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Abstract. We study homogenization properties of the discrete Laplace operator with random conductances on a large domain
in Z

d . More precisely, we prove almost-sure homogenization of the discrete Poisson equation and of the top of the Dirichlet
spectrum.

We assume that the conductances are stationary, ergodic and nearest-neighbor conductances are positive. In contrast to earlier
results, we do not require uniform ellipticity but certain integrability conditions on the lower and upper tails of the conductances.
We further allow jumps of arbitrary length.

Without the long-range connections, the integrability condition on the lower tail is optimal for spectral homogenization. It coin-
cides with a necessary condition for the validity of a local central limit theorem for the random walk among random conductances.
As an application of spectral homogenization, we prove a quenched large deviation principle for the normalized and rescaled local
times of the random walk in a growing box.

Our proofs are based on a compactness result for the Laplacian’s Dirichlet energy, Poincaré inequalities, Moser iteration and
two-scale convergence.

Résumé. Nous considérons les propriétés d’homogénéisation de l’opérateur de Laplace discret avec des conductances aléatoires.
Nous démontrons l’homogénéisation de l’équation de Poisson discrète et des plus hauts éléments du spectre de l’opérateur de
Dirichlet dans un domaine limité.

Nous supposons les conductances stationnaires, ergodiques et strictement positives à plus proches voisins. Comparé aux résul-
tats précédents, nous remplaçons l’ellipticité uniforme par des conditions d’intégrabilité des moments des conductances. De plus,
nous autorisons des sauts de tailles arbitraires.

En l’absence de sauts longs, les conditions sur les moments sont optimales pour l’homogénéisation spectrale. Elles corres-
pondent à la condition nécessaire du théorème central limite pour les marches aléatoires en conductances aléatoires. Nous utilisons
l’homogénéisation spectrale pour démontrer un principe de grandes déviations gelé pour le temps local normalisé de la marche
aléatoire dans une suite croissante de boites.

Nos démonstrations sont basées sur un résultat de compacité pour l’énergie de Dirichlet, les inégalités de Poincaré, l’itération
de Moser et la convergence à deux échelles.
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1. Introduction

Disordered media may homogenize in various ways. For example, in a microscopically inhomogeneous material, the
solution to the heat equation might satisfy a local limit theorem when viewed on larger scales. This might be on the
entire space or within a bounded domain with certain boundary conditions. In bounded domains we can furthermore
ask whether the solution to a Poisson equation homogenizes as the domain’s diameter, i.e., the macroscopic scale,
grows to infinity. Or, alternatively, we can wonder whether the Dirichlet spectrum of the associated Laplace operator
converges in some sense or whether the occupation time measures of the corresponding diffusion fulfill a large de-
viation principle. When we say that we let the macroscopic scale grow to infinity, this is always in comparison to a
microscopic scale ε, which might tend to zero instead.

Although all these aspects of homogenization are a priori different, intuition suggests that they should somehow be
related. Especially if the associated Laplace operator is self-adjoint, i.e., it is the generator of a reversible random walk,
then the homogenization of the Poisson equation is strongly linked to spectral homogenization (see [19, Chapter 11]).
Spectral homogenization in turn is linked to the validity of a large deviation principle for the occupation time measures
of a random walk in bounded domains [12, Theorem 5]. It is therefore plausible that these aspects of homogenization
should hold under similar conditions.

For self-adjoint Laplace operators, a crucial condition for many kinds of asymptotic homogenization is – apart
from ergodicity – the validity of a Poincaré inequality with an optimal constant independent of ε (uniform Poincaré
inequality, see also (3.16)). For spectral homogenization this is immediately evident since the optimal Poincaré con-
stant is the inverse of the principal Dirichlet eigenvalue of the Laplacian (see Remark 2.6). In the situation of the
present paper, we will see that the uniform Poincaré inequality is necessary and carries us quite far, although it is
not completely sufficient for our results. However, it leads us to conditions that are optimal (up to a critical case, see
Remark 2.6).

In the present paper, we examine a discrete disordered medium that belongs to a class of random conductance mod-
els on the lattice Zd with stationary and ergodic conductances on nearest-neighbor and unbounded-range connections.
Random conductance models are of high mathematical and physical interest (see [7,8] and references therein). For
these models, [2, Theorem 1.11, Remark 1.12] already used the Poincaré inequality and a related Sobolev inequality to
prove the validity of a local limit theorem for the heat kernel in the case where only nearest neighbors are connected.
As we explained above, a uniform Poincaré inequality is also necessary for spectral homogenization. In this model, its
validity depends on the integrability of the tails of the conductances (see e.g. Proposition 3.1 and [2, Proposition 2.1]).
To be more precise, let ω(e) denote the random conductance on the edge e and define

q = sup
{
r : E[ω(e)−r

]
< ∞},

where E denotes the expectation with respect to ω(e). For the moment, let us assume that only nearest neighbors are
connected, or equivalently, that only nearest-neighbor conductances carry a positive conductance. Then the crucial
assumption is

q > qc =

⎧⎪⎨
⎪⎩

d/2 for general stationary, ergodic conductances and d ≥ 2,

1/4 for i.i.d. conductances and d ≥ 2,

1 for d = 1,

(1.1)

see Assumption 1.2. Additionally we require that E[ω(e)] < ∞ (cf. Assumption 1.1(b)). As we explain in Remark 2.6,
up to the critical case q = qc, the condition in (1.1) is optimal. In fact, E[ω(e)−qc ] < ∞ is sufficient for the Poincaré
inequality but not for the Moser iteration, which we use in Section 3.2. If q < qc, then it is possible (and in the i.i.d.
case even almost sure [16]) that trapping structures as in Figure 3 appear, which immediately contradict a uniform
Poincaré inequality.

In addition to Poincaré and Sobolev inequalities, our proofs rely on stochastic two-scale convergence, an analytic
method that is based on the ergodic theorem and was introduced in [30].

A related problem of a nonlocal operator was recently studied by Piatnitski and Zhizhina [27] in the periodic case,
where, as in the present article, the limit operator localizes to a second order elliptic operator.

For the random conductance model with conductances ω(e) ∈ [0, c0] (c0 < ∞) restricted to nearest-neighbor con-
nections, Faggionato [14] already used stochastic two-scale convergence in order to prove homogenization of the
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Laplace operator with a spectral shift on the infinite connected component of Z
d . The spectral shift compensates

for the lack of a Poincaré inequality. The very first successful application of two-scale convergence in the random
conductance model seems to be by Mathieu and Piatnitski [24].

As a consequence of the homogenization of the Poisson equation on bounded domains, the homogenization of the
top of the Dirichlet spectrum follows by the methods of [19, Chapter 11], see Theorem 2.5. For this result, Remark 2.6
explains in which sense Condition (1.1) is sharp. For i.i.d. conductances (1.1) even decides between a completely
homogenizing phase, which we cover in this paper, and a completely localizing phase of the principal Dirichlet
eigenvector, which was studied in [16]. We thus extend the results of Faggionato [15] and Boivin and Depauw [4].
Faggionato showed spectral homogenization in dimension d = 1 under Condition (1.1) and E[ω(e)] < ∞, whereas
Boivin and Depauw proved spectral homogenization for conductances that are uniformly bounded from above and
away from zero (uniform ellipticity).

As an application of the spectral homogenization, we prove a quenched large deviation principle for the occupation
time measures, given that the random walk stays in a slowly growing box, see Proposition 2.8. We extend the results
of [21, Theorem 1.8], where the authors use the deep connection between the Dirichlet energy of the Laplace operator
and the Donsker–Varadhan rate function of the occupation time measures of the associated random walk.

In the recent paper [25], the authors prove that under the same integrability conditions as in the present paper,
the Dirichlet energy of the random conductance Laplacian �-converges to a deterministic, homogeneous integral (see
their Corollary 3.4 and Proposition 3.24). Together with their compactness result [25, Lemma 3.14], Theorem 13.5
of [23] implies the homogenization of the Poisson equation for models where the connections are of finite range.
With the method employed in the present paper, however, we can allow for unbounded-range connections (see As-
sumption 1.1(b)). Further, we identify the corresponding limit operator in the long-range case (see Theorem 2.1) and
we prove the two-scale convergence of the gradient of the solution to the Poisson equation. Note that in the case of
bounded-range connections, the result of [25] together with the compact embedding of our Section 4 implies that
Assumption 1.2(a) is sufficient instead of Assumption 1.2(a′) for the homogenization result, see Remark 1.3.

1.1. Model and notation

Let us consider a graph with vertex set Zd and edge set

E = {{x, y} : x, y ∈ Z
d and x �= y

}
, (1.2)

i.e., we assume that there exists an undirected edge between any two sites x, y ∈ Z
d . We further assume that each

edge e carries a nonnegative random variable ω(e), which we call the conductance of the edge e. Moreover, we call
the family ω = (ω(e))e∈E environment or landscape. If e = {x, x + z} for x, z ∈ Z

d (z �= 0), we will also write ωx,z

instead of ω(e).
Moreover, τx denotes the translation by a vector x ∈ Z

d , i.e., we write

ωx,z = (τxω)0,z.

Since the edges in (1.2) are undirected, we have ωx,z = ωx+z,−z.
In the variable-speed random conductance model, we consider the Laplacian Lω, which acts on real-valued func-

tions f ∈ �2(Zd) as

(Lωf )(x) =
∑
z∈Zd

ωx,z

(
f (x + z) − f (x)

)
,

(
x ∈ Z

d
)
. (1.3)

Note that Lω is P-a.s. well-defined under Assumption 1.1(b). Since the conductances are symmetric, i.e., ωx,z =
ωx+z,−z, the associated Markov process is reversible. As we explain in Section 5.3, the Laplacian Lω is the discrete
analogue of a divergence-form operator with random weights.

We denote the probability space that governs the environment ω by

(�,F,P) = ([0,∞]E,B
([0,∞])⊗E

,P
)
, (1.4)

and the expectation with respect to the law P by E.
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Fig. 1. Independent paths.

For any ω ∈ �, we denote the set of open edges by

O ≡O(ω) := {e ∈ E : ω(e) > 0
}⊂ E.

Further, Ed ⊂ E denotes the set of all undirected nearest-neighbor bonds.
In this paper we will usually assume that the law P fulfills the following conditions.

Assumption 1.1.

(a) The law P is stationary and ergodic with respect to spatial translations (τx)x∈Zd .
(b) E[∑z∈Zd ω0,z|z|2] < ∞.
(c) For P-a.e. ω, the set O(ω) of open edges contains the set Ed of nearest-neighbor edges of Zd .

In addition to Assumption 1.1, our main results rely on an integrability condition for the lower tails of the conduc-
tances, for which we need to define the notion of paths in (Zd ,Ed). A path of length l between x and y in (Zd ,Ed)

is a sequence (xi : i = 0, . . . , l) with the property that x0 = x, xl = y and {xi, xi+1} ∈ Ed for any i = 0, . . . , l − 1. If
γ = (xi : i = 0, . . . , l) is a path and there exists i ∈ {1, . . . , l − 1} such that {xi, xi+1} = e, then we use the shorthand
notation e ∈ γ .

