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Computing equilibrium states in condensed-matter many-body systems, such as solvated pro-
teins, is a long-standing challenge. Lacking methods for generating statistically independent
equilibrium samples directly, vast computational effort is invested for simulating these sys-
tem in small steps, e.g., using Molecular Dynamics. Combining deep learning and statistical
mechanics, we here develop Boltzmann Generators, that are shown to generate statistically
independent samples of equilibrium states of representative condensed matter systems and
complex polymers. Boltzmann Generators use neural networks to learn a coordinate transfor-
mation of the complex configurational equilibrium distribution to a distribution that can be
easily sampled. Accurate computation of free energy differences, and discovery of new system
states are demonstrated, providing a new statistical mechanics tool that performs orders of
magnitude faster than standard simulation methods.

Statistical mechanics is concerned with comput-
ing the average behavior of many copies of a
physical system based on models of its micro-
scopic constituents and their interactions. For
example, what is the average magnetization in
an Ising model of interacting magnetic spins in
an external field, or what is the probability of
a protein to be folded in an atomistic molecular
model as a function of the temperature? Under
a wide range of conditions, the equilibrium prob-
ability of a microscopic configuration x (setting
of all spins, positions of all protein atoms, etc.)
is proportional to e−u(x), for example, the well-
known Boltzmann distribution. The dimension-
less energy u(x) contains the potential energy of
the system, the temperature and optionally other
thermodynamic quantities (SI).
Except for simple model systems, we presently
have no approach to directly draw statistically
independent samples x from Boltzmann-type dis-
tributions in order to compute statistics of the
system, such as free energy differences. There-
fore, one currently relies on trajectory methods,
such as Markov-Chain Monte Carlo (MCMC) or
Molecular Dynamics (MD) simulations that make
tiny changes to x in each simulation step. These
methods sample from the Boltzmann distribu-
tion, but many simulation steps are needed to
produce a statistically independent sample. This
is because complex systems often have metastable
(long-lived) phases or states and the transitions
between them are rare events – for example,
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109 − 1015 MD simulation steps are needed to
fold or unfold a protein. As a result, MCMC and
MD methods are extremely expensive and con-
sume much of the worldwide supercomputing re-
sources. In specific cases, where low-dimensional
coordinates can be identified that trace the rare
event transitions, these can be sped up using en-
hanced sampling methods1–3, but the computa-
tional effort remains enormous.

Here we set out to develop a “Boltzmann Gen-
erator” machine that is trained on a given en-
ergy function u(x) and then produces statistically
independent samples from e−u(x), circumventing
the sampling problem. At first sight, this en-
terprise seems hopeless for condensed-matter sys-
tems and complex polymers (e.g., Fig. 3a, Fig.
4k). In these systems, particles with strong repul-
sive interactions are densely packed in space, such
that the number of low-energy configurations are
vanishingly few compared to the number of pos-
sible ways to place particles.

Key to the solution is combining the strengths of
deep machine learning4 and statistical mechan-
ics (Fig. 1a): We train a deep invertible neu-
ral network, to learn a coordinate transformation
from x to a so-called “latent” representation z, in
which sampling is easy and every sample can be
back-transformed to a configuration x with high
Boltzmann probability. We can improve the abil-
ity to find relevant parts of configuration space
by “learning from example”, where we feed the
Boltzmann Generator not only with the poten-
tial energy u(x), but also relevant samples x, e.g.,
from the folded or unfolded state of a protein, but
without knowing the probabilities of these states.
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Then we employ statistical mechanics which of-
fers a rich set of tools to generate the target dis-
tribution e−u(x) when the proposal distribution
is sufficiently similar.
This paper demonstrates that Boltzmann Gen-
erators can be trained to directly generate in-
dependent samples of low-energy structures of
condensed-matter systems and complex polymer
structures. When the Boltzmann Generator is
initialized with a few structures from different
metastable states, it can generate independent
samples from these states and can compute the
free energy difference between them without suf-
fering from rare events. We also demonstrate that
the Boltzmann Generator has a chance of gener-
ating new, previously unseen states. Exploiting
this property, an “iterative discovery” procedure
is constructed in which the Boltzmann Generator
gradually explores the state space.
Neural networks that can draw statistically inde-
pendent samples from a desired distribution are
called directed generative networks5,6. Such gen-
erative networks have been demonstrated to draw
photorealistic images7, to produce deceivingly re-
alistic speech audio8, and even to sample formu-
lae of chemical compounds with certain physico-
chemical properties9. In these domains, the exact
target distribution is not known and the network
is “trained by example” using large databases of
images, audio or molecules. Here we are in the in-
verse situation, as we can compute the Boltzmann
weight of each generated sample x, but we do not
have samples from the Boltzmann distribution a
priori. The idea of Boltzmann Generators is as
follows:

1. We learn a neural network transformation
Fzx such that when sampling from a simple
distribution in z, such as a Gaussian nor-
mal distribution, Fzx(z) will provide a con-
figuration x which has a high Boltzmann
weight, i.e. is coming from a distribution
pX(x) that is similar to the target Boltz-
mann distribution (Fig. 1).

2. To compute Boltzmann-weighted aver-
ages, we reweight the generated distribu-
tion pX(x) to the Boltzmann distribution
e−u(x). This can be achieved with vari-
ous algorithms; here the simplest one is
used: assign the statistical weight w(x) =
e−u(x)/pX(x) to every sample x and then
compute desired statistics, such as free en-
ergy differences using this weight.

