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1 Introduction

In [3] Dal Maso, Negri, and Percivale showed that finite-strain elasticity I'-converges to small-strain linearized
elasticity under the assumptions of small loadings. Later, this result was extended to different settings, e.g.,
to situations with much weaker coercivity conditions Agostiniani, Dal Maso, and DeSimone [1], to multi-well
energies by Schmidt [17], or to materials with residual stresses by Paroni and Tomassetti [15, 16]. Also evolu-
tionary problems were treated, e.g., in elastoplasticity by the second author and Stefanelli [13] and in crack
propagation by Negri and Zanini [14]. In this contribution we discuss an extension of the results in [3] to a set-
ting where the reference domain has a crack I'; of a certain class including cracks with kinks, see Section 2
for details.

The presence of the crack destroys the Lipschitz property of the cracked domain Q; := Q \ I, and there-
fore crucial tools, such as the well-known rigidity estimate from [4], have to be adapted to the setting of
cracked domains, see Proposition 3.2. More importantly, the setting of domains with cracks requires to intro-
duce an additional constraint of global injectivity of the deformations y : Q ¢ R? — R¢. A crucial step for
the small-deformation I'-limit is to show that this particular global injectivity condition leads to a local non-
interpenetration condition along the crack I'; c Q.

In [2] Ciarlet and Necas proposed the condition

j det Vy(x) dx < vol(y(Q)),
Q
where vol(A) denotes the d-dimensional volume. This condition has been used in various applications, e.g.,

by Giacomini and Ponsiglione [5] in the SBV-theory for brittle materials or by Mariano and Modica [12] in
the theory of weak diffeomorphisms to describe deformations in “complex bodies”. In [6, Proposition 3.2.1],
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Giaquinta, Modica, and Soucek showed that the above condition is equivalent to the condition

J o(y(x))ldet Vy(x)| dx < J @(z)dz forall g € CC(IRd, R) with ¢ > 0, (1.1)
Q R4
which we will simply call GMS condition.
This latter condition turns out to be an appropriate formulation for our purpose. In particular, assum-
ing that y, : Q — R satisfy (1.1), we will deduce that a weak limit u : Q — R< for £ — 0 of the rescaled
displacements

1
Ue 1 X —(Ve(X) = X)
satisfies the following local jump condition on the crack:
0 < [uM)ly = W () -u () - v(x), (1.2)

where u* and u~ are the traces of u on I'; from the upper and the lower side, respectively, see Theorem 4.1.
Our analysis is based on elastic energies of integral type, i.e.

ey) = j W(Vy(x) dx.
Q

In finite-strain elasticity, the classical assumptions for W are coercivity, i.e. p-growth from below as in
Assumption 1.1 (c), and the determinant constraint giving local orientation preservation, see Assump-
tion 1.1(a). For the derivation of the linearized theory, we need to impose conditions on the quadratic
behavior of W near the identity matrix F = I.

Assumption 1.1. With GL,(d) := {A e R™? | det A > 0} and SO(d) := {R e R¥*¢ | RTR =1, det(R) = 1} we pose

the following conditions on the stored-energy density W : R4 — [0, co]:

(@) W(F) = oo forall F e R™4\ GL,(d).

(b) W(RF) = W(F) for all F ¢ R4, R € SO(d).

(c) There exist p > d and cw, Cw > O such that for all F € R%4: W(F) > c max{dist(F, SO(d))2, |FI? — Cw}.

(d) There exists a constant C > 0 with C" = C such that for all § > O there exists an rs > 0 such that for all
A € B, (0) c R™4: |W(I + A) - 3(A, CA)| < 6(A, CA).

In particular, condition (d) states that A +— %(A, CA) is the second order Taylor expansion of W around I.
It implies W(I) = 0, o W(I) = 0 and ag W(I) = C, where the second part yields that the material is stress free
and, if W would be C? in a neighborhood of I, from the third part the assumed symmetry of C could be
deduced. Moreover, the seminorm given by |A|‘2C = %(A, CA) is equivalent to the norm A — |ASY™| as on the
one hand the frame indifference (b) implies CA = CASY™ for every A € R¥*¢ and on the other hand the first
part of assumption (c) being W(F) > ¢y dist?(F, SO(d)) and assumption (d) imply cy|AS™| < |A|é (see [13]
for the details).

To take the small-deformation limit, one considers small deformations of the form y. = id + eu, for small
parameters € > 0, where u, remains bounded in a suitable function space. As the above discussed quadratic
behavior of W around I suggests, the scaling of W(Vy,) = W({I + eVu) by giz will be appropriate to obtain
linearized elasticity in the bulk, namely

— 1 M 1
We(-) := g—ZW(I+e-)—>5|-|(ZC. (1.3)
The correspondingly rescaled elastic energies (cf. [3]) without GMS condition reads

Fo(u) := J gizW(x, I+ eVu(x)) dx
Q

while we are interested in the elastic energy with the GMS condition (1.1), namely

Fe(u) ifid + eu satisfies (1.1),

00 else,

Fe: H;,’Dir — RU{oo}, uw <| (1.4)
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where I'pi; and H;’Dir are specified in (2.4) such thatu € H

one considered in [3], and it is shown to I'-converge to

1

+.pir implies (u - g)Ir,,, = 0. The functional F is the

Flu) = J %(e(u), Ce(u))dx, where e(u) := (Vu)¥™ := %(Vu +(Vu)").
Qer

The main result of this work is the Mosco convergence (i.e. I'-convergence with respect to both weak
and strong H!-topology) of F, to the functional ¥, which is obtained from F by adding the local non-
interpenetration condition (1.2), namely

7. H;,Dir L RUo), U <|fr"(u) if u satisfies (1.2), (1.5)
0 else.

The equi-coercivity of the functionals F is directly implied by the equi-coercivity of F¢, once the rigidity
result of [4] has been generalized to our class of crack domains Q. := Q \ Iy as specified in Section 2. Thus,
the coercivity in Assumption 1.1 (c) and the energy bound Fe(ug) < C < 0 imply |lugllg: < Cand |eue|r < C,
which gives |leu|l.~ < Ce" for some r > 0, see Proposition 3.6. Our main Theorem 2.4 states the following
I'-convergence:

forallu, — uinH! ... : F(u) < liminfe_o Fe(ug),
Fo 5 F inHly, ie ¢ &Dir w =0 Teie) (1.6)
’ forallui e Hé,Dir there exists iy — U: F(&) > limsup,_,o Fe(lle).

In Section 4 we provide the liminf estimate (in the weak topology of H! (Q; R?)), where because of the result
in [3] it remains to establish the local non-interpenetration condition (1.2) as a limit of the global condi-
tion (1.1), which is not too difficult, see Theorem 4.1. The construction of recovery sequences for the limsup
estimate (now in the strong topology of H!) is more delicate, as in general (even for very smooth) dis-
placements u € H'(Q¢; R?) satisfying the local non-interpenetration condition (1.2) the associated close-
to-identity deformation y. =id + eu does not satisfy the GMS condition (1.1) for global injectivity, see
Example 5.1. On the one hand, our construction of recovery sequences invokes an approximation of func-
tions in H! (Q¢r; R?) satisfying (1.2) by functions in W (Q,; R?) still satisfying (1.2), which is reminiscent
to the density results in Proposition 5.4 for convex constraints derived in [7, 8]. On the other hand, we have
to use an artificial forcing apart of the two crack sides to be able to guarantee (1.1), see Proposition 5.2.

In the present work, we are only able to treat the static situation as in [3], which is in contrast to [13, 14],
where the passage from finite-strain to linearized elasticity is handled in the rate-independent setting. How-
ever, the treatment of the contact problem in finite-strain seems still to be too difficult. In [11] the quasistatic
evolution of fracture in linearized elasticity is developed, where cracks may occur along arbitrary paths that
have C1-LP regularity, which is the same regularity needed for our analysis.

2 Transformation and main result

Throughout this paper we consider a reference configuration with a Lipschitz domain Q and a given crack I';;
on which the displacements u € H'(Q¢, R?) may have jumps. We expect that our theory works for general
domains Q and cracks I, that are piecewise C!P, if all the edges and corners are non-degenerate. However,
to avoid an overload of technicalities, we concentrate on the essential difficulties that arise (i) by smooth
pieces of the crack, (ii) by the edge of the crack, (iii) by kinks inside a crack, and (iv) through the intersection
of the crack with the boundary 0Q.

