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Abstract: Molecular dynamics (MD) simulations can model the interactions between macro-
molecules with high spatiotemporal resolution but at a high computational cost. By combining
high-throughput MD with Markov state models (MSMs), it is now possible to obtain long-timescale
behavior of small to intermediate biomolecules and complexes. To model the interactions of many
molecules at large lengthscales, particle-based reaction-diffusion (RD) simulations are more suitable
but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly
desirable, as they could efficiently produce simulations at large time- and lengthscales, while still
conserving the characteristic features of the interactions observed at atomic detail. While such a
coupling seems straightforward, fundamental questions are still open: Which definition of MSM
states is suitable? Which protocol to merge and split RD particles in an association/dissociation
reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we
make the first step towards MSM/RD by laying out a general theory of coupling and proposing
a first implementation for association/dissociation of a protein with a small ligand (A + B 
 C).
Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.
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I. INTRODUCTION

Life processes such as cellular signaling, control and
regulation arise from complex interactions and reactions
between biomolecules. A fundamental challenge of un-
derstanding and controlling life processes is that they
are inherently multiscale – cellular signaling alone in-
volves 6 orders of magnitude in lengthscales (0.1 nanome-
ters to 100 micrometers) and 18 orders of magnitude in
timescales (femtoseconds to hours). Unfortunately, these
scales are tightly coupled – a single-point mutation in
a protein can disturb the biochemical interactions such
that this results in disease or death of the organism. No
single experimental or simulation technique can probe all
time- and lengthscales at a resolution required to under-
stand such a process comprehensively.
In computer simulations, this dilemma can be miti-

gated by multiscale techniques – different parts of the
system are described by a high-resolution and a low-
resolution model, and these parts are coupled to give rise
to a hybrid simulation. A famous example of such a mul-
tiscale model in biophysical chemistry is the coupling of
quantum mechanics and molecular mechanics (QM/MM)
[1]. Here we lay the foundations for a hybrid simulation
technique that couples two scales that are particularly
useful to model intracellular dynamics: a Markov state
model (MSM) of the molecular dynamics (MD) scale that
describes structural changes of biomolecules and their

complexes, and the reaction-diffusion scale that describes
diffusion, association and dissociation on the lengthscale
of a cell. We call this approach MSM/RD, due to the
combination of the simulation models chosen at these
scales:

1. MSMs of the molecular scale: MD simulation al-
lows us to probe molecular processes at atomic de-
tail, but its usefulness has long been limited by the
sampling problem. Recently, the combination of
hard- and software for high-throughput MD simu-
lations [2–5] with MSMs [6–8] has enabled the ex-
tensive statistical description of protein folding and
conformation changes [9–12], as well as the associa-
tion of proteins with ligands [13–17] and even other
proteins [18]. Using multi-ensemble Markov mod-
els (MEMMs) [19–22], MSMs can be derived that
even capture the kinetics of ultra-rare events be-
yond the seconds timescale at atomistic resolution
[23, 24]. MSM approaches can thus model the long-
lived states and transition rates of molecular detail
interactions, but the cost of atomistic MD sam-
pling limits them to relatively small biomolecules
and complexes.

2. Reaction-diffusion (RD) scale: While atomic detail
is relevant for some processes that affect the cellular
scale, it is neither efficient nor insightful to main-
tain atomic resolution at all times for cellular pro-
cesses. We choose particle-based reaction-diffusion
(PBRD) dynamics kinetics as a reference model for
the cellular scale. PBRD simulates particles, rep-
resenting individual copies of proteins, ligands or
other metabolites. Particles move in space via dif-
fusion and reactive species will react with a prob-
ability according to their reaction rate when being
close by. Here, a reaction may represent molec-
ular processes such as binding, dissociation, con-
formational change, or actual enzymatic reactions.
PBRD acknowledges that chemical reactions are in-
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herently discrete and stochastic in nature [25], and
that diffusion in cells is often not fast enough to jus-
tify well-stirred reaction kinetics [26–28]. A large
number of recent software packages and codes im-
plement some form of PBRD [29–36], see also the
reviews [37, 38]. Hydrodynamic interactions at this
scale could be incorporated by particle-based cou-
pling terms [39, 40]. The effect of crowders and
complicated boundaries such as membranes on the
particle diffusion can be represented by including
interaction forces on the RD scale [34].

In the limit that the conformational transitions of all
molecules are fast, the MSM dynamics of each molecule
effectively averages, and the interaction between the
molecules (e.g. association) occurs with suitably aver-
aged rates, reducing the problem to PBRD. However,
when the lifetimes of some conformations are long com-
pared to the typical time between two molecular inter-
actions, or even the time between successive rebinding
events of two molecules, the conformation dynamics of
molecules described by the MSM part couples with the
RD dynamics. MSM/RD opens up the possibility to sim-
ulate and analyze such effects quantitatively. For exam-
ple, bimolecular binding rates from MD-derived MSMs
can be inaccurate due to periodic boundary effects and a
short-lived dissociated state in comparison to the MSM
lag-time [18]. MSM/RD can overcome these issues by ex-
tending the diffusion domain available lessening the pe-
riodic boundary effects and increasing the lifetime of the
dissociated state.
The ultimate aim of MSM/RD is to produce an effi-

cient multiscale simulation that reproduces the essential
statistical behavior of a practically unaffordable large-
scale MD simulation by employing only statistics ob-
tained from simulations of the constituent biomolecules
in small solvent boxes. As developing a full theory involv-
ing rotational diffusion, three- or more-body interactions,
hydrodynamics will be highly complex, we here aim to
make a first step towards this goal by coupling MSM and
RD scales for bimolecular systems without large-scale hy-
drodynamic interactions.
We first derive a theory of MSM/RD for bimolecular

systems, as depicted in Fig. 1. When the two molecules
are far from each other, they both undergo a diffusion
process. When they come close to each other, molecular
interactions, modeled with MD-derived MSMs, need to
be taken into account. We further develop an algorithm
to couple the MSM and RD scales for the special case of
a protein interacting with a ligand, which is one of the
main advances in this paper. This is not a trivial under-
taking since one needs to solve two problems: to couple
the MSM and RD part in such a way that the correct
macroscopic rates and equilibrium probabilities are re-
covered, and to develop a suitable MSM discretization
such that this coupling can be made. We demonstrate
the validity of our theory and algorithms on a toy model
of protein-ligand interaction and on binding of carbon
monoxide to myoglobin.
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FIG. 1: Sketch of the MSM/RD scheme. When molecules A and
B are not in close proximity, they diffuse freely. When A and B are
close, they merge into a complex particle C which itself diffuses and
whose internal dynamics are encoded by coupled MSM state transi-
tions. When the molecules transition into a dissociated state, they
are again separated into two separately diffusing particles A and
B with initial positions depending on the last MSM state. Note
that in the dissociated state, molecules A and B could also po-
tentially undergo conformational changes encoded in independent

MSM state transitions.

In related work, [41, 42] have coupled MD with a dif-
fusion scheme. The work [43] further incorporates mile-
stoning theory [44] to compute the local kinetic infor-
mation in terms of transitions between milestones via
short MD runs. In contrast with their work, we do not
employ direct MD simulations at the “small” scale, but
represent the small scale by an MSM as this allows us to
operate on roughly the same timesteps for the small and
the large scales. Other works have proposed alternative
schemes to couple random walks (MSMs) with Brownian
diffusion schemes, some examples can be seen in [45–47].
However, these works focus on specific contexts that are
not directly applicable for coupling MD-derived MSMs
with reaction-diffusion schemes.

II. MSM/RD: COUPLING MARKOV STATE
MODELS AND REACTION-DIFFUSION

We develop a theoretical description for MSM/RD.
The relevant scenarios for MSM/RD can be classified by
the number of interacting particles, or the related reac-
tion order:

1. First-order reactions: isolated diffusing particles
can be modeled by an MSM obtained from MD
simulations in a solvent box. The MSM directly
translates into a set of unimolecular reactions that
can be implemented in standard PBRD software.
As long as the particles don’t interact, the only ef-
fect of different states on the dynamics are changes
between different diffusion constants/tensors.

2. Second-order reactions: interactions between two
molecules that can be modeled as bimolecular re-
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actions including protein-ligand or protein-protein
association (A+B → C). As soon as the complex
C has been formed, its dynamics may be described
by state transitions of an MSM of the complex.

