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1 Introduction

The atmospheric boundary layer is the lowest part of the atmosphere where
life takes place. For understanding weather patterns affecting human lives
a good understanding of the dynamics in this layer is required. One im-
portant process in the atmospheric boundary layer is turbulence. Decisions
that affect human life must be made daily based on predictions of turbulent
flows. Hence it is fundamental to understand the physical processes behind
it. But so far there are still many processes which are not fully understood
and cannot be statistically modelled. This is especially true for the stably
stratified atmospheric boundary layer which typically occurs during the night
or above cooler surfaces like glaciers. Apart from turbulence it includes small
scale non turbulent motions of complex origins that are poorly understood
by the scientific community. As stated in the paper by Vercauteren and Klein
(2015), the presence of such motions could affect turbulent mixing to a large
extent if the thermal stratification is very high. Usual approaches which
aim to recognize events in the atmospheric boundary layer assume certain
physical processes and then search for a trace of these in the atmospheric
time series. This can be acomplished by searching for certain geometries or
large amplitudes. However, many events in atmospheric series result from yet
unidentified physical processes. Consequently a new approach is necessary.
A statistical method was recently developed by Kang et al. (2015a) to de-
tect events in noisy time series. This method does not assume any underlying
physical processes to extract events from the time series. Nevertheless, phys-
ical mechanisms can be investigated a posteriori by analyzing the extracted
events. In this thesis we will analyse parts of the Snow-Horizontal Array
Turbulence Study (SnoHATS) dataset (Bou-Zeid et al. (2010)) which was
collected over a glacier by using a slightly modified version of this event de-
tection method. In their analysis, Kang et al. (2015) investigated events of
a certain scale by defining a maximal duration of events, and filtering out
small-scale variability. In this thesis, we will investigate different scales of
motion by applying the method for multiple timescales. We will thereby
test the sensitivity of the method to technical criteria related to timescales
of variability. In this thesis we will focus on scales from 1 to 30 minutes.
The rationale behind this choice of time window is that motions on scales
between 1 and 30 minutes in stable conditions are typically dominated by
wavelike motions, microfronts and other complex structures of unknown ori-
gin (Mahrt, (2011)). We will refer to such motions as submesomotions in the
rest of the thesis.
In chapter 2 the concept of turbulence in the atmospheric boundary layer is
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explained in more detail by first stating how we define turbulence and then
illustrating the origin of turbulence in the atmospheric boundary layer. Af-
terwards, in chapter 3, the dataset is described and in chapter 4 the steps
in the event detection method by Kang et al. (2015a) are explained. The
multiscale approach and the results from the event detection procedure are
described in chapter 5.

2 Turbulence in the Atmospheric Boundary

Layer

2.1 Turbulence

Without turbulence in the atmospheric boundary layer, life would be ex-
tremely different from how we know it. The transport of heat and pollutants
in the atmosphere and ocean would be much slower. Through its mixing
properties, turbulence has an important impact on large-scale atmospheric
flows, thereby affecting the weather and climate. Hence representing mixing
properties of turbulence accurately is crucial to the performance of weather
predictions or climate simulations. Conceptually, the airflow in the atmo-
spheric boundary layer consists of three components: the mean wind, waves
and turbulence. Turbulence occurs because of the shear (vertical difference
in wind force and/or direction) in the mean wind which triggers instabilities
that eventually result in turbulence. The temperature stratification can en-
hance or suppress turbulence through modifications of the buoyancy of the
flow. An unstable density stratification resulting from the rise of warm air
will enhance turbulence, whereas a stable density stratfication will tend to
damp it. Due to turbulence there are complications in modelling and mea-
suring the atmospheric boundary layer.
There is no universally applicable definition of turbulence. In this thesis
it will be described with the experiment by Reynolds. In the experiment
flows of fluids were analysed. To make the characteristics of flows obvious,
colour was added to the fluid. There were two different types of flows. When
the fluid was moved with a slow velocity there was a smooth colour thread.
This is called a laminar flow. However if the velocity was higher, the colour
thread oscillated and at some point the whole fluid was coloured. The ex-
periment illustrates the mixing properties of turbulent flows. Resulting from
this experiment, six different characteristics for turbulence can be stated.
It is three-dimensional, irregular and random (movements in the fluid are
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chaotic), vortical, non linear; it transports and mixes, and dissipates energy.
Moreover, Reynolds defined a non-dimensional number which includes char-
acteristic length scale of the flow, velocity scale and viscosity. This number
is defined as (Garrat (1994)):

Re =
vclc
v

where vc is a characteristic velocity scale of the flow, lc is a characteristic
length of the flow and v is the kinematic viscosity. Transition to turbulence
starts when this number is above 102. The atmosphere has typical values
of 108 which makes the flow in general fully turbulent. Velocity and length
scales decrease at night making turbulence less well developed and possibly
non-stationary.
Contrary to laminar flows, there are several different types of vortices in
turbulent flows. They differ in size and intensity. Their scale ranges from
a fraction of a milimeter or centimeter to a few hundreds or thousands of
meters.

2.2 The Origin of Turbulence in the Atmospheric Bound-
ary Layer

The atmospheric boundary layer (ABL) is the part of the atmosphere which
is directly affected by the planetary surface and is of high importance for us
as we are spending most of our lives in it.
States and processes of the ABL mainly result from the physical character-
istics of the surface. The surface influences the ABL by friction and by heat
fluxes on the ground. The thickness of the ABL varies above the sea and
mountains. On average it is 1000 km, but in mid-lattitudes it can vary from
100 meters to 3 kilometers.
During day time, the surface is heated up by solar radiation. As a result, the
surface radiates heat into the atmosphere. Different types of gases in the at-
mosphere absorb most of this radiation. There are two different mechanisms
which result in mixing of the ABL. First of all warm air rises. Moreover the
cooling of the top of clouds leads to a local drop of individual air packages.
This is one of the processes which is described as turbulence. It can also
be created by vertical wind shear. During a clear day, the boundary layer
can be divided into several sublayers as shown in Figure 1. The first one is
the roughness layer. In this layer air flows around roughness elements (eg
grass, plants or buildings). The second layer is the surface layer which is also
known as the constant flux layer.
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Figure 1: Graphic of the atmospheric boundary layer during the day (Wyn-
gaard (1990))

The thickness of this layer is usually 100 m. Wind, temperature and hu-
midity vary with altitude, and characteristics of turbulence are affected by
the surface. The third layer is the well-mixed layer and the last one is the
capping inversion. This layer confines air and pollution below it and within
the boundary layer.
In this thesis there will be a focus on the stably stratified atmospheric bound-
ary layer which is present during the night or above colder surfaces e.g.
glaciers. Figure 2 is a sketch of the stable boundary layer during the night.