Thus, we define a model domain Q with a model crack T.; that displays all these difficulties and
then consider all domains Q with cracks I, that are obtained by a bi-Lipschitz mapping T : Q@ — Q such
that Te; = T(Tyy).

Conditions on the model pair (Q, Tr). Our conditions essentially say that Qe = Q\ Ty can be written as the
union of two Lipschitz domains A, and A_ that have a nontrivial intersection A, n A_, which is a Lipschitz
set again, and that define T,; as the intersection of the boundaries A, and dA_.
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A, cQ

Figure 1: Left: Crack T, (areas shaded in light blue) inside the domain Q, the crack edge Tedge is red, the crack kink Tkink is green
lying between the two shaded areas, and dQ N T; is blue. Right: Decomposition of a planar Q into overlapping Lipschitz
domains lr and A_ according to Assumption 2.1 (c).

Assumption 2.1. By using the normal vector v € $4-1 of the crack I'; and the outward normal vector 7i € $4-1

on 0Q, our precise assumptions are the following:

(a) Q ¢ R? is a bounded Lipschitz domain.

(b) Ter := (([0, 1] x {0} x R92) U ({0} x [0, c0] x R¥2)), Tegge := {(1, 0)} x R¥2, Tk := {(0, 0)} x R%-2.

(c) ThesetsA, :={xeQ|(X;>0,X >0)orx;>1}and A_ :={x € Q| X; <0orx; >1orx, <0} as well as
A, NnA_and A_\ A, have Lipschitz boundary.

(d) Transversality of T.;: The sets 0Q and T, intersect transversally, i.e.

36 > 0 VXo € 00 N Ter \ (TedgeU Think) 30 > 0:  (AR) - V(Xo))” < 1 - 6 for H¥ 1-a.e. X € 00 N B,(Xo).
(e) Transversality of Tedge and Tiink: The sets Teqge and Tyink intersect with 0Q transversally, i.e.
36 >0 VXg € (IA‘edge UTkink) N 0Q Jp > 0: (ﬁ()?)-el)2 + (ﬁ(?)-ez)2 <1-6forH  %-ae.xe aﬁnBQ(fo).

The conditions on (ﬁ, fcr) are illustrated in Figure 1. The model crack T, defined in (b) contains two special
subsets, namely (i) the crack edge fedge and (ii) the crack kink Tink. For all other points we have the well-
defined crack normal v(%) = (1,0, ...,0)T e R?0r (0, 1,0, ...,0)7, respectively. Conditions (d) and (e) ask
that the crack T, and its edge fedge and kink Tynk to not meet the boundary 0Q tangentially.

The decomposition Q¢ ¢ A, UA_ in (c) will be used for three purposes, namely (i) for the derivation of
a rigidity result for the cracked domain, (ii) to construct enough good test functions for deriving the jump
condition in Theorem 4.1, and (iii) for distinction of different cases in Proposition 5.2.

The domains Q and the cracks I' ¢ Q for which we will formulate our theory are now obtained by
a bi-Lipschitz mapping T : RY — R4 that is additionally C'LP = W2, Thus, the conditions on the pair
(Q, T) or the cracked domain Q¢ := Q \ T are the following:

Assumption 2.2 (Assumptions on (Q, I')). The pair of sets (Q, Ty) satisfies Assumption 2.1 and there exists
a bi-Lipschitz map T : R? — R9 such that Q = T(Q), Ty = T(Tr), and T € CLLP(RY; RY).

Note that the true crack I'; will be piecewise C"MP, since we allowed for a kink in Te,.
As a first consequence of this assumption we see that Q. can also be decomposed similarly to Qc; in
Assumption 2.1 (c). Defining A, := T~1(A4,) with 4, from Assumption 2.1 (c) we have that

A,,A_ c Qare Lipschitz domains with A, UA_ = Q¢

2.1
suchthat A, N A_and A_ \ A, are also Lipschitz domains. (2.1)

This overlapping covering of Q, in assumption (2.1) is used for three different purposes. First, it allows us
to extend the rigidity result from Lipschitz domains to our crack domains Q;, see Corollary 3.3. Second, it
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allows us to derive the jump condition (1.2) in Theorem 4.1 by applying the divergence theorem on a disjoint
cover given by A, and A_ \ A,. Finally, and third, we use it in Proposition 5.2 for the construction of injective
close-to-identity deformations.

The assumption that T : R? — R is a bi-Lipschitz mapping means that it is bijective and that both T and
T-1 are Lipschitz continuous. The additional condition T € CVMP(RY; R9) then implies T~ e CLHP(RY; RY).
A diffeomorphism y : Q — R4 can be transformed to a mapping on Q via the transform

Y& = Ty(T(®)) or yx) =T FTX)).
In particular, for y, 5 :=id + €l : Q — R? we find the expansion
Ye) = T (Fea(T(X)) = x + eVT(x) ' u(T(x)) + O(e?).

The mapping from u to the corresponding term in y, is called the Piola transform Pt for vector fields, cf.
also [9, 10]. Under the assumption (2.2) the mapping

Pr:HY Q) > HY(Q), T+ (u:x— VTx)'U(T(x))) (2.2)

is a bijective bounded linear mapping as well as its inverse Pr-1 : H(Q) — H(Q).

The Piola transform is especially useful for us, as it also transforms the local non-interpenetration condi-
tion in the correct way, see, e.g., [9, 10]. If V(X) is the normal vector at X € T, then it is related to the normal
vector v(x) at x = T"1(%) € ' via

1 Y _ - 1 .
v(x) = mvnx) V(T(x)) or V(T(x))= —|VT(X)_TV(X)|VT(X) v(x).

Thus, for the jump over the crack we obtain the relation

[ulv(x) = W (x) —u" () - v(x)
= (VTO) ™' ut(T(0) = VT0) ™™ (T(x))) - v(x)
= @ (T(x) - a(T(0))) - VIO~ v(x)
= [VTC)™ Tviollalu(T(x)). (2.3)

Thus, the jumps translate correctly if we take into account the prefactor that associates with the stretching of
surface elements.

Consequence 2.3. For future use of the above assumptions on (Q, I'y) we derive the following well-known
consequences, which will be employed below in our theory of I'-convergence:
(a) Q is a Lipschitz domain, and for all xo € 0Q there exist an open neighborhood U c RY of xo and
a bi-Lipschitz Wy, : U — V ¢ R? such that Un Q ¢ ¥ ({vg > 0}) and U n 0Q < ¥l ({vq = O}).
(b) Transversality of Ty and 0Q: for all xg € Ty N 0Q there exist 7y, € $9-1 x>0, and U and ¥y, as in (a)
such that
() V¥, (0 eq-VT(x) iy, = k L%ae.inUNQ,
(i) fx, - VT(X) Tv(x) = 0 H4 -ae.in UN Ty,
(i) Ay, € 1(0, 0)} x R2if xg € 0Q N Tedge,
where Teqge := T~ (Tedge) With Tedge := {(1, 0)} x R42,

Note that condition (ii) in (b) simply means 7jy, - V(T(x)) = 0, where V takes one of the values e, e; € R4, or
even both values if T(xo) € Tink. Hence, this condition follows directly from Assumption 2.1 (d), but we will
use the form as given in (b) for a full neighborhood. Similarly, condition (iii) in (b) is a direct consequence of
Assumption 2.1 (e).

Note that the angle of 7 at the kink of T, is not essential and will be varied by the mapping VT~ (y)
for y € Ty N Qcr. Furthermore, the choice of Ty = T(Te) ¢ Q in (2.2) is just an example as easy as possible
while still showing the crucial difficulties. We expect that the theory works for any Lipschitz surface that is
piecewise C"P, The proofs and constructions are made with the intention to be adaptable to other special
situations.
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The transversality condition in Consequence 2.3 (b) requires the crack I',; and the boundary 0Q to inter-
sect transversally. Technically it enables us to use the following implicit function theorem for Lipschitz maps
to conclude 0Q being a graph in the direction n, which is parallel to I, in a whole open neighborhood of T(xo).
You can interpret this graphically when having in mind the fact, that normal vectors transform by the cofac-
tor of the gradient. Then equation (i) of Consequence 2.3 (b) can be read as the vector field 17y, = VT(X)™ " 7y,
which is constant on the flat configuration Q \ T; having an angle bounded away from Z to the normal on
the boundary, which is given by V¥, (x)eq = V¥, (x)(0, ..., 0, 1)T. The last two requirements specify that
for xo € Ty O X € T'egge the vector 7], is tangential to T, or fedge, respectively.