3. Higher-order reactions: simultaneous interactions
between more than two molecules.

In this work, we will focus on second-order reactions.
First-order reactions are trivial state changes of a particle
that are occurring as part of the MSM dynamics. Con-
sistent with current conventions in PBRD frameworks,
we follow the convention of breaking down higher-order
reactions to second-order reactions, although in Sec. V
we suggest possible extensions to treat these explicitly.
In order to derive the theory for second-order reac-

tions, we concentrate on the dynamics of two molecules,
A and B. For the sake of simplicity, we assume the two
molecules do not have conformational changes of their
own, so they can only diffuse and interact with each
other. However, it is straightforward to extend MSM/RD
to include conformational changes (first-order reactions)
coupled with second-order reactions.

A. The ground truth model with full dynamics

Ground truth is a term often used in machine learning
that refers to a reference model with respect to which
modeling errors are measured. In the present context,
the ground truth model contains the two (or more) solute
molecules whose interactions will be later approximated
by an MSM in a large-scale simulation, i.e. a simulation
box that is not truncated after a small solvent boundary
as customary for MD simulation. Importantly, there is no
universally correct ground truth, but this model employs
the MD simulation setup and dynamical model chosen
by the user for the modeling task at hand. This choice
includes the MD force field, solvation conditions and ion
concentration, the protonation state at the pH of interest
or even constant-pH simulations [48], the treatment of
electrostatics, the thermostat, the integrator and time
step, etc.
If such a large-scale model were simulated for a long

time or with many trajectories, it would give rise to sta-
tistical properties of the solute molecules that we want
to reproduce, such as their equilibrium constants and as-
sociation rates. However, such a simulation is in general
inefficient or infeasible, and our aim is that to reproduce
its statistical properties using an MSM/RD model that
is parametrized only using small MD simulations of the
constituent solute molecules and complexes.
For simplicity, we derive the MSM/RD theory us-

ing all-atom explicit solvent MD simulations with a
Langevin thermostat as the ground truth, as this setup
is frequently used for MD simulations. However, the
MSM/RD results apply more generally, e.g. to different
choices of thermostats or integrators, as the MSM limit

for long-time description of the dynamics and the over-
damped limit for long-time and large-scale description of
the solute transport are achieved from a large family of
ground truth models.

Langevin dynamics evolve as:

mk
d2

dt2
xk(t) = −∇kU(xt)− γk

d

dt
xk +

√
2kBTγkξk(t),

(1)
where xk represents the three-dimensional position of
the kth atom in the system (including the solvent),
xt = [x1(t), . . . , xk(t), . . . , xN (t)], N the total number
of atoms, U is the potential energy and −∇kU is the
force acting on the kth particle, mk is the kth parti-
cle mass, γk is the kth damping coefficient, and ξk(t)
is a Gaussian random force such that the expectations
of its components satisfy E[ξk,i(t)] = 0 (zero mean) and
E[ξk,i(t)ξk,j(s)] = δijδ(t− s) (white noise) with kBT be-
ing the thermal energy. In simulations, we use finite-
time-step approximations of (1) and use it to generate
stochastic trajectories. For the theoretical analysis, it is
more useful to look at the ensemble dynamics, i.e., the
propagation of probability densities in time. For this, we
can ask: If we start the dynamical system in phase space
point y and let it run, with which probability will we find
it in a point x a time τ later? We call this probability the
transfer probability p(y→ x; τ), and we will use it to de-
scribe the action of the ground truth dynamics [49]. The
transfer probability p(y → x; τ) subsumes the full com-
plexity of the MD model, including interaction energies
of the molecules with each other and external fields, and
it can be constructed regardless of which thermostat or
integrator is used. The propagation of probability densi-
ties %(x; t) in time is formally described by the propaga-
tor Pτ :

%(x; t+ τ) = Pτ%(x; t)

=
∫
p(y→ x; τ)%(y; t) dy (2)

We want to find an efficient algorithm to approximate
these dynamics. More specifically we want to approxi-
mate certain aspects of these dynamics, such as the long-
time behavior.

It is often useful to consider densities relative to the
stationary density π(x) given by

u(x; t) = %(x; t)
π(x) ,

which defines the propagator relative to the stationary
density, or transfer operator [49]:

u(x; t+ τ) = Tτu(x; t)

=
∫
π(y)
π(x)p(y→ x; τ)u(y; t) dy

=
∫
p(x→ y; τ)u(y; t) dy (3)
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The third row follows from detailed balance. For re-
versible systems, where detailed balance is fulfilled, Tτ is
often called backward propagator, as it appears to evolve
densities backward in time.
We will now introduce a scale separation by treating

molecules A and B different when they are close (inter-
acting) and far apart (non-interacting). More specifically
these scales are defined by the distance between the cen-
ters of mass of A and B, rAB :

1. MSM domain: molecules are in the interaction re-
gion I = {x | rAB(x) < R}.

2. RD domain: molecules are in the outside region
O = {x | rAB(x) ≥ R}.

The definition of R will be investigated later. Next, we
take a closer look at the dynamics valid in these respec-
tive domains.

B. Markov state models for interacting molecules

We consider molecules that are closer than R to be
interacting, hence we call the corresponding subset of
state space I. The kinetics in I are fully described by
Eq. (3), which can be approximated by an MSM derived
from a MD simulation that fully includes I (usually plus
some extra space, because MD simulations typically em-
ploy periodic rather than spherical boundary conditions).
We implicitly assume that the interaction forces between
proteins or protein-ligand pairs have decayed to zero at
distances R or greater. Note that this assumption re-
quires that the MD simulation conducted to parametrize
an MSM/RD model has a sufficiently large simulation
box, suitable electrostatics treatment and solvation con-
ditions (ions etc.) such that in the dissociated state the
solutes can be in any orientation without significantly in-
teracting with each other or with their periodic images.
The interaction region I will here be approximated by

an MSM. We perform a spectral decomposition of (3),
assuming that there exists a unique stationary density
π and the dynamics obey detailed balance. Further-
more, we truncate the spectral decomposition after a fi-
nite number of k terms:

%(x; t+ τ) ≈ π(x)
k∑
i=1

λi(τ)〈ψi(x), %(x; t)〉ψi(x) (4)

Here, 〈, 〉 denotes the scalar product with respect to π(x),
ψi are the eigenfunctions of Tτ and its leading eigenvalues
have the form

λi(τ) = e−τ/ti ,

where ti is a characteristic relaxation timescale. The
truncation after k terms in Eq. (4) assumes that τ is long
compared to tk+1, where 3tk < τ is sufficient for practi-
cal purposes. Most of the solvent dynamics correspond

to the fast coordinates that are averaged out (large-scale
hydrodynamics are not part of the MSM term, while sol-
vent molecules with long-lived interactions with the so-
lute molecule can be considered to be part of that solute
molecule). Now we can perform a Galerkin projection
of the transfer operator by discretizing the phase space
using basis functions χi(x), i = 1, ..., n. In MSMs, these
are characteristic functions

χi(x) =
{

1 x ∈ Si
0 x /∈ Si

where the Si form a complete partition of phase space,
i.e. Ω = {S1 ∪ S2 ∪ · · · ∪ Sn}. The phase space has
now been discretized into a finite state space. The local
densities become vectors simply given by

πj =
∫
x∈Sj

π(x)dx, %j(t) =
∫
x∈Sj

%(x; t)dx.

Furthermore, we want the transfer operator to be ap-
proximated by a matrix. We can obtain this matrix by
noting that the eigenfunctions of the transfer operator
also become vectors in state space

ψji = 1∫
Ω χj(x)dx

∫
x∈Sj

ψi(x)dx.

Inserting these equations into (4), and rewriting it in ma-
trix form, we obtain the Chapman-Kolmogorow equation

%(t+ τ) = T>(τ)%(t), (5)

with λi(τ) and ψi = [ψ1
i , . . . , ψ

n
i ] the ith eigenvalue and

eigenvector of the transition probability matrix T(τ), re-
spectively, and with %(t) = [%1(t), . . . , %n(t)] the proba-
bility mass function [6].