Figure 2: Graphic of the nocturnal stable stratified boundary layer with
fluxes, waves, inversion layer and wind shear (Wyngaard (1990))

Because of the absence of incoming solar radiation and the presence of long-
wave radiative cooling, the surface cools down during the night. The impulse
for convection is therefore non-existent. Slightly above the surface, air cools
down drastically. The presence of wind shear can however trigger fluxes
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which transport the cold air higher. As a result, the daytime mixed-layer
remains as a residual layer. Below the residual layer and over the surface
layer a new layer is formed. This new layer is called the stable boundary
layer. In this layer, turbulent structures occur as well. They can be formed
through wind shear, small scale vortices and occasionally wave movements,
but so far physical dynamics in the stably stratified atmospheric boundary
layer are not fully understood.

2.3 A simple statistical model for stationary turbu-
lence

This thesis will focus on detecting events that are not stationary turbulence,
thus we introduce a simplified model for stationary turbulence that will be
used later.
A stationary time series is defined as follows (Shumway et al. (2011)).

Definition 1: A strictly stationary time series is one for which the proba-
bilistic behavior of every collection of values

{x(t1), x(t2), ..., x(tk)}

is identical to that of the shifted set

{x(t1 + h), x(t2 + h), ..., x(tk + h)}.

That is,

P{x(t1) ≤ c1, x(t2) ≤ c2, ..., x(tk) ≤ ck}
= P{x(t1 + h) ≤ c1, x(t2 + h) ≤ c2, ..., x(tk + h) ≤ ck}.

for all k = 1, 2, ..., all time points t1, t2, ..., tk, all numbers c1, c2, ..., ck and all
shifts h = 0,±1,±2, ....

If a time series is strictly stationary, then all of the multivariate distribution
functions for subsets of variables must agree with their counterparts in the
shifted set for all values of the shift parameter h.
According to Faranda et al. (2014) we can model Gaussian homogenous at-
mospheric turbulence as a first order autoregressive process (AR(1)). Autore-
gressive models are based on the idea that the current value of the series, x(t),
can be explained as a function of p past values, x(t− 1), x(t− 2), ..., x(t− p),
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where p determines the number of steps into the past needed to forecast the
current value. We formally define an autoregressive model of order p as
follows (Shumway et al. (2011)).

Definition 2: An autoregressive model of order p, abbreviated AR(p), is of
the form

x(t) = φ1x(t− 1) + φ2x(t− 2) + ...+ φpx(t− p) + ε(t),

where x(t) is stationary, and φ1, φ2, ..., φp are constants (φp 6= 0).

Faranda et al. (2014) state that the evolution of the velocity and the position
of a tracer particle (u,x) can be described by the following equations:

du = a(x, u, t)dt+ b(x, u, t)dW

dx = udt (1)

with dW being the increments of a Wiener process. A Wiener Process refers
to the mathematical model used to describe Brownian Motion (random mo-
tion of particles suspended in a fluid resulting from their collision with the
quick atoms or molecules in the fluid). Though the two terms are sometimes
used interchangebly. We define a Wiener process as follows (Shumway et al.
(2011)).

Definition 3: A continuous time process {W (t); t ≥ 0} is called a Wiener
process if it satisfies the following conditions:

i)W (0) = 0

ii){W (t2)−W (t1),W (t3)−W (t2), ...,W (tn)−W (tn−1)}
are independent for any collection of points, 0 ≤ t1 < t2... < tn,

and integer n > 2

iii)W (t+ ∆t)−W (t) ∼ N(0,∆t) for ∆t > 0

The mixing properties of turbulence make neighbour particles loose correla-
tion after a certain time, that can be described by a Lagrangian decorrelation
scale TL. Furthermore the rate on mean kinetic energy dissipation will af-
fect the Eulerian diffusion and hence the variance of the Wiener process in
equation (1).
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Using these two parameters for gaussian homogeneous turbulence, it can be
shown that the Langevin equation (1) takes the discrete form (Faranda et al.
(2014)):

∆u = − u

TL
∆t+

√
C0ε∆W

with TL the Lagrangian decorrelation scale, C0 a constant and ε the mean
kinetic dissipation rate. By rearranging this equation and denotiong φ =
(1− ∆t

TL
) and σ =

√
C0ε∆t we get

u(t) = φu(t− 1) + ε(t)

Hence, ut is an AR(1) process and we will use an AR(1) model for stationary
turbulence. Later in this thesis we will need red noise for the event detection
method.

Definition 4: A red noise process is defined as:

y(t) = φy(t− 1) + ε(t)

for φ first order autocorrelation coefficient with 0 < φ < 1 and ε(t) white
noise with standard deviation σε.

Red noise is the same as a first-order autoregressive (AR(1)) stationary Gaus-
sian process with a positive correlation at unit lag (Storch and Zwiers (1995)).
Suppose we have an autoregressive process of order p

x(t) = φ1x(t− 1) + φ2x(t− 2) + ...+ φpx(t− p) + ε(t).