For both, training and reweighting, it is impor-
tant that we can compute the probability pX(x)
of generating a configuration x. This can be
achieved when Fzx is an invertible transforma-
tion, for which we can compute pX(x) from the
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Figure 1. Boltzmann Generators. a) A Boltz-
mann Generator is trained by minimizing the differ-
ence between its generated distribution and the de-
sired Boltzmann distribution. It is used by trans-
forming samples from a simple (e.g., Gaussian) dis-
tribution to generated configurations. To compute
thermodynamics, such as configurational free ener-
gies, the samples must be reweighted to the Boltz-
mann distribution. b) The Boltzmann Generator is
composed of invertible neural network blocks. Here,
a volume-preserving block is shown as an example.

known pZ(z) (Fig. 1, SI). Invertible neural net-
work transformations are similar to flows of a
fluid that transform the probability density from
configuration space to latent space, or backwards.
Here we consider invertible neural network blocks
that are volume-preserving (as in incompressible
fluids)10, and non-volume preserving (as in com-
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pressible fluids)11 (Suppl. Fig. 1b-e). Invertibil-
ity is achieved by special neural network archi-
tectures (Fig. 1b, Suppl. Fig. 1c,e; see SI for de-
tails). Invertible blocks can be stacked in various
configurations to form a deep invertible neural
network (Fig. 1a, Suppl. Fig. 1f). At least one
non-volume preserving layer must be included so
that the network is able to represent distributions
with arbitrary “widths”, or entropies.
Boltzmann Generators are trained with a com-
bination of two modes: training by energy and
training by example. Training by energy is the
main principle behind Boltzmann Generators,
and proceeds as follows: We generate random
vectors z sampled from a Gaussian distribution,
and then transform them through the neural net-
work to proposal configurations, x = Fzx(x). In
this way, the Boltzmann Generator will gener-
ate configurations from a proposal distribution
pX(x), which, initially will be very different from
the Boltzmann distribution, and include struc-
tures with very high energies. Next we compute
the difference between the generated distribution
pX(x) from e−u(x), which is – up to a constant –
equal to the distribution we want to generate. For
Boltzmann Generators, a natural way to compute
this difference is the relative Entropy, also known
as Kullback-Leibler (KL) divergence. As derived
in the SI, the KL divergence can be computed as
the following expectation value over samples z:

JKL = Ez [u(Fzx(z))− logRzx(z)] (1)

Here, uX(Fzx(z)) is the energy of the generated
configuration. Rzx measures how much the net-
work scales the configuration space volume at z,
and therefore equals one for volume-preserving
network blocks, while it can be easily computed
for non-volume-preserving network blocks (SI).
In order to train the Boltzmann Generator, we
approximate JKL using a few thousand samples,
and then change the neural network parameters
so as to decrease JKL. A few hundred or thou-
sand such iterations are required to train the
Boltzmann Generator for the examples in this
paper. The resulting few million computations
of the potential energy in Eq. (1) are the main
computational investment to train the Boltzmann
Generator and take several minutes for each sys-
tem studied here.
As shown in the SI, minimizing the KL diver-
gence (1) is equivalent to minimizing the free
energy of the generated distribution: The first
term E [u(Fzx(z))] is the mean potential energy,
i.e. the enthalpy of the system. The second
term E [logRzx(z)] can be shown to be equal to
the entropic contribution to the free energy at
the chosen temperature, plus a constant factor.
The terms in (1) counter-play in an interesting

way: the first term tries to minimize the en-
ergy, and therefore trains the Boltzmann Genera-
tor to sample low-energy structures. The second
term tries to maximize the entropy of the gen-
erated distribution, and therefore prevents the
Boltzmann Generator from the so-called mode-
collapse, i.e. the repetitive sampling of a single
minimum-energy configuration which would min-
imize the first term.
Despite the entropy term in (1), training by en-
ergy alone is not sufficient as it tends to focus
sampling on the most stable metastable state
(Suppl. Fig. 2,3). We therefore additionally em-
ploy training by example, which is the standard
training method used in other machine learning
applications. In training by example, we initialize
the Boltzmann Generator with some “valid” con-
figurations x, e.g., from short initial MD simula-
tions, and train it by feeding them through Fxz
and maximizing their likelihood in the Gaussian
distribution10. Training by example is especially
used in the early stages of training, at it helps to
train Fzx to point to relevant parts of state space.
By combining training by energy and training by
example, we can sample configurations that have
high probabilities and low free energies. However,
sometimes we want to generate certain states
with a low probability, for example the transi-
tion states along a certain reaction coordinate
(RC) along which we want to compute the free
energy profile. Standard sampling methods, such
as MD and MCMC, can be combined with Um-
brella Sampling1, Metadynamics3 or Flooding2,3
in order to bias the sampled distribution to be
more uniform along a chosen RC. For the same
purpose, we introduce an RC loss that can op-
tionally be used to enhance the sampling of a
Boltzmann Generator along a chosen RC (SI).
We first illustrate Boltzmann Generators us-
ing a two-dimensional potential that has two
metastable states separated by a high energy bar-
rier in x1-direction, while it is a harmonic oscil-
lator in x2 (Fig. 2a). MD simulations stay in
one metastable state for a long time before a rare
transition event occurs (Fig. 2b). Hence, the
distribution in configuration space (x, y) is split
into two modes (Fig. 2c, transition state ensem-
ble is shown in yellow for clarity but not used
for training). We are training Boltzmann Gener-
ators using the two short and disconnected sim-
ulations shown in Fig. 2b as example. Fig. 2d,e
show the latent space learned by non-volume-
preserving and a volume-preserving transforma-
tion, respectively. In both cases, the probability
densities of the two states and the transition state
are “repacked” so as to form a compact density
around the origin.
We use the Boltzmann generator by sampling
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Figure 2. Illustration of
Boltzmann Generators for
two-dimensional bistable
system. a) Two-dimensional
potential, x1 is the slow coordi-
nate. b) Two short simulation
trajectories that stay in their
metastable states without
crossing. c) Distribution of tra-
jectories of b) in configuration
space (x1, x2). Transition state
ensemble is shown (orange)
but not used for training. d,e)
Latent-space distribution of
trajectories of b) when mapped
through trained Fxz using
transformations that are (d)
non-volume preserving and (e)
and volume-preserving with one
global scaling factor. f) Free
energy corresponding to distri-
bution sampled by Boltzmann
Generators trained by energy
and by example (KL+ML,
green) and using reaction
coordinate training (KL+RC,
orange). g) Free energy esti-
mates after reweighting, colors
as in (f).