Estimating a high-quality MSM from MD simulation
data can be quite complex. It typically involves (i) map-
ping the MD coordinates to a set of features, such as
residue distances, contact maps or torsion angles, (ii) re-
ducing the dimension to slow collective variables (CVs),
often based on the variational approach or conformation
dynamics [50, 51] or its special case time-lagged indepen-
dent component analysis (TICA) [52, 53] – see [54, 55]
for an overview, (iii) optionally, embedding the result-
ing coordinates in a metric space whose distances corre-
spond to some form of dynamical distance [56, 57], (iv)
discretizing the result space using data-based clustering
[7, 58, 59], typically resulting in 100-1000 discrete states,
and (v) estimating the transition matrix T(τ) or a tran-
sition rate matrix K with T(τ) = exp (τK) at some lag
time τ , and validating it [6, 10, 60, 61]. Finally, the MSM
may be coarse-grained to few metastable states [62–65].
The MSM software packages PyEMMA [58] and MSM-
builder [59] can greatly help to simplify this process and
make it reproducible.
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In the case where there are well-defined meta-stable
regions in phase space, we can greatly reduce the num-
ber of states in the MSM. One way to simplify the MSM
construction process above and to directly end up with a
few-state MSM is to employ VAMPnets, where the com-
plex MSM construction pipeline is replaced by a neural
network that is trained using the variational approach
for Markov processes [66]. Alternatively, one can replace
the discretization step (iv) above by employing a core set
approach that was derived in [60] and further analyzed
in [67]. The essential idea is to define the states as cores
around the metastable regions. Due to the metastabil-
ity, the probability of finding the system outside of the
metastable regions is very small, so to a good approxima-
tion the kinetics can be described as a core-to-core jump
process [67]. This approach will be employed throughout
this paper and and explained in more detail in Sec. III.

C. Reaction-diffusion dynamics for noninteracting
molecules

When molecules are far apart, and thus in the RD
domain defined by rAB(x) ≥ R, they are not directly
interacting. As the dynamics of the two molecules are
independent, it is convenient to only track the net dif-
fusion of the centers of mass, rA and rB . Furthermore,
we assume that the dynamics in the RD domain can be
tracked by coarse timesteps of at least ∆t which exceeds
the typical velocity autocorrelation time (picoseconds).
At such timescales, the fast dynamics corresponding to
the solvent are averaged out. It is possible that even
longer timesteps are made using an event-based integra-
tion scheme such as first-passage kinetic Monte Carlo
(FPKMC) algorithm, Green’s function reaction dynam-
ics (GFRD) or MD-GFRD [28, 31, 35, 36, 42]. At such
timesteps, the Langevin equation (1) becomes an over-
damped Langevin equation for the centers of mass of the
two molecules, i.e. the motion is governed by pure diffu-
sion:

drA(t)
dt

=
√

2DAξA(t), drB(t)
dt

=
√

2DBξB(t), (6)

where ξA(t) and ξB(t) are independent white noise vec-
tors with each of their components satisfying E[ξK,i(t)] =
0 and E[ξK,i(t)ξK,j(s)] = δijδ(t−s). DA and DB are the
net diffusion coefficients for the centers of mass, which
can be obtained from MD simulations. In general, as we
are tracking the center of mass, we also need to track the
rotational diffusion of the molecules. However, as rota-
tional diffusion is not relevant for the examples discussed
in this manuscript, we refer to [68, 69].

In the present case, we can simply fix the frame of refer-
ence in rA(t), assume the rotation of A is slower than the
diffusion of B, which is true for protein-ligand systems,
and fix the orientation of the axis to that of molecule A.
We further assume that B is a small molecule such that

its orientation is not very relevant, as it will be the case
in our implementation of the scheme. This simplifies Eqs.
6 into a simple diffusion in rB only

drB(t)
dt

=
√

2(DB +DA)ξ(t), (7)

with the components of ξ(t) satisfying E[ξi(t)] = 0 and
E[ξi(t)ξ,j(s)] = δijδ(t− s).

D. MSM/RD coupled dynamics

The present coupled model only considers interactions
between up to two molecules. This is a frequent assump-
tion in PBRD [30, 31, 34, 36] but may be restrictive
from a molecular standpoint. We assume that simul-
taneous reactions between three or more molecules such
as A + B + C → D can always be broken down into
A + B → AB; AB + C → D or other bimolecular path-
ways, and therefore focus on MSM/RD involving two
molecules. In order to do the coupling, as the dynam-
ics in the I and O region are given in terms of states
and coordinates respectively, we need to recognize that
x and y in the transfer density p(y → x; τ) can be ei-
ther coordinates c (center-of-mass position and perhaps
orientation of the molecule) or states s (metastable re-
gions in the coordinate space). In order to implement the
coupling, we suggest defining two quantities:

• pentry [ct → xt+∆; ∆], transfer probability of start-
ing in coordinates ct just inside the MSM domain
(rAB(ct) < R) conditioned on hitting only one
state xt+∆ = st+∆ in the MSM domain (transi-
tion event) OR on exiting once the MSM domain
xt+∆ = ct+∆ (return event)

• pexit [st → xt+∆; ∆], transfer probability of start-
ing in state st conditioned on exiting once the MSM
domain xt+∆ = ct+∆ (exit event) OR hitting once
any other state (xt+∆ = st+∆).

Once we know these transfer probabilities, we can intro-
duce the basic algorithm where τRD and τMSM correspond
to the diffusion and MSM time-step, respectively:

Input: Initial mode (RD or MSM), initial
condition (coordinates c0 or state s0,
respectively) and t = 0:

While t ≤ tfinal :

1. If in RD mode:

(a) Propagate ct → ct+τRD by diffusion

(b) Update time t += τRD

(c) If rAB(ct) < R (enter MSM domain):

• Sample next event (xt+∆,∆)from
pentry[ct → xt+∆; ∆].
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• If transition event:
Map to state st+∆ = xt+∆
Update time t += ∆
Switch to MSM mode

• Else (return event):
Map to coordinates ct+∆ = xt+∆
Update time t += ∆

2. Else (MSM mode):

(a) If st 6= st−τMSM
or previous mode 6= MSM

mode:

• Sample next event (xt+∆,∆) from
pexit [st → xt+∆; ∆].

• If exit event:
Map to coordinates ct+∆ = xt+∆
Update time t += ∆
Switch to RD mode and break
current loop iteration

(b) Propagate st → st+τMSM
using the MSM

(c) Update time t += τMSM

There are additional issues in specific scheme imple-
mentations, such as estimating the unknown conditional
transfer probabilities, and choosing the MSM discretiza-
tion and R such that the overall discretization error is
small, among others. These issues are non-trivial and
could potentially be tackled with different approaches.
In order to quantify the accuracy of a given approach,
we quantify how well is our scheme approximating the
ground truth by comparing relevant macroscopic observ-
ables. We present one possible implementation of the
scheme in Sec. III.

III. AN MSM/RD IMPLEMENTATION FOR
PROTEIN-LIGAND SYSTEMS

Now we develop an implementation of the MSM/RD
scheme for a special class of systems: the binding of a
small ligand to a protein – a case that is relevant in
the study of protein-drug binding kinetics [70]. While
the theory described before is more general, implementa-
tions to more challenging systems such as protein-protein
interaction will be treated in future contributions. We
begin by considering the macromolecule A fixed at the
origin with fixed orientation and the ligand B freely
diffusing around it with an overall diffusion constant
D = DA + DB . The macromolecule has several possi-
ble binding sites given by some interaction potential. In
order to present the MSM/RD scheme in detail, we dis-
tinguish three different simulations:

1. Reference simulation (ground truth, if avail-
able): MD simulation of B and its interaction with
A in a large spherical domain with radius Rs. Un-
fortunately, reference simulations of realistic sys-
tems are in general not computationally feasible

due to the time and lengthscales of the simula-
tion. Nonetheless, reference simulations of simple
systems are used to verify the MSM/RD scheme
and validate its use in more complex systems.

2. Small-scale simulation (MD simulation): anal-
ogous to the reference simulation with the differ-
ence that B is constrained to a small box with pe-
riodic boundary conditions, see Fig. 2a. As the
potential is negligible outside this box, the main
interaction dynamics are extracted from this simu-
lation’s data into an MSM. This simulation is used
to parametrize the MSM/RD model.

3. MSM/RD simulation (hybrid model): couples
the MSM for short-range interactions derived from
the MD simulation 2. with a diffusion scheme for
the long-range, see Fig. 2c. The goal of the scheme
is to approximate the ground truth dynamics given
by the reference simulation 1.

A. Estimation

In order to parametrize the MSM/RD scheme, we need
to estimate quantities from the small-scale simulation
2. that characterize the state-to-state dynamics and the
coupling between the MSM and RD domain. The state
to state dynamics are estimated using an MSM, and
the coupling is given in terms of entry and exit events
from the MSM domain. These might happen on dif-
ferent timescales, so we would like to be free from the
fixed time-step the MSM requires to be well equilibrated.
Therefore, we use trajectory statistics for entry and exit
events.