If m = 1 is a root of the characteristic equation

mp − φ1m
p−1 − ...− φp = 0

then the x(t) has a unit root. An AR(1) process has a unit root if φ = 1.
Moreover if an AR(1) process has a unit root it is non-stationary.
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3 Description of the Data

(a) SnoHATS: side view of the 12 sonics ar-
ray
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zupper=205+76.7 cm
Delta z= 76.7 cm
Flat snow surface

For data collected on 17 Mar
zlower=140 cm

zupper=140+82 cm
Delta z = 82 cm, change of configuration

Flat snow surface

Not working

(b) Sonic Set up

Figure 3: Set up of the sonics which collected the data for this analysis
(Bou-Zeid et al. (2010))

The data was collected over the plaine Morte Glacier in the Swiss Alps
(46.3863◦N, 7.5178◦E, 2750m elevation) from the 2. February to 19. April
2006. The measurement campaign included a structure supporting 12 sonic
anemometers that measured 3D wind velocity components, temperature and
humidity at 20 Hz. This analysis is based on the measurements of 4 sonic
anemometers (5,6,7 and 8) out of 12 and we will focus on the wind velocity
and temperature dynamics. Figure 3 shows the set up of the sonics.
The sonics were set up in two arrays with a distance of 76.7 cm on the 23
February and 82 cm afterwards. Their height varied from 1.40 m to 2.80 m
depending on the accumulation of snow.
The analysis was restricted to wind directions of ± 60◦ relative to the stream-
wise sonic axis to ensure a fetch of 1500 m of flat snow. The analyses will be
based on four timeseries extracted from four different data clusters that were
isolated in a study by Vercauteren and Klein (2015). The turbulent flows in
the clusters were shown to have different physical properties, but small-scale
non-turbulent motions were not investigated in details. The turbulent event
detection method described in section 4 will be applied to the four timeseries
to investigate differences in the occurrences of submesomotions in the four
clusters. The time series in cluster 1 is 9,6 hours long and starts on 18th of
March 2006 at 5:40 pm. The time series in cluster 2 and 3 have the same
length but the one in cluster 4 is 6 hours long. The second time series starts
3:50 pm (17.03.06), the third at 6:50pm (04.02.06) and the fourth at 5:40 pm
(29.03.06).
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4 Description of the Method

The event detection is based on a method developed by Kang et al. (2014).
In this chapter the event detection process is theoretically described and in
chapter 5 it is applied to the SnoHATS dataset.
The goal of this procedure is to seperate events from noise in a time series.
The main assumptions are that background noise is always present in the
time series and that events are seperated by noise. This assumption is veri-
fied in Chapter 5 for the four analyzed time series.
Moreover, it is assumed that an event can be defined as a non-AR(1) pro-
cess which means that events are non-stationary, oscillatory and/or nonlinear
motions. To justify the assumption that events can be defined as non-AR(1)
processes Kang et al. (2015a) performed two tests. In the first test, they
introduce a nonlinear component into the linear AR(1) model and examine
the behaviour of the event extraction method. The changes of event number
after phase randomization are investigated in the second test. The results
from both tests verify the assumption that events as they are detected from
this method are not AR(1) processes.
By using a sliding window with predefined length l, subsequences are ob-
tained. The event detection method is applied to each subsequence. The qth
subsequence can be expressed as:

Definition 5: If x(t) is a time series the qth subsequence is defined as:

xq(t) = {x(tq), ..., x(tq+l−1)}

for 1 ≤ q ≤ m− l + 1 and m =length(x(t)).

Note that these subsequences overlap. Hence the event detection is performed
on overlapping sequences rather than on seperated blocks. To seperate events
from noise, three steps are performed on these subsequences. Figure 4 shows
the order in which the tests are applied to each subsequence.
First the Philip Perron (PP) test is applied to the subsequence and it checks
if the subsequence is stationary. If it is stationary, according to the Philip
Perron test, the Zivot and Andrews (ZA) test is performed. Otherwise the
noise test is performed after the Philip Perron test. These tests are de-
scribed in more detail in the following sections. Events are defined as those
subsequences which are significantly different from pure noise. A p value is
computed for each subsequence, according to one of the three above men-
tioned noise tests.
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Figure 4: Flowchart of the event detection procedure for a subsequence xq(t)
(Kang et al. (2015a)), In this analysis α = 0.5 and pq p-value.

The p value is the probability to obtain a result equal to or more extrem than
the actual observation. If the p value, from the noise test or the ZA test, is
smaller than a predefined significance level α, it shows that the subsequence
is not only composed of pure noise and hence it is a potential event. A formal
definition for an event will be given later in this chapter.

4.1 Test by Philips-Perron

The Philip Perron test is a nonstationarity hypothesis test. The red noise
test is only applicable to stationary time series. Therefore, this test is neces-
sary before applying the noise test. In a hypothesis test the null hypothesis
H0, which usually refers to a general statement that there is no relationship
between two measured phenomena, is tested against an alternative hypoth-
esis H1. If the null hypothesis is rejected, it can be concluded that there is
a relationship between the two phenomena. The null hyphothesis H0 for the
Philip Perron test is: xq(t) is a unit root process and hence not stationary.
If H0 is rejected, the noise test can be performed. If xq(t) is nonstationary
according to the test, another test has to be performed because the PP test
does not reject H0 for simple random walk processes (φ = 1). For processes
which are stationary but have a structural break, the null hypothesis is not
rejected either. A structural break can appear when we see an unexpected
shift in the time series. The following Lemma shows that simple random
walk processes are not stationary and hence are not rejected by the Philip
Perron test.
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Lemma 1:
A simple random walk process

x(t) =
t∑

j=1

z(j) = x(t− 1) + z(t),

with z(t) ∼ IID(µ, σ2) and x(0) = 0, is not stationary.