To collect all the assumptions, we now specify the boundary conditions in terms of the part I'pi;y ¢ 0Q,
where the Dirichlet boundary conditions (u — g)|r,,, = O are imposed:

Tpir T =0, HE(Tpiy) >0, ge WHR(Q;RY),

1 1,00 d (24)
Hg iy 1= closmi(a) ({u € W (Qer; RY) | (U = 8)Iry, = 0}).

Theorem 2.4 (Mosco convergence J; N JF). Let Assumptions 1.1, 2.2, and (2.4) be satisfied and F, and F
defined as in (1.4) and (1.5). Then F Mosco-converges to F in H* (Qc¢r; RY).

The proof of this result is the content of the following sections. In particular, the liminf estimate is established
in Proposition 4.3, and the limsup estimate in Theorem 5.5.

The following result is a weak version of the implicit function theorem that will be needed to represent
the boundary 0Q near a point xo € 0Q N Iy, see Corollary 2.6.

Theorem 2.5 (Special version of Implicit Function Theorem). Let U,, ¢ R™, U, ¢ R" be open sets, a € Uy,
b e Uyandlet F: Uy x U, — R™ be a Lipschitz map with F(a, b) = 0. Suppose there exists a constant K > 0
such that for all x € Uy, and y1, y, € Uy it holds

|F(x,y1) = F(x, y2)| =2 Kly1 - y2l. (2.5)

Then there exist an open neighborhood V,, of a, Vi, € Uy, and a Lipschitzmap ¢ : V,; — R™ such that ¢(a) = b
and
F10) = {(x, p(x)) | x € Vim}.

Proof. We will sketch the proof briefly.

By (2.5), which is a Lipschitz analog of the invertibility of V,F in the differentiable version of the
inverse function theorem, the map f: Uy x Uy > R™" — R™" (x,y) — (X, 6F(x, y)) is bi-Lipschitz for
0<6<|VF ||Zol<,. In particular, f is continuous, injective and maps an open subset of R™*" to R™*", thus
by Brouwer’s invariance of domain theorem f is an open mabp, i.e. f(Uy x Uy) is open in R™" and f~! is
continuous. Consider the embedding e, : R™ — R™"  x — (x, 0) and the projection p, : R™ x R" — R",
(x,y) — y. Both e,; and p, are Lipschitz continuous, thus ¢ := py o f! o ey, defines a Lipschitz map on
Vin := e;11 (f(Un x Uy)), which is open by continuity of e,;, and f~1. Because of the assumption F(a, b) = 0
we have a € V,, and ¢(a) = b. Regarding the claimed equality F~1(0) = {(x, @(x)) | x € V;} we get on the
one hand the inclusion “>” from F(x, ¢(x)) = 0, which follows by construction of ¢. On the other hand for
every (x,y) € Uy x U, with F(x,y) = 0 we have f(x, y) = (x, 0) such that x lies in the domain V,, of ¢ by
construction of V,,, which gives the other inclusion “c”. O

We are now able to write the boundary 0Q near X, € 0Q n I, as a Lipschitz graph over the plane 13;0 through
Xo = T(xo) that is normal to 7z,. This construction will be needed in the proof of Proposition 5.4.

Corollary 2.6. Let Xo = T(xg) € Te N 0Q and let U and Tix, be as in the transversality condition of Conse-
quence 2.3 (b). Set PXO ={xeR?| (X - T(x0)) - Tx, = 0}. Then there exist an open neighborhood V of T(xo)
and a Lipschitz continuous function @y, : V N Py, — R such that the function

§: VR, 8(X) = @ (X— [(X— T(x0)) - fixg 1fixe) = (X = T(X0)) - fixo

characterizes 9Q locally via g(X) > 0 for X € Q, 8(X) = 0 for X € 0Q, and g(%) < 0 for x € R?\ clos(Q).
Similarly, the boundary 0Q near a point xo € Ty N 0Q can be characterized by the function g =go T™1,
where g is obtained as above for Xo = T(xq).
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Proof. Take ¥y, as in the transversality condition of Consequence 2.3 (b) and introduce local coordinates
zZ€ PXO and y € R providing a unique representation of X € RY via X = z + yfjy,. The map

F:UnPyxR—R, F(z,y):=eq Y (T (z +Vix)),

is Lipschitz and satisfies F~1(0) c 0Q. Moreover, applying the chain rule, we obtain the transversality condi-
tion %F (z,y) = k. As 13,(0 can be identified with R%1, the special version of the Implicit Function Theorem
(Theorem 2.5) is applicable and we obtain the Lipschitz function ¢,, such that F(z, y) = 0 can locally be
expressed as y = @y, (z). The remaining assertions follow by simple computations. O

3 Coercivity of I, via rigidity

The equi-coercivity of the F is directly implied by the equi-coercivity of the F¢, since F. > F. holds.
For extending the proof of the equi-coercivity of F. from [3] we have to generalize the rigidity estimate
from [4] from Lipschitz domains to domains with cracks. For this we will use the overlapping decomposition
Qg =A, UA_ from (2.1).

Definition 3.1 (Rigidity domains). A domain Q c R s called a rigidity domain if there exists a constant C > 0
such that for all v € H}(Q, RY) we have

. _ 2 . 2
Relsr(l)f(d) Vv RIILZ@) < C|/dist(Vv, SO(d))IILZ@). (3.1)

The smallest such constant we call rigidity constant R(Q).

In [4] it is proved that every bounded Lipschitz domain is a rigidity domain. Furthermore, a doubling argu-
ment can be found therein similar to the one used in the following proof.

Proposition 3.2. Let A, B c RY be bounded rigidity domains such that A n B is a rigidity domain with positive
volume. Then A U B is a rigidity domain, and we have

R(AUB) < (2 +4pa)R(A) + (2 + 4up)R(b) + 4(ua + up)R(A N B),
where s = vol(A)/vol(A N B) > 1 and up = vol(B)/vol(AN B) > 1.

Proof. Wefixv € H'(A U B, RY) and denote by R4, Rg, Rang € SO(d) the minimizers R € SO(d) in (3.1) on the
corresponding domains. Hence on A U B we obtain the estimate

J IVv(x) — Ranpl?dx < I4 + Iz, wherelp := J |VVv(x) — Rang|? dx.
AUB D
Writing briefly §(F) := dist(F, SO(d))? we can estimate

Ip<2 j IVV(X) = Ra|>dx + 2 J R4 — Rangl|? dx
A A
< 2R(A) j 8(Vv(x)) dx + 2y j IR4 — Ranpl? dx,

A ANB
where we used that R, is the minimizer for the set A, that |[R4 — Ranpg| is constant and the definition of p,.
For the second term of I, we have

I R4 — Ranpl?dx <2 J R4 — Vv(x)|> dx + 2 j [VV(x) — Rangl? dx
AnB AnB AnB
< 2R(A) j 6(Vv(x))dx + 2R(A N B) J 6(Vv(x)) dx.
A AnB

Together we find I < ((2 + 4ua)R(A) + 4usR(A N B)) fAuB 6(Vv(x)) dx.
Interchanging A and B, we find the analogous estimate for Iz, and the result follows. O
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In this form, the rigidity estimate applies to our situation by our Assumption 2.1 (c) on the decomposition of Q
in two overlapping Lipschitz domains. We simply apply the above proposition to Q, = A U Bwith A = A, and
B=A_,see(2.1).

Corollary 3.3 (Q is a rigidity domain). Let (Q, T) satisfy (2.2). Then Q¢ = Q \ [, is a rigidity domain, i.e.
there is a constant C > 0 such that for all v € H} (Qcr; RY) there exists an R € SO(d) such that

IVv = Rll12(q,,) < Cldist(Vv, SO(d))llr2(q.,)-

Before proving coercivity, let us note the following quantitative statement on the rotations showing up
when applying the rigidity estimate to small deformations y. = id + eu. In [3] as well as for us, it is a main
step in the proof of the equi-coercivity. Moreover, we will need it for proving Theorem 4.1 on the local
non-interpenetration in the next chapter. The main point is to show that for mappings y. = id + eu the cor-
responding rotation matrices Rjq.¢, that are minimizers in the rigidity estimate are also close to the identity
matrix I € R%4, For this we use the boundary conditions ulr,, = g.