1. MSM

As a first step for the construction of the Markov
model and MSM/RD parametrization, we need to find
a discrete representation of the underlying data. In this
work we use the core MSM approach [67], which requires
the definition of cores as metastable regions of phase
space. Cores are given by spherical domains around
the metastable regions in the MD simulation and can be
found using a clustering algorithm. In the core MSM ap-
proach a discrete trajectory is constructed by assigning
the last visited state-index to each point in the trajec-
tory. Note the trajectory may leave the core of a given
state and re-enter multiple times without transitioning
to other states. Using this discretization technique we
truncate the discrete trajectory into three types of tra-
jectories as shown in Fig. 2b: i) entry trajectories that
start just inside the MSM domain and either leave the
domain next or hit a core inside the domain. ii) tran-
sition trajectories that start in a state and hit another
state as next event and iii) exit trajectories that start in
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(a) (b) (c)

FIG. 2: Illustrations of a MD trajectory, its classification to extract the relevant dynamics and the MSM/RD scheme. a) Illustration
of a trajectory of a ligand in a MD simulation within a box with periodic boundaries (small-scale simulation). Note that there are two
metastable regions, e.g. binding sites on a protein, where the ligand stays for a longer time. b) Illustration of truncation and classification
of the trajectory. The MSM domain is chosen so the interaction potential is effectively zero outside this region (bath state); the cores X and
Y are chosen to represent the metastable regions in phase space. The truncated trajectories are classified into entry trajectories (green),
transition trajectories (red) and exit trajectories (blue), which are used for the coupling in the MSM/RD scheme. In order to obtain the
MSM for the MSM/RD scheme, the system is also classified into three states, the bath state and the two cores X and Y ; it is also shown
when the transition between these states occur along a trajectory. c) Representation of the MSM/RD scheme. The full trajectories from
the MD-simulation are used to derive an MSM to model the dynamics in the MSM domain. The entry and exit trajectories from the

MD-simulation are used to couple the Brownian dynamics in the diffusion domain with the dynamics in the MSM domain.

a state and leave the MSM domain as next event. These
trajectories are used to estimate the transfer densities
and to parametrize the MSM/RD simulation.
The MSM for the short-range interactions is built us-

ing the full discrete trajectories and the exit trajectories
(Fig. 2a). We follow the methods from [6] to estimate a
transition matrix T(τ), where the entries are the transi-
tion probabilities Ti,j from state i to j. Using the discrete
trajectories, we create count matrices Cfull

i,j (τ) from the
complete data set and Cexit

i,j (τ) from the exit trajecto-
ries, which count all the transitions from state i to j at
a lag time τ observed in the respective datasets. As the
coupling between the MSM and RD domain is handled
separately, the MSM dynamics only accounts for transi-
tions amongst the cores and therefore the counts arising
from exit trajectories have to be subtracted

Ci,j(τ) = Cfull
i,j (τ)− δi,jCexit

i,j (τ), (8)

where δi,j denotes the Kronecker delta. We then use
a maximum likelihood estimator to obtain a transition
matrix from the given counts Cij . Note that here we
have chosen an irreversible estimator, as we can no longer
assume that detailed balance holds for this count matrix.

2. Entering the MSM domain

The protocol to enter the MSM domain from the RD
domain is constructed with the entry trajectories as de-
fined above. It consists of generating a list Lentry =
{centry,xend,∆} of all start coordinates centry(just inside
the MSM domain) and endpoints xend of entry trajecto-
ries and their corresponding times ∆. The endpoints

may be either MSM states or coordinates in the RD
domain, see Fig. 2b. The ensemble of trajectories in
this list estimates the conditional transfer probability
pentry [ct → st+∆; ∆] (Sec. IID) for several times ∆. In
the MSM/RD simulation samples are drawn from this
list of entry points.

3. Exiting the MSM domain

For each state s of the MSM, we collect all exit and
transition trajectories and save their end coordinate or
state along with their respective exit time in the lists
Lexit,s = {cexit,∆} and Ltrans,s = {strans,∆}. The en-
semble of trajectories in these list estimates the con-
ditional transfer probability pexit [st → ct+∆; ∆] (Sec.
IID) for several times ∆. The probability of an exit
event Pexit,s is simply estimated as the ratio of exiting
trajectories over the total numbers of trajectories,

Pexit,s = # of trajectories in Lexit,s

# of trajectories in Lexit,s and Ltrans,s
. (9)

The MSM/RD scheme for this implementation is based
on the scheme from Sec. IID and is shown in the Ap-
pendix.

B. Verification of the MSM/RD scheme

In order to verify the MSM/RD scheme, we use sys-
tems where a reference simulation is available. We ver-
ify the internal dynamics by comparing the first passage
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times (FPTs) distributions and mean first passage times
(MFPTs) for each pair of metastable states within re-
gion I between the MSM/RD and reference simulations.
We estimate the ground truth MFPTs by computing the
FPTs tref

i,j , where the initial conditions are chosen as the
minima µi and the system is propagated following the
reference simulation until hitting state j (conditioned
on not leaving the MSM domain). For the MSM/RD
scheme, we compute the FPTs tMSM

i,j by placing the par-
ticle in state i and propagating the system following the
MSM/RD scheme until state j is hit. If the particle exits
the MSM domain before reaching state j, the trajectory is
not taken into account. When a sufficiently large sample
is generated, we can estimate the distributions of FPTs
by histograms. The MFPTs are estimated as τ ref

ij =tref
ij

and τMSM
ij =tMSM

ij , respectively. The MFPT relative er-
ror between the MSM/RD and the reference simulations
is estimated as

(Erel)ij =
τ ref
ij − τMSM

ij

τ ref
ij

. (10)

In order to verify the coupling between the RD and MSM
domain, we also estimate and compare the unbinding
rate, binding rate and equilibrium constant. The two
latter are calculated for different particle concentrations
c by fixing the radius Rs of the simulation domain such
that c = 1/VRD,with VRD the volume of the RD domain.

IV. RESULTS

In this section, we implement the MSM/RD scheme
from Sec. III in two systems. The first is a simple model
of a ligand diffusing in a potential landscape, which is
used to verify that the MSM/RD scheme reproduces the
correct dynamics. The second corresponds to a more re-
alistic MD system, where we study the binding of carbon
monoxide to myoglobin.

A. Ligand diffusion in potential landscape

We implement the MSM/RD scheme in a simple
model, where the reference simulation is available.
The model consists of a ligand B under over-damped
Langevin dynamics in a three-dimensional potential land-
scape

dx(t)
dt

= − 1
γ
∇U(x) +

√
2Dξ(t), (11)

with U the interaction potential with some macro-
molecule A fixed at the origin, γ the damping, and
each component of the noise satisfies E[ξi(t)] = 0 and
E[ξi(t)ξj(s)] = δijδ(t − s) with D = kBT/γ the diffu-
sion coefficient. A trajectory density plot of the potential

landscape chosen is shown in Fig. 3a, and it consists of
nine Gaussians with different depths and widths

U(r) = −
9∑
i=1

siN (µi,Σi), (12)

where N (µi,Σi) denotes a Gaussian centered at mini-
mum µi with covariance matrix Σi, si denotes a scale
factor. The small-scale simulation consists of Euler-
Maruyama numerical realizations of Eq. (11) under this
potential constrained to a box with an edge length of
6 units with periodic boundary conditions. The refer-
ence simulation is analogous to the small-scale simula-
tion with the difference that it uses a larger spherical
domain with reflective boundary conditions at a range
of radii corresponding to simulations at different ligand
concentrations.

1. Parametrization of the MSM/RD scheme

We use a radius of R = 2.5nm for the MSM domain (I
region) since outside this domain the potential (Eq. 12) is
essentially zero. We generate 120 small-scale simulation
trajectories, each with a length of 107 steps, a time-step
of ∆t = 10−4 ns, and sampled every tenth step. This
results in a total simulation time of t = 1.2 · 105 ns.
The cores are defined as spheres with radius 0.2 nm

around the minima µi, and the count matrix of tran-
sition between cores is generated from the trajectories
following Eq. (8). A maximum likelihood estimator (im-
plemented in PyEMMA [58]) is then applied to the count
matrix to yield the MSM. From the trajectories, we also
generate the lists Lentry, Lexit,s, Ltrans,s and Pexit,s, intro-
duced in Secs. IIIA 2 and IIIA 3. We then estimate the
timescales of the eigenmodes for different MSM lag times
to test how well the underlying process is estimated by
the MSM. The timescales have small variations for dif-
ferent lag times (Fig. 3d), which means the system can
be considered Markovian for all lag times. However, we
have to be careful not to choose the lag time too large,
such that relevant fast timescales are neglected resulting
in significant errors. For all further analyses, we consider
a lag time of τMSM = 500∆t = 0.05 ns to be an optimal
compromise.