Proof: Let x(t) =
t∑

j=1

z(j) be a simple random walk with independent ran-

dom variables z(j). Note that var(x(t)) =
t∑

j=1

var(z(j)) = tσ2. Define

y =
t+h∑
j=t+1

z(j). x(t) and y are independent random variables because they are

sums of disjoint independent variables. Calculate the covariance of x(t + h)
and x(t).

cov(x(t+ h), x(t)) = cov(x(t) + y, x(t))

= cov(x(t), x(t)) + cov(y, x(t))

= var(x(t)) + 0

= tσ2

The covariance depends on t and not on h. Hence x(t) is not covariance sta-
tionary. Which implies that a simple random walk process is not stationary.

A simple random walk process is not considered to be a potential event. We
want to include stationary processes with a structural break because they
are a potential event. A potential event is defined as follows.

Definition 6:
Let ps, ps+1, ..., pl be a sequence of p-values. If

i pi ≤ α for i = s, s+ 1, ..., l
ii (e− s) ≥ l

2

the event is defined as a segment from the time point s+ l
4

to (e+ l− 1)− l
4

where s is the starting point of the sth potential event and e+ l−1 the ending
point of the eth.
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l
4

is discarded to remove excess background noise at the start and end of
the event (Kang et al. (2015a)). From this definition it follows le ≥ l. In
this analysis l is predefined and even though the event length le is flexible,
structures with too large time scales may only be partially detected or not
at all.

4.2 Test by Zivot and Andrews

The Zivot and Andrews procedure is another stationarity test. It tests
whether the time series has a unit root against the hypothesis that it is
stationary with a structural break. Recall from section 2.3 that if an AR(1)
process has a unit root it is non-stationary. If the null hypothesis from the
ZA test is rejected, xq(t) is defined as a potential event, or otherwise as noise.
This test is performed to ensure that stationary processes with a structurual
break are included.

4.3 Red noise test

Before starting the noise test, the type of noise has to be chosen. Recall from
section 2.3 that stationary turbulence and red noise can be well represented
by an AR(1) process. Hence, we will use red noise.
It is crucial to detrend the subsequences before applying the red noise test,
because the red noise test recognizes a process with a linear trend as a po-
tential event. The subsequences are detrended if the goodness-of-fit, the
discrepancy between observed values and the expected values, of the linear
model fitted on the subsequence is larger than 0.85.
To perform the red noise test the AR(1) model x̃q(t) = φx̃q(t − 1) is fitted
to xq(t) and the residuals ε(t) = xq(t) − x̃q(t) are calculated. Afterwards
the white noise test is performed on the residuals. If the white noise test is
positive, xq(t) is claimed to be red noise.

4.4 White noise test

To test for white noise, the Ljung-Box test is applied. It tests whether the
data points are independently distributed, which is a characteristic of white
noise in time series. The null hypothesis H0: data points are independently
distributed, is tested against an alternative hypothesis H1: data points are
not independently distributed. The following Theorem shows that, under
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H0, the test statistic Q follows a chi squared distribution with h degrees of
freedom.

Theorem 1: Under H0 the test statistic

Q = n(n+ 2)
h∑
k=1

p̂2k
n−k

for n sample size, p̂k sample autocorrelation at lag k and h number of lags
being tested follows a χ2(h) chi-squared distribution with h degrees of free-
dom.

Proof: Let Q be the test statistic and rearrange the formular for Q.

Q = n(n+ 2)
h∑
k=1

p̂2
k

n− k

= n
h∑
k=1

(n+ 2)p̂2
k

n− k

Note that n+2
n−k → 1 as n→∞ and define Q̃ = n

h∑
k=1

p̂2
k. Q behaves asymptot-

ically like Q̃ because lim
n→∞

Q

Q̃
= 1.

To show that Q̃ is χ2(h) under H0, consider the following result. Let p̂ =
(p̂1, ..., p̂h)

T . For a white noise process (this satisfies H0)

yt = µ+ εt with E[εt]
4 <∞

it holds that
√
np̂ →d N(0, Ih). Consequently the first h sample autocorre-

lations are multivariate normal with expected value 0 each and asymptotic
covariance matrix equal to the identity matrix. They are asymptotically in-
dependent. This implies that each autocorrelation is asymptotically standard
normal.
Moreover note that:

Q̃ =
√
np̂T
√
np̂

Due to the fact that the sum of h independent squared standard normal
random variables is χ2(h) it can be concluded that Q follows a χ2(h) chi-
squared distribution with h degrees of freedom.

h is choosen to be approximately ln(n) as suggested in the paper from Kang
et al. (2015a), which refers to Tsay (2005). The probability p of obtaining
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a test statistic which is at least as extreme as the actually observed statistic
under χ2(h) is used. If the p value is less than a predefined significance level
α, H0 is rejected. This indicates that the data is not white noise. If the
white noise test was performed on the residuals of xq(t), it indicates that the
tested subsequence is not red noise and hence a potential event.

Kang et al. (2014) have also developed a feature based clustering method for
the detected events. The detected events are clustered in groups with similar
characteristics. First, each event is summarized by statistical measures of its
characteristics and then clustered according to them. This clustering leads
to significantly better results compared to clustering the raw data (Kang et
al (2014)). This method is not described in detail as it is not relevant in this
thesis. It is not relevant because the analysed datset is relatively small and
only a maximum of 12 events were detected.