Lemma 3.4. Let Q, I, and W satisfy Assumptions 1.1 and 2.2 and fix g € WH(Q). Then there exist constants

Cy,Cx > 0suchthatforalle € 10, 1[and all u € H;’Dir the following holds:
J I+ £VU(X) = Rigseul? dx < Cre2TFo(u), (3.22)
QCI’
I - Rideeul® < CRez(i(u) + J lgI? di}fd’l), (3.2b)
Ipir

where R, denotes the minimizer R € SO(d) in (3.1) for fixed v € H(Qcr; RY).

Proof. Combining the coercivity of W in Assumption 1.1 (c) with the rigidity constant from Corollary 3.3, we
obtain (3.2a) with Cr = R(Qq)/cw.

To derive the second estimate, we set R, := Rjg4ey and {; := ]( Qu(x + eu(x) — Regx) dx. By continuity of the
traces and Poincaré’s inequality we find

J |0 + eu(x)) = Rex — §e|? dHE? < Coll(x + eu(x)) = Rex = &ellgi g re)
Ipir
< ¢ j (I + eVu(x) - Rel? dx < C42F ()

Qer

with C4 = CrCs. Exploiting ulr,, = g and the prefactor €, we obtain

[ 10 Rox - o2 aoc < Csez(?g(m + | 18P dﬂfd-l).
Tpir Tpir

Note that R, — I is an element of the closed cone K generated by SO(d) - I, on which [3, Lemma 3.3] applies
(see the derivation of (3.14) therein). Thus

I Re|? < C min J (I = Re)x — g2 d-1,
(e]Rdr
Dir

and estimate (3.2b) follows with Cg = C¢Cs. O

1

Now we can proof the equi-coercivity of F, on Hg by

Proposition 3.5 (First a priori bound). Assume that Q, Ty, and W satisfy Assumptions 1.1 and 2.2. Then there

exist cy, Cy > O such that foralle € 10, 1[ and all u € H;’Dir we have

Fe(w) 2 callulf, - Cs.

Bereitgestellt von | Mathematisches Forschungsinstitut Oberwolfach - MFO
Angemeldet
Heruntergeladen am | 09.03.20 08:59



DE GRUYTER P. Gussmann and A. Mielke, Linearized elasticity as Mosco limit of finite elasticity = 41

Proof. By the first part of Assumption 1.1 (c) on W and Corollary 3.3 we have

I(I +&Vu) - Rell?, < Cq J dist®(I + eVu(x), SO(d)) dx
Qer

<G j W + eVu(x) dx < Coe2F ().
ch

Using both estimates from Lemma 3.4, we proceed to obtain

e Vull?, < 2(IT - Rell7, + I + eVu — Rell7,) < €2C3<3’s(u) + I lg1? diH‘“)

Tpir
with C3 = 2Cr + 2Cg. Dividing by &2 and exploiting the boundary conditions in H;’Dir as well as Poincaré’s

inequality, we arrive at the desired result. O

The above result shows that sequences (u¢). with bounded energy TFe(ug) < C < coare bounded in H(Qcr; RY).
The next results provides a weaker, but still useful a priori bound, which implies that eu. converges to 0
in L (Q; R?) for energy bounded sequences.

Proposition 3.6 (Second a priori bound). Let W satisfy Assumption 1.1. Consider a sequence (uUg)eso With
SUPgsq TFe(ug) < C, < 00. Then there exists a constant C > 0 such that

leugllwir < C and |lugli < Ce” (3.3)

with r € ]0, 1[ arbitrary ford = 2, and r = %:g; €]0,1[ ford = 3.

Proof. The first estimate in (3.3) follows directly from the coercivity in Assumption 1.1 (c) for W:

e2C. 2 2T (ug) 2 J cw(II + eVug (0P - Cy) dx > CTWIISVMEII{’,,, - C.
QC]’

Using Poincaré’s inequality for u, € H;, pir» We obtain a uniform bound in WLP(Q; RY).

For the second estimate in (3.3) we use the Gagliardo—Nirenberg interpolation estimate for f = eu., where
we crucially exploit p > d as provided in Assumption 1.1 (c):

Il < CIAG L IS

For d = 1 we can take 8 = 0 because H! ¢ L®, and for d = 2 any 0 € ]0, 1] is sufficient. For d > 3 we can
choose 6 = %’%2 € ]0, 1[, and the result follows by using Proposition 3.5, which gives || ﬂlllije <elfc. O

4 The liminf estimate

In contrast to the equi-coercivity the I'-liminf estimate for ¥, does not follow directly from the I'-liminf
estimate for F,, since we have to consider the case F(u) = co carefully, i.e. we have to show that the global
injectivity condition (1.1) generates the local non-interpenetration condition (1.2) in the limit £ — 0. This is
the content of the following result.

. . . . H!
Theorem 4.1 (Local non-interpenetration). Consider functions u., u € H (Qcr, RY) and assume that u; — u
and liminf,_,o F=(us) < co; then [u], > 0 holds H4 t-a.e. on Tg.

To prove this theorem, we will first prove the following linearization result concerning the determinant
of I + eVu:

Lemma 4.2. There exist Cqet > O depending on Q, I'piy, I'y and the exponent p > d and constants from Assump-

tion 1.1 (c) such that for all € € 10, 1[ and all u € H;’Dir we have

I |det(I + eVu(x)) - 1 — ediv u(x)| dx < €% Caet(Fe(u) + Caet)-
QCI
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Proof. For matrices A € R we have
|det(I + A) - (1 + tr A)| < Cq(JAI* + |A|%),

where we will insert A = eVu(x). To control the term |A|4, we will use W(I + A) and |I + A|P > %IAI” -Cq,
which yields

WI+A)>cw(I+AP-Cyw) > —(|A|p Cy).
Using W(F) > 0, we even have W(I + A) > “[|A) - C2]4, where [al; := max{a, 0}. Because of p >d >2
there exists C, > 0 such that t4 < C.(t2 + (t? — C;),) for all t > 0. Thus, inserting ¢ = |A| = |[eVu(x)|, setting
Cs = C4(C, + 1), and integrating over Q, results in

J \det(I + eVu(x)) — (1 + £ div u(x)| dx < I CalleVul? + |eVul?) dx
Qcr Qer

< j Cs(levul? + [|eVulP - C]4) dx

QCI
2C3 =~
< e2C3|Vullf, + 82 —Tew).
Together with Proposition 3.5 we see that the assertion holds with Cget chosen as the maximum of C3 + 2C3
and C3C z, D

With this lemma at hand, we are now able to complete the proof of the main theorem of this section. The idea
is to consider the GMS condition (1.1) for global injectivity for y. = id + eu. with nonnegative test functions
@ € C*(Q). Dividing by ¢ and passing to the limit with the help of the above lemma, one can derive the
relation Iﬂu div(eu) dx > 0, which provides the local non-interpenetration condition (1.2).

Proof of Theorem 4.1. As a := liminf._o J¢(u,) < oo there is a subsequence (¢j, uj) such thatid + €;u; fulfills
the GMS-condition (1.1) and det(I + &;Vu;) > 0 a.e. on Q. Hence, by rearranging (1.1), for every ¢ CSO(]Rd)
with ¢ > 0 we have

0> gl I (p(x + gjuj(x)) det(I + €;Vu;(x)) — @(x)) dx
j

= gl J @(x + gjuj(x))(det(I + &Vu;j(x)) - (1 + & divu;j(x))) dx
j
" J PO+ &u00) dive () dx + I %«p(x + &j14i(x) - () dx.
Qu g I
It follows from Lemma 4.2 and Holder’s inequality that the first summand on the right-hand side is bounded
by &ll@llLe Caet(a + Caer) and thus converges to 0 for j — co. For the latter two summands we use Proposi-

tion 3.6, namely
lejujlliLs — O.
The second summand converges to j 0 ¢ (x) div u(x) dx, because div u, — d1v uweakly and @o(id+¢juj) — ¢
strongly in L2(Q). Finally, the third term can be treated by using the relation
1
eli(go(x Feui(0) - p(0) = [ Volx+sejg(0) w0 ds

s=0
such that weak convergence u; — u shows convergence to IQU Vo(x) - u(x) dx. Altogether the limit € —» 0
provides three limit values on the right-hand side, namely

0>0 + J @(x) divu(x) dx + J Vo(x) - u(x)dx
Qcr Qer

= I div(pu)(x) dx = - J @) [uly(x)da(x).