2. Comparison of dynamic properties

In order to compute the binding rate, we calculate the
first passage time from a uniformly sampled location close
to the boundary r = RS−δ to any MSM state. We choose
δ = 0.05 nm and use 104 simulations to average and esti-
mate the MFPTon, from which we calculate the binding
rate as k∗on = 1/MFPTon. This procedure is performed
for both the MSM/RD and the reference simulation, and
we observe excellent agreement between the two (Fig.
3e).
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FIG. 3: Visualization and verification results for the simple model of ligand diffusing in a potential landscape. (a) Density plot of the
position of the ligand in the three dimensional potential. Red indicates regions of higher density while blue indicates regions of lower
density. (b) Relative error of MFPTs conditioned on not leaving the MSM domain between the MSM/RD and the reference simulation.
(c) Comparison of first passage times distribution histograms for the transitions with the highest error in (b). The left pane corresponds to
transitions with negative relative error, and the right pane to transitions with positive relative error. (d) Implied timescales of the MSM.
The shaded area represents the standard deviation of the bootstrapping sample. We observe well converged timescales for all considered
lag times. (e) The rate kon as function of the concentration of the system for the MSM/RD and reference simulations. (f) Same plot as
e) but for the logarithm of the equilibrium constant log(Keq). The error bars in (e) and (f) represent the 95% confidence interval using a

bootstrapping approach.

For the unbinding rate, we consider the inverse pro-
cess by starting in an MSM state and propagating the
dynamics until crossing a boundary defined by a sphere
with radius 2.7 nm > R. We obtain a reference value of
0.4020.404

0.400 ns−1 (Sub- and superscript indicate lower and
upper bound of the 95% precentile) and an MSM/RD
simulation value of koff = 0.4000.402

0.398 ns−1. We fur-
ther compute the logarithm of the equilibrium constant
log(Keq) = log(koff/k

∗
on) for both models and for the

chosen values of concentrations, resulting in accurate
reproduction of the reference values by the MSM/RD
scheme(Fig. 3f). Thus we verify that the coupling be-
tween the MSM domain and the RD domain works con-
sistently in the MSM/RD simulation scheme.

Next, we want to ensure that also the dynamics be-
tween the states inside the MSM are reproduced to a
high accuracy. We compare MFPTs between all pairs
of states conditioned on not leaving the MSM domain.
In the reference simulation this is done by placing the
particle at position µi and propagating the system until
state j is reached. If the particle leaves the MSM domain
before reaching state j, this trajectory is discarded. For
the MSM/RD simulation, we simply start in state i and

propagate until state j is hit, while discarding trajectories
that leave the MSM domain. This procedure is repeated
until 104 successful trajectories are found for both sim-
ulations, which are averaged to obtain the MFPTs. The
relative errors are calculated with Eq. (10); all relative
errors are below 9% (Fig. 3b). We further observe that
negative errors arise for state pairs that are close together
and thus have short passage times. For these transitions,
we tend to overestimate the MFPT in the MSM/RD sim-
ulation as short processes are truncated in the MSM es-
timation. Moreover, we observe that the highest positive
errors arise for transitions which are far apart. These are
the hardest to sample since for these transitions there are
a very high number of possible long and non-direct transi-
tion trajectories, which are less likely to be observed . We
chose the four transitions with the highest relative error
and compared their FPTs distribution histograms (Fig.
3c). Even though these transitions have the highest er-
rors, we observe the distributions match well. Therefore,
we verify MSM/RD scheme also describes the internal
dynamics accurately.
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B. Binding of CO to myoglobin

As an application of the MSM/RD scheme, we study
the binding of carbon monoxide (CO) to myoglobin.
Myoglobin is a globular protein which is responsible for
the transport of oxygen in muscle tissue. The binding
process of CO to myoglobin has recently been studied by
de Sancho et al. [16], whose data we use to parametrize
the MSM/RD scheme. The dataset consist of MD trajec-
tories of 20 CO molecules and one myoglobin protein for
a total simulation time of 500 ns. The MD simulation is
confined to a periodic box with edge length of 5 nm. De-
spite the fact that only one CO molecule can reside in the
binding pocket, the error of treating 20 CO molecules as
being statistically independent is small within statistical
uncertainty (see [16] for details). We therefore extract20
independent CO trajectories, effectively increasing the
total simulation time to 10 µs.

1. Parametrization of MSM/RD scheme

In order to parametrize the scheme, all frames are first
aligned using the Cα atoms of the myoglobin as refer-
ence. On the aligned data, we run the density-based spa-
tial clustering of applications with noise algorithm (DB-
SCAN) [71], which finds a total of 16 metastable region-
s/cores. The positions and size of the cores are shown in
Fig. 4a, where it can be observed that the algorithm cor-
rectly identifies regions of high ligand density, including
the myoglobin bound state indicated in red. The radius
of the spherical cores is the radius at which 80 % of the
datapoints that were assigned to the respective state are
inside the core. Four states are discarded as they are
not part of the largest connected set. As the simulation
box had been set up to just contain the protein and a
1 nm solvent layer, we choose the largest MSM domain
that still fits inside the box (R = 2.5 nm). Analogous to
the previous example, we follow Sec. III to estimate an
MSM for the close-range dynamics and generate Lentry,
Lexit,s, Ltrans,s and Pexit,s to couple the dynamics in the
two domains.
We compute the implied timescales for the MSM and

choose a lag time of 150 ps where timescales are suffi-
ciently converged (Fig. 4b). The diffusion constant is
computed using the mean squared displacement (MSD)
of the parts of the CO trajectories that are far from
the protein, with D = ∆MSD(t)/6∆t. We find a dif-
fusion constant of DCO = 2.5 nm2ns−1, which is compa-
rable to the experimental value which is in the range of
DCO = 2.03 nm2ns−1 (at 20C°) to DCO = 2.43 nm2ns−1

(at 30 C°) [72].

2. Comparison of dynamic properties

As in the previous example, we compute the bind-
ing rate by sampling positions sampled uniformly in the
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FIG. 4: Discretization and results of the CO-myoglobin system.
(a) Definition of the cores (wire frame spheres) within the myo-
globin. The red sphere indicates the bound state. The gray
spheres correspond to the states that were not in the connected
set and therefore discarded. The blue dots are positions of the CO
molecules for every 50th frame in the vicinity of the protein. b)
Implied timescales of the dynamics of the CO myoglobin system.
The datapoints and shaded area denote the sample mean and stan-
dard deviation of the bootstrapping sample over the trajectories:
from the 20 given trajectories we resample 20 with replacement.
Over this sample we run our discretization process which returns
a sample of timescales. The trajectory-samples which are not er-
godic or do not lead to a connected count matrix are considered
invalid and discarded. Solid lines are found using the full dataset.
c) Reaction rate as estimated from multiple simulations at different

concentrations.
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RD domain and simulating the MSM/RD model until it
reaches the bound state. For each concentration, 200 tra-
jectories are run to estimate the binding rate k∗on. These
rates are plotted against the concentration and shown in
Fig. 4c. The reaction rate kon = 5762

52 µM−1s−1 is ob-
tained as the slope of the linear fit. For the unbinding
rate, we start simulations in the bound state and collect
MFPTs for leaving the MSM domain; we find a rate of
koff = 19.019.2

18.8 µs−1. The resulting equilibrium constant
Keq = kon/koff = 3.03.3

2.7 M−1 is similar to 3.6 M−1 found
by de Sancho et al. [16], both of which are close to the
experimental value of 2.2 M−1[73] (see Tab. I for com-
parison). The binding rate and unbinding rate found by
de Sancho et al. [16], although yielding a similar equi-
librium constant, are both nearly an order of magnitude
faster than the ones obtained with MSM/RD (Tab. I).
The first indication that the present rates are an im-
proved estimate is the fact that the kinetics (both the
MSM relaxation timescales and kon) are independent of
the lag time (Fig. 4b, c).
To validate that the MSM/RD estimates of koff and

kon have been estimated without significant bias, it must
be shown that they are statistically consistent with the
ground truth (in this case a sufficiently large and suffi-
ciently long MD simulation). Here, koff can be estimated
directly by counting the frequency of ligand dissociation
events from the binding pocket in the underlying MD
simulations. Since there are not sufficient full dissocia-
tion pathways from the bound to the dissociated states
in the MD data in order to make a statistically relevant
comparison, we obtain a more precise estimate by com-
puting the MFPT using an MSM directly constructed
from the original MD data with the same discretization
as used in the MSM/RD model. This resulted in a refer-
ence estimate of 23.446.6

11.6 µs−1 (95% percentile computed
with 1000 bootstrap samples), which is consistent with
the MSM/RD estimate (Tab. I).
Unfortunately, this method is not as accurate for the

binding rate kon, which is notoriously difficult to estimate
from small MD simulation boxes, where the length of tra-
jectory segments in which the ligand stays in the disso-
ciated state without touching the protein or crossing the
periodic boundary are short compared to lagtimes τ used
in an MSM approach, resulting in biased estimates [18].
Therefore, we performed another Myoglobin MD simu-
lation in an eightfold larger periodic box (edge length
10 nm) with the same CO concentration as in the small
MD simulation (resulting in 160 COmolecules) for a total
simulation time of 405ns. For this data, a direct MSM es-
timate of the binding rate yields 74.7130.9

29.9 µM−1s−1 (95%
percentile computed with 1000 bootstrap samples). As
a result, the MSM/RD binding and dissociation rates
are consistent with standard estimates computed directly
from MD simulation, and the MSM/RD modeling error
can be concluded to be statistically insignificant.