5 Application of the method

In the event detection method from Kang et al. (201a) the length of the
time window l has to be predefined. According to Kang et al. (2015a), better
results are obtained by keeping l constant and block averaging the time series
to a desired scale. This results from the fact that the test statistic Q from
the white noise test depends on l and keeping l constant returns consistent
results for all scales. The choice of the time window length is so far made
subjectively and is based on experience and context. This could be solved by
using a different method which determines the relevant time scales, before
applying the event detection procedure. Another option which is used in
this thesis is to use a multiscale approach. A multiscale analysis allows a
verifiable choice of the scale, if it cannot be determined in a different way.
In this chapter we will analyse the SnoHATS dataset with different scales
and afterwards we will focus on the scale which is most appropriate. How
we choose this most appropriate scale will be explained later. All functions
which are needed for this analysis are stated and explained in Appendix E.
Moreover the TED package (Kang,Y., et al. (2015)) is required.
The significance level α, which is needed in the noise tests, is chosen to be 0.5
and the time window length l 120 points for all scales. The SnoHATS dataset
consists of 20 Hz temperature and wind component data. We will focus on
the temperature data because the event detection method was designed for
this type of data. However, we will also compare it with wind direction
and wind speed events. As stated in the introduction we want to analyse
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submesomotions which we definded as motions from 1 to 30 minutes. Hence,
we use 1 s to 15 s averaged data. The 7 s, 11 s, 13 s and 14 s avereged data
are not used because the lengths of the time series (691200 data points for
cluster 1,2 and 3, and 432000 for cluster 4) are no multiple of these averages.
By using the other averages we end up with event lengths, corresponding to
the length of the data subsequence, from 2 mins to 30 mins. To average our
data we use the arithmetic mean.

x̄ =
1

n

n∑
k=1

xk

with xk for k = 1...n being the data points and n the length of the average,
for example 3 s=120 points. Note that if events overlap in one averaged time
series we merge them into one event. In Appendix A the multiscale approach
is visualized for all clusters. Each line represents the time period recognised
as an event. Figure 5 gives an example of the results from the event detection
method.

0 20 40 60 80 100 120

Events detected

t

0 50 100 150 200 250

Events detected

t

Figure 5: Examples of the results from the event detection method applied
to the 6 s averaged temperature time series from cluster 2 sonic 6

For small averages there are in general many short events while for higher
averages there are few long events. This is expected because we use the same
window length for all scales which impacts the duration in time of the sub-
sequence and hence the maximal event duration. It could be assumed that
long events are partially detected by short time averages and fully by long
time averages. But so far no obvious pattern, which describes when the same
event is detected in different averaged time series, can be seen. For example
in cluster 3 the third event from the 15 s averaged data is partially detected
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in the 10 s averaged time series but not at all in the 12 s one. These results
point to a large sensitivity of the method to the scale at which it is applied.
In cluster 4 the detected events in the higher averaged data tend to be more
to the beginning of the time series. Contrary, in cluster 2 they are more
evenly disributed over the whole time period. It is noticable that cluster
1 has shorter and less events than the other clusters. In general, the 6 s
averaged data is a sensible choice because the detected events from the 6 s
averaged data overlap the most with events from lower and higher averages.
To verify this choice we will have a closer look at the detected events in
the 3 s, 6 s and 12 s averaged data. Appendix B shows the detailed results
from this analysis. The start and end points of all events, the plots of them
and the percentage of events are stated in Appendix B. Moreover, there are
several plots which visualize the overlaps between the detected events in the
three different scales. Figure 6 shows the results for the 6 s based results for
sonic 5 and all clusters.
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Figure 6: Detected events in 6 s averaged temperature data from sonic 5 and
all clusters

By looking at the percentages, we can conclude that the 6 s averaged data
has the highest percentage of detected events in all clusters except from clus-
ter 2 in which the 12 s averaged data has a higher percentage. Cluster 2
and 4 have a higher percentage of detected events than cluster 1 and 3. On
average roughly 20% of the time series where detected as events. Kang et al.
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(2015a) obtained a similar percentage in their analysis.
In Appendix C the time periods recognised as events for different sonics are
compared. Most of the events are detected by several sonics. Consequently,
the method seems to give reliable results. Sonic 5, which is located closer to
the surface, has the highest number of events for most of the clusters.
Even though Kang et al. (2015a) mainly used their method to analyse tem-
perature data, we want to compare wind speed, wind direction and temper-
ature events. Again, we use the 6 s averaged data and a time window length
of 120 points. The wind speed is calculated with

√
u2 + v2

and the wind direction with

arctan(
v

u
)

u and v are the sonic coordinates. In Figure 7 there is a sketch of this coor-
dinate system.

Figure 7: sketch of the sonic coordinate system

If v = 0 and u > 0 the wind is coming directly into the instrument. This
corresponds to easterly wind. If v > 0 and u = 0 the wind is coming from
the side of the instrument and if u < 0 the wind is coming from behind the
sensor. In Appendix D the results of this analysis are stated. In cluster 1 the
wind speed has mostly longer events than the ones in the temperature and
wind direction time series. In cluster 2 the wind speed events cover signifi-
cantly less of the full time series than the detected events in the temperature
and wind direction time series. There are some overlaps between tempera-
ture, wind speed and wind direction events.
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Furthermore we see some sharp changes over a short time period in the tem-
perature events with up to 10 degrees difference but there are non in the
wind events. In cluster 3 some overalps between the events can be observed
and the percentage of detected events is for all three components roughly the
same. But in cluster 4 there is a very high percentage of events in the wind
direction data. It is up to 45% of the total time series length. Moreover we
observe some sharp changes in all three components. In general we can see
that some of the wind direction events are very long. For example in cluster
4 sonic 6 one event is about 45 minutes long. To check if there is a relation
between mean wind speed and wind direction we look at the wind roses for
all clusters (Figure 8).

(a) Cluster 1 Sonic 5 (b) Cluster 2 Sonic 5

(c) Cluster 3 Sonic 5 (d) Cluster 4 Sonic 5

Figure 8: Wind roses for all clusters

In Figure 8 the colour shows the wind speed and the length shows the fre-
quency of a wind direction. The wind roses look nearly the same for all
sonics. Consequently, it is sufficient to focus on the ones generated from
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sonic 5 measurements. Based on the wind rose plots we can conclude that in
cluster 2 and 4 the mean wind is fairly slow with a maximum of 4 to 5 m/s.
The difference between the two clusters is that in cluster 2 the frequency for
the wind coming directly from the east is much higher than in cluster 4. We
saw some sharp changes in the detected wind direction events in cluster 4.
This behaviour can also be seen in the wind rose plot. Roughly 5% of the
mean wind is changing its direction from north to south east. This wind is
very slow. Hence, the wind direction is more stable in cluster 2, and variable
in cluster 4 mainly for slow wind events.
Cluster 3 stands out because it has the highest wind speed, which is nearly
twice as high as in cluster 2 and 4, and the wind direction is changing from
south east to north east. In cluster 1 the wind comes from north east and
the wind speed goes up to 8 m/s.