from its latent space according to the Gaussian
distribution. After transforming these variables
via Fzx, this produces uncorrelated samples from
both stable states without any sampling problem.
A variety of training methods succeed in sam-
pling across the barrier such that the rare event
nature of the system is eliminated (Suppl. Figs.
2,3). Combining a Boltzmann Generator trained
by energy and by example with simple reweight-
ing reproduces the precise free energy differences
of the two metastable states (Fig. 2g, green). By
additionally training with the RC loss to promote
sampling along x1, the low-probability transition
states are sampled (Fig. 2f, orange), and the full
free energy profile along x1 can be reconstructed
with high precision (Fig. 2f,g, orange).

For the double-well system, the unbiased MD
simulation needs on average 4·106 MD steps for a
single return trip between the two states (SI), and
about 100 such crossings are required to compute
the free energy difference with the same preci-
sion as the Boltzmann Generator results shown in
(Fig. 2g). The total effort of training the Boltz-
mann Generator (including generating the initial
simulation data) corresponds to about 106 steps,
but once this is done, statistically independent
samples can be generated at no significant cost.
For this simple system, the Boltzmann Genera-
tor is therefore about a factor 100 more efficient
than direct simulation, but much more extreme

savings can be observed for complex systems, as
shown below.
As a second example, we demonstrate that Boltz-
mann Generators can sample high-probability
structures and efficiently compute the thermo-
dynamics in crowded condensed matter systems.
We simulated a dense system of two-dimensional
particles confined to a box as suggested in12 (Fig.
3a). Immersed in the fluid is a bistable particle
dimer whose open and closed states are separated
by a high barrier (Fig. 3a-c). Opening or clos-
ing the dimer directly is not possible due to the
high density of the system, but rather requires
a concerted rearrangement of the solvent parti-
cles. At close distances, particles repel each other
strongly, with the 12th power of their inverse dis-
tance. As a result, the fraction of low-energy con-
figurations is vanishingly small, and manually de-
signing a sampling method that simultaneously
places all 38 particles and achieves low energies
appears unfeasible.
We train a Boltzmann Generator to sample in-
dependent low-energy configurations and use it
in order to compute the free energy profiles of
opening / closing the dimer. The training is
initialized with examples from separate, discon-
nected simulations of the open and closed states,
but in later stages, mostly training by energy
(1) is used. A restraint keeps the bistable parti-
cle dimer centered and aligned in the simulation
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Figure 3. Repulsive particle Sys-
tem with bistable dimer. a,b)
Closed (blue) and open (red) con-
figurations from MD simulations (in-
put data). c) Bistable dimer poten-
tial. d) Distribution of MD simu-
lation data on x1, x2. e) Distribu-
tion of MD simulation data in la-
tent space coordinates z1, z2 after
training Boltzmann Generator. f,
g, h) Potential energy distribution
from MD (colored) and Boltzmann
generator (grey) for closed (f), open
(h) and transition configurations (g).
Insets show directly generated sam-
ples from Boltzmann Generator. i)
Free energy differences as a function
of dimer distance and relative tem-
perature sampled with Boltzmann
generators (generation and reweight-
ing, bullets with error bars indicating
one standard deviation) and umbrella
sampling (green lines).

box, therefore the x-position of each dimer parti-
cle indicates if we are in the open or closed state
(Fig. 3d). The trained Boltzmann Generator has
learned a transformation of the complex configu-
ration space density to a compact, 76-dimensional
ball in latent space (Fig. 3e). Direct sampling
of from 76-dimensional Gaussian in latent space
and transformation via Fzx generates configura-
tions where all particles are placed without signif-
icant clashes, and potential energies that overlap
with the energy distribution of the unbiased MD
trajectories (Fig. 3f-h). Also, realistic transition
states that have not been included in any training
data are sampled (Fig. 3g).

We estimate that the MD simulation needs at
least 1012 steps to spontaneously see a single tran-
sition from closed to open state and back (SI),
and about 100 such transitions would be needed
to compute free energy differences with the pre-
cision of Boltzmann Generators shown in Fig. 3i.
The total effort to train the Boltzmann generator
is about 3·107 energy evaluations, but then statis-
tically independent samples can be drawn at the
entire temperature range trained at, resulting in

about 7 orders of magnitude speedup compared
to MD.

To demonstrate that thermodynamic quantities
can be computed with Boltzmann Generators, we
perform the training by energy (1) simultaneously
to a range of temperatures between one fourth
and four times the reference temperature (SI).
Here, we exploit that the temperature, which
changes the configuration space distribution in a
complex way, simply enters as a scaling factor
in the width of the Gaussian qZ(z) (SI). Then,
we sample the Boltzmann Generator for a range
of temperatures and use simple reweighting to
compute the free energies along the dimer dis-
tances. As shown in Fig. 3i, these temperature-
dependent free energies agree precisely with ex-
tensive umbrella sampling simulations that em-
ploy bias potentials along the dimer distance1.