Given the consistency of the model, we also compare
the results to experimental measurements, which is essen-
tially a test of the MD model (e.g. force field, thermostat,

integrator). These are yet a factor 4-5 slower than our
estimates (kon = 12 µM−1s−1 and koff = 5.3 µs−1 found
in [73]), confirming that the major part of the difference
between the estimates in [16] and theexperimental values
could be removed by the fact that MSM/RD is a signifi-
cantly more accurate model of the binding kinetics.

V. CONCLUSION

We introduced and developed the MSM/RD scheme,
which couples MD-derived MSMs with RD simulations.
We showed an implementation for protein-ligand systems
and applied it to two simple systems. The main advan-
tage of the algorithm is that it can simulate large time-
and lengthscales while conserving molecular resolution
and computational efficiency. This is achieved by ex-
tracting the characteristic features of the dynamics from
several short MD simulations into an MSM, which can
produce new data with great accuracy and at a much
faster rate than the original MD simulations. This is
a clear advantage in comparison to previous works, like
[42, 69], since it does not require running MD simula-
tions every time two particles are close to each other.
It can further yield more accurate binding rates than
traditional MSM methods by extending the diffusion do-
main available, lessening the periodic boundary effects
and increasing the lifetime of the dissociated state. The
scheme can be, in principle, coupled to any RD scheme,
like over-damped Langevin dynamics, Langevin dynam-
ics, GFRD [35, 36] and FPKMC algorithm [31], which
could yield additional efficiency and accuracy or even in-
corporate long-range hydrodynamic interactions.
We first implemented the MSM/RD scheme for a sim-

ple ligand diffusion model (Sec. IVA), which served to
verify the scheme. It reproduced the expected dynamics
and binding/unbinding rates of the reference simulation.
It was also able to generate an accurate MSM for the in-
ternal dynamics with a relatively small amount of data,
which hints that it is feasible to extract the characteristic
dynamics of a computationally feasible amount of MD
simulations. Moreover, we implemented the MSM/RD
scheme for the binding of CO to myoglobin system. After
successfully extracting a self-consistent MSM and a cou-
pling scheme, we found that the equilibrium constant is
consistent with previous experimental and computational
results [16, 73]. We also showed that the MSM/RD esti-
mates are consistent with the underlying MD simulations
– in particular our estimated association rate is consis-
tent with the association rate estimated from a reference
MD simulation conducted in a large simulation box that
was not used to parametrize the MSM/RD model. This
is a significant improvement over Ref. [16], where tenfold
higher rates were estimated.
The MSM/RD theory we introduced provides the

framework upon which schemes for more complex sys-
tems can be constructed. In particular, the next steps are
to include association of two macromolecules, which may
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MSM/RD Reference (approx.
ground truth)

MSM in [16] Experiment
[73]

Unit

kon 57.062.0
52.0 74.7130.9

27.9 647 12 M−1µs−1

koff 19.019.2
18.8 23.446.6

11.6 179 5.3 µs−1

Keq 3.03.3
2.7 3.193.8

2.6 3.6 2.2 M−1

TABLE I: Rates and equilibrium constants for Myglobin-CO estimated from different methods. The reference values approximate the
ground truth by conducting a standard MSM-based MFTP estimate from the MD simulation (for kon a larger simulation box was used to

allow for a generous definition of the dissociated state).

require to account for rototranslational diffusion, and the
coupling between protein-ligand association and confor-
mational changes. With the addition of these features,
biologically relevant scenarios can be simulated. For ex-
ample, if conformational changes of the protein are rare
events and have different ligand association / dissociation
rates, then the conformational dynamics and the ligand
binding dynamics are nontrivially coupled at high ligand
concentrations – see [15] for the example of Trypsin and
Benzamidine. A biological relevant example is the acti-
vation of the Calcium sensor Synaptotagmin in neuronal
synapses [74]. Here, a locally very high Calcium concen-
tration is created by the opening of voltage-gated Cal-
cium channels as a response to an electric signal. Synap-
totagmin then binds up to five Calcium ions while going
through different conformations, while the local Calcium
concentration is reduced by diffusion. If Synaptotagmin
successfully binds enough Calcium ions and transitions
into an active conformation, it can catalyze the fission
of neuronal vesicles, which transduces the signal to the
postsynaptic side. Such scenarios can be simulated with
MSM/RD simulations, in which the channels, the Synap-
totagmin proteins and the ions are resolved as individual
particles, and the binding/dissociation kinetics and con-
formational changes of Synaptotagmin is encoded in an
MSM.
MSM/RD could be extended to deal with higher-order

reactions. The most direct approach is to treat interac-
tions of order 2, 3, etc., by different MSMs which are then
coupled in a regular MSM/RD framework. The question
then is how the higher-order MSMs are obtained. The
brute-force approach would be to simulate the dynamics
between three or more molecules with MD – e.g. with
the help of enhanced sampling methods – and to extract
corresponding higher-order MSMs. A cheaper, but ap-
proximate approach would be to ignore coupling between
different states and assume that multiple ligands can bind
and transition between binding sites independently, per-
haps except for multiple occupation of the same binding
site. Based on such an assumption, higher-order MSMs
could be constructed by tensor products of MSMs with
one protein and one ligand. In practice, conducting some
but not all higher-order simulations and combining them
to a generative model via machine learning methods may
present a feasible pathway.
Finally, when considering protein interactions at high

concentrations, the diffusion dynamics and long-range in-
teractions of proteins are expected to be more compli-

cated and involve hydrodynamic effects and anomalous
diffusion. To include such effects, appropriate dynamical
schemes should be included in the RD part.

In future developments, we will extend the MSM/RD
scheme to address these issues; however, it should be
acknowledged that some of these extensions come with
their own set of challenges that are not trivial to address.
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APPENDIX: MSM/RD SCHEME FOR SEC. III

Based on the estimated quantities defined in the Sec.
III, we introduce an implementation of the MSM/RD
algorithm from Sec. IID.

Input: Initial mode (RD or MSM), initial
condition (coordinates c0 or state s0,
respectively) and t = 0:

While t ≤ tfinal :
1. If in RD mode:

(a) Propagate ct → ct+τRD by diffusion
(b) Update time t += τRD

(c) If rAB(ct) < R (enter MSM domain):
• Select trajectory from Lentry =
{centry,xend,∆} with centry closest
to ct

• If xend is a state:
Map to state st+∆ = xend
Update time t += ∆
Switch to MSM mode

• If xend are coordinates:
Map to coordinates ct+∆ = xend
Update time t += ∆
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2. Else (MSM mode):

(a) If st 6= st−τMSM
or previous mode 6= MSM

mode:

• Sample exit event with Pexit,s

• If exit event:
Uniformly select trajectory from
Lexit,s = {cexit,∆}
Map to coordinates ct+∆ = cexit
Update time t += ∆
Switch to RD mode and break
current loop iteration

(b) Propagate st → st+τMSM using T(τMSM)
(c) Update time t += τMSM.

The diffusion in the RD domain is done using a Euler-
Maruyama discretization of Eq. (7) [75]. Note the dif-
fusion step can be simulated more efficiently with event-
based algorithms, like FPKMC or eGFRD [28, 31, 35, 42]
for systems with low particle concentrations. In order to
optimize the efficiency of the algorithm, the entry points
of entry trajectories are classified into equal area bins on
the sphere. This allows the algorithm to find the closest
trajectory to a given entry point more efficiently. The
partition of the sphere was done following [76].