6 Conclusions

Events in the stably startified atmospheric boundary layer were detected us-
ing a recently developed method (Kang et al. (2015a)). After a multiscale
analysis the window size for this method was chosen to be 120 points on 6s
averaged data. Before applying the event detection method the data was
seperated into four clusters characterized by different turbulence behaviour
by Vercauteren and Klein (2015). The first cluster encompasses the shortest
and the fewest events while cluster 4 tends to have the longest events and
cluster 2 has the highest number of events. Moreover cluster 2 and 4 are
characterised by weak wind which is mainly coming from the east. Contrary
to this cluster 3 is decompassed of faster wind which is changing its direction
from north east to south east.
As a conclusion it can be said that the method was determined to give re-
liable results. Though we came across some limitations. First of all, the
results from the event detection method by Kang et al. (2015a) is sensitive
to the scale at which it is applied. Testing why some events which were
detected in the 6 s averaged time series were not detected in the 3 s one
did not give any explanations for this sensitivity. Either the ZA tests de-
fined them as unit root processes, or the noise test defined them as noise. A
multiscale approach is an option to work around this scale dependency. In
general, the multiscale approach is a good way to identify which average and
time window gives the most reasonable output. The problem is that usually
large datasets are analysed and hence a multiscale approach would result
in an even higher computational effort. Moreover, the method assumes that
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events are always seperated by noise. This seems to be a valid assumption for
the dataset which was analysed in this thesis but in general this assumption
is not proven. Hence, events might not be detected by this method.
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A Appendix

Multiscale approach
The following graphics visualize the multiscale approach. The lines show the
time periods recognised as events for different averaging times ranging from
1 second to 15 seconds. The sliding window length was chosen to be 120
points. Hence, the event length varies from 2 minutes to 30 minutes. The
7s, 11 and 13s average are not part of this analysis because the lengths of
the time series are no multiple of these averages.
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Figure 9: Graphic of the multiscale analysis for Cluster 1
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Figure 10: Graphic of the multiscale analysis for Cluster 2
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Figure 11: Graphic of the multiscale analysis for Cluster 3
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Figure 12: Graphic of the multiscale analysis for Cluster 4
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C Appendix

Sonic 5,6,7 and 8: detected events
in 6 s averaged temperature data
The following table shows the results from the event detection method applied
to 6 s averaged temperature data with a window length of 120 points. For
all 4 clusters the start and end points of all events are included in the table.
Moreover, the lines in the plots show the time periods recognised as events
for different sonics.
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Cluster 1
Sonic 5 Sonic 6 Sonic 7 Sonic 8
[start-end]:
[3430,3557];
[3589,3709];
[4438,4615];
[5078,5240]

[start-end]:
[739,866];
[1216,1368];
[3579,3707]

[start-end]:
[743,867];
[1216,1368];
[3424,3561];
[3586,3741];
[5475,5645]

[start-end]:
[1215,1367];
[3591,3730]

0 1000 2000 3000 4000 5000 6000

Events detected

t

Sonic 5
Sonic 6
Sonic 7
Sonic 8

Cluster 2
Sonic 5 Sonic 6 Sonic 7 Sonic 8
[start-end]:
[171,369];
[829,1073];
[1427,1583];
[1588,1766];
[2209,2412];
[3264,3384];
[4762,4963]

[start-end]:
[166,287];
[829,1072];
[1427,1666];
[3005,3381];
[4806,5056];
[5307,5557]

[start-end]:
[834,1072],
[1427,1666];
[3006,3380];
[4814,5056];
[5362,5556]

[start-end]:
[835,1072];
[1427,1665];
[3008,3380];
[4099,4390];
[4814,5056];
[5361,5700]

0 1000 2000 3000 4000 5000 6000

Events detected

t

Sonic 5
Sonic 6
Sonic 7
Sonic 8
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Cluster 3
Sonic 5 Sonic 6 Sonic 7 Sonic 8
[start-end]:
[416,574];
[691,816];
[2115,2238];
[3313,3492];
[3606,3492];
[4045,4174];
[5226,5393]

[start-end]:
[188,309];
[416,558];
[2035,2230];
[3297,3416];
[3477,3650];
[4052,4177]

[start-end]:
[185,305];
[384,557];
[2035,2229];
[3298,3635];
[4038,4176];
[5226,5393]

[start-end]:
[416,551];
[3414,3596];
[4052,4176];
[5225,5396]

0 1000 2000 3000 4000 5000 6000

Events detected

t

Sonic 5
Sonic 6
Sonic 7
Sonic 8

Cluster 4
Sonic 5 Sonic 6 Sonic 7 Sonic 8
[start-end]:
[207,623];
[2253,2498];
[2596,2851];
[2910,3178]

[start-end]:
[204,622];
[871,1042];
[2234,2374]

[start-end]:
[204,622];
[895,1042];
[2238,2374]

[start-end]:
[204,622];
[893,1044];
[1966,2100];
[2238,2374]

0 500 1000 1500 2000 2500 3000 3500

Events detected

t

Sonic 5
Sonic 6
Sonic 7
Sonic 8
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D Appendix

Event detection method applied
to 6 s averaged temperature, wind
speed and wind direction data
The following table shows the results from the event detection method applied
to 6 s averaged temperature, wind speed and and wind direction data with
a window length of 120 points. For all 4 clusters the start and end points
of all events, the percentage of events in the time series and the plots of all
event are included in the table.
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Cluster 1 Sonic 5

wind speed temperature wind direction
[start-end]:
[2186,2477];
[3134,3265]