For any e ∈ Ed and N 
 l < ∞, let �l(e) be a collection of paths in (Zd ,Ed) between the vertices of the edge e

with length at most l such that no two paths in �l(e) share an edge. We define the measures νω and νω
l on Z

d by

νω(x) :=
∑

e∈Ed : x∈e

ω(e)−1 and νω
l (x) :=

∑
e∈Ed : x∈e

ωl(e)
−1, (1.5)

where

ωl(e)
−1 := min

γ∈�l(e)

∑
e′∈γ

ω
(
e′)−1

. (1.6)

We let γ
opt
l (e) denote the minimizer of the RHS of (1.6). For an example of how to choose �9 reasonably for the

nearest-neighbor lattice (Zd ,Ed) if the conductances are independent and identically distributed, see Figure 1.

Assumption 1.2 (Lower moment condition). If d = 1, then E[1/ω(e)] < ∞ for any e ∈ Ed . In addition, if d ≥ 2,
then

(a) there exists l ∈ N such that E[(νω
l (0))d/2] < ∞.

(a′) there exists l ∈N and q > d/2 such that E[(νω
l (0))q ] < ∞.

Remark 1.3. Note that Assumption 1.2(a) is sufficient for the Poincaré inequalities (Section 3.1) and the compact
embedding (Section 4). The only reason why we need Assumption 1.2(a′) is the Moser iteration in the proof of
Proposition 3.4, which we need for the Auxiliary Lemma 6.1. In fact, if we would assume that the length of the
connections was bounded, or in other words, there exists R < ∞ such that P-a.s. O(ω) ⊆ {e : |e| < R}, then the
authors of [25] proved �-convergence under Assumption 1.2(a). Therefore the compact embedding of Section 4
implies the homogenization result Theorem 2.1 and thus Assumption 1.2(a) is sufficient.
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Remark 1.4. Generally, E[ω(e)−d/2] < ∞ is sufficient for Assumption 1.2(a). This can even be improved if the
conductances ω(e) (e ∈ E) are independent and identically distributed (i.i.d.) and d ≥ 2. For example, on the nearest-
neighbor lattice (Zd ,Ed) with independent and identically distributed conductances, Assumption 1.2(a) holds if
E[ω(e)−1/4] < ∞ for any edge e ∈ Ed . Similarly, Assumption 1.2(a′) holds if there exists q > qc = 1/4 such that
E[ω(e)−q ] < ∞ for any edge e ∈ Ed . This follows because any two sites in Z

d are connected through 2d independent
nearest-neighbor paths (see Figure 1, cf. [2, Figure 2], [20, Figure 2.1]).

If we added further links to the set Ed , the number of independent paths between any two sites would increase
whence the critical exponent qc would decrease. If we assumed that Ed would contain all the links of E, then it
would even be sufficient to assume that there exists q > 0 such that E[ω(e)−q ] < ∞. Note that in order not to violate
Assumption 1.1(b), we would assume in this case that ω(e) = ω̃(e)/|e|α where the (ω̃(e))e are i.i.d., α > d + 2 and
|e| is the Euclidean length of the edge e.

1.2. The rescaled lattice Z
d
ε

We aim to consider the behavior of the operator Lω in boxes of the form Qn := (−n,n)d ∩ Z
d with zero Dirichlet

boundary conditions. More precisely, we fix an environment ω on the entire Z
d , let the box size n grow to infinity

and want to characterize the behavior of solutions to the Poisson equation and the spectral problem. For this purpose
we use analytic techniques as introduced in Section 5. Regarding these techniques, it is more natural to replace the
lattice Z

d by the rescaled lattice Z
d
ε := εZd and the growing box Qn by the box Qε := Q ∩ Z

d
ε with Q = (−1,1)d

and ε = n−1.
In this context, the Laplacian defined in (1.3) corresponds to the accelerated operator Lε

ω which acts on real-valued
functions f ∈ �2(Zd

ε ) as(
Lε

ωf
)
(x) = ε−2

∑
z∈Zd

ω x
ε
,z

[
f (x + εz) − f (x)

]
,

(
x ∈ Z

d
ε

)
, (1.7)

where the conductances ωx
ε
,z remain random variables associated with the links in the edge set E, i.e., the links

between sites in Z
d . Note that if Lω is the generator of a Markov process (Xt )t≥0, then Lε

ω is the generator of the
diffusively rescaled Markov process (Xε

t )t≥0, which fulfills Xε
t = εXε−2t .

For ε,p > 0 and Aε ⊆ Z
d
ε , we define the function spaces

�p
ε (Aε) :=

{
v : Zd

ε →R : εd
∑
x∈Aε

v(x)p < ∞
}

with ‖v‖�
p
ε (Aε)

:=
(

εd
∑
x∈Aε

v(x)p
)1/p

. (1.8)

We abbreviate �
p
ε := �

p
ε (Zd

ε ).
Analogously to �

p
ε , we introduce the Hilbert spaces H0,Hε through

H0 = {v ∈ L2(
R

d
) : suppv ⊆ Q

}
, Hε = {v ∈ �2

ε

(
Z

d
ε

) : suppv ⊆ Qε

}
and let H0 and Hε be equipped with the scalar products

〈u,v〉H0 =
∫
Rd

u(x)v(x)dx,
〈
uε, vε

〉
Hε

= εd
∑
z∈Zd

ε

uε(z)vε(z).

For z ∈ Z
d
ε , we let b(z, ε/2) denote the half-open ball z + (−ε/2, ε/2]d . We define the local averaging operator

Rε : H0 →Hε acting on functions f ∈H0 by

(Rεf )(z) = ε−d

∫
b(z, ε

2 )

f (x)dx, z ∈ Z
d
ε . (1.9)

A direct calculation shows that its adjoint operator R∗
ε : Hε → H0 is given by

R∗
εv

ε =
∑
z∈Zd

ε

vε(z)1b(z, ε
2 ),

(
vε ∈ Hε

)
, (1.10)

where we write 1b(z, ε
2 ) for the characteristic function of b(z, ε

2 ).
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Fig. 2. Triangular lattice.

2. Main results

2.1. Homogenization

Given a function f ε : Zd
ε → R, we are interested in the solution uε ∈ Hε of the Poisson problem

−Lε
ωuε = f ε on Qε (2.1)

with zero Dirichlet conditions. The above problem has a unique solution because −Lε
ω is invertible on Hε .

Theorem 2.1. Let f ε : Qε → R be a sequence of functions such that R∗
εf

ε ⇀ f weakly in L2(Q) for some f ∈
L2(Q). If Assumptions 1.1 and 1.2(a′) hold, then for almost all ω ∈ � the sequence of solutions uε ∈ Hε to the
problem (2.1) satisfies R∗

εu
ε → u strongly in L2(Q), where u ∈ H 1

0 (Q) ∩ H 2(Q) solves the limit problem

−∇ · (Ahom∇u) = 2f, (2.2)

almost everywhere in Q with Ahom defined through (5.11).

We prove this theorem at the end of Section 6. In Lemma 5.5 we prove that Ahom is strictly positive definite and by
standard arguments Ahom is symmetric.

Based on Theorem 2.1, we introduce the operator

∀u ∈ L2(Q), L0u := ∇ · (Ahom∇u),

such that −L0 is a symmetric positive definite operator on L2(Q) with domain H 2(Q).

Remark 2.2. With our methods, Theorem 2.1 can be easily generalized for other lattices than Z
d . In order to apply

our methods directly, we just have to require that the lattice is translationally invariant (for the two-scale convergence,
see Section 5.4) and fulfills a Sobolev inequality (as in (3.3) or (3.4)) with isoperimetric dimension dISO (to obtain the
necessary Poincaré inequalities and make the Moser iteration work). For example, the triangular lattice in Figure 2 is
translationally invariant and has isoperimetric dimension dISO = 2. If we therefore replace Z

d by the triangular lattice
and the dimension d in Assumption 1.2 by the isoperimetric dimension dISO, Theorem 2.1 still holds.

Note that in view of Remark 1.4, we observe that in the case of i.i.d. conductances on the triangular lattice, As-
sumption 1.2(a) holds if E[ω(e)−1/6] < ∞.

Remark 2.3. Although we focus here on the random conductance model with long-range jumps and positive nearest-
neighbor conductances, our arguments do not require the full strength of this assumption. For instance, we can also
extend the homogenization result to the nearest-neighbor percolation case. More precisely, we can relax Assump-
tion 1.1(c) such that the set of open edges O(ω) ⊂ Ed forms a unique infinite cluster that satisfies both a volume
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regularity condition and a (weak) relative isoperimetric inequality on large scales, cf. [11]. Notice that in the nearest-
neighbor percolation setting, similar homogenization results have also been obtained by Faggionato in [14] under the
additional assumption that the conductances are bounded from above.

In order to infer the large deviation principle Proposition 2.8, let us now consider the spectrum of the operators
−Lε

ω + RεV with an arbitrary bounded, continuous potential V : Rd → R. On the domain Qε with zero Dirichlet
conditions we can represent −Lε

ω +RεV as a real symmetric matrix and therefore we can choose the set {ψε
j }j=1,...,k

of Dirichlet eigenvectors such that they form an orthonormal system. By virtue of the Perron–Frobenius theorem (see
e.g. [29, Chapter 1]) the principal Dirichlet eigenvalue λε

1 is unique. Thus, we now consider the problem

ψε
k ∈Hε,

(−Lε
ω +RεV

)
ψε

k = λε
kψ

ε
k , k = 1,2, . . . ,

λε
1 < λε

2 ≤ · · · ≤ λε
k · · · ,〈

ψε
k ,ψε

l

〉
Hε

= δkl .

(2.3)

Similarly, we consider the spectrum of the operator −L0 + V , i.e.,

ψ0
k ∈ H0,

(−L0 + V
)
ψ0

k = λ0
kψ

0
k , k = 1,2, . . . ,

λ0
1 < λ0

2 ≤ · · · ≤ λ0
k · · · ,〈

ψ0
k ,ψ0

l

〉
Hε

= δkl .

(2.4)

In order to study the homogenization of (2.3) with a non-trivial potential V , we need the following result.

Proposition 2.4. Let f ε : Qε → R be a sequence of functions such that R∗
εf

ε ⇀ f weakly in L2(Q) for some
f ∈ L2(Q). Let V : Rd → R be a bounded, continuous potential such that lim infε→0 λε

1 > 0. If Assumptions 1.1 and
1.2(a′) hold, then for almost all ω ∈ � the sequence of solutions uε ∈Hε to the problem(−Lε

ω +RεV
)
uε = f ε (2.5)

satisfies R∗
εu

ε → u strongly in L2(Q), where u ∈ H 1
0 (Q) ∩ H 2(Q) solves the limit problem

−∇ · (Ahom∇u) + 2V u = 2f, (2.6)

almost everywhere in Q with Ahom defined through (5.11).

We prove this proposition in Section 7. Note that under Assumption 1.2(a′), the condition V ≥ 0 is sufficient for
lim infε→0 λε

1 > 0.
By virtue of [19, Lemma 11.3, Theorem 11.5], Proposition 2.4 implies the following result, see Section 7. Note

that for the spectral result we can drop the assumption lim infε→0 λε
1 > 0 as we explain in Section 7.

Theorem 2.5. Let V : Rd →R be a bounded, continuous potential and let k ∈ N. If Assumptions 1.1 and 1.2(a′) hold,
then

λε
k → λ0

k, P-a.s. as ε → 0. (2.7)

Further, the following statements are true:

(i) Let k ∈ N and let εm be a null sequence. Then there P-a.s. exists a family {ψ0
j }1≤j≤k of eigenvectors of the

operator −L0 + V and a subsequence, still indexed by εm, along which the vector(
R∗

εm
ψ

εm

1 , . . . ,R∗
εm

ψ
εm

k

)→ (
ψ0

1 , . . . ,ψ0
k

)
strongly in L2(Q).
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Fig. 3. Variable-speed trap in d ≥ 2.