[1] A. Warshel and M. Levitt. Theoretical studies of enzymic
reactions: Dielectric, electrostatic and steric stabilization
of the carbonium ion in the reaction of lysozyme. J. Mol.
Biol., 103:227–249, 1976.

[2] M. Shirts and V. S. Pande. Screen savers of the world
unite! Science, 290:1903–1904, 2000.

[3] I. Buch, M. J. Harvey, T. Giorgino, D. P. Anderson,
and G. De Fabritiis. High-throughput all-atom molec-
ular dynamics simulations using distributed computing.
J. Chem. Inf. Model., 50:397–403, 2010.

[4] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana,
R.O. Dror, M.P. Eastwood, J.A. Bank, J.M. Jumper,
J.K. Salmon, Y. Shan, and W. Wriggers. Atomic-Level
Characterization of the Structural Dynamics of Pro-
teins. Science, 330:341–346, 2010. ISSN 1095-9203. doi:
10.1126/science.1187409. URL http://dx.doi.org/10.
1126/science.1187409.

[5] S. Doerr, M. J. Harvey, F. Noé, and G. De Fabri-
tiis. HTMD: High-Throughput Molecular Dynamics for
Molecular Discovery. J. Chem. Theory Comput., 12:
1845–1852, 2016.

[6] J.-H. Prinz, H. Wu, M. Sarich, B. G. Keller, M. Senne,
M. Held, J. D. Chodera, C. Schütte, and F. Noé. Markov
models of molecular kinetics: Generation and validation.
J. Chem. Phys., 134:174105, 2011.

[7] G. R. Bowman, V. S. Pande, and F. Noé, editors. An
Introduction to Markov State Models and Their Appli-
cation to Long Timescale Molecular Simulation., volume
797 of Advances in Experimental Medicine and Biology.
Springer Heidelberg, 2014.

[8] M. Sarich and C. Schütte. Metastability and Markov State
Models in Molecular Dynamics. Courant Lecture Notes.
American Mathematical Society, 2013.

[9] F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and
T. R. Weikl. Constructing the full ensemble of folding
pathways from short off-equilibrium simulations. Proc.
Natl. Acad. Sci. USA, 106:19011–19016, 2009.

[10] G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S.
Pande. Progress and challenges in the automated con-
struction of Markov state models for full protein systems.
J. Chem. Phys., 131:124101, 2009.

[11] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E.
Shaw. How fast-folding proteins fold. Science, 334:517–
520, 2011.

[12] K. J. Kohlhoff, D. Shukla, M. Lawrenz, G. R. Bowman,

D. E. Konerding, D. Belov, R. B. Altman, and V. S.
Pande. Cloud-based simulations on google exacycle re-
veal ligand modulation of gpcr activation pathways. Nat.
Chem., 6:15–21, 2014.

[13] I. Buch, T. Giorgino, and G. De Fabritiis. Complete
reconstruction of an enzyme-inhibitor binding process
by molecular dynamics simulations. Proc. Natl. Acad.
Sci. USA, 108:10184–10189, 2011. ISSN 1091-6490. doi:
10.1073/pnas.1103547108.

[14] D.-A. Silva, G. R. Bowman, A. Sosa-Peinado, and
X. Huang. A role for both conformational selection and
induced fit in ligand binding by the lao protein. PLoS
Comput. Biol., 7:e1002054, 2011.

[15] N. Plattner and F. Noé. Protein conformational plasticity
and complex ligand binding kinetics explored by atom-
istic simulations and markov models. Nat. Commun., 6:
7653, 2015.

[16] D. De Sancho, A. Kubas, P. Wang, J. Blumberger, and
R. B. Best. Identification of mutational hot spots for
substrate diffusion: Application to myoglobin. J. Chem.
Theory. Comput., 11(4):1919–1927, 2015.

[17] A. Kubas, C. Orain, D. De Sancho, L. Saujet, M. Sensi,
C. Gauquelin, I. Meynial-Salles, P. Soucaille, H. Bottin,
C. Baffert, et al. Mechanism of O2 diffusion and reduc-
tion in FeFe hydrogenases. Nat. Chem., 2017.

[18] N. Plattner, S. Doerr, G. De Fabritiis, and F. Noé. Com-
plete protein–protein association kinetics in atomic detail
revealed by molecular dynamics simulations and markov
modelling. Nat. Chem., 9:1005–1011, 2017.

[19] H. Wu, A. S. J. S. Mey, E. Rosta, and F. Noé. Statisti-
cally optimal analysis of state-discretized trajectory data
from multiple thermodynamic states. J. Chem. Phys.,
141:214106, 2014.

[20] E. Rosta and G. Hummer. Free energies from dynamic
weighted histogram analysis using unbiased markov state
model. J. Chem. Theory Comput., 11:276–285, 2015.

[21] H. Wu, F. Paul, C. Wehmeyer, and F. Noé. Multiensem-
ble markov models of molecular thermodynamics and
kinetics. Proc. Natl. Acad. Sci. USA, 113(23):E3221–
E3230, 2016. doi:10.1073/pnas.1525092113.

[22] A. S. J. S. Mey, H. Wu, and F. Noé. xTRAM: Estimating
equilibrium expectations from time-correlated simulation
data at multiple thermodynamic states. Phys. Rev. X, 4:
041018, 2014.

[23] F. Paul, C. Wehmeyer, E. T. Abualrous, H. Wu, M. D.

http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1126/science.1187409
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1073/pnas.1525092113


14

Crabtree, J. Schöneberg, J. Clarke, C. Freund, T. R.
Weikl, and F. Noé. Protein-peptide association kinetics
beyond the seconds timescale from atomistic simulations.
Nat. Commun., 8:1095, 2017.

[24] R. Casasnovas, V. Limongelli, P. Tiwary, P. Carloni, and
M. Parrinello. Unbinding kinetics of a p38 map kinase
type ii inhibitor from metadynamics simulations. J. Am.
Chem. Soc., 139:4780–4788, 2017.

[25] H. Qian. Cellular biology in terms of stochastic nonlinear
biochemical dynamics: Emergent properties, isogenetic
variations and chemical system inheritability. J. Stat.
Phys, 141(6):990–1013, 2010.

[26] R. Erban and S. J. Chapman. Stochastic modelling of
reaction–diffusion processes: algorithms for bimolecular
reactions. Phys. Biol., 6(4):046001, 2009.

[27] D. Fange, O. Berg, P. Sjöberg, and J. Elf. Stochastic
reaction-diffusion kinetics in the microscopic limit. Proc.
Natl. Acad. Sci. USA, 107(46):19820–19825, 2010.

[28] K. Takahashi, S. Tănase-Nicola, and P. R. ten Wolde.
Spatio-temporal correlations can drastically change the
response of a mapk pathway. Proc. Natl. Acad. Sci. USA,
107(6):2473–2478, 2010.

[29] S. S. Andrews and D. Bray. Stochastic simulation of
chemical reactions with spatial resolution and single
molecule detail. Phys. Biol., 1(3):137, 2004.

[30] J. Biedermann, A. Ullrich, J. Schöneberg, and F. Noé.
Readdymm: Fast interacting particle reaction-diffusion
simulations using graphical processing units. Biophys.
J., 108:457–461, 2015.

[31] A. Donev, V. V. Bulatov, T. Oppelstrup, G. H. Gilmer,
B. Sadigh, and M. H. Kalos. A first-passage kinetic monte
carlo algorithm for complex diffusion–reaction systems.
J. Comput. Phys., 229(9):3214–3236, 2010.

[32] Aleksandar Donev, Chiao-Yu Yang, and Changho Kim.
Efficient reactive brownian dynamics. The Journal of
Chemical Physics, 148(3):034103, 2018.

[33] J. Hattne, D. Fange, and J. Elf. Stochastic reaction-
diffusion simulation with mesord. Bioinformatics, 21(12):
2923–2924, 2005.

[34] J. Schöneberg and F. Noé. Readdy - a software for parti-
cle based reaction diffusion dynamics in crowded cellular
environments. PLoS ONE, 8(e74261), 2013.

[35] J. S. van Zon and P. R. Ten Wolde. Green’s-function
reaction dynamics: A particle-based approach for simu-
lating biochemical networks in time and space. J. Chem.
Phys., 123(23):4910, 2005.

[36] J. S. Van Zon and P. R. ten Wolde. Simulating bio-
chemical networks at the particle level in time and space:
Green’s function reaction dynamics. Phys. Rev. Lett., 94:
128103, 2005.

[37] P. Mereghetti, D. Kokh, J. A. McCammon, and R. Wade.
Diffusion and association processes in biological systems:
theory, computation and experiment. BMC biophysics, 4
(1):2, 2011.

