Island. Locations and dates
from eight confirmed beachings3 are indicated in Table I.

MH370 search approaches to date have included: the
application of geometric nonlinear dynamics tools on sim-
ulated surface flows or as inferred from satellite altimetry
observations with a focus on the analysis of the efficacy
of the aerial search4; attempts to backward trajectory re-
construction from drifter relative dispersion properties5;
inspection of trajectories of satellite-tracked surface drift-
ing buoys (drifters) and direct trajectory forward in-
tegrations of altimetry-derived currents corrected using
drifter velocities6; forward trajectory integrations of var-
ious flow representations corrected to account for lee-
way drift7–10; Bayesian inference of debris beaching sites
using trajectories from an ensemble of model velocity
realizations11; backward trajectory integrations of simu-
lated velocities12; consideration of Bayesian methods for
estimating commercial aircraft trajectories using models
of the information contained in satellite communications
messages and of the aircraft dynamics13; and biochemi-
cal analysis of barnacles attached to debris washed ashore
to infer the temperature of the water they were exposed
to14.

Here we introduce a novel framework for locating the
MH370 crash site. Rooted in probabilistic nonlinear dy-
namical systems theory, the framework uses the locations
and times of confirmed airplane debris beachings and his-
torical trajectories produced by drifters to restrict the
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Beaching site Days since crash Color in plots
Reunion Island (RE) 508
South Africa (ZA) 655
Mozambique (MZ) 662
Mozambique (MZ) 721
Mauritius (MU) 753
Madagascar (MG) 808
Mauritius/Rodrigues (MU/RRG) 827
Tanzania (TZ) 838

TABLE I. Beaching information for confirmed debris from Malaysian Airlines flight MH370, which crashed in the Indian Ocean
on 8 March 2014.

crash site along the Inmarsat arc. An additional im-
portant aspect of our approach to MH370 search, which
makes it quite different than the previous ones, is that it
directly targets crash site localization while exclusively
performing forward evolutions.

Even though we have chosen to carry out a fully data-
based analysis, the framework may be applied on the out-
put from a data-assimilative system, enabling operational
use of it in guiding search efforts, currently suspended, if
they ever are to be resumed

II. SETUP

The probabilistic framework to be developed in this
paper builds on well-established results from ergodic
theory15 and Markov chains16,17, which place the focus
on the evolution of probability densities rather than in-
dividual trajectories in the phase space of a nonlinear
dynamical system (mathematical details are deferred to
Appendix A in the Supplementary Material). At the
core of the measure-theoretic characterization of nonlin-
ear dynamics is the transfer operator and its discrete
version, the transition matrix. The relevant dynamical
system here is that obeyed by trajectories of airplane
debris pieces that are transported under the combined
action of turbulent ocean currents and winds mediated
by inertia18,19.

Let {ξt+kT }k≥0 denote the time-discrete stochastic
process describing such random trajectories. Assuming
that this process is time-homogeneous over a sufficient
long time interval T, its transition probabilities are de-
scribed by a stochastic kernel, say K(x, y) ≥ 0 such that∫
X
K(x, y)y. = 1 for all x in phase space X, represented

by the surface-ocean domain of interest. A probability
density f(x) ≥ 0,

∫
X
f(x)x. = 1, describing the distribu-

tion of ξt at any time t ∈ T evolves to

Pf(y) =

∫
X

K(x, y)f(x)x. (1)

at time t + T ∈ T, which defines a Markov operator
P : L1(X) 	 generally known as a transfer operator15.

