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We study the end-point cyclization of ideal and interacting polymers as a function of chain length
N . For the cyclization time τcyc of ideal chains we recover the known scaling τcyc ∼ N2 for different
backbone models, for a self-avoiding slightly collapsed chain we obtain from Langevin simulations
and scaling theory a modified scaling τcyc ∼ N5/3. By extracting the memory kernel Γ(t) that
governs the non-Markovian end-point kinetics, we demonstrate that the dynamics of a finite-length
collapsed chain is dominated by the crossover between swollen and collapsed behavior.

The loop formation kinetics of polymers governs the
dynamics of protein folding [1–3] and gene expression
regulation[4–7] and consequently has been studied exten-
sively both experimentally [1–3, 8, 9], and theoretically
[4, 10–15]. The quantity of main interest is the cycliza-
tion time τcyc, i.e. the mean time it takes the two polymer
ends to reach the cyclization radius Rcyc after starting
from a distance Rs > Rcyc. Pioneering theoretical works
predicted τcyc for an ideal Gaussian chain to scale with
the monomer number N as

τcyc ∼ Nα (1)

with a crossover between α = 2 for intermediate Rcyc,
known as the Wilemski-Fixman (WF) scaling [10, 16],
and α = 3/2 for small Rcyc, known as the Szabo-
Schulten-Schulten (SSS) scaling [14]. For interacting
polymers the cyclization dynamics has been suggested,
based on approximate analytical methods, to differ from
the above scaling laws [17], only few numerical simu-
lations of realistic chain models exist [18, 19]. For the
particularly interesting case of a self-avoiding collapsed
chain, as relevant for the initial steps of protein folding,
very few results exist. Likewise, it is not clear whether
realistic backbone models with constrained bond lengths
and bond angles modify the cyclization dynamics.

In this paper we consider the end-to-end distance
dynamics of three different polymer backbone models,
namely the Gaussian (G), freely jointed (FJ), and freely
rotating (FR) models, see Fig. 1 for illustrations. Fur-
thermore we consider an interacting Gaussian chain
that includes Lennard-Jones interactions (GLJ). From
Langevin simulations we extract cyclization times τcyc
and recover for non-interacting chains, depending on the
cyclization radius Rcyc, the WF and SSS scaling laws,
independent of the backbone model. However, for an in-
teracting collapsed chain we find the asymptotic scaling
τcyc ∼ N5/3, in agreement with scaling predictions for
a collapsed chain [19]. Thus, cyclization dynamics is in-
sensitive to polymer backbone details but substantially
influenced by monomer-monomer interactions. To under-
stand these results, we map the dynamics of the end-to-
end distance Rete, which is a collective variable that in-
volves all polymer degrees of freedom [4, 11, 13], onto the
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FIG. 1. Illustration of different backbone models considered.
In the Gaussian model, neighboring monomers are bound by
a harmonic potential. In the freely jointed model, the bond
length b between neighboring monomers is constraint, in the
freely rotating chain model both bond length b and bond angle
θ are constraint.

generalized Langevin equation (GLE) that accounts for
non-Markovian effects by a memory kernel Γ(t) [17, 20–
23]. We find that the memory kernels of ideal chains
decay as Γ ∼ t−1/2 for intermediate times t irrespective
of the backbone model, while for the interacting collapsed
chain Γ ∼ t−6/11, which is the scaling of a swollen inter-
acting chain. This demonstrates that the dynamics of a
self-avoiding collapsed chain exhibits signatures of both
collapsed and swollen chain behavior, which gives clues
on the complex polymer relaxation kinetics observed in
experiments [24–26].

We perform Langevin simulations at a temperature
T = 300 K using the GROMACS 2016.3 simulation pack-
age [27] with parameters for alkane chains in implicit
water from the gromos53a6 forcefield [28]. Friction coef-
ficients approximate methane in water, while the masses
are reduced by a factor of ten in order to minimize iner-
tial effects, see the Supplemental Information (SI) [29] for
details. Hydrodynamic interactions are neglected, which
presumably are irrelevant for collapsed chain dynamics.
For the Gaussian chain model neighboring monomers are
subject to a harmonic potential which produces a mean
distance of b = 0.153 nm. For the FJ model the dis-
tance between neighboring monomers is constrained to
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b = 0.153 nm, in the FR model in addition the bond an-
gles are constrained to θ = 111◦. All these models are
ideal and monomers do not interact with each other. The
GLJ model is based on the Gaussian chain model and in-
cludes the gromos53a6 Lennard-Jones (LJ) interactions
for alkane chains [28], which produces a collapsed chain of
self-avoiding segments that cannot cross each other [29].