Qer Ler
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For the last identity we now restricted to ¢ € C.(Q) such that no boundary terms on 0Q are present. Moreover,
we have to recall that u lies in H;’ Dir € H'(Qc; RY) such that the upper and lower traces at the crack I';; may be
different. By applying the divergence theorem on the Lipschitz sets A, and A_ \ A, (see (2.1)) separately, all
terms cancel except for the jump along I';;. As ¢ > 0 was arbitrary, we conclude [u], > 0 H e only. O

. o M
We are now ready for deriving the liminf part for our Mosco convergence ¥, — 7.

Proposition 4.3 (Liminf estimate). For every sequence €; — 0 and uj, u € H;’Dir withuj — uin HY(Qer; RY) we
have

F(u) < liminf F,; (u)).
j—o0

Proof. We can assume that a := liminfj .o, J; (1)) < 0o, since otherwise the inequality holds trivially. Thus,
there is a subsequence (g}, u;) such that id + &ju; is globally injective and that I, (u;) = ?gj (uj) — a. By Theo-
rem 4.1 we conclude [u], > 0. Consequently, the liminf estimate above reduces to the liminf estimate for F:

F(u) = F(u) < a = lim T, (uy) = lim Fe, ().
j—oo j—oo

Because ¥ is convex, by [13, Lemma 4.2] it suffices to show the pointwise liminf estimate of the respective
densities. From Assumption 1.1 (d) we even obtain pointwise equality using

1 1 6
|€—2W(I +&eG) - 5<G’ CG)| < E(G’ CG) < 6g|6|2 for G € By, /:(0).
Since 6 > 0 is arbitrary, for each fixed G we have lim, o & W(I + £G) = 3(G, CG). O

5 The limsup estimate

Showing the limsup estimate in (1.6) amounts in the construction of a recovery sequence u, — u converg-
ing strongly in H;,Dir crHl(ch; R%). In the case without constraints (1.1) or (1.2) the limsup estimate for
the T-convergence F — F is much simpler since for u € WH®(Qc; RY) we can take the constant recovery
sequence u; = u. Then the extension to general u ¢ H;’Dir follows by density and the strong continuity of 7,
see [3, Proposition 4.1].

Due to the constraints (1.1) and (1.2) in the functionals F, and 7, respectively, we have to do some extra
worKk. First, setting

Cg := {u e Hy py | [uly >0},
we have to show that W1 n Cq is dense in Cg with respect to the H! norm. Second we would like to use that
u € W n Cg implies that the close-to-identity deformations id + eu are globally injective for sufficiently

small € > 0. The following example shows that this cannot be expected in general.
Example 5.1 (Non-injectivity). Consider the domain Q = ]-1, 1[%> ¢ R?, the crack Ty = {0} x [0, co], the
cracked domain Q, := Q \ T¢; and the displacement

0,0)T forx, <0,

u: Qg —» R% u(x,x2) =406+ (x2)2,x)7 forx, >0and x; >0,

(x2,0)7 for x, > 0and x; < 0.

Then u € W (Q; R?), and along the crack we have (0, x,) = e; = (1,0)" and the jump
[ul5(0, x2) = (x2)* > 0,

except on the crack tip Teqge = (0,0)7.
However, y, := id + €u is not injective for any € > 0 near the crack tip. To see this, we set x} = ((%)3, 7
and x; = (—(%)3, £+ %)T which lie in the first and second quadrant, respectively. We have

g2 e\ & e\T _
YE(X:;)=<?+3(E) ,§+?) = ye(Xe),
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which violates injectivity. Even more, we see that the second quadrant is mapped to {y € R? | y» > 0, y1 < £y}
while the first quadrant is mapped to {y € R? | y, = 0, y1 > h:(y2)} with h.(2) = ez(1 + € + 2)/(1 + €)>. Thus,
each point in the area

{(y1,¥2) |0 <y2 <e(l+é), €y2 > y1 > he(y2)}

has two preimages.

The main problem in handling domains with cracks is that of the missing Lipschitz property. For Lipschitz
domains Q we have CHP(Q) = W1-*(Q) with an estimate

Lipg(u) < CollVullLeo(q)- (5.1)

For convex domains one has Cq = 1 but for general domains the constant depends on the relation between
Euclidean distance and the inner distance

dg:Q0xQ >R, dqlx,x)=inf{Length(y) | y connects x with X inside Q}.

Then the chain rule guarantees |u(x) — u(x)| < [|Vullooda(x, X). Thus, we can choose

CQZSUP{ x,)?eQ,x;t)?}

do(x, X) |
|x - X
in (5.1).

In a domain Q. with a crack, we obviously have Cq_, = 00, since points x* and x~ on two opposite sides
may have arbitrary small Euclidean distance [x* — x~| but large inner distance dq_, (x*, x7). This explains the
difficulty in proving global injectivity, since for a close-to-identity mapping y. = id + eu we have

lye(x™) =y 2 X" = x7] - elu(x™) —u(x)| 2 X" = x| - €] Vullo oo dog (X7, X7).
Thus, for Lipschitz domains Q with Cq < co the global injectivity follows easily if €[|Vu|r~q)Cq < %, but
for cracked domains Q. we have to be much more careful. Indeed, we have to require that our functions
u € Cg NWho(Qey; R?) also have a crack opening that is bounded from below linearly by the distance of the
points on the crack from the edge I'cqge. In the next result, we will show that we can achieve this by a suitable
forcing apart.

Proposition 5.2. Let u € W (Qq, RY) N Cg. Then there is a sequence uy € W»®(Qq, RY) N H;’Dir satisfy-

ing uxy — u and for all k € NN there exists an & > 0 such that for all € € 10, €x[, id + euy satisfies (1.1).

Proof. Motivated by the above example we will use the displacement @5, : Qo — R4, which forces to two
sides of the crack T, apart. For two small parameters &, n > 0 we set Q5 ,(X) = 6A,(X)7 € H(Qq, RY) with
fi=(1,1,0,...,0)7 € R4 The scalar function Ay € Wl’oo(ﬁcr) is given by

0 ifX1>1,

min{1, 1(1 -x;)} forx; €1]0,1]and x, >0,
AI’I(XI’XZ)'--er): . 1
—-min{1, (1 -x;)} forx; €]0,1]and x; <O,

-1 for x, < 0.

Hence the jump of A, grows linearly with slope % with the distance from fedge and then saturates at the
values +1.

We now choose an exponent a € ]1, 2[ and a positive sequence 8y — 0 and set ny = 6?. With this we
define @ := @s,,y, on Q¢ and use the pullback of @y to the reference configuration Q via the Piola transform
@r(x) = VT(x) 1@ (T(x)), see (2.2). Moreover, using (2.4) we can choose a cut-off function y e W (Q; [0, 1])
that is 1 on a neighborhood of I';; and vanishes on I'pi;. With this we define the required sequence

ug € W Qe RY, x5 up(x) = u(x) + yo)@i(x).

1

Note that the boundary value on I'pj; is not changed, i.e. uy € Hg,Dir.
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H! .
To show the convergence uyx = u + ypx — u, we need the smallness of ygy. Using

”y(Pk"Hl(Qc,) < "y"WL"O(Q) ”VT_l"Wl,oo(ﬁ) ”Eﬁk”}{l(ﬁa)
will give the first condition for a
= 2 512 82
1Pkl g, < vOl@IRI25E,
V@2 < Oky? dx < diam(Q)% 162 ¢
(pk Lz(ﬁcr) - rlk - k
On{1-ni<xi<1}
where we used 1y = 6%. Because of a < 2 we have ||ux — ully: — 0 as desired.

Let us now come to the global invertibility. We establish the existence of €, > 0 by a contradiction
argument. For this, we can keep k fixed for most parts of the proof (namely up to and including (5.8)) and
assume there is a sequence €; — 0 such that id + €juy is not globally invertible for all j € N. Thus, there exist
Xj, ¥j € Q¢ with (id + gjur)(xj) = (id + gjur)(y)), i.e.