(ii) On the other hand, if the multiplicity of λ0
k is equal to s, i.e.,

λ0
k−1 < λ0

k = · · · = λ0
k+s−1 < λ0

k+1

(
with λ0

0 < λ0
1 arbitrary

)
,

then there P-a.s. exists a sequence ψε ∈Hε such that

lim
ε→0

∥∥ψε −Rεψ
0
k

∥∥
Hε

= 0, (2.8)

where ψε is a linear combination of the eigenfunctions of the operator −Lε
ω +RεV corresponding to the eigen-

values λε
k, . . . , λ

ε
k+s−1.

Note that Biskup, Fukushima and König [5] proved a spectral homogenization theorem for a random bounded
potential and the standard lattice Laplacian. They later extended their result to unbounded potentials in [6].

Remark 2.6. Let us discuss in what sense Assumption 1.2 is optimal for the result of Theorem 2.5 with V = 0. Since
the principal Dirichlet eigenvalue has the variational representation

λε
1 = inf

{〈
uε,−Lε

ωuε
〉
Hε

: uε ∈Hε and
∥∥uε
∥∥
Hε

= 1
}

(also known as the Rayleigh–Ritz formula, or the Courant–Fischer theorem), it is necessary for spectral homogeniza-
tion that P-a.s. there exists C < ∞ such that∥∥uε

∥∥2
Hε

≤ C
〈
uε,−Lε

ωuε
〉
Hε

for all uε ∈Hε (2.9)

and for all ε > 0 (uniform Poincaré inequality).
If we assume that P-a.s. only nearest-neighbor connections carry a positive conductance, i.e., O(ω) = Ed , then

Assumption 1.2 is optimal for the uniform Poincaré inequality up to the critical case sup{r : E[ω(e)−r ] < ∞} = qc
(cf. (1.1)). This means that if sup{r : E[ω(e)−r ] < ∞} < qc, then it is possible to construct an environment where the
uniform Poincaré inequality does not hold as ε tends to zero.

For d ≥ 2, this is due to trapping structures as in Figure 3 where uε can concentrate its entire mass, see e.g. [16,
Section 1.4]. The construction of stationary, ergodic environments with such trapping structures is analogous to the
one of a trap for the constant-speed random walk in [2, Theorem 5.4]. In the i.i.d. case and if sup{r : E[ω(e)−r ] <

∞} < 1/4, the traps occur even P-a.s. for ε small enough and the principal Dirichlet eigenvector localizes P-a.s. in a
single site [16, Theorem 1.8].

In d = 1 and if sup{r : E[ω(e)−r ] < ∞} < 1, even an i.i.d. environment contradicts the uniform Poincaré in-
equality: By a Borel Cantelli argument we can show that P-a.s. for ε small enough there exist edges e1 = {x1, y1}
and e2 = {x2, y2} such that x1 ∈ (−ε−1,−ε−1/2) ∩ Z and x2 ∈ (ε−1/2, ε−1) ∩ Z, respectively, and such that both
ω(e1) and ω(e2) decay much faster than ε. When we insert a function uε ∈ Hε into (2.9) that is 1 on the interval
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[max(εx1, εy1),min(εx2, εy2)] and zero otherwise, then we see that C diverges as ε tends to zero, which is a contra-
diction to a uniform Poincaré inequality.

If we assume that O(ω) is P-a.s. strictly larger that Ed but contains only connections of bounded length, an
analogous construction as in [2, Theorem 5.4] shows that qc = d/2 is still optimal in the general stationary ergodic
case with d ≥ 2. For independent conductances however, qc decreases when the upper bound for the length of the
connections increases, see also Remark 1.4. On the other hand, if we assume that O(ω) contains connections of
unbounded length, all the suggested counterexamples fail and the question about the optimal conditions requires
further research.

2.2. Local times of the random walk among random conductances

For a fixed realization ω of the environment, we consider the Markov process (Xt : t ≥ 0) on Z
d , which jumps with

rate ωx,z from a site x to the site x + z. Since the holding times are site-dependent, this Markov process is called the
variable-speed random walk among random conductances (see [8] for a review). Its generator Lω is given by (1.3).
We let Pω

x denote the law of a random walk that starts in site x at time zero.
Our main motivation for this paper is to prove a quenched large deviation principle (LDP) for the occupation time

measures or local times

lt (z) :=
∫ t

0
δXs (z)ds

(
z ∈ Z

d , t > 0
)

(2.10)

of the random walk among random conductances, given that the random walk stays in a certain growing region of the
lattice. More precisely, we define a spatial scaling αt with 1 � αt � √

t and consider the rescaled local times

Lt(z) := αd
t

t
lt
(�αtz�

) (
z ∈R

d, t > 0
)
. (2.11)

Further, let Q = (−1,1)d and define Qt = αtQ ∩ Z
d . In [21, Theorem 1.8], the authors prove a quenched large

deviation principle for the function Lt given that supp(lt ) ⊂ Qt and under the assumption that the conductances are
i.i.d. and uniformly elliptic. Our aim is to generalize this result to stationary and ergodic conductances and replace the
uniform ellipticity condition by a suitable moment condition.

Let us recall some facts about the local times of the simple random walk. We define the set

F = {f 2 : f ∈ L2(Q),‖f ‖2 = 1
}

(2.12)

and equip F with the weak topology of integrals against bounded continuous functions V : Q → R. Notice that on the
event {supp(lt ) ⊂ Qt } the function Lt is an element of the set F and an L1-normalized random step function on R

d .
In the case of a simple random walk, i.e., when ωx,z ≡ 1, it is known that on the event {supp(lt ) ⊂ Qt } the function

Lt satisfies a large deviation principle on F with scale tα−2
t and rate function I0 = ISRW − infF ISRW, where

ISRW(f ) =
{∑d

i=1

∫
Q

(∂if (y))2 dy = ‖∇f ‖2
2 f ∈ H 1

0 (Q),

∞ else,
(2.13)

see [21] for further explanation and [17]. We prove that under quite general conditions, this is also true for the random
conductance model, see Proposition 2.8 and Corollary 2.9. For general stationary and ergodic conductances, however,
the resulting rate function reads

I0 = I − inf
F

I where I (f ) =
{∫

Q
(∇f ) · Ahom∇f f ∈ H 1

0 (Q),

∞ else,
(2.14)

and the matrix Ahom ∈ R
d ×R

d is defined as in (5.11).
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Assumption 2.7 (Heat kernel lower bounds). There exists c > 0 such that P-a.s. for t large enough

Pω
0 [Xt = x] ≥ ct−d/2 (2.15)

for all x ∈ Z
d with |x| ≤ √

t .

Proposition 2.8. Let Assumptions 1.1, 1.2(a′) and 2.7 be fulfilled. Then P-a.s. the rescaled local times Lt satisfy a
large deviation principle with respect to the weak topology of integrals against bounded continuous functions V : Q →
R under Pω

0 [· | supp(lt ) ⊂ αtQ] on F . The scale is tα−2
t and the rate function I0 is defined in (2.14).

We prove this proposition in Section 8 as a consequence of Theorem 2.5.
In the special case where only nearest-neighbor conductances are positive, Proposition 2.8 together with the heat

kernel bounds of [2, Proposition 4.7] respectively, implies the following corollary.

Corollary 2.9. Let the conductances be stationary and ergodic with law P and let P-a.s. O(ω) = Ed . For p,q ∈
[1,∞] satisfying 1/p + 1/q < 2/d assume that E[ω(e)p] < ∞ and E[ω(e)−q ] < ∞ for any e ∈ Ed . Then the large
deviation principle from Proposition 2.8 holds.

3. Inequalities

In analogy to the definition of �
p
ε in (1.8), we define the following space-averaged norms for functions f : Zd → R.

Let A ⊆ Z
d be a non-empty set and p ∈ [1,∞). Then

‖f ‖p,A :=
(

1

|A|
∑
x∈A

∣∣f (x)
∣∣p)1/p

and ‖f ‖∞,A := max
x∈A

∣∣f (x)
∣∣, (3.1)

where |A| is the counting measure on A. Moreover, we let

(f )A := |A|−1
∑
x∈A

f (x) (3.2)

abbreviate the average of f over the set A.

3.1. Poincaré and Sobolev inequalities

The main objective in this subsection is to prove weighted Poincaré and Sobolev inequalities. The Poincaré inequal-
ities of Proposition 3.1 and (3.16) are the main tools in the proof of Lemma 4.1, whereas the Sobolev inequality of
Proposition 3.2 with ρ > 1 ensures uniform �∞-bounds of the solution to the Poisson equation (see Section 3.2).

Starting point for our further considerations is the fact that the underlying unweighted Euclidean lattice (Zd ,Ed)

satisfies the classical Sobolev inequality for any d ≥ 1. Let B ⊂ Z
d be finite and connected and u : Zd →R. Then

inf
a∈R‖u − a‖∞,B ≤ C1|B|1/d

(
1

|B|
∑

x,y∈B

{x,y}∈Ed

∣∣u(x) − u(y)
∣∣) (3.3)

for d = 1, whereas for any d ≥ 2 and α ∈ [1, d) we have

inf
a∈R‖u − a‖ dα

d−α
,B

≤ C1|B|1/d

(
1

|B|
∑

x,y∈B

{x,y}∈Ed

∣∣u(x) − u(y)
∣∣α)1/α

. (3.4)

For d ≥ 2, this Sobolev inequality follows from the isoperimetric inequality of the underlying Euclidean lattice, see
e.g. [2, Eq. (2.5)], which uses [28, Lemma 3.3] and [10, Théorème 4.1].
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Proposition 3.1 (Local Poincaré inequality). For any x0 ∈ Z
d and n ≥ 1, let B(n) ≡ B(x0, n) ⊂ Z

d . Suppose that
d = 1 and that νω(x) < ∞ for all x ∈ Z

d . Then, there exists CPI < ∞ such that

∥∥u − (u)B(n)

∥∥2
2,B(n)

≤ CPI
∥∥νω
∥∥

1,B(n)

n2

|B(n)|
∑

x,y∈B(n)

ω
({x, y})∣∣u(x) − u(y)

∣∣2 (3.5)

for any u : Z → R. Furthermore, for every d ≥ 2 and l ∈ [1,∞) with νω
l (x) < ∞ for all x ∈ Z

d , there exist constants
CPI ≡ CPI(d, l) < ∞ and CW ≡ CW(l) < ∞ with CW(1) = 1 such that

∥∥u − (u)B(n)

∥∥2
2,B(n)

≤ CPI
∥∥νω

l

∥∥
d
2 ,B(n)

n2

|B(n)|
∑

x,y∈B(CWn)

ω
({x, y})∣∣u(x) − u(y)

∣∣2, (3.6)

for any u : Zd → R, where the measure νl is given by (1.5) with suitable path sets �l .

Proof of Proposition 3.1. As in [2, Proposition 2.1 or 6.1], the assertion is an immediate consequence of (3.4)
and Hölder’s inequality (see also [18, Lemma 2.3]). Nevertheless, we will repeat the argument here for the reader’s
convenience.

Since ‖u − (u)B(n)‖2,B(n) = infa∈R ‖u − a‖2,B(n) ≤ infa∈R ‖u − a‖∞,B(n), the assertion (3.5) follows from (3.3)
by an application of the Cauchy–Schwarz inequality.