Finally, we demonstrate that Boltzmann Gen-
erators can directly generate independent sam-
ples of complex polymer structures that belong
to known or new metastable states. Cyclical
polymers are especially challenging, because the
main degrees of freedom are torsion angles, but
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Figure 4. Exploration of new
states and direct sampling
of cyclical molecule struc-
tures: Cyclononane C9H18 (a-
j) and bicyclo[4.4.4]tetradecane
C14H26 (k-l). a) Number
of distinct rotamers sampled
with Boltzmann Generator
that is initialized with MD
data containing 4 rotamer
states. b) Potential energy
distribution. c-d) Gener-
ated bond length and angle
distribution compared to
MD data. e-g) Boltzmann-
generated structures (black)
and the most similar struc-
tures from replica-exchange
MD (red). h-j) Boltzmann-
generated structures that are
not contained in the MD
simulations. k-l) Boltzmann-
generated structures of bicy-
clo[4.4.4]tetradecane C14H26

– side-view is shown in large,
top view below as ball+stick
and space-filling representation.
The three chains are colored for
better visibility, the connecting
carbons are kept dark.

for each change of a torsion, other torsions must
be changed concurrently so as to maintain ring
closure and all bond angle constraints. Sophisti-
cated Monte Carlo moves have been designed for
this purpose13, but they generally do not yield
MCMC procedures that sample the Boltzmann
distribution.

Here we using cyclical hydrocarbons as exam-
ple. Each hydrocarbon torsion angle has three
rotamers (around −60◦, 60◦, 180◦), and we use
“rotamer state” to denote the setting of all ro-
tamers in the polymer. The cycle constraints
stabilize some otherwise unstable conformations
but generally reduce the total number of acces-
sible rotamer states. For cyclononane (C9H18),
we used a combination of training by energy and
training by example, the latter initialized with a
short replica-exchange MD simulation in which
4 distinct rotamer states have been sampled. We
then use a Boltzmann Generator for iterative dis-
covery: In each iteration, the Boltzmann gen-
erator samples structures from known rotamer
states, and also a small fraction of structures from
new rotamer states. We sample an equal number
of configurations from each rotamer state found,

and re-insert these samples for training by exam-
ple in the next round (SI). A so-trained Boltz-
mann Generator quickly produces structures not
included in the initial MD data (Fig. 4a, e-j).
Potential energies of generated structures have a
high overlap with the potential energy sampled in
the MD simulation (Fig. 4b). Note that all atoms
– including hydrogens – are generated in one shot.
Nonetheless, the bond lengths and bond angles
follow their equilibrium distribution closely (Fig.
4c,d).
Finally, independent samples were generated for
bicyclo[4.4.4]tetradecane C14H26, a highly con-
strained and densely packed hydrocarbon with
two interconnected ring systems and 120 dimen-
sions (Fig. 4k,l and insets).
Boltzmann Generators are, as yet, the first ap-
proach that can sample the Boltzmann distribu-
tion and generate structures of condensed matter
systems and complex polymers directly, i.e. by
avoiding to make small MD or MCMC steps. We
have demonstrated this for systems with around
100 dimensions. Although we expect the method-
ology to improve rapidly, we believe that for very
high-dimensional systems, such as solvated atom-
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istic protein models with 100,000’s of dimensions,
the best strategy is to employ Boltzmann Gen-
erators for so-called cluster Monte Carlo moves.
In each iteration of this approach, one would re-
sample the positions of a cluster of atoms us-
ing the sum of potential energies between clus-
ter atoms and all system atoms. With such a
strategy, Boltzmann Generators can be naturally
combined with existing local sampling methods.

The present work shows that Boltzmann Gener-
ators can generated independent samples of the
Boltzmann distribution of complex systems di-
rectly and may offer a way out of the sampling
problem in condensed matter systems. The lim-
itation of the current work is that the transfor-
mation that achieves this needs to be trained us-
ing the system-specific energy. In order to make
the approach general, it needs to become trans-
ferrable across systems, and a promising route
is to employ transferrable featurization methods
developed in the context of machine learning for
quantum mechanics14,15.
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METHODS

A. Invertible networks

We employ invertible networks in order to learn the transformation between the Gaussian random
variables z and the Boltzmann-distributed random variables x:

z = Fxz(x;θ)

x = Fzx(z;θ).

Hence Txz = T−1
zx . Note that the set of parameters θ defining these transformations are identical

(shared) between the forward and backward transformations. Each transformation has a Jacobian
matrix with the pairwise first derivatives of outputs with respect to inputs:

Jzx(z;θ) =

[
∂Fzx(z;θ)

∂z1
, ...,

∂Fzx(z;θ)

∂zn

]
Jxz(x;θ) =

[
dFxz(x;θ)

dx1
, ...,

dFxz(x;θ)

dxn

]
The absolute value of the Jacobian’s determinant, |detJzx(z;θ)|, measures how much a volume el-
ement at z is scaled by the transformation. Forward and reverse transformation are related by
|detJzx(z;θ)| = |detJxz(x)|−1, and respectively for x and z exchanged. As we frequently deal with
Jacobian determinants, we introduce the abbreviations:

Rxz(x) = |detJxz(x)|
Rzx(z) = |detJzx(z)| .

Our main motivation to use invertible transformations is that they allow us to transform random
variables as follows:

pX(x) = pZ(z)Rzx(z)−1 = pZ(Txz(x))Rxz(x) (2)

pZ(z) = pX(x)Rxz(x)−1 = pX(Tzx(z))Rzx(z) (3)

Here we employ the invertible network structures NICE10 and RealNVP11. The main idea is to split
the variables into two channels, x = (x1,x2) and z = (z1, z2), do only trivially invertible operations
on each channel, such as multiplication and addition, and use trainable, nonlinear neural network
transformations between the channels to compute the value of these multiplication and addition trans-
formations (Suppl. Fig. 1b-e).
Table I summarizes the transformations employed here, their inverses and Jacobian determinant values.
A single transformation of (z1, z2) = fxz(x1,x2), where Txz is implement via NICE or RealNVP
transforms only the second channel and leaves the first channel unchanged. In order to allow all
variables to be transformed, we swap channels in the next transformation (Suppl. Fig. 1f), and define
a NICE or RealNVP block as:

(y1,y2) = fxy(x1,x2)

(z1, z2) = fyz(y2,y1)

Boltzmann Generators are build by putting the forward and the inverse of such blocks in parallel (Fig.
1f). The forward and the inverse transformation in each layer share the same nonlinear transformation
(T or S), and therefore the same parameters.
The NICE transformation is volume-preserving. As such, it also preserves the entropy HX =∫
p(x) log p(x) dx. In order to be able to model probability distributions with arbitrary entropy,

we need to insert at least one scaling layer into a Boltzmann Generator that otherwise only contains
NICE layers.
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Supplementary Figure 1. Boltzmann Generator network architecture. a) Nonlinear transformations T
and S are built with multilayer neural networks. b,c) Volume-preserving NICE layer and its inverse. d,e)
Non-volume-preserving RealNVP layer and its inverse. f) Stacking any sequence of these layers with channels
exchanges produces the full Boltzmann Generator, and invertible network.

Layer fxz Rxz fzx Rzx

NICE z1 = x1

z2 = x2 + T (x1;θ)
1

x1 = z1
x2 = z2 − T (y1;θ)

1

Scaling,
Exp

z = ek ◦ x e
∑

i ki x = e−k ◦ z e−
∑

i ki

RealNVP
z1 = x1

z2 = x2 � exp (S(x1;θ))
+T (x1;θ)

e
∑

i Si(x1;θ)
x1 = z1
x2 = (z2 − T (x1;θ))

� exp (−S(z1;θ))
e−

∑
i Si(z1;θ)

Supplementary Table I. Invertible network components. fxz and fzx = f−1
xz are the forward and inverse

transformations. Rxz and Rzx are the Jacobian determinants.

B. Training and using Boltzmann Generators

The Boltzmann Generator is trained by minimizing a loss functional that has the following form:

J = wMLJML + wKLJKL + wRCJRC .

where the terms represent maximum-likelihood (ML, “training by example”), Kullback-Leiber (KL,
“training by energy”), and reaction-coordinate (RC) optimization and the w’s control their weights.
Below we will derive these terms in detail.
We call the “exact” distributions µ and the generated distributions q. In particular, µZ(z) is the
Gaussian prior distribution injected into the latent space and qX(x) is the distribution that results
from the network transformation Fzx. Likewise, µX(x) ∝ exp(−u(x)) is the Boltzmann distribution
in configuration space and qZ(z) is the distribution that results from the network transformation Fxz:

µZ(z)
Fzx−→ qX(x)

µX(x)
Fxz−→ qZ(z)

Boltzmann distribution: A special case is to use Boltzmann Generators to sample from the Boltz-
mann distribution of the canonical ensemble. This distribution has the form:

µX(x) = Z−1
X e−βU(x) (4)
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where β−1 = kBT with Boltzmann constant kB and temperature T . When we only have one temper-
ature, we can simply subsume the constant into a reduced energy

u(x) =
U(x)

kBT

In order to evaluate a set of temperatures (T 1, ..., TK), we can define a reference temperature T 0 and
the respective reduced energy u0(x) = U(x)/kBT

0 and we then obtain the reduced energies simply by
scaling:

uk(x) =
T 0

T k
u0(x) =

u0(x)

τk

where τk is the relative temperature.
Prior distribution: We sample the input in z from the isotropic Gaussian distribution:

µkZ(z) = N (0, σ2
kI) = Z−1

Z e−
1
2‖z‖

2/σ2
k , (5)

with normalization constant ZZ . The prior energy, i.e. the energy whose Boltzmann distribution is
the prior distribution, is given by:

ukZ(z) = − logµkZ(z)

=
1

2σ2
k

‖z‖2 + const. (6)

Thus the variance takes the same role as the relative temperature. We define (arbitrarily) to set the
variance equal 1 at the standard temperature, and obtain:

σ2
k = τk.

Latent KL divergence: The KL divergence between two distributions q and p is given by

KL(q ‖ p) =

∫
q(x) [log q(x)− log p(x)] dx,

= −Hq −
∫
q(x) log p(x)dx,

where Hq is the entropy of the distribution q.
Here we use KL divergences to minimize the difference between the probability densities predicted by
the Boltzmann generator and the respective reference distribution. Using the variable transformations
(2-3) and the Boltzmann distribution (4), we can express the KL divergence in latent space as:

KLθ [µZ ‖ qZ ] = −HZ −
∫
µZ(z) log qZ(z;θ)dz,

= −HZ −
∫
µZ(z) [logµX(Fzx(z;θ)) + logRzx(z;θ)] dz,

= −HZ + logZX + Ez∼µZ(z) [u(Fzx(z;θ))− logRzx(z;θ)]

This is equivalent to the KL divergence expressed in configuration space:

KLθ [qX ‖ µX ] =

∫
qX(x;θ) [log qX(x;θ) + logZX + u(x)] dx

=

∫
µZ(z) [logµZ(z)− logRzx(z;θ) + logZX + u(Fzx(z;θ))] dz

= −HZ + logZX + Ez∼µZ(z) [u(Fzx(z;θ))− logRzx(z;θ)]

Here, θ are the trainable neural network parameters. Since HZ and ZX are constants in θ, the KL
loss is given by:

JKL = Ez∼µZ(z) [u(Fzx(z;θ))− logRzx(z;θ)] . (7)
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Practically, each training batch samples points z ∼ qZ(z) from a normal distribution, transforms them
via Tzx, and evaluates Eq. (7).
We can extend (7) to simultaneously train at multiple temperatures, obtaining:

JT
1,...,TK

KL =

K∑
k=1

Ez∼µk
Z(z)

[
uk(Fzx(z;θ))− logRzx(z;θ)

]
.