0 # xj - yj = €j(ur(yj) — ux(x)). (5.2)

By boundedness of Q there is a (not relabeled) subsequence such that x; and y; both converge. Since (5.2)
gives |xj — ¥j| < gjllurlieoqy) < €jllullze(q,) + 36k), these two limits are the same, from now denoted by z.
We next establish the following claim:

Claim. Thepoint z, lies in the crack edge Teqge = T~ ({(1, 0)} x R%-2), and the convergence gives a very specific
picture, i.e. T(xj) - e2 >0, T(yj) - e2 <0, T(xj) - e1 < 1, T(yj) - e1 < 1, and
Ix; — yjl
(1-T(xj)-e1) + (1 -T(y)) - e1)

That means that xj and y;j converge to z, by approaching the crack asymptotically from left above and from
left below, respectively.

—0 asj— oo. (5.3)

A major part of the proof of the claim is due to Lipschitz continuity. If both, x; and y;, are in A, or both are
in A_, then with Ly := Lip,, (ux) we would obtain
Ixj = yjl = gjlux(y;) — ux(x;)| < gjLxdy(xj, y;) < €Lk Cylxj - yjl.

For ;L\ Cy < 1 this implies x; = y;, which contradicts (5.2). Thus, we have xj € A, \ A_and yj € A_\ A, or
vice versa. Using xj, yj — Zeo, We conclude z, € I¢;.

For the subsequent arguments we choose the notation such that always xj € A, \ A_and yj € A_\ A,.
IfZoo = T(zo) € Tor \ Tyink, We have a normal vector to T given by

N e;:=(1,0,...,0) fore;-zo =0,
V=
e; :=(0,1,0,...,0) fore;-zs =0.
By the above choice xj € A, \ A_and y; € A_ \ A, we obtain
(TC) - T(y;)-v>0 (5.4)

for sufficiently big j € IN. Thus, exploiting the smoothness of T across the crack and relation (5.2) again, we
obtain

1
1 _ 1 _

0< —(T(X,-) -T(yj)-v= JVT(X; + t(y; — x;)) dt —_(xj -yj)v
&j ) &j

1

62 j VT(x; + £y — %)) de (ui(y)) — ur(xy)) - 7.
0
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Passing to the limit j — oo, we find the jump condition
0 < VT (2eo) (U (Zeo) — U (Zoo)) - V = (Up (Zoo) — U (Zeo)) - VT(Zoo) V.

However, because of the non-interpenetration condition [ux], = [uly + [@«]v = 0, where [@i], > O except
on the crack edge, we have

(U (Zoo) — Uy (200)) - VT(200) TV 2 0,  where equality holds if and only if Z, € Tedge. (5.5)

Thus, we conclude that z,, cannot lie in Ty \ (T'kink U Tedge)-

It remains to exclude zy, € [kink. If this would be the case the case, then both (5.4) and (5.5) still hold for
some V but for different reasons. One the one hand, using x; € A, and y; € A_ for all j, there is a subsequence
such that condition (5.4) holds for either v = e1 or v = e,. On the other hand, (5.5) holds for both v = e; and
V = e, by continuity of uy. Thus, we similatly conclude zy, ¢ Tkink, and zo, € Tedge, Which is the first part of
the above claim.

From hereonlet U := B,(T(zs)) € Q with o < 1suchthat U does cannot touch Tyink. Then T(xj), T(y;) € U
for j big enough, and x; e A, \ A_and yj € A_\ A, gives

T(xj)-e1 <1, T(x)-e2>0, T(yj)-e1<1, T(yj)-e2<0,

which is the second part of the above claim.
To see the last part of the claim, note that we have either (5.3) as claimed or there is a subsequence (not
relabeled) such that
(1-T(xj) - e1) + (1 = T(yj) - e1) < Clx; - yjl (5.6)

with some positive constant C independent of j. We assume now (5.6) in order to generate a contradiction.
Indeed, the smallness of the quantities on the left-hand side allow us to exploit the Lipschitz continuity
of ux on T1({x € U | %, > 1}), which is the domain to the right of the crack edge containing the intersec-
tion A; N A_. Introducing the projections

Xj = THT0g) + (1~ T(g) - en)er) and yj:= T H(T(y;) +(1-T(y))-erer),

we can compare them with x; and yj, respectively, as well as x]’. and y]f to each other:

1
;Ixj - yjl = lur(xj) — uk(y))l
]

< Juge(xg) = ur O+ [ur(x) = ury)I + luiey;) = uie@y)l
< Lie(1xj = xj1 + x5 = il + lyj = y;)
< Li(2lx5 = xj| + x5 = yjl + 21y} = y;)
< Li(1 = yjl + 2IVT Ml (1IT(G) = TO)] + 1)) = T(yi)D)
< L(Ixj - yjl + 2IVT Hlpeo (1 - T(x5) - €1) + (1 = T(y;) - €1)))
(5.6) 1
< LI - yil(1+ 2IVT Y1 C).

After dividing by |x; — y;| # 0, we see that this contradicts €; — 0, such that (5.6) must be false, and hence
(5.3) and the whole above claim is established.

We still have to produce a contradiction to show that (5.2) is false. But now we can use the relations in
the above claim, in particular the convergence (5.3). To this end, we will use the assumption a > 1 in the
definition 1y = 6.

In the following calculation we use the abbreviation

1
Aj = J VT(xj + t(y; — xj))dt € R%xd
0
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and insert relation (5.2) (recall uy = u + y@j with y = 1 in a neighborhood of T,):
1 1 (5.2)
0< ;(T(X;) -T(yj)-ex = ;A;(X; -yj)-ex =" Aj(ur(y;) — ur(xj)) - e2 (5.7)
j j

= Aj((ulyp) = uyp) + @) - u(x) + @) - u(x)) + (@x(y;) = Pr(x))) - €2

< VTl IVl (lyj = yi1+ 1yj = X1+ 1xj = x51) + Aj(@i ) = @r(x)) - €2

< IV Tl IVullie (15 = vl + 2 = Xj1+ lyy = D) + Aj(@x () = px(x)) - €2

< IV Tlleo IVulleo (1% = Y5l + 2V T e (1 = T(x)) - €1) + (1 = T(yj) - 1)) + Aj(@x () — 9k(x))) - €a.

Dividing by (1 - T(x;)-e1)+ (1 —T(y;)- e1) and taking the limit j — co, the assumed convergence (5.3) implies
that the first summand of the right-hand side converges to the constant Cy := 2||VT|lLeo VUL |VT 1o,
which is independent of k. The idea is now to show that for our choice of @ > 1 the second summand makes
the right-hand side negative for sufficiently small 6, which then produces a contradiction.

For this, we exploit the definition of ¢ via the function A, and the choicesxj € A, \ A_andy; € A_\ A,.
Since xj and y; are near ['eqge, We obtain

M(T05)) = (1= T0g)-e1) and Ay(Ty;) =~ (1 =T - ev)
Inserting this with = 6%, we find
Aj(pr(yj) — pk(xj)) - e2 = ‘SkAj(VT()/j)_lAsz(T(Yj))ﬁ - VT(Xj)_l/lag(T(Xj))ﬁ) e
- 6kA]-(—5li(VT(yj)’1(1 ~T(yj) - e - %VT(X,-)’l(l - T(x)) - el)ﬁ) e

= =61 - T(yj) - er)er - AjVT(y)) '+ (1 - T(x)) - e1)ea - A;VT(x;) ' R).

The matrices A;VT(y;)"! and A;VT(x;)"! converge to I ¢ R%? by dominated convergence and continuity
of VT, thus we have e, -AjVT(xj)‘lﬁ — e -1 =1 and similarly for y;. Because both (1 - T(x;) - e1) and
(1 - T(y;) - e1) are positive, this implies the convergence

Aj(i(yj) — pi(x))) - e2
(1-T(xj)-e1) + (1 = T(y;) - e1)
Inserting this into (5.7) divided by (1 - T(x;) - e1) + (1 = T(y;) - e1) > 0, we obtain 0 < 2C,, - %6,1‘“ for each
fixed k in the limit j — co. Thus, making &) smaller if necessary, we arrive at a contradiction, because 6y — 0
and a > 1.

This shows that (5.2) cannot hold for €; — 0. Thus, the existence of & > 0 is established, and Proposi-
tion 5.2 is proved. O

&t — -1 forj — oo. (5.8)

To extend the achieved knowledge from the dense set W3 (Q; RY) n C; to the general case u € Cq, we have
to show that all functions u € C; can be approximated by uy € Whe(Qu; R N C;, i.e. we have to approx-
imate under the convex constraint of local non-interpenetration. Similar approximation results for more
classical state constraints are contained in [7, 8].