Let us now consider (3.6), i.e., the case d ≥ 2. For e = {x, y} ∈ Ed we let |∇u(e)| denote the difference |u(x) −
u(y)|. For any e ∈ Ed we observe that by the Cauchy–Schwarz inequality

∣∣∇u(e)
∣∣≤ ( 1

ωl(e)

)1/2(∑
e′∈Ed

ω
(
e′)∣∣∇u

(
e′)∣∣21

e′∈γ
opt
l (e)

)1/2

,

where we recall the definitions of ωl and γ
opt
l in (1.6) and below. Thus, for any α ∈ [1,2), Hölder’s inequality yields

(
1

|B(n)|
∑

x,y∈B(n)

{x,y}∈Ed

∣∣∇u
({x, y})∣∣α)1/α

≤ ∥∥νω
l

∥∥1/2
α/(2−α),B(n)

(
1

|B(n)|
∑

e′∈Ed

ω
(
e′)∣∣∇u

(
e′)∣∣2Nl

(
e′))1/2

, (3.7)

where

Nl

(
e′) := ∑

x,y∈B(n)

{x,y}∈Ed

1
e′∈γ

opt
l ({x,y}) for any e′ ∈ Ed.

Note that there exists c < ∞ such that Nl(e
′) ≤ cld for any e′ ∈ Ed . In addition, there exists CW < ∞ such that

Nl(x, y) = 0 if x, y /∈ B(CWn). Thus, when we choose α = 2d/(d + 2), then (3.6) follows from (3.4). �

We define

Eω(u) := 〈u,−Lωu〉�2(Zd ),
(
u : Zd → R, u ∈ �2(

Z
d
))

. (3.8)

Our next task is to establish the corresponding versions of (3.3) and (3.4) on the weighted graph (Zd ,Ed,ω). For
this purpose, for d ≥ 2 and q ≥ 1 we define

ρ ≡ ρ(d, q) := d

d − 2 + d/q
. (3.9)

Notice that ρ(d, q) is monotonically increasing in q and converges to d/(d − 2) as q tends to infinity. Moreover,
ρ(d, d/2) = 1.
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Proposition 3.2 (Sobolev inequality). Let x0 ∈ Z
d and n ∈N. Suppose that d = 1 and that νω(x) < ∞ for all x ∈ Z

d .
Then there exists CS < ∞ such that

∥∥u2
∥∥∞,B(x0,n)

≤ CSn2
∥∥νω
∥∥

1,B(x0,n)

Eω(u)

|B(x0, n)| (3.10)

for any u : Z →R with suppu ⊂ B(x0, n).
Furthermore, for every d ≥ 2, q ∈ [1,∞) and l ∈ [1,∞) with νω

l (x) < ∞ for all x ∈ Z
d , there exists CS ≡

CS(d, q, l) < ∞ such that

∥∥u2
∥∥

ρ,B(x0,n)
≤ CSn2

∥∥νω
l

∥∥
q,B(x0,n)

Eω(u)

|B(x0, n)| (3.11)

for any u : Zd → R with suppu ⊂ B(x0, n), where the measure νl is given by (1.5) with suitable path sets �l .

In analogy to (3.8), we define

Eε
ω

(
uε
) := 〈uε,−Lε

ωuε
〉
Hε

. (3.12)

We prove Proposition 3.2 after the following remark.

Remark 3.3. For d = 1, Proposition 3.2 implies that

max
x∈Qε

(
uε(x)

)2 ≤ CS
∥∥νω
∥∥

1,B1/ε
Eε

ω

(
uε
)
. (3.13)

For d ≥ 2, Proposition 3.2 implies that

∥∥(uε
)2∥∥

�
ρ
ε (Qε)

≤ CS
∥∥νω

l

∥∥
q,B1/ε

Eε
ω

(
uε
)
. (3.14)

When we insert q = d/2 into (3.14), we especially obtain that

∥∥uε
∥∥2

�2
ε(Qε)

≤ CS
∥∥νω

l

∥∥
d
2 ,B1/ε

Eε
ω

(
uε
)
. (3.15)

Under Assumption 1.2(a) and by virtue of the ergodic theorem, (3.15) and (3.10) imply that for d ≥ 1 there exists a
P-a.s. finite C(ω) such that for all ε > 0 and all uε ∈Hε we have

∥∥uε
∥∥2
Hε

≤ C(ω)Eε
ω

(
uε
) (

uniform Poincaré inequality
)
. (3.16)

Proof of Proposition 3.2. In the sequel we will give a proof only for (3.11). The assertion (3.10) follows by similar
arguments. To lighten notation, set B(n) ≡ B(x0, n) and define A(n) := B(2n)\B(n). The constant c ∈ (0,∞) ap-
pearing in the computations below is independent of α but may change from line to line. Let a ∈ R and α ∈ [1, d).
Since u(x) = 0 for x ∈ A(n), we have

|a| = 1

|A(n)|
∑

x∈A(n)

∣∣u(x) − a
∣∣≤ |B(2n)|

|A(n)| ‖u − a‖1,B(2n) ≤ c‖u − a‖ dα
d−α

,B(2n)
.

Hence, an application of Minkowski’s inequality yields

‖u‖ dα
d−α

,B(n)
≤ ‖u − a‖ dα

d−α
,B(n)

+ |a| ≤ c‖u − a‖ dα
d−α

,B(2n)
.

Thus, for any q ≥ 1 the assertion (3.11) follows as in the previous proof from (3.4) combined with (3.7) by choosing
α = 2q/(q + 1) ∈ [1,2). �
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3.2. Maximal inequality

Proposition 3.4 (�∞-bound for solution of Poisson equation in d ≥ 2). Let d ≥ 2 and suppose that uε : Zd
ε → R

is a solution of (2.1). For some fixed l ∈ [1,∞) consider the measure νω
l on Z

d as defined in (1.5) and assume that
νω
l (x) < ∞ for all x ∈ Z

d . Then, for any q > d/2 there exist γ ∈ (0,1], κ ≡ κ(d, q), and C1 ≡ C1(d, q) such that

max
x∈Qε

∣∣u(x)
∣∣≤ C1

(
1 ∨ ∥∥νω

l

∥∥
q,B1/ε

∥∥f ε
∥∥

�∞(Qε)

)κ‖u‖γ

�2
ε
. (3.17)

We prove this proposition after the following remark.

Remark 3.5. Note that if uε : Zd
ε → R is a solution of (2.1), then due to (3.13), (3.15) and the Cauchy–Schwarz

inequality it follows for any dimension d ≥ 1 that∥∥uε
∥∥2

�2
ε
≤ CS

∥∥νω
l

∥∥
d
2 ,B1/ε

Eε
ω

(
uε
)≤ CS

∥∥νω
l

∥∥
d
2 ,B1/ε

∥∥uε
∥∥

�2
ε

∥∥f ε
∥∥

�2
ε(Qε)

. (3.18)

Let Assumption 1.2(a) be fulfilled. Then supε>0 ‖f ε‖�2
ε(Qε)

< ∞ implies by the ergodic theorem that both
supε>0 ‖uε‖�2

ε
and supε>0 Eε

ω(uε) are bounded as well. Thus, (3.13) implies that in dimension one supε>0 ‖uε‖∞
is bounded. Furthermore, if even Assumption 1.2(a′) is fulfilled and supε>0 ‖f ε‖�∞(Qε) < ∞, then (3.17) implies that
supε>0 ‖uε‖∞ is bounded for d ≥ 2 as well.

Proof of Proposition 3.4. We use the Moser iteration scheme. Let us fix ε > 0 and consider uε : Zd
ε → R with

suppuε ∈ Qε . We define ũα := |u|α signu for any α ≥ 1. By virtue of Eq. (A.2) in [1] we obtain the following energy
estimate

Eε
ω

(
ũα

ε

)≤ α2

2α − 1
εd
∑
x∈Zd

ũ2α−1
ε (εx)

(−Lε
ωuε

)
(εx). (3.19)

Since uε is a solution to the Poisson equation (2.1), the energy estimate (3.19) implies that

Eε
ω

((
ũε
)α)≤ α2

2α − 1

∥∥f ε
∥∥

�∞(Qε)
εd
∑
x∈Qε

(
ũε(x)

)2α−1 = α2

2α − 1

∥∥f ε
∥∥

�∞(Qε)

∥∥uε
∥∥2α−1

�2α−1
ε

.

By the Sobolev inequality (3.14) and Jensen’s inequality it follows that

∥∥uε
∥∥2α

�
2αρ
ε

≤ CS
α2

2α − 1

∥∥f ε
∥∥

�∞(Qε)

∥∥νω
l

∥∥
q,B1/ε

∥∥uε
∥∥2α−1

�2α
ε

. (3.20)

We define αj = ρj for j ∈ N0. Further, we set γj := 1 − 1/(2αj ) for ‖uε‖
�

2αj
ε

< 1 and γj := 1 for ‖uε‖
�

2αj
ε

≥ 1.

Recall that ρ ≡ ρ(d, q) > 1 for any q > d/2. Furthermore, we observe that for any β > 0 we have maxx∈Qε |u(x)| ≤
(2/ε)d/β‖u‖

�
β
ε
. Thus, by iterating the inequality (3.20) and using the fact that

∑∞
j=1 j/αj < ∞, we obtain that there

exists C1 ≡ C1(d, q) < ∞ such that

∥∥uε
∥∥∞ ≤ (2/ε)dε

∥∥uε
∥∥

�
1/ε
ε

≤ C1
∥∥uε
∥∥γ

�2
ε

m∏
j=0

(
1 ∨ ∥∥f ε

∥∥
�∞(Qε)

∥∥νω
l

∥∥
q,B1/ε

) 1
2ρj−1 ,

where γ =∏m
j=0 γj ≤ 1 and m such that 2αm > 1/ε. Choosing κ =∑∞

j=0 1/(2αj ) < ∞, we complete the proof. �

4. Compact embedding

The very first step to prove homogenization of the operator Lε
ω is to show that a sequence R∗

εu
ε (uε ∈ Hε) has a

strongly convergent subsequence if supε Eε
ω(uε) < ∞. The Dirichlet energy Eε

ω is defined in (3.12).
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For any m ∈N consider a partition of Q into md congruent open subcubes (Qm
j )j=1,...,md with side length 2/m. For

a fixed m we further define Qε
j := suppR∗

ε(Rε1Qm
j
), where we suppress the superscript “m” although Qε

j depends

on m. Then Qm
j ⊂ Qε

j and |Qε
j\Qm

j | → 0 as ε → 0.

Lemma 4.1. Let ω ∈ � and assume that the uniform Poincaré inequality (3.16) holds with a finite C(ω) and that for
any m ∈N there exists ε∗

m > 0 such that for all ε < ε∗
m we have

max
1≤j≤md

∥∥νω
l

∥∥
q,ε−1Qε

j
≤ 2E

[(
νω
l (0)

)q]1/q
. (4.1)

Then the Poincaré inequality (3.6) implies that for any sequence uε ∈ Hε (ε−1 ∈ N) with supε>0 Eε
ω(uε) < ∞, the

sequence (R∗
εu

ε)ε>0 has a strongly convergent subsequence in L2(Rd).

This lemma was also recently shown in [25, Lemma 3.14].