We map our Langevin trajectories onto the GLE

µ R̈ete(t) = −
∫ t

0

dt′ Γ(t−t′)Ṙete(t
′)−∇U(Rete(t))+FR(t),

(2)

where Rete =

√
(~RN−1 − ~R0)2 is the scalar end-to-end

distance, µ is an effective mass, ∇U is the derivative of
the effective potential U(Rete), Γ(t) is the memory ker-
nel, and the random force FR(t) obeys the fluctuation-
dissipation theorem (FDT) 〈FR(t)FR(t′)〉 = kBT Γ(|t −
t′|). All parameters of the GLE are extracted from the
simulations, in particular, we calculate Γ(t) using an ex-
tension of Berne’s method [30] in the presence of a po-
tential U(Rete) [31], see SI for details [29].

In Fig. 2 we compare memory kernels for the end-to-
end distance vector, ~Rete = ~RN−1 − ~R0, of ideal Gaus-
sian chains that are numerically extracted from simu-
lations with analytical predictions based on the Mori-
Zwanzig projection formalism [32, 33], see SI for details
[29]. The agreement is perfect, which validates our nu-
merical method for extracting Γ(t) from simulation data.
For N & 100, Γ(t) shows an intermediate Γ ∼ t−1/2

scaling regime, similar to recent results for the central
monomer position of a Gaussian ideal chain [20, 22].
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FIG. 2. Comparison of analytically and numerically calcu-
lated memory kernels for the end-to-end distance vector ~Rete

of a Gaussian ideal chain.

Figure 3 (b) shows the potential U as a function of
the end-to-end distance rescaled by the Kuhn length
ai, which is defined by R2

ete ≡ aiL, where i = G, FJ,
FR, GLJ indicates the respective chain model and L
is the length of the fully extended chain, L = (N −
1)b. The potentals of the ideal chains are very sim-
ilar while the results for the GLJ chain differ. This
is reflected by the mean squared end-to-end distance

R2
ete in Fig. 3 (c), where all ideal chains yield a lin-

ear scaling R2
ete = aib(N − 1) with aG = aFJ = b,

aFR = b
√

(1 + cos θ)/(1− cos θ) [34], which is consistent
with the power-law scaling

R2
ete ∼ N2νeq (3)

with the ideal-chain exponent νeq = 1/2. For the GLJ
chain we observe swollen behavior for N . 30 with an ex-
ponent νeq > 1/2 [34] and a broad crossover to collapsed
behavior for N & 100 with an exponent νeq = 1/3 [35],
as indicated by a broken line. This is expected, since our
LJ parameters model a hydrophobic chain in water.

In Fig. 3 (d) we show simulation results for the mean
squared displacement (MSDs) of Rete, which for interme-
diate time display power laws according to

∆R2
ete(t) = 〈(Rete(t)−Rete(0))2〉 ∼ tβ . (4)

From the size scaling of a diffusing subchain consisting
of Nsub monomers, Rsub ∼ N

νdyn
sub , the diffusion law for

the MSD of the subchain position, R2
sub ∼ Dsubt, and the

diffusivity of a freely draining chain, Dsub ∼ 1/Nsub, one

obtains N
2νdyn+1
sub ∼ t and thus [34, 36–38]

β = 2νdyn/(1 + 2νdyn). (5)

Here, the exponent νdyn characterizes the dynamic chain
size and only in the asymptotic long-time large-polymer
length limit equals the static exponent νst, as we will de-
tail further below. For ideal chains with νdyn = 1/2 one
obtains β = 1/2, which agrees well with simulations re-
sults for Gaussian and FJ chains in Fig. 3 (d), while for
the FR chain model no clear power law is observed, see
SI for a possible explanation [29]. For the GLJ chain,
the simulation results are consistent with an exponent
β = 6/11 slightly larger than 1/2 over two decades in
time [36, 37], which follows from Eq. (5) for the expo-
nent of a swollen chain νdyn = 3/5 [34], but not for the
collapsed exponent νdyn = 1/3 which would yield β = 2/3
(clearly inconsistent with the simulation data). We thus
observe swollen scaling νdyn = 3/5 for the MSD in Fig. 3
(d), while the equilibrium end-to-end distance in Fig. 3
(c) is characterized by collapsed scaling νeq = 1/3. This
can be rationalized by the fact that the internal mean
monomer distance 〈(~R0 − ~Ri)