To handle our conditions of non-negativity of jumps over the crack, we can use a reflection and decom-
position into odd and even parts. To simplify the reading of the following proof, we illustrate this idea by
a simple scalar two-dimensional problem.

Example 5.3 (Straight crack in R?). We consider Q = R?, T; = R x {0}, and a function u € H'(Q \ I';) with
[ul, > 0. To find a smooth approximation, we define
1 1
U™ () = (U, X2) + u(xa, -x2))  and uC(x) = 5 W, X2) — uGaa, —x2))

such that u = u®ve" + y°dd, [yeven], = 0, and [u°4d], = 2u°dd(., 0*) = [u],.
We can easily approximate u®V*" by vy € CSO(]RZ), since it lies in H!(R?). For we do not want to
smoothen the jump along I'. Hence, we define a “positive extension via reflection” as follows:

uodd

B u°dd(x;, x5) for x, > 0,
U(x, x2) = a
max{0, u®®(xq, -x,)} forx, <O.
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Since (-, 0%) = u®d(-, 0%) = 1[ul, > 0, we conclude that [u], = 0, which implies & € H!(R?). Defining
convolution kernels Y, € C(R?) with iy > 0, f]RZ Yidy = 1, and supp(¥x) < B1/k((0, —%)) c R x ]-00, 0],
we can define Vi = ¥y * i € C°(R?) and check that V¢ — & in H'(R?) and that Vi(x1,0) = 0, because
t(x1, x3) > 0 for x, < 0 and the kernel 1 also has its support in R x ]—co, O[. Thus, setting

ur(xy, x2) = vi(x, x2) + sign(x2)vi(xy, |x2|),
we obtain uy € C®(Q \ I'yy) with ux — uin HY(Q \ T¢;) and [ug]y, = O.

The analogous construction for our general crack I'; ¢ Q works similarly by mapping the displacements
u : Qi — RY via the Piola transform onto displacements % : Q. — R?, where the positivity of the jumps
is preserved, see (2.3). To simplify the proof, we introduce some notation for mollifiers and shifts. We choose
a fixed convolution kernel ) € C.(R?) with supp ¢ c B1(0), ¥ > 0, Jga W dx = 1, and Y(x) = P(X) if x| = |XI.
With this we define the mollifier M; with shift vector a € R? via

(Mpu)(x) = J lp(z)u<x—%(z—a)>dz: J kdlp(k(x—y))u<y+%a)dy.

< _ 1
lzI<1 ly-xI<}

The shift vector a will be chosen differently above and below a crack to avoid intersecting the crack, see,
e.g., (5.9).

Of course, we can take full advantage that the crack T, is piecewise flat. The only point that is more
delicate arises for points in the intersection of I'.; and 0Q.

Proposition 5.4. Let u H;’Dir with [u]y, > 0. Then there is a sequence uy € H;,Dir A WL (Q, RY) with
[uxly = O such that ux — u in HY(Qer; RY).

Proof. First, we show that it suffices to consider the case (ﬁ, T.,) instead of the more general (Q, I';). For this
we can use the Piola transforms Pr : H! (ﬁ) — HY(Q) from (2.2). With the inverse mapping (P7)~! = Pr-1.As T
and T! lie in W2, we see that Py is also a linear bounded map from W (Q.,, RY) into W1 (Q,,, RY) with
linear bounded inverse Pg-1. Thus, for the given u ¢ H;’Dir with [u], > O we may consider & := Pr-1u € H(Q)
with [u]y > 0. If we find approximations ik, then uy = Pty provides the desired sequence.

Second, we observe that it suffices to show the assertion locally in a neighborhood U of each point
x* € clos(Q) because by compactness we have a finite cover of such neighborhoods and recombination
by partition of unity gives the result. In all cases we consider U = Bs(x*) n Q and may consider & with
supp(u) ¢ B:(x*) for some ¢ € ]0, §[. Thus, convolutions MZ& will be well defined for k sufficiently large, as
long as supp(u) + B1,k(a) stays inside of Bs(x*) N Q¢;.

We now discuss the occurring different cases.

Bulk points in Q¢. For x* € Qc and a ball Bs(x*) € Q¢ the convolution iy = Mﬁﬁ is smooth and converges
in HY(Bs(x*), RY) to @.

Free boundary. For the case x* € 00\ (Ter U Tpiy) we extend i to the outside of Q first. For this we take a ball
Bs(x*) with Bos(x*) N T = 0and by the Lipschitz property of dQ thereisa bi-Lipschitzchart ¥ : Bs(x*) — R4
with Q n Bs(x*) ¢ ¥~1({yq > 0}), 0Q N Bs(x*) ¢ ¥~1({yq = 0}), and Bs(x*) \ clos(Q) c ¥~1({yq < 0}). Nowan
H!(Bs(x*), R%)-extension i of & is given by #i(x) = u(¥~'(R(¥(x)))), where R(y) = (V1, ..., Yd-1, |yal). The
desired approximations are then given by & = M| Bs(x*)n0*

Dirichlet part of the boundary. For x* € I'p; there exists Bs(x*) disjoint from the crack I';;, and by the defini-

. 1 . 1’ . . qs . = .
tion of Hg,Dir there is a WH*-sequence coinciding with g on I'py.

Flat parts of the crack. For x* € . \ (lA"edge U Tkink U aﬁ) we proceed similarly as in Example 5.3. Since x* is
neither a point in 9Q nor in the crack kink Tyink or the crack edge Teqge, we can assume, without loss of gen-
erality, that x* € {0} x ]0, co[ x R%"2 with ¥ = ey, the case x* € ]0, 1[ x {0} x R42 with ¥ = e, is analogous.
We take Bs(x*) that touches neither of the critical parts.

Forafixedn € {2, ..., d} we approximate the component v = " of i1 = (ul%], ..., ul4)) simply via

vi(x) = M"Yy for x € Bs(x*) \ Ty, (5.9)
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where we can use that the parts left and right of the crack at x; = 0 are independent (no jump conditions. The
shift vectors +e; take care that mollifications never touch the crack.

For n = 1 we need to be more careful since v = #il!l has to have a positive jump over the crack, namely
v(0*,-) —v(07, ) = [u]y = 0. We define the odd and even parts via

. 1 .
v (xq1, ..., xq) = E(V(Xl’ cees Xa) + (D)'W(=X1, X2, - . s Xa))-

The even function v(? lies in H' (Bs(x*)), because it has no jump, thus we can approximate v(*) by the even
functions vio) =MW,

The odd function vV has a positive jump which needs to be preserved. Hence we restrict it to the semi-
ball with x; > 0 and use the nonnegative extension of Example 5.3, namely x — max{0, v (=x1, X2,...)}
for x; < 0. This leads to ¥ € H'(Bs(x*)), which is nonnegative for x; < 0. Thus, the mollifications vy = M ;‘3172
converge to v, and the shift vector —e; guarantees that vy is nonnegative for x; < 0, which implies that the
trace of V) on Bs(x*) n {x; = 0} is nonnegative.

The desired approximations for v = u!'! are then given by

Ul (0 = vi) = MYV O (x) + signOe)v (Ixal, x2, - .-, xa).

Crack edge. For a point x* € fedge \ 0Q we have v = e,. For a 6 € ]0, 1[ with Bys(x*) n 0Q =0 we proceed
similarly. For n # 2 we consider the component v = #i(™, which may have an arbitrary jump along the inter-
section Bs(x*) N {x; < 1 and x, = 0} but has no jump along {x; > 1 and x, = 0}.

To handle this case, we work with a continuously varying shift vector ax(x) as follows. Let

h(x) = max{0, min{x, 1}}

and set
ag : Bsx)\ Ty - R, x> sign(xz)h(@(l - xl))ez + ﬁel.

The main observation is that x — %a k(%) is a function in W12 (Bg(x*)\Tr; RY) with norm bounded by C/ Vk.
Moreover, for all x € Bs(x*) \ I';y the convolution integration domain x + By, (ax(x)) does not intersect I,.
Thus, vi = M}* @y is well-defined, smooth on Bs(x*)\Iw, and converges to v.