Remark 4.2. If Assumptions 1.1 and 1.2(a) are fulfilled, then for P-a.e. realization ω ∈ � the hypotheses of
Lemma 4.1 are fulfilled. That is, by virtue of Assumptions 1.1(a), (c) and 1.2(a) as well as Remark 3.3, there ex-
ists a P-a.s. finite C(ω) such that (3.16) is fulfilled. Furthermore, the same assumptions together with the ergodic
theorem imply that P-a.s. there exists ε∗

m > 0 such that for all ε < ε∗
m (4.1) holds.

Proof of Lemma 4.1. First of all we observe that by virtue of (3.16) we have∥∥R∗
εu

ε
∥∥

2 = ∥∥uε
∥∥

�2
ε
≤ C(ω)Eε

ω

(
uε
)
,

which implies that supε>0 ‖R∗
εu

ε‖2 is finite by assumption. By the Banach–Alaoglu theorem it follows that there
exists a subsequence, which we still index by ε, and u ∈H0 such that

R∗
εu

ε ⇀ u weakly in L2(Q).

We now show that u is also a strong limit. We estimate

∥∥R∗
εu

ε − u
∥∥2

2 ≤ 3
md∑
j=1

(∥∥R∗
εu

ε − (R∗
εu

ε
)
Qε

j

∥∥2
L2(Qε

j )
+ ∥∥(R∗

εu
ε − u

)
Qε

j

∥∥2
L2(Qε

j )
+ ∥∥(u)Qε

j
− u
∥∥2

L2(Qε
j )

)
, (4.2)

where, in analogy to (3.2), we abbreviate

(v)Qε
j
:= ∣∣Qε

j

∣∣−1
∫

Qε
j

v(x)dx for v : Rd → R.

Since R∗
εu

ε converges weakly in L2(Q) to u, the sum over the second term on the RHS of (4.2) vanishes as ε tends
to zero. It remains to show that, as ε → 0, the limit superior of the sum of the first and third term is zero as well.

We use arguments similar to the ones given in [1, Proposition 2.9], see also [25, Lemma 3.14]. Let êi (i = 1, . . . , d)
be the unit base vectors of Rd . By virtue of Proposition 3.1 there exists CPI < ∞ such that P-a.s. for ε small enough
the first term in the brackets of the RHS in (4.2) can be estimated by

∥∥R∗
εu

ε − (R∗
εu

ε
)
Qε

j

∥∥2
L2(Qε

j )
= ∥∥uε − (uε

)
Qε

j

∥∥2
�2
ε(Q

ε
j )

≤ CPI
∥∥νω

l

∥∥
q,ε−1Qε

j

4εd

m2

d∑
i=1

∑
x,x+êi∈CWε−1Qε

j

ωx,êi

(
∂ε
êi
uε(εx)

)2
, (4.3)
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where for d = 1 we set l = CW = q = 1. For d ≥ 2 we set q = d/2. Since any edge e ∈ Ed is contained in at most
Co := 2dCW cubes CWε−1Qε

j , summing over j = 1, . . . ,md yields

3
md∑
j=1

∥∥R∗
εu

ε − (R∗
εu

ε
)
Qε

j

∥∥2
L2(Qε

j )
≤ 12m−2CPICoEε

ω

(
uε
)

max
1≤j≤md

∥∥νω
l

∥∥
q,ε−1Qε

j
. (4.4)

Note that Co is independent of m and Eε
ω(uε) is bounded in ε by assumption.

By virtue of (4.1), (4.2) and (4.4) it follows that there exists C < ∞ independent of m such that P-almost surely

lim sup
ε→0

∥∥R∗
εu

ε − u
∥∥2

2 ≤ Cm−2 + 3
md∑
j=1

lim sup
ε→0

∥∥(u)Qε
j
− u
∥∥2

L2(Qε
j )

= Cm−2 + 3
∥∥u −R∗

2/mR2/mu
∥∥2

2.

Since m might be arbitrarily large and u ∈ L2(Q) has bounded support, the claim follows. �

5. Analytic tools

In this section we always assume that the law P is stationary and ergodic with respect to spatial translations.

5.1. An ergodic theorem

In what follows, we will generalize a result by Boivin and Depauw.

Theorem 5.1 (Ergodic Theorem by Boivin and Depauw [4, Theorem 3]). For every f ∈ L1(�,P), for P-almost
every ω ∈ � it holds

lim
ε→0

εd
∑

x∈ε−1Qε

v(εx)f (τxω) = E[f ]
∫

Q

v(x)dx ∀v ∈ C(Q), (5.1)

and the Null-set depends on f but not on v.

Remark 5.2. Evidently, we can also choose v as the characteristic function of any relatively open or compact set
A ⊂ Q and we obtain the Tempel’man ergodic theorem.

We will use both Theorem 5.1 and Remark 5.2 in order to prove the following theorem.

Theorem 5.3. For every f ∈ L1(�,P), for P-almost every ω ∈ � the following holds: Let (uε)ε>0 be a se-
quence of functions from εZd → R with support in Qε such that R∗

εu
ε → u pointwise a.e. in Q. Furthermore, let

supε>0 ‖uε‖∞ < ∞. Then u ∈ L∞(Q) and

lim
ε→0

εd
∑

x∈ε−1Qε

uε(εx)f (τxω) = E[f ]
∫

Q

u(x)dx (5.2)

and the Null-set depends on f but not on the sequence uε .

Proof. First we note that u ∈ L∞(Q) since supε>0 ‖uε‖∞ < ∞. Now we let η > 0 and let ρδ be a sequence of
mollifiers approximating the identity. By Egorov’s theorem, there exists a compact set Kη with L(Q\Kη) < η such
that both R∗

εu
ε → u and uδ := u ∗ ρδ → u uniformly on Kη . We now make the following decomposition:∣∣∣∣εd

∑
x∈ε−1Qε

uε(εx)f (τxω) −E[f ]
∫

Q

u(x)dx

∣∣∣∣
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≤
∣∣∣∣εd

∑
x∈ε−1Qε

(
uε(εx) − uδ(εx)

)
f (τxω)

∣∣∣∣
+
∣∣∣∣εd

∑
x∈ε−1Qε

uδ(εx)f (τxω) −E[f ]
∫

Q

uδ(x)dx

∣∣∣∣+
∣∣∣∣E[f ]

∫
Q

(
uδ(x) − u(x)

)
dx

∣∣∣∣. (5.3)

Since uδ ∈ C(Q), the second summand on the above RHS converges to zero by virtue of Theorem 5.1. For the first
summand on the RHS of (5.3) we estimate that

lim
ε→0

∣∣∣∣εd
∑

x∈ε−1Qε

(
uε(εx) − uδ(εx)

)
f (τxω)

∣∣∣∣
≤ lim

ε→0
sup
x∈Kη

∣∣uε(x) − uδ(x)
∣∣εd

∑
x∈ε−1(Kη∩Qε)

∣∣f (τxω)
∣∣+ lim

ε→0

(‖uδ‖∞ + ∥∥uε
∥∥∞
)
εd

∑
x∈ε−1Qε\Kη

∣∣f (τxω)
∣∣. (5.4)

Since the function R∗
εu

ε converges uniformly in ε to u as well, we can estimate by virtue of Remark 5.2 that

lim
ε→0

sup
x∈Kη

∣∣uε(x) − uδ(x)
∣∣εd

∑
x∈ε−1(Kη∩Qε)

∣∣f (τxω)
∣∣≤ sup

x∈Kη

∣∣uδ(x) − u(x)
∣∣|Q|E[f ].

We further estimate the second summand on the RHS of (5.4) by

lim
ε→0

(‖uδ‖∞ + ∥∥uε
∥∥∞
)
εd

∑
x∈ε−1Qε\Kη

∣∣f (τxω)
∣∣≤ 2η sup

ε>0

∥∥uε
∥∥∞E[f ],

where we have used Remark 5.2.
Thus, as ε → 0, we obtain that

lim
ε→0

∣∣∣∣εd
∑

x∈ε−1Qε

uε(εx)f (τxω) −E[f ]
∫

Q

u(x)dx

∣∣∣∣
≤ sup

x∈Kη

∣∣uδ(x) − u(x)
∣∣|Q|E[f ] + 2η sup

ε>0

∥∥uε
∥∥∞E[f ] +

∣∣∣∣E[f ]
∫

Q

(
uδ(x) − u(x)

)
dx

∣∣∣∣.
As δ → 0, the uniform convergence uδ → u on Kη yields

lim
ε→0

∣∣∣∣εd
∑

x∈ε−1Qε

uε(εx)f (τxω) −E[f ]
∫

Q

u(x)dx

∣∣∣∣≤ 2η sup
ε>0

∥∥uε
∥∥∞E[f ].

Since the last inequality holds for every η > 0, the claim follows. �

5.2. Function spaces

In what follows, we always assume that Assumption 1.1(b) holds. We first note that the probability space given in
(1.4) is generated from the compact metric space [0,∞]E , and therefore the notion of continuity on � makes sense.
We say that a function ϕ : � ×Z

d → R is shift covariant if it fulfills

ϕ(ω,x + z) − ϕ(ω,x) = ϕ(τxω, z) (5.5)

for all x, z ∈ Z
d (cf. [8] Eq. (3.14)). Note that shift covariant functions ϕ fulfill ϕ(ω,0) = 0. Then (5.5) directly

implies that

ϕ(ω,x) = −ϕ(τxω,−x). (5.6)



1242 F. Flegel, M. Heida and M. Slowik

We define on � ×Z
d the space

L2
cov := {ϕ : � ×Z

d → R : ϕ satisfies (5.5) and ‖ϕ‖L2
cov

< ∞}, where ‖ϕ‖2
L2

cov
:= E

[∑
z∈Zd

ω0,zϕ(ω, z)2
]
.

Accordingly, we define the scalar product between ϕ1, ϕ2 ∈ L2
cov by

〈ϕ1, ϕ2〉L2
cov

:= E

[∑
z∈Zd

ω0,zϕ1(ω, z)ϕ2(ω, z)

]
. (5.7)

Note that L2
cov is a closed subspace of

⊗
z∈Zd L2(�,μz), where μz is the measure on � defined by dμz(ω) =

ω0,z dP(ω). Since � is a compact metric space, L2(�,μz) is separable for all z ∈ Z
d and thus also the countable

product space
⊗

z∈Zd L2(�,μz) and its subspace L2
cov are separable.

Further, we note that for all φ : � → R it holds that Dφ(ω, z) := Dzφ(ω) := φ(τzω) − φ(ω) satisfies Dφ(ω,x +
z) − Dφ(ω,x) = Dφ(τxω, z). Therefore Dφ is in L2

cov. A local function on � is a bounded, continuous function that
only depends on finitely many coordinates of [0,∞]E . Following the outline of Chapter 3 in [8], we define the closed
subspace

L2
pot := {Dφ : φ local}L2

cov .

Let L2
sol be the orthogonal complement of L2

pot in L2
cov and let us define

div(ωb) :=
∑

z

ω0,z

(
b(ω, z) − b(τzω,−z)

)
.

Note that since b satisfies (5.6), the last equation also reads

div(ωb) = 2
∑

z

ω0,zb(ω, z). (5.8)

Then we have the following lemma.