[start-end]:
[3430,3557];
[3589,3709];
[4438,4615];
[5078,5240]

[start-end]:
[1484,1616];
[1667,1880];
[2537,2657];
[4859,5023]

percentage:
7.361111

percentage:
10.24306

percentage:
10.98958

Cluster 1 Sonic 6

wind speed temperature wind direction
[start-end]:
[2187,2474];
[5487,5642]

[start-end]: [739,866];
[1216,1368];
[3579,3707]

[start-end]:
[1470,1597];
[1673,1876];
[2542,2719];
[4859,5031]

percentage:
7.708333

percentage:
7.118056

percentage:
11.85764
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Cluster 1 Sonic 7

wind speed temperature wind direction
[start-end]:
[2187,2469];
[3130,3267];
[5478,5638]

[start-end]: [743,867];
[1216,1368];
[3424,3561];
[3586,3741];
[5475,5645]

[start-end]:
[1675,1869];
[4860,5024]

percentage:
10.10417

percentage:
12.89931

percentage: 6.25

Cluster 1 Sonic 8

wind speed temperature wind direction
[start-end]:
[2188,2466];
[3128,3332];
[3932,4133];
[5473,5633]

[start-end]:
[1215,1367];
[3591,3730]

[start-end]:
[1484,1615];
[1673,1879];
[4860,5023]

percentage:
14.70486

percentage:
5.086806

percentage:
8.732639
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Cluster 2 Sonic 5

wind speed temperature wind direction
[start-end]:
[1381,1514];
[1975,2132];
[3190,3405];
[5178,5371]

[start-end]:
[171,369]; [829,1073];
[1427,1583];
[1588,1766];
[2209,2412];
[3264,3384];
[4762,4963]

[start-end]: [163,291];
[444,635]; [863,1228];
[1432,1615];
[2372,2544];
[3280,3407];
[4751,4915];
[5175,5296]

percentage:
12.1875

percentage:
22.69097

percentage:
25.32986

Cluster 2 Sonic 6

wind speed temperature wind direction
[start-end]:
[[3078,3206];
[3257,3386];
[4831,5079]

[start-end]:
[166,287]; [829,1072];
[1427,1666];
[3005,3381];
[4806,5056];
[5307,5557]

[start-end]: [450,721];
[1012,1229];
[2078,2260];
[2346,2485];
[3280,3639];
[4197,4365];
[4402,4549];
[4751,4871

percentage:
8.819444

percentage:
25.78125

percentage:
27.96875
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Cluster 2 Sonic 7

wind speed temperature wind direction
[start-end]:
[3253,3389];
[3637,3795];
[4377,4507];
[4876,5080]

[start-end]:
[834,1072];
[1427,1666];
[3006,3380];
[4814,5056];
[5362,5556]

[start-end]: [450,720];
[2346,2478];
[3265,3651];
[4402,4549];
[4751,4871]

percentage:
10.97222

percentage:
22.43056

percentage:
18.40278

Cluster 2 Sonic 8

wind speed temperature wind direction
[start-end]:
[1382,1546];
[3637,4036];
[4344,4509];
[4780,5080]

[start-end]:
[835,1072];
[1427,1665];
[3008,3380];
[4099,4390];
[4814,5056];
[5361,5700]

[start-end]: [449,720];
[2346,2478];
[3279,3651];
[4403,4549]

percentage:
17.91667

percentage:
29.94792

percentage:
16.05903
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Cluster 3 Sonic 5

wind speed temperature wind direction
[start-end]: [142,324];
[1622,1828];
[4081,4446];
[4693,4843]

[start-end]: [416,574];
[691,816]; [2115,2238];
[3313,3492];
[3606,3847];
[4045,4174];
[5226,5393]

[start-end]:
[1480,1810];
[2103,2338];
[2814,2956];
[3504,3833];
[4401,4534];
[5198,5365]

percentage:
15.74653

percentage:
19.60069

percentage:
23.29861

Cluster 3 Sonic 6

wind speed temperature wind direction
[start-end]:
[73,324]; [886,1130];
[4227,4446];
[4707,4838]

[start-end]: [188,309];
[416,558]; [2035,2230];
[3297,3416];
[3477,3650];
[4052,4177]

[start-end]:
[1381,1746];
[2015,2333];
[3494,3828]

percentage:
14.73958

percentage:
15.29514

percentage:
17.70833
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Cluster 3 Sonic 7

wind speed temperature wind direction
[start-end]:
[70,324]; [985,1131];
[1619,1831];
[4230,4446];
[4707,4834]

[start-end]: [185,305];
[384,557]; [2035,2229];
[3298,3635];
[4038,4176];
[5226,5393]

[start-end]: [668,792];
[1400,1810];
[2080,2340];
[3503,3828];
[5216,5361]

percentage:
16.66667

percentage:
19.70486

percentage:
22.03125

Cluster 3 Sonic 8

wind speed temperature wind direction
[start-end]:
[71,324]; [943,1132];
[1620,1840];
[2269,2411];
[4084,4446];
[4549,4827]

[start-end]: [416,551];
[3414,3596];
[4052,4176];
[5225,5396]

[start-end]:
[1400,1587];
[1552,1786];
[2079,2332];
[2821,2954];
[3505,3829];
[5188,5364]

percentage:
25.17361

percentage:
10.69444

percentage:
22.79514
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Cluster 4 Sonic 5

wind speed temperature wind direction
[start-end]:
[3239,3379]
end: 3379

[start-end]: [207,623];
[2253,2498];
[2596,2851];
[2910,3178]

[start-end]:
[1398,1530];
[1806,2037];
[2635,2774]

percentage:
3.916667

percentage: 33 percentage:
14.02778

Cluster 4 Sonic 6

wind speed temperature wind direction
[start-end]:
[2666,2861];
[3243,3374]

[start-end]:
[204,622]; [871,1042];
[2234,2374]