To infer the action of P from a discrete set of trajecto-
ries one can use a Galerkin approximation referred to as
Ulam’s method20–22. This approach consists in covering

X with N connected boxes {B1, . . . , BN}, disjoint up
to zero-measure intersections, and projecting functions
in L1(X) onto a finite-dimensional space VN spanned
by indicator functions of boxes normalized by box area.
The discrete action of P on VN is described by a matrix
P ∈ RN×N called a transition matrix. Let ξt be a posi-
tion chosen at random from a uniform distribution on Bi

at time t. Then

Pij = prob[ξt+T ∈ Bj | ξt ∈ Bi] =

∫
Bi

∫
Bj
K(x, y)x.y.

area(Bi)
,

(2)
which can be estimated as (cf. Appendix A of Miron et
al.23)

Pij ≈
# points in Bi at t that evolve to Bj at t+ T

# points in Bi at t
.

(3)
Note that

∑
j Pij = 1 for all i, so P is a (row) stochas-

tic matrix that defines a Markov chain on boxes, which
represent the states of the chain16,17. The evolution of
the discrete representation of f(x), i.e., a probability vec-
tor f = (f1, · · · , fN ),

∑
fi = 1 where fi =

∫
Bi
f(x)x. , is

calculated under left multiplication, i.e.,

f (k) = fP k, k = 1, 2, . . . . (4)

III. CONSTRUCTION OF A SUITABLE TRANSITION
MATRIX

The surface circulation of the Indian Ocean is influ-
enced by monsoon intraseasonal variability24. An appro-
priate Markov-chain model for marine debris motion in
the Indian Ocean must account for this variability, which
we do in constructing the chain’s P in a fully data-based
fashion using trajectories produced by satellite-tracked
drifters.

The drifter data are collected by the National Oceanic
Atmospheric Administration/Global Drifter Program
(NOAA/GDP)25. Trajectories sampling the world
oceans including the Indian Ocean exist since 1979. For
the purpose of the present analysis we restrict attention
to trajectory portions during which the drogue (a 15-m-
long sea anchor designed26 to minimize wind slippage and
wave-induced drift) attached to the spherical float carry-
ing the satellite tracker is absent27. Undrogued drifter



3

FIG. 1. Covering of the Indian Ocean domain into boxes
forming the various Markov-chain models constructed using
satellite-tracked undrogued drifters to describe the motion of
marine debris produced by the crash of Malaysian Airlines
flight MH370. Boxes with positive probability of the chain(s)
to terminate outside the domain (leaky states) are indicated
in dark gray, boxes including land–water interfaces (sticky
states) are shown in light gray, and boxes along an arc of 7th
ping ring around the Inmarsat-3F1 satellite position when
communication with the MH370 flight was lost (crash states)
are highlighted in yellow. Stars correspond to the airplane
debris beaching sites in Table I.

motion is affected by inertial effects (i.e., those produced
by buoyancy, finite-size, and shape) and thus is more rep-
resentative of marine debris motion than that of drogued
drifters, which more closely follow water motion19.

To construct P , we cover the Indian Ocean domain
with a grid of 0.25◦ × 0.25◦ longitude–latitude boxes
(Fig. 1). The size of the cells was selected to maximize
the grid’s resolution while each individual box is sam-
pled by enough trajectories. Similar grid resolutions in
analysis involving buoy trajectory data were employed in
recent work23,28,29, where sensitivity analyses to cell size
variations and data amount truncations are presented.
The area of the boxes varies from about 400 to 750 km2,
yet the normalization by box area in the definition of
the vector space VN makes this variation inconsequen-
tial, i.e., a stochastic transition matrix is obtained with-
out the need of a similarity transformation (e.g., Froyland
and Padberg30). Ignoring time, there are 226 drifters on
average per box (cf. Fig. S1 in the Supplementary Ma-
terial); the number of drifters vary between 36 and 58
if the data are grouped according to season of the year.
Equation (3) is then evaluated for appropriate transition
time (T ) and time-homogeneity interval (T) choices.

Using T = 1 d, approximately the surface ocean La-
grangian decorrelation time31, the simple Markovian dy-
namics test λ(P (nT )) = λ(P (T ))n, where λ denotes
eigenvalue, holds very well up to n = 10 (cf. Fig. S2

in the Supplementary Material). Here we have chosen
to use n = 5 (equivalently T = 5 d) as this guarantees
both good interbox communication and negligible mem-
ory into the past. Similar choices have been made in
recent applications involving drifter data23,28,29,32,33.