[38] J. Schöneberg, A. Ullrich, and F. Noé. Simulation tools
for particle-based reaction-diffusion dynamics in contin-
uous space. BMC Biophysics, 7:11, 2014.

[39] D. L. Ermak and J. A. McCammon. Brownian dynamics
with hydrodynamic interactions. J. Chem. Phys., 69(4):
1352–1360, 1978.

[40] T. Geyer and U. Winter. An o (n 2) approximation for
hydrodynamic interactions in brownian dynamics simu-
lations. J. Chem. Phys., 130(11):114905, 2009.

[41] Luigi Sbailò and Frank Noé. An efficient multi-scale

green’s function reaction dynamics scheme. J. of Chem.
Phys., 147(18):184106, 2017.

[42] A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde. Com-
bining molecular dynamics with mesoscopic green’s func-
tion reaction dynamics simulations. J. Chem. Phys., 143
(21):214102, 2015.

[43] L. W. Votapka, B. R. Jagger, A. L. Heyneman, and R. E.
Amaro. SEEKR: Simulation enabled estimation of ki-
netic rates, a computational tool to estimate molecular
kinetics and its application to trypsin–benzamidine bind-
ing. J. Phys. Chem. B, 121:3597–3606, 2017.

[44] Anton K Faradjian and Ron Elber. Computing time
scales from reaction coordinates by milestoning. J. Chem.
Phys., 120(23):10880–10889, 2004.

[45] M. J. del Razo and H. Qian. A discrete stochastic for-
mulation for reversible bimolecular reactions via diffusion
encounter. Comm. Math. Sci., 14(6):1741–1772, 2016.

[46] M. B. Flegg, S. J. Chapman, and R. Erban. The
two-regime method for optimizing stochastic reaction–
diffusion simulations. J. Royal. Soc. Interface, 9(70):859–
868, 2012.

[47] M. B. Flegg, S. Hellander, and Radek R. Erban. Conver-
gence of methods for coupling of microscopic and meso-
scopic reaction–diffusion simulations. J. Comput. Phys.,
289:1–17, 2015.

[48] S. Donnini, F. Tegeler, G. Groenhof, and H. Grubmüller.
Constant ph molecular dynamics in explicit solvent with
lambda-dynamics. J. Chem. Theory. Comput., 7:1962–
1978, 2011.

[49] C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard.
A Direct Approach to Conformational Dynamics based
on Hybrid Monte Carlo. J. Comput. Phys., 151:146–168,
1999.

[50] F. Noé and F. Nüske. A variational approach to model-
ing slow processes in stochastic dynamical systems. Mul-
tiscale Model. Simul., 11:635–655, 2013.

[51] F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. J. S.
Mey, and F. Noé. Variational approach to molecular ki-
netics. J. Chem. Theory Comput., 10:1739–1752, 2014.

[52] G. Perez-Hernandez, F. Paul, T. Giorgino, G. D Fabritiis,
and Frank Noé. Identification of slow molecular order
parameters for markov model construction. J. Chem.
Phys., 139:015102, 2013.

[53] C. R. Schwantes and V. S. Pande. Improvements in
markov state model construction reveal many non-native
interactions in the folding of ntl9. J. Chem. Theory Com-
put., 9:2000–2009, 2013.

[54] F. Noé and C. Clementi. Collective variables for the study
of long-time kinetics from molecular trajectories: theory
and methods. Curr. Opin. Struc. Biol., 43:141–147, 2017.

[55] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis,
C. Schütte, and F. Noé. Data-driven model reduction
and transfer operator approximation. J. Nonlinear Sci.,
pages 1–26, 2017.

[56] F. Noé and C. Clementi. Kinetic distance and kinetic
maps from molecular dynamics simulation. J. Chem.
Theory Comput., 11:5002–5011, 2015.

[57] F. Noé, R. Banisch, and C. Clementi. Commute maps:
separating slowly-mixing molecular configurations for ki-
netic modeling. J. Chem. Theory Comput., 12:5620–5630,
2016.

[58] M. K. Scherer, B. Trendelkamp-Schroer, F. Paul,
G. Perez-Hernandez, M. Hoffmann, N. Plattner, J.-H.
Prinz, and F. Noé. PyEMMA 2: A software package for



15

estimation, validation and analysis of Markov models. J.
Chem. Theory Comput., 11:5525–5542, 2015.

[59] M. P. Harrigan, M. M. Sultan, C. X. Hernández, B. E.
Husic, P. Eastman, C. R. Schwantes, K. A. Beauchamp,
R. T. McGibbon, and V. S. Pande. Msmbuilder: Statis-
tical models for biomolecular dynamics. Biophys J., 112:
10–15, 2017.

[60] N. V. Buchete and G. Hummer. Coarse Master Equations
for Peptide Folding Dynamics. J. Phys. Chem. B, 112:
6057–6069, 2008.

[61] B. Trendelkamp-Schroer, H. Wu, F. Paul, and F. Noé.
Estimation and uncertainty of reversible markov models.
J. Chem. Phys., 143:174101, 2015.

[62] S. Kube and M. Weber. A coarse graining method for
the identification of transition rates between molecular
conformations. J. Chem. Phys., 126:024103, 2007. doi:
10.1063/1.2404953. URL http://dx.doi.org/10.1063/
1.2404953.

[63] G. Hummer and A. Szabo. Optimal dimensionality re-
duction of multistate kinetic and markov-state models.
J. Phys. Chem. B, 119:9029–9037, 2015.

[64] S. Orioli and P. Faccioli. Dimensional reduction of
markov state models from renormalization group theory.
J. Chem. Phys., 145:124120, 2016.

[65] F. Noé, H. Wu, J.-H. Prinz, and N. Plattner. Projected
and hidden markov models for calculating kinetics and
metastable states of complex molecules. J. Chem. Phys.,
139:184114, 2013.

[66] A. Mardt, L. Pasquali, H. Wu, and F. Noé. VAMPnets
for deep learning of molecular kinetics. Nat. Commun.,
page 5, 2018.

[67] C. Schütte, F. Noé, J. Lu, M. Sarich, and E. Vanden-
Eijnden. Markov state models based on milestoning. J.
Chem. Phys., 134(20):05B609, 2011.

[68] J. Schluttig, D. Alamanova, V. Helms, and U. S. Schwarz.
Dynamics of protein-protein encounter: A langevin equa-
tion approach with reaction patches. J. Chem. Phys.,

129:155106, 2008.
[69] A. Vijaykumar, T. E. Ouldridge, P. R. ten Wolde, and

P. G. Bolhuis. Multiscale simulations of anisotropic par-
ticles combining brownian dynamics and green’s func-
tion reaction dynamics. J. Chem. Phys., 146(11):114106,
2017.

[70] Doris A Schuetz, Wilhelmus Egbertus Arnout de Witte,
Yin Cheong Wong, Bernhard Knasmueller, Lars Richter,
Daria B Kokh, S Kashif Sadiq, Reggie Bosma, Indira
Nederpelt, Laura H Heitman, et al. Kinetics for drug
discovery: an industry-driven effort to target drug resi-
dence time. Drug discovery today, 22(6):896–911, 2017.

[71] M. Ester, H. P. Kriegel, J. Sander, X. Xu, et al. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd, volume 96, pages
226–231, 1996.

[72] D. L. Wise and G. Houghton. Diffusion coefficients of
neon, krypton, xenon, carbon monoxide and nitric oxide
in water at 10–60 ◦C. Chem. Eng. Sci., 23(10):1211–1216,
1968.

[73] T. E. Carver, R. J. Rohlfs, J. S. Olson, Q. H. Gib-
son, R. S. Blackmore, B. A. Springer, and S. G. Sli-
gar. Analysis of the kinetic barriers for ligand binding
to sperm whale myoglobin using site-directed mutagene-
sis and laser photolysis techniques. J. Biol. Chem., 265
(32):20007–20020, 1990.

[74] Thomas C. Südhof. Neurotransmitter release: The last
millisecond in the life of a synaptic vesicle. Neuron, 80:
675–690, 2013.

[75] D. J. Higham. An algorithmic introduction to numeri-
cal simulation of stochastic differential equations. SIAM
review, 43(3):525–546, 2001.

[76] P. Leopardi. A partition of the unit sphere into regions of
equal area and small diameter. Electron. Trans. Numer.
Anal., 25(12):309–327, 2006.

http://dx.doi.org/10.1063/1.2404953
http://dx.doi.org/10.1063/1.2404953
http://dx.doi.org/10.1063/1.2404953
http://dx.doi.org/10.1063/1.2404953