2〉 in Fig. 3 (e) indeed ex-
hibits swollen scaling with ν > 1/2 over spatial scales
for which the MSD in Fig. 3 (d) is characterized by the
swollen exponent β = 6/11.

To corroborate that the end-to-end distance dynamics
is characterized by swollen chain statistics, we in Fig. 3
(f) show memory kernels extracted from Langevin simu-
lations for N = 200. The kernel of the Gaussian chain
scales as Γ ∼ t−1/2 and, except for short times, agrees
quantitatively with the FJ chain, demonstrating that the
end-to-end dynamics is insensitive to details of the back-
bone model. This power law, which we also find for the
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FIG. 3. (a) Simulation snapshots of Gaussian and GLJ chains. (b) Effective potential U for the end-to-end distance Rete

for N = 200. (c) Mean squared end-to-end distance as function of chain length N . Dashed and dashed-dotted lines show

predictions for FR and G/FJ chain models, respectively. The dotted line indicates the power law R2
ete ∼ N2/3. (d) Mean-

square displacement of the end-to-end distance. (e) Mean squared distance R2
0,i = (~R0 − ~Ri)

2 between the terminal monomer

and the i-th monomer of a GLJ chain. The red dashed line represents the mean end-to-end distance R2
ete. (f) Memory kernels

for chain length N = 200.

vectorial end-to-end separation ~Rete in Fig. 2, reflects
the Rouse spectrum [20, 22]. Interestingly, Markov State
Models for the polymer dynamics show similar power-law
distribution of time scales, see SI [29]. The kernel of the
FR chain model also scales as Γ ∼ t−1/2 with a prefactor
that results from the different Kuhn length, as detailed
in the SI [29]. The memory kernel of the interacting GLJ
polymer model exhibits a different power law, consistent
with Γ ∼ t−6/11, in agreement with the expected inverse
relationship ∆R2

ete(t) ∼ 1/Γ(t) [39], which is derived in
the SI [29]. We conclude that the dynamics of an inter-
acting collapsed chain is at intermediate times, for which
we can extract the memory kernel, indeed characteristic
of a swollen chain.

The cyclization time τcyc is defined as the mean time
for Rete to reach the cyclization radius Rcyc for the first
time, starting from some end-to-end distance Rs, see the
inset in Fig. 4 (a) for an illustration. The figure shows
U(Rete) and τcyc for the GLJ model as a function of Rs
for fixed Rcyc = 3aG ≈ 0.46 nm, denoted as a black
vertical dashed line. For Rs not too close to Rcyc, τcyc is
rather independent of Rs, so the scaling of τcyc should not
critically depend on Rs, for which we use the minimum
of U , indicated as colored vertical dashed lines.

In Fig. 4 (b) it is seen that τcyc exhibits power-law

scaling according to Eq.(1). For ideal chains and rather
large Rcyc = 3aG ≈ 0.46 nm, we obtain the ideal WF
scaling α = 2 [16]. This corresponds to the scaling of the
chain relaxation time τrel and can be derived by equating
the MSD, ∆R2

ete(t) ∼ tβ , Eq. (4), with the end-to-end
radius, R2

ete ∼ N2νeq , Eq. (3), leading to τrel ∼ Nλ with
[19]

λ = 2νeq/β = νeq(2νdyn + 1)/νdyn, (6)

where we used Eq. (5). For νeq = νdyn ≡ ν this reduces
to λ = 2ν + 1 [40, 41]. For an ideal chain with ν =
1/2, and assuming that the chain relaxation times and
cyclization times scale alike, we obtain the WF scaling
α = λ = 2 [16], as indeed observed for the ideal chains in
Fig. 4 (b).