The simplest choice for the time-homogeneity interval
T is one that coincides with the entire record of trajec-
tory data23,28,29,32,33. The resulting autonomous Markov
chain, which will be only considered for comparison pur-
poses, ignores any mode of variability of the ocean circu-
lation and thus is not optimal for describing debris mo-
tion in seasonally dependent environments like the Indian
Ocean.

Different T intervals can be considered (e.g., van Sebille
et al.34) to represent the dominant variability mode of the
Indian Ocean circulation, produced by seasonal changes
in the wind stress associated with the Indian monsoon24.
During the northern winter, when the monsoon blows
southwestward, the flow of the upper ocean is directed
westward from near the Indonesian Archipelago to the
Arabian Sea. During the northern summer, with the
change of the monsoon direction toward the northeast,
the ocean circulation reverses, with eastward flow extend-
ing from Somalia into the Bay of Bengal. Thus we con-
sider three T intervals: January–March (TW), which typ-
ically corresponds to the winter monsoon season, July–
September (TS), corresponding to the summer monsoon
season, and April–June and October–December together
(TSF), seasons which do not need to be distinguished
from one another to represent the monsoon-induced cir-
culation of the Indian Ocean. This results in three tran-
sition matrices, PW, PS and PSF, respectively, which are
appropriately considered for t ∈ TW, TS or TSF, when a
probability vector is evolved (pushed forward) under left
multiplication. We will refer to the resulting Markov-
chain model as nonautonomous.

Finally, if the interest is in the fate of the debris in the
seasonally changing Indian Ocean environment after sev-
eral years, one can more conveniently push forward prob-
abilities using a P constructed by combining the above
seasonal P s in such a way that the resulting Markov chain
has a transition time T of 1 yr. Recalling that T = 5 d
for the seasonal P s, this is (approximately) achieved by
P = P 18

W · P 18
SF · P 18

S · P 18
SF. The resulting Markov-chain

model will be referred to as autonomous season-aware.
Similar constructions have been considered earlier (e.g.,
Froyland et al.35).

IV. CRASH SITE ASSESSMENT FROM SPECTRAL
ANALYSIS

Information about the long-time asymptotic behav-
ior of a dynamical system described by an autonomous
transition matrix P can be obtained from its spectral
properties36–38. Indeed, the leading eigenvector structure
of P suggests a dynamical partition or geography23,28,35
of weakly interacting sets that constrains connectivity



4

FIG. 2. (left) Dominant left eigenvector of the autonomous season-aware transition matrix with beaching sites indicated (cf.
Table I). (middle) Dominant right eigenvector with the Inmarsat arc overlaid. (right) Zonally averaged right eigenvector (solid,
bottom axis) and its derivative (dashed, top axis). Local maxima in the left eigenvector are regions that attract trajectories
which tend to run long there before exiting the Indian Ocean. The basin of attraction roughly corresponds to the region
enclosed by the 0.5 right eigenvector level set, above which the eigenvector looks closer to 1.

between distant points in phase space. Here we un-
veil such a dynamical geography from the autonomous
season-aware Markov chain to gain insight into debris
motion and thus the crash site.

For any irreducible and aperiodic stochastic P , its
dominant left eigenvector, p, satisfies pP = p and
(scaled appropriately) represents a limiting invariant or
stationary distribution, namely, p = limk↑∞ fP k for any
probability vector f (cf., e.g., Horn and Johnson39). Also,
1 = P1, where 1 denotes the vectors of ones, is the right
eigenvector corresponding to the eigenvalue 1 and p.

If P is substochastic, i.e.,
∑

jPij < 1 for some i, the
dominant left eigenvector p ≥ 0 decays at a rate set by
the dominant eigenvalue λ1 < 1, and has the interpre-
tation of a limiting almost-invariant or quasistationary
distribution, namely, the limiting distribution of trajec-
tories that run long before terminating (cf. Chapter 6.1.2
of Bremaud16). Restricted to the set B where those tra-
jectories start, i.e., the basin of attraction, the dominant
right eigenvector is close to 123,28,35,40.