The KL divergence KLθ [µZ ‖ qZ ] is also maximized in probability density distillation used in the
training of recent audio generation networks8. Here, the reference distribution is defined by a teacher
network that is used to help training a student network. However, the resulting expressions are different
because the target distribution is not defined by a physical energy as here.
Reweighting and interpretation of latent KL as reweighting loss: The most direct way to
compute quantitative statistics using Boltzmann generators is to employ reweighting of probability
densities. In this framework, we assign to each generated configuration x the statistical weight:

wX(x) =
µX(x)

qX(x)
=
qZ(z)

µZ(z)
. (8)

∝ e−uX(Tzx(z))+uZ(z)+logRzx(z;θ)

where the equivalence on the right hand side results from (2-3). Using these weights, expectation
values can be computed as

E[O] ≈
∑N
i=1 wX(x)O(x)∑N

i=1 wX(x)
. (9)

All free energy profiles shown in Figs. 2, 3 and Suppl. Figs. 2, 2 were computed by −kBT log p(R(x))
where p(R(x)) is a probability density computed from a weighted histogram of the coordinate R(x)
using the weighted expectation (9). All histogram weights that have weights worth less than 0.01
samples are discarded to avoid making unreliable predictions.
With the reweighting (8), the KL loss (7) has an interesting thermodynamic interpretation. The
minimization of the latent KL divergence can be rewritten in terms of these weights:

min KLθ [µZ ‖ qZ ] = minEz∼µZ(z) [logµZ(z)− log qZ(z;θ)]

= maxEz∼µZ(z) [logwX(x | z)] .

Thus, the minimization of the latent KL divergence is equivalent to maximizing the expected log-
weights of points, or equivalently the product of all weights, in a reweighting procedure. Indeed
the maximum weights are achieved when the proposal distribution is identical to the Boltzmann
distribution, resulting in wX(x) ≡ 1.
Interpretation of latent KL as free energy: For invertible transformation Fxz, we additionally
use the following relationship of the entropies of the two distributions:

HX = −
∫
x

qX(x) log qX(x) dx

= −
∫
z

qX(Fzx(z)) log (qX(Fzx(z))Rzx(z)) dz

= −
∫
z

µZ(z) log qX(Fzx(z)) dz

= −
∫
z

µZ(z) log
(
µZ(z)Rzx(z)−1

)
dz

= −
∫
z

µZ(z) logµZ(z) dz + Ez∼µZ(z) logRzx(z) dz

= HZ + Ez∼µZ(z) [logRzx(z)] (10)
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Hence we have:

KLθ [µZ ‖ qZ ] = −HZ + logZX + Ez∼µZ(z) [u(Fzx(z;θ))]− Ez∼µZ(z) [logRzx(z;θ)]

= −HX + logZX + Ez∼µZ(z) [u(Fzx(z;θ))]

= −HX + logZX + Ex∼µX(x;θ) [u(x)]

= KLθ [qX ‖ µX ] .

The loss function becomes:

JKL = Ez∼µZ(z) [u(Fzx(z;θ))− logRzx(z;θ)]

= U −HX +HZ

which is, up to the constant HZ equal to the free energy of the generated distribution with enthalpy U
and entropic factor HX . Note that this entropic factor is taken at the temperature used for generating
the distribution, a temperature dependence will enter when training the Boltzmann Generator at
multiple temperatures.
Configuration KL divergence: Likewise, we can express the KL divergence in x space where we
compare the generated distributions with a Boltzmann weight. Using (2-3) and the Gaussian prior
density (5), this KL-divergences evaluates as:

KLθ [µX ‖ qX ] = HX −
∫
µX(x) log qX(x;θ)dx

= HX −
∫
µX(x) [logµZ(Fxz(x;θ)) + logRxz(z;θ)] dx.

= HX + logZZ + Ex∼µ(x)

[
1

σ2
‖Fxz(x;θ)‖2 − logRxz(x;θ)

]
.

Although the constants HX and ZZ can be ignored during the training, this loss is difficult to evaluate
because it needs to sample configurations according to µ(x), which is actually the problem we are
trying to solve.
Maximum Likelihood: However we can approximate the configuration KL divergence by starting
from a sample ρ(x) and using the loss:

JML = −Ex∼ρ(x) [log qX(x;θ)]

= Ex∼ρ(x)

[
1

σ2
‖Fxz(x;θ)‖2 − logRxz(x;θ)

]
This loss is the negative log-likelihood, i.e. minimizing LLθ corresponds to maximizing the likelihood
of the sample ρ(x) in the Gaussian prior density.
Symmetric divergence: The two KL divergences above can be naturally combined to the symmetric
divergence

KLsym =
1

2
KL [µX ‖ qX ] +

1

2
KL [µZ ‖ qZ ]

which corresponds, up to an additive constant, to the Jensen-Shannon divergence which uses the
geometric mean of m =

√
qXqZ instead of the arithmetic mean.

Reaction coordinate loss: In some applications we do not want to sample from the Boltzmann
distribution but promote the sampling of high-energy states in a specific direction of configuration
space, for example in order to compute a free energy profile along a predefined reaction coordinate
R(x) (Fig. 2g). This is achieved by adding the reaction-coordinate (RC) loss to the minimization
problem:

JRC =

∫
p (R(x)) log p (R(x)) dR(x)

= Ex∼qX(x) log p (R(x)) .

To implement this loss, the function R is a user input, minimum and maximum bounds are given, and
p (R(x)) is computed as a batch-wise kernel density estimate along between the bounds.
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C. Systems and Hyper-parameters

The “MD” simulations of the systems below are not using actual dynamics, but are emulated with
Metropolis Monte Carlo with small local steps. In each step, a random vector from an isotropic
Gaussian distribution with a system-dependent standard deviation σMetro is added to the present con-
figuration. This proposed configuration is accepted or rejected with a standard Metropolis acceptance
criterion.