For very small cyclization radius, Rcyc � Rete, the cy-
clization time will eventually exceed the chain relaxation
time and cyclization becomes Markovian, in which limit
τcyc is to leading order proportional to the inverse equi-
librium probability for the two chain ends to be at the
same position, thus τcyc ∼ R3

ete ∼ N3νeq and

α = 3νeq. (7)

For an ideal chain, νeq = 1/2, we recover the SSS scaling
τcyc ∼ N3/2 [14], which indeed describes the simulation



4

0 4
Rete [nm]

0

2

4
U

[k
B
T
]

Rcyc

0 2 4
Rs [nm]

102

104

τ c
yc

 [p
s]

(a)

200

500

1000

2000

N

Rete
Rcyc

101 102 103

N

10−1

101

103

105

τ c
yc

 [p
s]

∼ N 2

∼ N 3/2 ∼ N 5/3

(b)

Gaussian

FJ

FR

GLJ

Gaussian,
Rcyc = 0.03 nm

101 102 103

N

100

102

104

τ r
el

 [p
s] ∼ N 11/9

∼ N 2
(c)

Gaussian

FJ

FR

GLJ

FIG. 4. (a) Effective potential U for the end-to-end distance of a GLJ chain as a function of Rete (upper plot) and corresponding
cyclization time τcyc (lower plot) as a function of the starting position Rs. The cyclization distance Rcyc = 3aG ≈ 0.46 nm is
denoted by a black vertical dashed line, each colored vertical dashed line denotes the respective position of the minimum of U .
The inset illustrates the end-to-end distance Rete and the cyclization radius Rcyc. (b) Cyclization time as a function of chain
length N , together with different scaling predictions indicated by lines. Except for the blue empty circles, where Rcyc = 0.03
nm, the cyclization radius is Rcyc = 3a ≈ 0.46 nm. As starting position Rs the minimum of U is used. (c) Chain relaxation
time τrel as function of N . The definition of τrel is illustrated in Fig. 5.
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data in Fig. 4 (b) for a small cyclization radius of Rcyc =
0.03 nm ≈ a/15.

For the collapsed chain data in Fig. 4 (b) we find a
scaling exponent of α = 5/3, which is in between the ideal
limits of the SSS and WF scaling predictions and close to
a recent analytical proposal [17]. While the SSS scaling
for a collapsed chain with νeq = 1/3 predicts according to
Eq. (7) α = 1, the WF scaling for a collapsed chain with
νeq = νdyn ≡ 1/3 correctly gives according to Eq.(6) α =
λ = 5/3, so that the observed scaling can be interpreted
as a generalization of the WF scaling.

Curiously, for νdyn = 1/3 one would from Eq. (5)
expect β = 2/5, in contrast to β = 6/11 (as follows

from choosing νdyn = 3/5) seen in Figs. 3 (d) and 5.
On the other hand, the scaling of the chain relaxation
time in Fig. 4 (c) is rather consistent with the exponent
λ = 11/9 which follows from Eq. (6) using νeq = 1/3
and νdyn = 3/5. The difference of the exponents α and λ
characterizing the cyclization time τcyc and the relaxation
time τreal can be understood by considering the MSD of
a terminal monomer of a N = 2000 GLJ chain, shown in
the inset of Fig. 5, which exhibits three distinct scaling
regimes: While for t . 103 ps the MSD displays swollen
scaling, β = 6/11, for intermediate times 103 ps . t .
105 ps we observe collapsed scaling β = 2/5, until for
longer times diffusive behavior β = 1 is found. We thus
expect collapsed scaling to only become relevant on time
scales t & 103 ps, and indeed the cyclization times of
the GLJ chains shown in Fig. 4 (b) are of that order.
The corresponding relaxation times in Fig. 4 (c) on the
other hand are of the order τMSD . 103 ps, and thus
still dominated by swollen statistics, characterized by the
exponent λ = 11/9.

In conclusion, the cyclization dynamics of a slightly
collapsed, self-avoiding chain is characterized by a uni-
versal exponent α = 5/3 which is in between the classical
SSS and WF predictions of 3/2 and 2. Because a finite-
length collapsed self-avoiding polymer exhibits a complex
crossover of swollen to collapsed statistics, the scaling of
cyclization time τcyc differs for finite chain lengths from
the scaling of the relaxation time τrel. Our comprehen-
sive picture of the cyclization crossover dynamics applies
to the dynamics of intra-chain distances as probed in the
collapsed globular state of proteins [26, 42].
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