The left and middle panels of Fig. 2 show respec-
tively the dominant left (p) and right (r) eigenvectors of
the autonomous P introduced in the preceding section.
The right panel in turn shows again the right eigenvec-
tor, but this time zonally averaged (solid, bottom axis),
along with its (meridional) derivative (dashed, top axis),
which maximizes near the 0.5 level set. The dominant
eigenvalue λ1 = 0.8181 sets an annual decay rate for p
of about 20%, which is nearly four times slower than
that experienced by the first subdominant left eigenvec-
tor (λ2 = 0.4012). Note the structure of p, taking many
local maxima toward the western side of Indian Ocean,

inside the 20–40◦S band. The right eigenvector is much
less structured, looking closer to 1 within the region en-
closed by the 0.5 level set. This region approximately
forms a basin of attraction B = {r > 0.5} for trajec-
tories that asymptotically distribute as p conditional to
staying in the domain for a long time.

The expected retention time in B is given by TB =
T/(1 − λB), where λB is the dominant eigenvalue of P
restricted to B (cf. Appendix B of the Supplementary
Material for a derivation and Miron et al.23 for a recent
application). We compute λB = 0.5103, and noting that
T = 1 yr for the autonomous season-aware P , we esti-
mate TB = 2.0421 yr, which is of the order of the mean
time it took observed airplane debris to reach the African
coasts (cf. Table I). This long residence time and the large
area spanned by B impose a constraint on the connec-
tivity between locations in- and outside of B by debris
trajectories, which we use to make an initial assessment
of the possible crash site as follows.

Note in the left panel of Fig. 2 that the observed beach-
ing sites (stars) lie within or the border of the western
region where p tends to locally maximize. Note in the
middle panel that the Inmarsat arc traverses the eastern
side of B. This suggests a possible crash site somewhere
along the Inmarsat arc sector between the latitudes of
intersection with of B, roughly 20 and 40◦S.

In the next sections we will show that the uncertainty
(about 3600 km) of the spectral assessment above can be
substantially reduced using a dedicated Bayesian analysis
along with the computation of most probable paths and
the inspection of a particular drifter trajectory.
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V. BAYESIAN ESTIMATION OF THE CRASH SITE

The Bayesian analysis uses the beaching events as ob-
servations to infer the probability distribution of the
crash site (refer to Appendices C and D in the Supple-
mentary Material for mathematical details). Because of
the shorter-time nature of these observations, the anal-
ysis is most appropriately carried out using the nonau-
tonomous Markov-chain model, albeit with some conve-
nient adaptation.

As our computational domain is not the whole ocean,
necessarily trajectories can leave the domain, and not
have an assignable termination box. For example, the
Agulhas Current transports approximately 70 Sv (1 Sv =
106 m3s−1) out of the western boundary of the domain41.
This leakage is represented by

∑
jPij < 1 for the leaky

states i ∈ L ⊂ S := {1, . . . , N} (black boxes in Fig.
1). (Herein P is any PW, PS or PSF, which are applied
for t ∈ TW, TS or TSF as appropriate.) To account for
the leakage and retain the open dynamics nature of the
Indian Ocean, we introduce an absorbing state N + 1,
commonly referred to as cemetery state, and consider
1−

∑
jPi∈L,j to be the probability of the chain to move

and terminate in it, if currently being in state i ∈ L. This
amounts to augmenting P ∈ RN×N to P ∈ R(N+1)×(N+1)

by {
Pi∈L,j=N+1 ← 1−

∑
j Pi∈L,j ,

Pi=N+1,i = 1,
(5)

satisfying
∑

j Pij = 1.
In addition to the dynamics being open, as we are con-

sidering floating debris which might come ashore some-
where, the transition matrix has to account for the
Markov chain possibly terminating on water–land inter-
faces. Such events are hard to identify from the dataset
because drifters can terminate for multiple reasons (e.g.,
malfunction, recovery, end of life). To account for beach-
ing, we identify the set of sticky states S ⊂ S (grey boxes
in Fig. 1) with those coastal boxes that contain land–
water interfaces and introduce the land fraction function
` : S → (0, 1). Note that a sticky state may also be
leaky, namely, S ∩ L need not be empty. We then de-
note by D ⊂ S the subset of sticky boxes where airplane
debris were found to beach, to distinguish them from
the others. Beaching is then modeled by augmenting
P ∈ R(N+1)×(N+1) to P ∈ R(N+1+M)×(N+1+M), satis-
fying