Lemma 5.4 ([8, Lemma 3.6]).

div(ωb) = 0 for all b ∈ L2
sol and P-a.a. ω. (5.9)

Using the above notation, we define χ ∈ (L2
pot)

d through

χ = argmin

{
E

[∑
z∈Zd

ω0,z

∣∣z + χ̃ (ω, z)
∣∣2] : χ̃ ∈ (L2

pot

)d}
, (5.10)

i.e., −χj is the orthogonal projection of zj ∈ L2
cov on the space L2

pot with respect to the scalar product defined in (5.7).
We will see below that we can write the homogenized matrix as

(Ahom)i,j = E

[∑
z∈Zd

ω0,z

(
êi · [z + χ(ω, z)

])(
êj · [z + χ(ω, z)

])]
, (5.11)

where the êi , i = 1, . . . , d , denote the unit base vectors of Rd . In analogy to [14, Lemma 4.5] we know the following
result.
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Lemma 5.5. Suppose that E[νω
l (0)] < ∞ with νω

l as defined in (1.5). Then the matrix Ahom is positive definite. In
particular, the vectorial space spanned by the following vectors

E

[∑
z∈Zd

ω(0, z)zb(ω, z)

]
∈R

d, b ∈ L2
sol (5.12)

coincides with R
d .

Proof. First we notice that ψ(·, êi ) ∈ L1(�,P) for any ψ ∈ L2
cov and i = 1, . . . , d , provided that E[νω

l (0)] < ∞.
Indeed, by the Cauchy–Schwarz inequality and the shift covariance (5.5), we observe that

E
[∣∣ψ(ω, êi)

∣∣]≤ E
[
1/ωl(0, êi )

]1/2
(
E

[ ∑
x,y∈γ

opt
l

ω
({x, y})∣∣ψ(τxω,y − x)

∣∣2])1/2

≤√l|�l |E
[
νω
l (0)

]1/2‖ψ‖L2
cov

, (5.13)

where we abbreviate γ
opt
l = γ

opt
l ({0, êi}), recall (1.6). Moreover, by adapting the argument given in [8, Proof of

Lemma 4.8], it follows that E[ψ(ω, êi)] = 0 for any ψ ∈ L2
pot and i = 1, . . . , d . In particular, E[χj (ω, êi)] = 0 for any

i, j = 1, . . . , d .
Now let v ∈ R

d\{0}. Since E[v · χ(ω, êi)] = 0, it follows that

(v · êi )
2 = (v · êi )E

[(
v · [êi + χ(ω, êi)

])] (5.13)≤ |v · êi |
√

l|�l |E
[
νω
l (0)

]1/2
E

[∑
z∈Zd

ω0,z

(
v · [z + χ(ω, z)

])2]
.

Thus, by summing both sides over i = 1, . . . , d , we obtain

√
(v,Ahomv) = E

[∑
z∈Zd

ω0,z

(
v · [z + χ(ω, z)

])2]≥ |v|22
|v|1
(
l|�l |E

[
νω
l (0)

])−1/2
> 0.

Thus, the matrix Ahom is positive definite. By following literally the proof of [14, Lemma 4.5] we obtain the
claim. �

Bochner spaces. We will use the concept of Bochner spaces, which are a special case of the theory outlined in [22].
Let X be a normed space with norm ‖ · ‖X with the corresponding topology and Borel-σ -algebra and let U ⊂ R

d be
a Lebesgue-measurable set. Then, for 1 ≤ p < ∞, we define the space

‖f ‖Lp(U ;X) :=
(∫

U

∥∥f (x)
∥∥p

X
dx

) 1
p

,

Lp(U ;X) :=
{
f : U → X : f is measurable and

∫
U

∥∥f (x)
∥∥p

X
dx < ∞

}
.

Given a measure space (�,F,P), it turns out that Lp(U ;Lp(�,P)) and Lp(U × �;L ⊗ P) are isometrically iso-
morph via the trivial identification f (x)(ω) = f (x,ω). Here, L denotes the Lebesgue measure and L ⊗ P denotes
the product measure. While not being necessary, this notation has proved useful in homogenization theory since the
introduction of two-scale convergence in [3]. In particular, it gives a clear and intuitive meaning to spaces such as

L2(Q;L2
cov

) := {ϕ : Q × � ×Z
d → R :

∫
Q

∥∥ϕ(x, ·, ·)∥∥
L2

cov
dx < ∞, ϕ(x, ·, ·) ∈ L2

cov for a.e. x ∈ Q

}

or L2(Q;L2
pot).
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If X̃ ⊂ X is a family of vectors in X, we denote

C(Q) ⊗ X̃ := span
{
xf : f ∈ C(Q),x ∈ X̃

}
.

If X̃ is a countable dense subset of X, i.e. X is separable, every element of L2(Q;X) can be approximated by finite
sums of elements of C(Q) ⊗ X̃ [22].

5.3. Discrete derivatives

With the following definitions of discrete derivatives, we can write the operator Lε
ω in divergence form.

Definition 5.6 (Discrete derivatives). For u : Zd
ε → R we define the ε-forward derivative in the direction z ∈ Z

d by

∂ε
z u(x) = ε−1(u(x + εz) − u(x)

)
, (5.14)

and the analogous backward derivative,

∂ε−
z u(x) = ε−1(u(x) − u(x − εz)

)
. (5.15)

Further, we define ∇εu(x, z) := ∂ε
z u(x) and write ∇εu(x) for the function that maps z ∈ Z

d to ∇εu(x, z). Accordingly,
we define ∇ε−u(x, z) := ∂ε−

z u(x) and ∇ε−u(x). Moreover, for a function v : Zd
ε ×Z

d →R we define

divε v(x) =
∑
z∈Zd

∂ε−
z v(x, z). (5.16)

We use this notation to clearly distinguish between ∇ε , an operator on discrete functions, and ∇ , an operator on
the Sobolev space H 1(Rd). A direct calculation shows that when Aε

ω maps v(x, z) �→ ωx
ε
,zv(x, z), then

−Lε
ωuε = −1

2
divε

(
Aε

ω∇εuε
)
. (5.17)

Moreover, for vε : Zd
ε →R we observe that

〈−Lε
ωuε, vε

〉
Hε

= εd

2

∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z uε(εx)

)(
∂ε
z vε(εx)

)
. (5.18)

When we compare the divergence form of the operator Lε
ω in (5.17) with the limit operator in (2.2), we better un-

derstand the result of Theorem 2.1. Furthermore (5.18) implies that Lε
ω is strictly positive definite on any bounded

domain with zero Dirichlet conditions at the boundary.

5.4. Two-scale convergence

We adapt the concept of stochastic two-scale convergence by Zhikov and Piatnitsky [30] to our setting.
We denote by zi the function that maps z ∈ Z

d onto its ith coordinate and observe that, since E[∑z∈Zd ω0,z|z|2] is
finite, zi ∈ L2

cov for i = 1, . . . , d . Since L2
cov is separable, there exist countable sets �sol ⊂ L2

sol and �pot ⊂ L2
pot such

that � := �sol ⊕ �pot ⊕ {z1, . . . , zd} ⊕ {1} is dense in L2
cov. We can assume that every ϕ ∈ �pot is the gradient of a

local function. Furthermore, there exists a countable subspace � ⊂ C∞
c (Rd) such that � is dense both in L2(Rd) and

in C∞
c (Rd). We then find that � ⊗ � is dense in L2(Rd ;L2

cov).

Definition 5.7 (Typical realizations). We denote by �� ⊂ � the set of all ω ∈ � such that Theorem 5.1 holds

(a) for all f (ω) :=∑z∈Zd ω0,zϕ(ω, z), where ϕ ∈ �,
(b) for all f (ω) :=∑z∈Zd ω0,z(ϕiϕj )(ω, z), where ϕi,ϕj ∈ �, and
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(c) and for all f (ω) :=∑z∈Zd\Z ω0,z|z|2, where Z is a finite subset of Zd ,

(d) div(ωb) ◦ τx = 2
∑

z ωx,zb(τxω, z) = 0 for all b ∈ �sol and all x ∈ Z
d .

We call �� the set of typical realizations.

Remark 5.8. Note that P(��) = 1 (compare to [14, Lemma 4.4]).

Definition 5.9 (Two-scale convergence). Let wε : εZd ×Z
d → R. We say that wε converges weakly in two scales to

w ∈ L2(Rd;L2
cov) if

lim
ε→0

εd
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,zwε(εx, z)ϕ(τxω, z) =
∫
Rd

v(x)E

[∑
z∈Zd

ω0,zw(x,ω, z)ϕ(ω, z)

]
dx (5.19)

for all v ∈ C∞
c (Rd) and all ϕ ∈ �. In this case we write wε

2s
⇀ w.

Proposition 5.10. For all typical realizations ω ∈ �� it holds: If wε : εZd ×Z
d →R and C < ∞ are such that

εd
∑
x∈Zd

∑
z∈Zd

ωx,zw2
ε(εx, z) ≤ C ∀ε > 0, (5.20)

then there exists a subsequence wεk
and w ∈ L2(Rd ;L2

cov) such that

wεk

2s
⇀ w. (5.21)

Proof. The proof goes along the lines of classical proofs of two-scale convergence like for example in [30], Section 5.
We observe that for every v ∈ � and ϕ ∈ � we find

lim sup
ε→0

εd

∣∣∣∣∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,zwε(εx, z)ϕ(τxω, z)

∣∣∣∣
(5.20)≤ lim sup

ε→0

√
C

(
εd
∑
x∈Zd

∑
z∈Zd

ωx,zv
2(εx)ϕ2(τxω, z)

)1/2 (5.1)≤ √
C‖v‖L2‖ϕ‖L2

cov
, (5.22)

where, in the last step, we have also used that v has bounded support. It follows that since � and � are countable, we
can choose a subsequence εk → 0 as k → ∞ such that the limit I (vϕ) of

Iεk
(vϕ) := εd

k

∑
x∈Zd

v(εkx)
∑
z∈Zd

ωx,zwεk
(εkx, z)ϕ(τxω, z)

exists for every v ∈ � and ϕ ∈ �. We notice that the functional I (·) is linear in vϕ ∈ � ⊗ �. Furthermore,
due to (5.22), I (·) is continuous on span{� ⊗ �}. It follows by Riesz representation theorem that we can find
w ∈ L2(Rd;L2

cov) such that

I (vϕ) =
∫
Rd

v(x)E

[∑
z∈Zd

ω0,zw(x,ω, z)ϕ(ω, z)

]
dx.

Since � ⊗ � is dense in L2(Q;L2
cov), we obtain that w is uniquely defined. Since, in addition, � is dense in C∞

c , we
find for every v ∈ C∞

c (Rd) and ϕ ∈ � that Iεk
(vϕ) → I (vϕ) as ε → 0 and hence (5.21) holds. �
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Lemma 5.11. For all typical realizations ω ∈ �� and all Lipschitz functions v : Rd → R there exists C(ω) ∈ (0,∞],
which depends only on suppv and ω, such that

sup
ε>0

εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx)

)2
< C(ω)‖∇v‖2∞. (5.23)

If suppv is bounded, then C(ω) is P-a.s. finite.

Proof. We observe that we can interchange the order of the sums and estimate

εd
∑
z∈Zd

∑
x∈Zd

ωx,z

(
∂ε
z v(εx)

)2 ≤ εd‖∇v‖2∞
∑
z∈Zd

∑
x∈ε−1(suppv∪(suppv−εz))

ωx,z|z|2

≤ εd‖∇v‖2∞
∑

x∈ε−1 suppv

∑
z∈Zd

ωx,z|z|2 + εd‖∇v‖2∞
∑
z∈Zd

∑
x∈(ε−1 suppv)−z

ωx,z|z|2.