All Boltzmann Generator networks are build of invertible blocks using NICE or RealNVP layers.
Each block contains two such layers to make sure that all dimensions are subject to a nonlinear
transformation, as described in SI Section A. Each configuration x or latent vector z is split into
a channel of “even” and “odd” dimensions, defining the pairs (x1,x2) and (z1, z2), respectively. To
describe the network architecture used, we use N , R and S to denote NICE block, RealNVP block
and Scaling layer, respectively. A subscript is used to denote the number of repetitions of a motif,
e.g. N10 are ten stacked NICE blocks, i.e. 20 layers total, (NR)4 are four repetitions of a NICE and
a RealNVP block, i.e. 8 layers total.

All networks are trained using the Adam adaptive stochastic gradient descent method (author?) 16 .
Other choices and hyper-parameters are described below.

Double well: We define a two-dimensional toy model which is bistable in x-direction and harmonic
in y-direction:

E(x, y) =
1

4
ax4 − 1

2
bx2 + cx+

1

2
dy2 (11)

with a = c = d = 1 and b = 6 – see Fig. 2 for the potential in x-direction. The system is simulated
with a Metropolis step of σMetro = 0.1. To estimate the average time needed for a return trip between
both states, we construct another systems with a = 0.25 and b = 1.5 that has the same position
of minima and the same energy difference between them, but a much smaller barrier. For the “flat”
systems frequent transitions between the two end-states are observed. The return-trip time of the
original system is then estimated by t = tflat exp (B −Bflat), where B,Bflat are the energy barriers for
the original and the “flat” system from either one of the two minima, and t, tflat are the times taken
for a round-trip between the states. This results in an estimate of t = 4 · 106 simulation steps for a
return trip in the system shown in Fig. 2.

In Fig. 2 and Suppl. Figs. 2,3 we use NICE and RealNVP networks defined as below. All nonlinear
transformations (T , S) used dense networks with tanh activation and two hidden layers with 100 hidden
nodes. Networks are trained in two steps: in a first ML phase we only minimize JKL. Subsequently
we minimize JKL + JML with equal weights wML = wKL = 1, unless otherwise noted.

Network Epochs ML Epochs KL
N10S 200 1000
R10 200 1000

Bistable particle dimer in a Lennard-Jones fluid: Here we simulate two-dimensional system of
a bistable particle dimer in a dense bath of ns = 36 solvent particles with Lennard-Jones repulsion. A
similar system has been proposed in12. The configuration vector is defined by alternating x− and y−
positions and starting with the two dimer particles:

x =
[
x1x,x1y,x2x,x2y, ...,x(ns+2)x,x(ns+2)y

]
.

Defining the dimer distance d = ‖x1 − x2‖, and the Heaviside step function h, we use the potential
energy:
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U(x) = kd(x1x + x2x)2 + kdx
2
1y + kdx

2
2y

+
1

4
a(d− d0)4 − 1

2
b(d− d0)2 + c(d− d0)4

+

n+2∑
i=1

h(−xix − lbox)kbox(−xix − lbox)2 +

n+2∑
i=1

h(xix − lbox)kbox(xix − lbox)2

+

n+2∑
i=1

h(−xiy − lbox)kbox(−xiy − lbox)2 +

n+2∑
i=1

h(xiy − lbox)kbox(xiy − lbox)2

+ ε

n+1∑
i=1

n+2∑
j=i+1,j 6=2

(
σ

‖xi − xj‖

)12

where the five rows correspond to: (1) Constraints for the center and the y-position of the parti-
cle dimer, (2) particle dimer interaction, (3,4) box constraints in x− and y−direction, (5) particle
repulsion. The following parameter values were used (all in reduced units):

Parameter ε σ kd d0 a b c lbox kbox

Value 1.0 1.1 20.0 1.5 25.0 10.0 -0.5 3.0 100.0

To initialize training, we run Metropolis Monte Carlo simulations with a Metropolis step length of
σMetro = 0.02

√
τ , where τ is the relative temperature. To estimate the time taken for a return-trip

between open and closed dimer states, we take the same approach as for the double-well system above:
We conduct a simulation with 106 simulation steps for a system with maximally flattened energy
(a = 2.5 and b = 1.0). Still no transition from closed to open states occur, we thus estimate the lower
bound for the return trip to be t = 106 exp(B−Bflat) ≈ 1.2 ·1012 where B,Bflat are the intrinsic barrier
heights for the unchanged and flattened system.

For validation of the free energy profiles predicted in Fig. 3i, we perform Umbrella Sampling
simulations1 for each relative temperature (0.5, 1.0, 2.0) using 35 Umbrella potentials on the dimer
distance between values of 0.5 and 2.5 and with a force constant of 500 (reduced units). Each umbrella
simulation was 50, 000 steps, and to avoid hysteresis effects, we ran the umbrella sequence forward and
backward, resulting in a total of 3 · 70 · 50, 000 = 10.5 million simulation steps.

For initializing the training by example (ML), 105 simulation steps are stored for the “open” and
“closed” dimer states. No transitions between these states occur in the simulations. In order to not
have to learn the permutational invariance of the diffusing solvent particles from the data, we remove
this invariance by relabeling solvent particles using the Hungarian algorithm17.