∑
j Pij = 1 and where M = |D|(= 8), according

to:
Pi∈S,j∈S∪{N+1} ← (1−`(i∈S))Pi∈S,j∈S∪{N+1},

Pi∈S̄,j=N+1 ← `(i∈S̄) + (1−`(i∈S̄))Pi∈S̄,j=N+1,

Pi∈D,j=N+1+m(i∈D) = `(i∈D),

Pi∈N+1+m(D),i = 1,

(6)
where S̄ := S \ D, m : D → {1, . . . ,M}, and N +
1 + m(i ∈ D) represents a target cemetery state where
the chain terminates whenever beaching from i ∈ D.

FIG. 3. Posterior probability of the crash site, for given as-
sumed mutually independent observations of debris beaching
time and based on the nonautonmous Markov-chain model.
Indicated are countries and territories in the western side of
the Indian Ocean domain and corresponding boxes of the do-
main covering. Acronyms SO and KE stand for Somalia and
Kenya, respectively; cf. Table I for the rest of the acronyms.

The first line in (6) deals with sticky boxes if the chain
flows on. The second line deals with sticky but nonde-
bris beaching boxes, each of which also is terminated in
the cemetery state (N + 1). The third line deals with
debris-beaching boxes if the chain terminates from them
by beaching. Finally, the fourth line makes each target
cemetery state absorbing.

Having settled on an appropriate P representation, we
proceed to formulate the Bayesian estimation problem
by first fixing some notation. Let C ⊂ S denote the
set of indices of the boxes (states) along the Inmarsat
arc—the possible crash sites. We call b a state in the set
B := {N +2, . . . , N +M +1} of airplane debris beaching
site boxes and further make b := (b)b∈B ∈ NM . Let
{ξt+kT }k≥0 be time-discrete random position variables
that take values on the augmented Markov chain states
S ∪ {N + 1} ∪ B, and t denotes the crash time, when
the chain starts. Consider then the random variable τ b
denoting the time after which the chain gets absorbed
into a particular beaching state b, namely,

τ b := inf
k≥0
{t+ kT : ξt+kT = b ∈ B}. (7)

Define probc[·] := prob[ · | ξt = c ∈ C] and

pbc(k) := 1cP
k · 1b, c ∈ C, b ∈ B, (8)

where 1j = (δij)i∈S∪{N+1}∪B, and then note that

probc[τ
b = t+kT ] =

{
pbc(k) = 0 if k = 0,

pbc(k)− pbc(k − 1) if k > 0.
(9)

Let us now assume that after the crash every single
piece of debris was transported mutually independently.
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For each debris, we have access to two observations of
random quantities: the beaching site and the beaching
time. Let ξ and τ denote these random variables, re-
spectively, and note that if the target is absorbing, then
τ b < ∞ from (7) implies ξ = b, and thus the events
{ξ = b and τ = tb} and {τ b = tb} are equivalent. Thus
the joint probability of these observations, i.e.,

p(tb|c) := probc[τ = tb and ξ = b] ≡ probc[τ
b = tb],

(10)
is computable as in (9). The probabilities p(tb|c) depend
on the crash site c. Now, making use of the independence
assumption above, the joint probability of the observa-
tions, given the crash site c, is

p(tb|c) :=
∏
b∈B

p(tb|c). (11)

The idea of Bayesian inversion42 is to find a probabilis-
tic characterization of the unknown parameter c (crash
site) given the debris beaching times and locations. By
viewing p(tb|c) as a function of c, one obtains a function
L(c; tb) which represents the likelihood of c. The poste-
rior distribution of c, i.e., the probability distribution of c
once tb have been observed, follows from Bayes’ theorem:

p(c|tb) ∝ p(tb|c) · p(c), (12)

where p(c) is the prior distribution of c, representing the
state of knowledge about c before to data have been ob-
served.