The first term on the above RHS is finite by virtue of the ergodic theorem. This also holds for the second term after an
index shift in x and a rearrangement of the two sums. �

Lemma 5.12. Let Qε = Q ∩ εZd . For all typical realizations ω ∈ �� it holds:

lim sup
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)2 = 0 for all v ∈ C∞

c

(
R

d
)
. (5.24)

Proof. Let δ > 0. Since E[∑z∈Zd ω0,z|z|2] < ∞, we can choose a finite point-symmetric subset Zδ ⊂ Z
d such that

E

[ ∑
z∈Zd\Zδ

ω0,z|z|2
]

< δ.

Then we split the sum in (5.24) into a sum over z ∈ Zδ and a sum over z /∈ Zδ .
For z ∈ Zδ we observe that, since v ∈ C∞

c (Rd), we have

v(x + εz) − v(x)

ε
− ∇v(x) · z → 0 (5.25)

uniformly in x ∈R
d . Further, we observe that there exists ε∗ > 0 such that for z ∈ Zδ and for all ε < ε∗, the statement

εx /∈ 2 suppv implies that εx + εz /∈ suppv. It follows that for ε small enough, we have

εd
∑
x∈Zd

∑
z∈Zδ

ωx,z

(
v(εx + εz) − v(εx)

ε
− ∇v(εx) · z

)2

≤ εd
∑

x∈2ε−1 suppv

∑
z∈Zδ

ωx,z

(
v(εx + εz) − v(εx)

ε
− ∇v(εx) · z

)2

.

This together with (5.25) and the ergodic theorem implies that

εd
∑
x∈Zd

∑
z∈Zδ

ωx,z

(
v(εx + εz) − v(εx)

ε
− ∇v(εx) · z

)2

→ 0 as ε → 0.

Let us now consider the case z /∈ Zδ . As in the proof of Lemma 5.11, we interchange the sums and observe that

εd
∑
x∈Zd

∑
z/∈Zδ

ωx,z

(
v(εx + εz) − v(εx)

ε
− ∇v(εx) · z

)2
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≤ 4‖∇v‖2∞εd
∑
z/∈Zδ

∑
x∈ε−1(suppv∪suppv−εz)

ωx,z|z|2

≤ 4‖∇v‖2∞εd
∑

x∈ε−1 suppv

∑
z/∈Zδ

(
ωx,z|z|2 + ωx,−z|z|2

)
.

By the ergodic theorem and the choice of Zδ it follows that the limit superior of the above RHS is bounded from above
by a constant times δ| suppv|, which we can choose arbitrarily small. �

Corollary 5.13 (of Lemma 5.12). For all typical realizations ω ∈ �� it holds: If wε
2s
⇀ w, then

lim
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,zwε(εx, z)∂ε
z v(εx) =

∫
Rd

E

[∑
z∈Zd

ω0,zw(x,ω, z)
(∇v(x) · z)]dx (5.26)

for all v ∈ C∞
c (Rd).

Proof. First we observe that zi ∈ � for i = 1, . . . , d and ∂êi
v ∈ C∞

c (Rd) where the êi , i = 1, . . . , d , denote the unit

base vectors of Rd . Therefore the assumption that wε
2s
⇀ w implies that

lim
ε→0

εd
∑
x∈Zd

∂êi
v(εx)

∑
z∈Zd

ωx,zziwε(εx, z) =
∫
Rd

∂êi
v(x)E

[∑
z∈Zd

ω0,zziw(x,ω, z)

]
dx,

where the êi , i = 1, . . . , d , denote the unit base vectors of Rd . It follows that

lim
ε→0

εd
∑
x∈Zd

∇v(εx) ·
∑
z∈Zd

ωx,zzwε(εx, z) =
∫
Rd

∇v(x) ·E
[∑

z∈Zd

ω0,zzw(x,ω, z)

]
dx

for all v ∈ C∞
c (Rd). In order to prove (5.26), it thus remains to show that

lim
ε→0

∣∣∣∣εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)wε(εx, z)

∣∣∣∣→ 0.

This follows from Cauchy–Schwarz, i.e.,∣∣∣∣εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)wε(εx, z)

∣∣∣∣
≤
(

εd
∑
x∈Zd

∑
z∈Zd

ωx,zw2
ε(εx, z)

)1/2(
εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)2)1/2

.

The first factor on the RHS is bounded by assumption and the second factor converges to zero by virtue of
Lemma 5.12. �

5.5. Convergence of gradients

Let us start with the following auxiliary lemma.

Lemma 5.14. For all ω ∈ �� and all b ∈ �sol the following is true:∑
x∈Zd

∑
z∈Zd

∂ε
z v(εx)ωx,zb(τxω, z) = 0 for all v ∈ �∞(

Z
d
ε

)
with bounded support. (5.27)
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Proof. We write the LHS of (5.27) as

ε−1
∑
x∈Zd

∑
z∈Zd

v(εx + εz)ωx,zb(τxω, z) − ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,zb(τxω, z).

The second term is immediately zero since ω ∈ �� and div(ωb) ◦ τx = 2
∑

z∈Zd ωx,zb(τxω, z) by (5.8). The first term
is absolutely convergent and thus we can interchange the sums. After an additional index shift x � x − z, we obtain
that the above first term is equal to

ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx−z,zb(τx−zω, z) = −ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,−zb(τxω,−z),

where we have used (5.6) as well as the symmetry of the conductances, i.e., ωx−z,z = ωx,−z. The claim follows from
(5.8) and b ∈ �sol since ω ∈ ��. �

We can now prove the convergence of gradients. Our result is the natural transfer to the corresponding original
result by Nguetseng [26] to the present setting.

Lemma 5.15 (Two-scale convergence for gradients). For all ω ∈ �� such that the Poincaré-inequality (3.16) holds
uniformly in ε also the following holds true. If uε : Zd

ε → R is a family of functions with supp(uε) ⊆ Q ∩Z
d
ε for all ε

and

sup
ε>0

(
εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z uε(εx)

)2 + ∥∥uε
∥∥∞

)
< ∞, (5.28)

then there exists a subsequence uε′
, u ∈ H 1

0 (Q) and ν ∈ L2(Rd ;L2
pot) such that

R∗
ε′uε′

⇀ u in L2(
R

d
)
, ∂ε′

z uε′
(x)

2s
⇀ ∇u(x) · z + ν(x,ω, z) as ε′ → 0. (5.29)

Furthermore, if the compact embedding of Lemma 4.1 holds, we find R∗
ε′uε′ → u strongly in L2(Rd).

Proof. Condition (5.28) together with Lemma 4.1 implies that there exists a subsequence, which we still index by ε,
and u ∈ L2(Q) such that R∗

εu
ε → u in L2(Rd). It remains to show that u ∈ H 1

0 (Q) and to proof the second statement
in (5.29).

By virtue of Proposition 5.10, Condition (5.28) further implies that there exists a subsequence, which we still index

by ε → 0, and w ∈ L2(Rd ;L2
cov) such that ∇εuε 2s

⇀ w in the two-scale sense. We choose b ∈ �sol and v ∈ C∞
c (Rd)

and apply (5.27) to the discrete product rule

∂ε
z

(
vuε
)
(εx) = v(εx)∂ε

z uε(εx) + uε(εx + εz)∂ε
z v(εx)

to obtain that

0 = εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
v(εx)∂ε

z uε(εx) + uε(εx + εz)∂ε
z v(εx)

)
b(τxω, z). (5.30)

For the first term on the RHS of (5.30), we obtain from the two-scale convergence of ∇εuε that

εd
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,z∂
ε
z uε(εx)b(τxω, z) →

∫
Rd

v(x)E

[∑
z∈Zd

ω0,zw(x,ω, z)b(ω, z)

]
dx. (5.31)
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For the second term on the RHS of (5.30), we first notice that the sum is absolutely convergent since

εd
∑
x∈Zd

∑
z∈Zd

∣∣∣∣ωx,zb(τxω, z)uε(εx + εz)

(
v(εx + εz) − v(εx)

ε

)∣∣∣∣
= εd

∑
z∈Zd

∑
x∈ε−1Qε−z

∣∣∣∣ωx,zb(τxω, z)uε(εx + εz)

(
v(εx + εz) − v(εx)

ε

)∣∣∣∣
= εd

∑
z∈Zd

∑
x∈ε−1Qε

∣∣∣∣ωx−z,zb(τx−zω, z)uε(εx)

(
v(εx) − v(εx − εz)

ε

)∣∣∣∣
= εd

∑
x∈ε−1Qε

∑
z∈Zd

∣∣∣∣ωx,zb(τxω, z)uε(εx)

(
v(εx + εz) − v(εx)

ε

)∣∣∣∣, (5.32)

where for the last equality we have used the relation ωx−z,z = ωx,−z, the shift covariance (5.6) and the substitution
z � −z. We now use the fact that uε and ∇v are bounded, apply the Cauchy–Schwarz inequality and the ergodic
theorem to obtain that the above sum is indeed finite. It follows that for the second term on the RHS of (5.30), we can
exchange the order of the sums. By the same arguments as those that led to (5.32), we obtain that

εd
∑
x∈Zd

∑
z∈Zd

ωx,zu
ε(εx + εz)∂ε

z v(εx)b(τxω, z) = εd
∑
x∈Zd

∑
z∈Zd

ωx,zu
ε(εx)∂ε

z v(εx)b(τxω, z).

Further we notice that since uε has support only in ε−1Qε , we can estimate

εd
∑
x∈Zd

uε(εx)
∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)b(τxω, z)

≤ ∥∥uε
∥∥2

∞

(
εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)2)1/2(

εd
∑

x∈ε−1Qε

∑
z∈Zd

ωx,zb
2(τxω, z)

)1/2

.

The limit superior of the second factor vanishes due to Lemma 5.12 and the third factor is finite due to the ergodic
theorem. Thus, for ω ∈ �� we have

lim sup
ε→0

εd
∑
x∈Zd

uε(εx)
∑
z∈Zd

ωx,z

(
∂ε
z v(εx) − ∇v(εx) · z)b(τxω, z) = 0. (5.33)

To summarize, for the second term on the RHS of (5.30), it follows that

lim
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,zu
ε(εx + εz)∂ε

z v(εx)b(τxω, z)

= lim
ε→0

εd
∑
x∈Zd

uε(εx)∇v(εx) ·
(∑

z∈Zd

zωx,zb(τxω, z)

)
.

By the assumptions on ω and b, the last bracket on the above RHS is in L1(�,P). Since we already know that
the subsequence R∗

εu
ε → u in L2(Rd), there exists a further subsequence, which we still index by ε → 0, where

uε converges pointwise a.e. in Q [9, Theorem 4.9]. Moreover, uε has support in Qε and supε>0 ‖uε‖∞ < ∞ by
assumption. It follows that we can apply Theorem 5.3 along the above subsequence and obtain that

εd
∑
x∈Zd

uε(εx)∇v(εx) ·
(∑

z∈Zd

zωx,zb(τxω, z)

)
→
∫
Rd

u(x)∇v(x) ·E
[∑

z∈Zd

zω0,zb(ω, z)

]
dx. (5.34)
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Thus we obtain by (5.30) that∫
Rd

v(x)E

[∑
z∈Zd

ω0,zw(x,ω, z)b(ω, z)

]
dx = −

∫
Rd

u(x)∇v(x) ·E
[∑

z∈Zd

zω0,zb(ω, z)

]
dx. (5.35)

Let us now argue that (5.35) implies that ∇u ∈ L2(Rd). By virtue of (5.12), for any i = 1, . . . , d we can choose bi

such that E[∑z∈Zd ω0,zzb
i(ω, z)] = êi . Then (5.35) implies that

∣∣∣∣
∫
Rd

u(x)∂iv(x)dx

∣∣∣∣=
∣∣∣∣
∫
Rd

v(x)E

[∑
z∈Zd

ω0,zw(x,ω, z)bi(ω, z)

]
dx

∣∣∣∣
≤ ∥∥bi

∥∥
L2

cov

∫
Rd

∣∣v(x)
∣∣(E[∑

z∈Zd

ω0,zw2(x,ω, z)

])1/2

dx

≤ ‖v‖2
∥∥bi
∥∥

L2
cov

(∫
Rd

E

[∑
z∈Zd

ω0,zw2(x,ω, z)

]
dx

)1/2

.