Boltzmann Generator training was done with wKL = 1 and decreasing wML according to the following
schedule:

Epochs 20 200 300 300 1000 2000
wML 1 100 100 100 20 0.01
wKL 0 1 1 1 1 1
wRC 0 1 5 10 10 10

The italic values in the last row were treated as variable hyper-parameters. We then did a hyper-
parameter search as indicated in the table below. The hyper-parameters were chosen by minimizing
the estimator variance for the free energy profile along dimer distance d. Each trained network makes
predictions for the free energy profile shown in Fig. 3i. Using bootstrapping the standard error over
all free energies along the profile between d = [0.5, 2.5] are computed, resulting in (ε0.5, ε1.0, ε2.0) for
the three temperatures and ε̄ =

√
ε20.5 + ε21.0 + ε22.0 as a total estimator error.
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Architecture nllayers nlhidden wML wRC ε0.5 ε1 ε2
√∑

ε2

R8 4 200 0.1 10.0 1.62 2.07 2.04 3.33
R4 · · · · 2.23 1.83 1.53 3.27
R6 · · · · 1.69 1.64 2.29 3.28
R12 · · · · 1.49 1.85 2.0 3.10

(RN)2 · · · · 2.01 1.59 2.56 3.62
(RN)7 · · · · 1.76 2.29 1.39 3.20
(RN)12 · · · · 1.44 1.66 1.99 2.96
R8 3 200 0.1 10.0 1.51 1.97 1.64 2.97
R4 · · · · 1.41 1.59 1.78 2.77
R6 · · · · 1.49 1.73 1.76 2.88
R12 · · · · 1.84 1.28 2.24 3.17

(RN)2 · · · · 1.84 1.29 2.25 3.18
(RN)7 · · · · 1.65 1.72 2.07 3.16
(RN)12 · · · · 2.87 1.80 1.58 3.74
R8 2 · · · 1.85 1.58 2.50 3.48
· 4 · · · 1.69 1.51 1.52 2.73
· 3 50 · · 1.32 1.71 2.11 3.02
· · 100 · · 2.85 2.05 2.16 4.12
· · 200 0.01 · 1.58 1.33 1.33 2.45
· · · 1.0 · 1.87 1.93 1.63 3.15
· · · 0.1 1.0 1.66 1.83 1.75 3.02
· · · · 5.0 1.73 1.72 1.81 3.03
· · · · 20.0 1.88 2.06 1.84 3.34

Supplementary Table II. Hyper-parameter selection for the particle dimer. In the architecture, R corresponds
to a RealNVP and N to a NICE double layer with channel swaps (Fig. 1). The subscript indicates the number
of repetitions, e.g. R4 = RRRR, corresponding to eight single layers. All nonlinear transformations (T , S) used
dense networks with tanh activation using the given number of layers (nllayers) and hidden nodes (nlhidden).
All networks were trained on the following range of relative temperatures: τ ∈ [0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4]
and used wKL = 1.0.

Hydrocarbons: A simple molecular mechanics model including bond, angle, torsion and Lennard-
Jones interactions (between all pairs) was implemented in TensorFlow. We use the parameters in18 to
modeling the alkanes shown in Fig. 4: (1) cyclononane C9H18, i.e. a ring of nine CH2 groups, and (2)
bicyclo[4.4.4]tetradecane C14H26, connected as follows:

−CH2 − CH2 − CH2 − CH2−
/ \

CH − CH2 − CH2 − CH2 − CH2 − CH
\ /
−CH2 − CH2 − CH2 − CH2−

To generate some initial structures for training by example, we conducted a short (14, 000 steps)
replica-exchange simulation with relative temperatures τ = (1, 1.5, 2, 2.5, 3, 3.5, 4) where 300 Kelvin
is the standard temperature. We used Metropolis-Monte Carlo step length σMetro = 0.01 ï¿œ. The
main aim of this simulation is to equilibrate the structure which is started from a random placement
of atoms in space. The first 10, 000 steps were discarded and the last 4, 000 steps were retained for
training.
The Boltzmann Generator used R10 (20 layers) as an architecture, All nonlinear transformations (T ,
S) used dense networks with tanh activation and four hidden layers with 100 hidden nodes. The
Boltzmann Generator is trained using iterative discovery. In each of 50 iterations, we use 4, 000
configurations for training by example, and we train using the following schedule:

First Iteration Next Iterations
Epochs 300 300 300 300
wML 1 1 1 1
wKL 0 0.01 0.1 0.1
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At the end of each iteration, we use the Boltzmann Generator to sample 106 structures and make a
list of all rotamer conformations that have been generated. A rotamer is defined by discretizing each
torsion as follows:

Rotamer 1 2 3
Angle -120Â°...0Â° 0Â°...120Â° 120Â°...-120Â°

And the rotamer conformation is the combination of all rotamers, e.g. “123211211”. We remove per-
mutational symmetries, in cycloalkanes this is achieved by setting all rotamer conformations equal that
can be transformed by mirroring or cyclical permutation. After listing all conformations, we resample
a list of 4, 000 configurations, but now each rotamer conformation found has an equal probability of
being sampled. This list is inserted into the next iteration for training by example.

D. Additional Figures
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Supplementary Figure 2. Different methods for training Boltzmann Generators with NICE layers using the
double well example shown in Fig. 2. Columns show: (1) distribution in configuration space x, (2) distribution
in latent space z, (3) free energy of Boltzmann Generator output pX(x) along x1, (4) free energy after reweight-
ing, vertical vars show uncertainties (one standard deviation, 68% percentile). Training uses 200 epochs of ML
and then 500 epochs of the method given in the rows, using equal weights for these modes. Training by ex-
ample (ML) only reproduces the distribution of the training data, which can be reweighted to the Boltzmann
distribution in this low-dimensional example but reweighting from the ML-generated distribution fails for high-
dimensional examples. Training by energy (KL) alone tends to collapse to a single metastable state. ML+KL
combined samples closer to the Boltzmann distribution than ML and avoids metastable state collapse, but
samples high-energy transition states with low probability. KL+RC performs best in this example.
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Supplementary Figure 3. Same as Suppl. Fig. 2 but for Boltzmann Generators using RealNVP layers.
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