[start-end]: [96,554];
[1396,1544];
[1799,2065];
[2634,2774];
[2891,3040];
[3322,3477]

percentage:
9.111111

percentage:
20.33333

percentage:
36.72222
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Cluster 4 Sonic 7

wind speed temperature wind direction
[start-end]:
[1517,1654];
[2672,2862];
[3239,3374]

[start-end]:
[204,622]; [895,1042];
[2238,2374]

[start-end]: [96,552];
[748,873]; [1396,1530];
[1799,2065];
[2635,2774];
[3269,3570]

percentage:
12.91667

percentage:
19.55556

percentage:
39.63889

Cluster 4 Sonic 8

wind speed temperature wind direction
[start-end]:
[2456,2628];
[2672,2862];
[3239,3380]

[start-end]:
[204,622]; [893,1044];
[1966,2100];
[2238,2374]

[start-end]: [96,547];
[748,873]; [1396,1530];
[1800;2063];
[2635,2774]

percentage:
14.05556

percentage:
23.41667

percentage:
31.02778
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E Appendix

Algorithms which were developed
for this thesis
The following algorithms were used for this analysis. They are all written in
the programming language R, require the foreach package (Weston (2015))
and use the results from the eventDetection function which is part of the
TED package (Kang et al. (2015b)). At the end of this Appendix there is
an example where the following functions are used.
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Algorithm 1: Average
Description
Average data
Arguments
x: vector or time series
average: number
Value
a: vector consisting the averaged time series

average.events<-function(x,average){

l<-length(x)

group<-factor(rep(1:(l/average),each=average))

a<-tapply(x,group,mean)

result <- list(a=a)

return(a)

}
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Algorithm 2: Multiscale Analysis
Description
Analyse different scales
Arguments
x: vector or time series
smAverage: smallest average
alpha: significance level
nAverage: number of averages to be analysed
w: window length
Hz: Hz of the data
Value
plot of the different time scales

multiscale<-function(x,smAverage,alpha,nAverage,w,Hz){

l<-length(x)

second<-numeric(0)

colour=rainbow(nAverage+1)

options("scipen" = 20)

plot(1, main = "Multiscale analysis", yaxt=’n’,type = "n", xlab

= "t",ylab="",xlim=c(0, l+1000), ylim=c(0,nAverage+1))

i=0

for (i in 0:(nAverage-1)){

average <-smAverage+i*Hz

sec <-average/Hz

group <-factor(rep(1:(l/average),each=average))

if(length(group)==l){

x_averaged <-average.events(x,average)

events <-eventDetection(x_averaged, w, noiseType =

’red’,parallel = FALSE, alpha, data = ’real’)

a <-events$start

b <-events$end

#plot all events for this average

n=1

for (n in 1:length(a)){

lines(c((a[n]*average):(b[n]*average)),

rep(i+1,length.out=length((a[n]*average):(b[n]*average))),

col = colour[i+1],lwd=3)

}

}

else {i=i+1}

}

}
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Algorithm 3: Overlap between events
Description
Merge overlaping events
Arguments
events: events from event detection step
Value
events: events without overlap

events.overlap<-function(events){

s<-events$start

e<-events$end

i=1

foreach (i = 1:(length(s)-1))%do%{

if(i==length(s)){stop()}

if(e[i] >= s[i+1]){

repeat{

e[i]<-e[i+1]+1

rem.s <- s[i+1]

re.e <- e[i+1]

s<-setdiff(s, rem.s) #remove start point

e<-setdiff(e, rem.e) #remove end point

e[i]<-e[i]-1

print(paste0("Elements were deleted due to overlap"))

if(e[i] < s[i+1]){break}

}

}

}

result <- list(events=events)

return(events)

}
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Algorithm 4: Percentage
Description
Calculate how many percentage of the full time series are detected as events
Arguments
events: events from event detection step
a: vector of averaged time series
Value
percentage: number

percentage<-function(events, a){

sums=0

i=1

foreach (i = 1:length(events$start))%do%{

sums=sums+length(events$start[i]:events$end[i])

}

percentage=(sums/length(a))*100

result <- list(percentage=percentage)

return(result)

}
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Algorithm 5: Plot Events
Description
Plot events and save them in a predefined folder. Note this function is dif-
ferent to the plotevents function from TED package because the one from
the TED package colours the detected events in the full time series. This
function plots each event seperately.
Arguments
events: events from event detection step
mean: averaged time series
cluster: cluster number
sonic: sonic number
Value
plot of the different events

ploting.events<-function(events, a,cluster,sonic){

s<-events$start

e<-events$end

ma_events<-matrix(NA, length(s), (max(e-s)+1))

n=1

#fill matrix with events

foreach (n =1:length(s))%do%{

ma_events[n,1:(length(s[n]:e[n]))]<-a[s[n]:e[n]]

}

k=1

mypath <-

file.path("path",paste("DataCluster",cluster,"Sonic",sonic,".jpg",

sep = ""))

jpeg(file=mypath)

#change plot window so that all plots fit in one

par(mfrow=c(ceiling(nrow(ma_events)/2),2))

foreach (k =1:nrow(ma_events))%do%{

#plot each event

plot(ma_events[k,], type = "l", ylab="", main=paste0("Event

number ",k))

}

dev.off()

}
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Example:
In this example the predefined functions are applied to make clear how they
work. We analyse the temperature data from cluster 1 sonic 5. First we look
at the scales from 2 mins to 30 mins and then we focus on the 6s (equals 120
points) averaged temperature data.

#attach data

attach(DataCluster1$V4)

x<-DataCluster1$V4

#time window length

w<-120

#significance level

alpha<-0.05

#find best scale

multiscale(x,20,alpha,14,w,20)

#average time series

av<-average.events(x,120)

#detect events

events<-eventDetection(av, w, noiseType = ’red’,parallel = FALSE,

alpha, data = ’real’)

#merge overlapping events

events<-events.overlap(events)

#calculate percentage

percentage(events,av)

#plot events

ploting.events(events,av,1,5)
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