The case v = #il?] is more difficult, since we need to maintain the non-negativity of the jump. Using the
even and odd parts

) 1 .
v (x1, ..., xq) = SO, - x) + (CDYO, =X, X3, Xa)),

we see that the even part v(? lies in H (Bs(x*)), so we use the mollifications vio) =MW,

The odd part vV is delicate, since we need non-negativity of the jump for x; < 1 and no jump for x; > 1.
For this we restrict v(!) to the upper semi-ball Bs(x*) N {x, > 0} and extend it to a function w € H!(Bs(x*))
whichisOin{x; > 1 and x, < 0}. For this, we define a piecewise affine bi-Lipschitz S map between the triangle
{x e R?| 0 < x> <1-]|x1 - 1|} and the square [0, 1] x [-1, 0] via

S(x1, x2) = (min{1, x1} — x2, min{0, 1 — x1} — x3).

This mapping keeps (1, 0) fixed, is the identity on the line L; := [0, 1]x{0}, and maps theline L, := [1, 2]x{0}
to the line L5 := {1} x [-1, O]. Thus, setting

v (x) for x, > 0,
w(x) = { max{0, v((S1(xy, x2), x3,...)} forxy <Oandx; <1,
0 forx, <Oand x; > 1,
we find that w € H!(Bs(x*)), since the traces on Ly, L,, and L3 match by construction. Thus, as w is non-
negative for x, < 0 and even 0 if additionally x; > 1, we see that the approximation wj = M,‘il_ezw satisfies
wix — w € HY(Bs(x*) and is still nonnegative for x, < 0 and even 0 if additionally x; > 1.
As above we conclude that vy = v§<0) + sign(x,)wy lies in WLoo(Bs(x*)\[) and converges to v = 12,
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Crack kink. Let us come to x* € Tiink With Bag(x*) n (9Q U fedge) = (. We again decompose the components
v = il in odd and even parts, but now we have two hyperplanes, so we need four parts with evenness and
oddness in x; and x», respectively. For i, j € {0, 1} we set

v (x) = %(v(xl, X2, X3, .0, Xq) + (=1)'V(=X1, X2, X3, . . ., Xq)
+ (=1Yv(x1, =x2, X3, « - ., xg) + (1) v(=x1, =X2, X3, .+ ., Xd))-
Thus, each function v/ is completely determined by its value in the positive quadrant
Qi :={x e R?| x1,x; > 0},

namely y o
v (x1, %2, X3, .. .) = sign(xp)V D (N(X),  where N(x) = (Ixil, Ixal, X3, - . ., Xa)-

Each component will be approximated by functions vg(i’i ) e H (Bs(x*) n Q) such that the desired full approx-

imations vy of v take the form )

v = Y signxd v (N()). (5.10)
i,j=0
However, to guarantee that v lies in WL.o(Bs(x*)\Ix) we have to show that there are no jumps at (i)
21 :={x; = 0and x, < O}andat (ii) £, := {x; < 0 and x> = 0}. Moreover, for n € {1, 2} we need a non-negativ-
ity condition on the jump along C,, := {x, = 0 and x3_,, > 0}:
@) df{l) = vf’o) - vf}’l) has traceOon -1 = Cq,
(ii) df) = v;:)’l) - vg(l’l) has trace 0 on -X; = C»,
(iii) if n = 1, then sil) = V;(LO) + vf’l) has a nonnegative trace on Cy,
(iv) if n = 2, then S;{z) = v;{o,n + vg(l’l) has a nonnegative trace on C,.
We only explain the case n = 1, since the case n = 2 is analogous when interchanging x; and x,. The cases
n > 3 are even simpler, since only (i) and (ii) are needed.
The idea is to start from the corresponding d¥ and sV for the desired limits v(/) and approximate those.
The differences d™ e H*(Bs(x*) n Q,) can be extended by 0 across the plane C,, = -, ¢ 0Q. such that

d™ = Mgt M in HY(Bs(x*)n Q)  and  d™]c, = 0.

Here the shift vector —e;,; guarantees the vanishing trace, while e;_p, is used to avoid the other crack part C5_p,.
Finally, a positivity preserving extension 5 of s'*) across C; via max{0, sV (-x1, x2, .. .)} gives

(1) —ej+ey~
Sk =M S e na. -

Thus, we have sf) — s®inHY(Bs(x*) n Q,)and 35{1) lc, = 0. With this, vff’j) fori +j > 1 canbeuniquely calcu-
lated from d;}’, d;f), and 55(1)’ while the even-even function v(®-? can be approximated arbitrarily. This results
in

B

0,0 1,1 1 1 1 1,0 1 1,1 0,1 2 1,1
yOO - yerreny 00 0D E(S;)_di))’ PO _ g (LD 0D @) ),
With this construction, v defined in (5.10) gives the desired approximations.

Crack and boundary. For x* € 0Q n T, we again use reflection to extend & from Q N Bs(x*) to the out-
side but this time specialized by using Corollary 2.6. With U, ¢+, and ny- from there, we define the map
R : Bs(x*) —> Q with

R(x) = x = 2max{0, (x = X*) - Nx+ = @x= (X = Ny - (X = X))} M

which is Lipschitz continuous and satisfies the property R~1(U n fcr) C fcr and if x* € fedge, we also have
R Y(Un fedge) C Teqge- Thus, we can extend @ by i o R € HY(V'\ Ler, RY), where V = R"1(Q n U) is an open
neighborhood of x*. Now one can proceed as in the case x* € Q n Iy above.

Thus Proposition 5.4 is established. O
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We are now ready to proof the desired limsup estimate by constructing a recovery sequence (u.), that con-
verges strongly in H! (Qc; RY). This result also provides the final part of the proof of the main Theorem 2.4
on the Mosco convergence ¥, — .

1

Theorem 5.5 (Limsup estimate). For every u € Hg’Dir

there exists a sequence (&j, u;) with

g —0, w—ou inHjp cH'(QwRY), and  limsupF(u)) < Fw).
j—c0

Proof. For F(u) = oo there is nothing to show, so we restrict to the case F(u) < co which implies [u], > O.

Caseu € Wh°(Q., RY), Applying Proposition 5.2, we obtain a sequence (gx, uy) with uy — uin HY(Qcr, RY)
such that yy = id + xuy satisfies the GMS condition (1.1), which implies

— 1 _
Fe(uk) = Fg (up) = I S—ZW(I + &k Vug(x)) dx = J We(Vuk(x)) dx.
Qo K Qor
Since all uy lie in W, we may assume that &x[|[Vu |~ < r1/, with rs > 0 from Assumption 1.1 (d) for § = %

Thus, we have

We(Vur(0) = W+ £9uk00) < (5 + 3 )IVuCOR < ICIVIGO = gi0).
€k

Using Vuy — Vu in L2(Q, R¥9), we conclude g — g in L1(Q), where g(x) = |C||Vu(x)|2. Moreover, we may
choose a subsequence (not relabeled) such that Vu(x) 7%, Vu(x) ae. in Qe Using Assumption 1.1 (d), we
obtain ng(Vu (X)) — %IVu(x)I (ZC a.e. in Q. Now the generalized Lebesgue Dominated Convergence Theorem
provides the desired limit, namely

lim JF, (ux) = lim J Wo(Vug(x)) dx = J l(Vu(x), CVu(x)) dx = F(u).
k—o00 k—>00Q g 2

Generalu € Cg. Fora general u € Cg Proposition 5.4 guarantees the existence of an approximating sequence
uj € Cg N WH®(Qy; R?). By the first case there are for each j sequences (&j,k» Uj, k) ken With

Uik € CgNWH( Qe RY), gk —0, uje—u;, and F, Wik — Fw) ask — co.

To construct a diagonal sequence, we use the strong continuity of J restricted to the convex set C, namely
there exists a constant Cr > 0 such that for all v € Cg with ||[v — uflg < 1,

[F(v) - F@)| < Crllv - ullg.

With this we can construct a diagonal sequence as follows. For n € N we choose j, > n with lu — u;, g < %
Next we choose k;, > n with

1 1 1
Eindn < =5 MUjky — Ul < =, and [Ty, (W), k,) = F(w;,)| < —.
n n n
Setting &, = &;,,k, and Uy = uj, k,, we obtain &, < %, [, — ully: < 2, and
_ 1 Cr
T, (@) = FQI < 1Ty, (W k) = Tl + 15 w;,) = F@)] < =+ == = 0.

Thus, (£n, Un)nen is a strongly converging recovery sequence for u € Cg. O
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