Assuming that p(c) is uniform (i.e., maximally un-
informative) over C, the Inmarsat arc boxes, Fig. 3
shows p(c|tb) for debris beaching times tb as given in
Table I. The maximum likelihood estimator, cmax =
arg maxc p(t

b|c), corresponds to the index of the In-
marsat arc box centered at about 31◦S. To check how rea-
sonable this crash site estimate is, the top panel of Fig. S3
in Appendix F of the Supplementary Material shows that
the joint probability probcmax

[τ = t+ kT and ξt+kT = s]
for each sticky state s ∈ S tends to maximize near the
observations. The misfit is attributed to the historical
drifter data not capturing all of the details of the In-
dian Ocean dynamics and in particular those when the
crash took place and the years after it. For instance, the
bottom panel of Fig. S3 shows that the misfit augments
when the monsoon variability is ignored.

The Bayesian crash site estimate, 31◦S on the Im-
marsat arc, lies within the arc portion identified as a
likely crash region using the spectral analysis of the pre-
vious section. An important difference is that the uncer-
tainty of the assessment is constrained by the Bayesian
analysis. For instance, the 95% central posterior inter-
val length, obtained by computing the 2.5 and 97.5%-ile
of the posterior distribution, is of about 12◦ along the
arc, which is nearly twice as narrow as the spectral in-
ference. However, the Bayessian inference is affected by
a bimodality in the single posterior distributions of the
crash site. This is demonstrated in Fig. 4, which shows

FIG. 4. Single posterior distributions of the latitude of the
crash site along the Inmarsat arc, computed using the nonau-
tonmous Markov-chain model. Refer to Table I for acronym
meanings.

p(c|tb) plotted for each b ∈ B individually as a function
of the latitude of c ∈ C. These can be collected into two
quite consistent groups. Specifically, a southern group,
which favors a most likely crash site near 36◦S on the arc,
and a northern group, favoring a most likely position near
25◦S.

VI. NARROWING THE UNCERTAINTY OF THE CRASH
SITE DETERMINATION

We close the analysis by discussing one additional cal-
culation and a particular observation that altogether pro-
vide means for favoring the northern of the above two
possible crash sites, improving the confidence of its de-
termination.

Drifter data does not merely give the chance to con-
struct a Markov chain model of the surface currents, but
also to study single trajectories. Thus we consider the
most probable paths of our model that end up at the
particular beaching sites. More precisely, as we know
how long (in time) the single trajectories were, we com-
pute most probable paths ending at a given beaching
site b ∈ B after having ran for a fixed time tb. The basic
idea of the process is to set up and iteratively solve a
dynamical programming equation relating the maximal
probability of a path reaching some state i ∈ S after ex-
actly t+ T units of time with the maximal probabilities
of paths reaching other states j ∈ S after t (cf. Appendix
E in the Supplementary Material for details as well as
for a review of standard unconstrained extremal path
notions43,44). It is important to realize that the probabil-
ity of single paths is extremely low (as there are so many
possible ones), and the most probable one can sensitively
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FIG. 5. Most probable paths (dotted) along the nonau-
tonomous Markov chain between Inmarsat arc boxes and each
of the debris beaching sites (cf. Table I), and trajectory (gray)
of a NOOA/GDP drifter (ID 56568) launched west of the Aus-
tralian coast.

depend on the slightest variations of the dynamics. Thus
they are only suitable for qualitative comparisons with
observations. We note that constrained paths were con-
sidered to analyze currents in the Mediterranean Sea by
Ser-Giacomi et al.45, yet without excluding the possibil-
ity to hit the target before the end time.

The result is shown in Fig. 5, revealing, on the one
hand, quite remarkably that the most probable paths
of different fixed lengths (dotted curves) start from a
common box that is the Inmarsat arc box centered at
roughly (105◦E, 16◦S). On the other hand, Triñanes et
al.6 report on a drifter (ID 56568, from the NOAA/GDP
database) that crossed the Inmarsat arc near (103◦E,
22◦S) in March 2014 and after looping for a little while
about the arc near (102◦E, 25◦S) reached the vicinity of
Reunion Island in July 2015, about the time when the
first MH370 debris piece was spotted. The trajectory of
the drifter in question is shown in gray in Fig. 5.

Taken together, the most probable path computation
and the specific drifter trajectory observation favor the
Bayesian crash site estimate near 25◦. Excluding from
the Bayesian analysis the debris beaching data that leads
to single posterior crash site distributions peaking near
36◦S, we estimate a 95% central posterior interval length
of 16◦ along the Inmarsat arc for the refined crash site
inference.

We finally note that the qualitative assessment in this
section, along with the spectral analysis assessment, pro-
vide a guideline to construct a prior distribution that can
be incorporated to the Bayesian analysis. More specifi-
cally, these assessments suggest an informative prior dis-
tribution narrowing near 25◦N on the Inmarsat arc.

VII. SUMMARY AND CONCLUDING REMARKS

Using historical satellite-tracked surface drifter data
in the Indian Ocean, we have proposed a Markov-chain
model representation of the drift of observed marine de-
bris from the missing Malaysian Airlines flight MH370.

The results from a spectral analysis of an autonomous
discrete transfer operator (transition matrix) that con-
trols the long-term evolution of the debris in a season-
ally changing environment showed that the crash region
is likely restricted to the 20–40◦S portion of the arc of
the 7th ping ring around the Inmarsat-3F1 satellite po-
sition when the airplane lost contact on 8 March 2014.
The solution of a dedicated Bayesian estimation prob-
lem that uses the locations and times of confirmed air-
plane debris beachings in a Markov-chain model defined
by a nonutonomous transition matrix capable of resolv-
ing shorter-term details of the debris evolution, further
identified two probable crash sites within the aforemen-
tioned arc portion, one near 36◦S and another one near
25◦S. Consideration of most probable paths between the
Inmarsat arc and the debris beaching sites constrained by
the observed (elapsed) beaching times, and the observa-
tion of a drifter that took a trajectory similar to the path
connecting the arc and the Reunion Island beaching site,
was shown when taken together to favor the 25◦S crash
site estimate.

Our Bayesian crash site estimate, with a 95% cen-
tral posterior interval ranging from 33 to 17◦S on
the Inmarsat arc, is consistent with the most recently
published7 crash area estimate, 28–30◦ along the arc,
but it lies north of the latest recommended search area
by the Commonwealth Scientific and Industrial Research
Organisation8, at around 35◦S. Notwithstanding, it is
consistent with the original northern definition of high-
priority search zone by the Australian Transport Safety
Bureau46.

The uncertainty of our crash site estimate may be at-
tributed to unresolved nonautonomous dynamical effects
by the Markov-chain model constructed from the histor-
ical drifter data. Indeed, the historical drifter data may
fall short of capturing all of the details of the circulation
(e.g., at the submesoscale), particularly during the years
after the crash took place. Moreover, undrogued drifter
motion, while different than water parcel motion, may
not accurately represent the motion of airplane debris
pieces with varied shapes and thus drag properties.

While our results may provide grounds for guiding
search efforts, currently halted, the operational use of the
probabilistic framework proposed here in such a task will
require one to consider an appropriate data-assimilative
system. Indeed, the probabilistic framework may well be
applied on observed trajectory data, as we have chosen to
do in this paper, or on numerically generated trajectory
data. Clearly, the success of such an operative use of the
framework will depend on the operator’s ability to appro-
priately modeling the effects of the inertia of the debris
pieces (i.e., of their buoyancy, size and shape), which is
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a subject of active research18,19,47.
We finally note that the framework here presented is

well-suited for inverse modeling in a general setting and
thus its utility is far reaching. Such modeling is criti-
cal, for instance, in contamination source backtracking48.
Relevant oceanic problems include that of red tide early
development tracing49 and oil spill source detection50. In
the atmosphere, examples for instance are the identifica-
tion of sources of greenhouse gases emission51 and toxic
agents release52.
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