Since w ∈ L2(Rd ,L2
cov), there exists C < ∞ such that for any i = 1, . . . , d we observe that∣∣∣∣

∫
Rd

u(x)∂iv(x)dx

∣∣∣∣≤ C‖v‖2.

By virtue of [9, Proposition 9.3] it follows that ∇u ∈ L2(Rd). Since u|Rd\Q = 0, we conclude u ∈ H 1
0 (Q).

We now use integration by parts on the RHS of (5.35) and obtain that∫
Rd

v(x)E

[∑
z∈Zd

ω0,z

(
w(x,ω, z) − ∇u(x) · z)b(ω, z)

]
dx = 0. (5.36)

Since the last equation holds for all v ∈ � and all b ∈ �sol, we find that

w(x,ω, z) = ∇u(x) · z + ν(x,ω, z) with ν ∈ L2(
R

d;L2
pot

)
. �

6. Proof of Theorem 2.1

We start with an auxiliary lemma.

Lemma 6.1. Let f ε : Q ∩ Z
d
ε → R be a sequence of functions such that R∗

εf
ε ⇀ f weakly in L2(Q) for some

f ∈ L2(Q) and such that supε ‖f ε‖∞ < ∞. Then for almost all ω ∈ � it holds: The sequence of solutions uε ∈ Hε to
the problem (2.1) satisfies R∗

εu
ε → u strongly in L2(Q), where u ∈ H 1

0 (Q) ∩ H 2(Q) solves the limit problem (2.2).

Proof. We test Equation (2.1) with an arbitrary test function gε : Zd
ε → R with suppgε ⊆ Q ∩ Z

d
ε and obtain by

Notation (5.17) and Equation (5.18) that

〈−Lε
ωuε, gε

〉
Hε

= 1

2

〈
Aε

ω∇εuε,∇εgε
〉
Hε

= 〈f ε, gε
〉
Hε

. (6.1)

We now choose gε = uε and apply (3.16) and Cauchy–Schwarz to obtain that

∥∥uε
∥∥2
Hε

≤ Cεd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z uε(εx)

)2 ≤ 2C
∥∥uε
∥∥
Hε

∥∥f ε
∥∥
Hε

. (6.2)
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Hence, in combination with Remark 3.5 we conclude that

∥∥uε
∥∥2

�2(Q∩Zd
ε )

+ εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z uε(εx)

)2 ≤ 4C2 sup
ε>0

∥∥f ε
∥∥2

�2(Q∩Zd
ε )

and (6.3a)

sup
ε>0

∥∥uε
∥∥∞ < ∞. (6.3b)

It follows that by virtue of Lemma 4.1 and Lemma 5.15, there exists u ∈ H 1
0 (Q), ν ∈ L2(Q;L2

pot) and a subsequence,
which we still index by ε, such that

R∗
εu

ε → u, strongly in L2(Q) and ∂ε
z uε(x)

2s
⇀ ∇u(x) · z + ν(x,ω, z) as ε → 0 (6.4)

for all x, z ∈ Z
d and ω ∈ ��.

Let us choose v ∈ C∞
c (Rd) with suppv ∈ Q and ϕ ∈ �pot with ϕ = Dϕ̃ for some bounded local function ϕ̃. When

we insert gε = εvϕ̃ into (6.1), then we observe for all ε > 0 that

εd
∑
x∈Zd

2f ε(εx)
(
εv(εx)ϕ̃(τxω)

)

= εd
∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)

(
v(εx + εz)ϕ̃(τx+zω) − v(εx)ϕ̃(τxω)

)

= εd
∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)

[
v(εx)

(
ϕ̃(τx+zω) − ϕ̃(τxω)

)+ εϕ̃(τx+zω)∂ε
z v(εx)

]

= εd
∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)v(εx)ϕ(τxω, z)

+ εd
∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)εϕ̃(τx+zω)∂ε

z v(εx). (6.5)

The second summand on the above RHS vanishes as ε → 0 since

εd

∣∣∣∣∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)εϕ̃(τx+zω)∂ε

z v(εx)

∣∣∣∣
≤ εd+1‖ϕ̃‖∞

∣∣∣∣∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)∂ε

z v(εx)

∣∣∣∣
≤ ε‖ϕ̃‖∞

(
εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z uε(εx)

)2)1/2(
εd
∑
x∈Zd

∑
z∈Zd

ωx,z

(
∂ε
z v(εx)

)2)1/2

. (6.6)

By assumption ‖ϕ̃‖∞ is bounded. The second factor is bounded due to (6.3) and the third factor is bounded by virtue
of Lemma 5.11. Since the LHS of (6.5) vanishes as well, (6.4) and (6.5) imply that in the limit ε → 0 and along the
chosen subsequence we obtain∫

Q

v(x)E

[∑
z∈Zd

ω0,z

(∇u(x) · z + ν(x,ω, z)
)
ϕ(ω, z)

]
dx = 0. (6.7)

Since �pot is dense in L2
pot and � is dense in H 1

0 (Q), Equation (6.7) holds for all ϕ ∈ L2
pot and all v ∈ H 1

0 (Q).

Let χ ∈ (L2
pot)

d be given through (5.10). Since u ∈ H 1
0 (Q) is given, the function ν(x, ω̃, z) := ∇u(x) · χ(ω̃, z) is

the unique solution to (6.7). We have thus identified ν.
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Now we observe that if we test (6.1) by an arbitrary g ∈ C∞
c (Rd) with support in Q, we obtain that

εd
∑
x∈Zd

∑
z∈Zd

ωx,z∂
ε
z uε(εx)∂ε

z g(εx) = εd
∑
x∈Zd

2f ε(εx)g(εx).

Passing to the limit, we obtain by virtue of Corollary 5.13 and ν(x,ω, z) = ∇u(x) · χ(ω, z) that∫
Rd

E

[∑
z∈Zd

ω0,z

(∇u(x) · (z + χ)
)(∇g(x) · z)]dx =

∫
Rd

2f (x)g(x)dx. (6.8)

When we now insert v = ∂ig and ϕ = χi for i = 1, . . . , d into (6.7) and add the resulting equations to (6.8), then
we obtain that∫

Rd

E

[∑
z∈Zd

ω0,z

(∇u(x) · (z + χ)
)(∇g(x) · (z + χ)

)]
dx =

∫
Rd

2f (x)g(x)dx. (6.9)

A comparison with the definition of Ahom in (5.11) finally yields that u solves∫
Q

∇u · (Ahom∇g) =
∫

Q

2fg for all g ∈ C∞
c

(
R

d
)

with suppg ⊆ Q. (6.10)

Since Ahom is non-degenerate, we find that (6.10) is the weak formulation of (2.2). Hence, from elliptic regularity
theory [13, Chapter 6], we obtain that u ∈ H 2(Q) ∩ H 1

0 (Q).
Since the solution u of (2.2) is unique, it follows that (6.4) holds for the entire sequence. �

As for the last ingredient for the proof of Theorem 2.1, we observe the following: On the cube Q the operator
−Lε

ω with zero Dirichlet conditions is strictly positive definite (see e.g. (5.18)) and thus it follows that on Q its
inverse Bε : Hε → Hε is well-defined. Similarly, the inverse B0 : H0 → H0 of −L0 on Q is well-defined. We have
the following lemma.

Lemma 6.2. The operators Bε,B0 are P-a.s. positive, compact and self-adjoint. The norms ‖Bε‖ are P-a.s. bounded
by a constant independent of ε.

Proof. Since Ahom is positive definite (see e.g. the proof of Lemma 5.5) and symmetric, the properties of B0 follow
from the theory of elliptic partial differential equations, see e.g. [13, Chapter 6].

The operator Bε is uniformly bounded in ε by virtue of (6.3a). Moreover, Bε is real and symmetric by construction
and therefore self-adjoint. Finally, its range Hε is finite-dimensional and thus Bε is compact. �

Proof of Theorem 2.1. Let us first show that

lim
ε→0

∫
Rd

(
R∗

εu
ε
)
v =

∫
Rd

uv for all v ∈ C(Q), (6.11)

where u ∈ H 2(Q) ∩ H 1
0 (Q) is the solution to (2.2). Indeed, since Bε is self-adjoint, we observe that∫

Rd

(
R∗

εu
ε
)
v =

∫
Rd

(
R∗

εBεf
ε
)
v = 〈f ε, (BεRεv)

〉
Hε

.

Since R∗
εRεv ⇀ v in L2 and supε>0 ‖Rεv‖∞ < ∞, Lemma 6.1 implies that BεRεv converges strongly in L2 to B0v.

It follows that

lim
ε→0

〈
f ε, (BεRεv)

〉
Hε

=
∫
Rd

f (B0v) =
∫
Rd

(B0f )v =
∫
Rd

uv,

where we have used that the operator B0 is self-adjoint, see Lemma 6.2.
We further note that supε>0 ‖R∗

εu
ε‖2 < ∞ by the same arguments as for (6.3a). Since C(Q) is dense in L2(Q), it

thus follows that R∗
εu

ε ⇀ u. By virtue of Lemma 4.1 and (6.3a) we conclude that R∗
εu

ε → u strongly in L2. �
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7. Proofs of Proposition 2.4 and Theorem 2.5

Proof of Proposition 2.4. The existence of solutions to (2.5) follows from positivity of the first eigenvalue for small ε.
Hence we can calculate the apriori estimates similar to (6.2) by testing (2.5) with uε and using lim infε→0 λε

1 > 0 to
obtain∥∥uε

∥∥2
Hε

≤ (λε
1

)−1〈−Lε
ωuε +RεV uε,uε

〉
Hε

≤ 2
(
λε

1

)−1∥∥uε
∥∥
Hε

∥∥f ε
∥∥
Hε

.

Since V is bounded, this implies that 〈−Lε
ωuε,uε〉Hε

is bounded in ε. From Lemma 4.1 it follows that R∗
εu

ε → u

strongly in L2(Q) and hence R∗
ε(RεV uε) ⇀ V u. Hence from Theorem 2.1 we obtain that u solves (2.6). �

Proof of Theorem 2.5. First, we notice that without loss of generality, we can assume that the function V is nonneg-
ative. Otherwise, we simply substitute V for V − minx∈Q V (x) and prove the result for the new V . Then we notice
that the substitution has simply shifted the spectrum by the constant minx∈Q V (x) and the new eigenvectors are the
same as the old ones. Thus, it suffices to prove the claim for V ≥ 0. Note that (5.18) directly implies that if V ≥ 0,
then λε

1 is positive.
Then Lemmas 7.2 and 6.2 ensure that Conditions I–IV of [19, Section 11.1] are satisfied and Theorem 2.5 follows

by virtue of [19, Theorems 11.4, 11.5]. �

As in the paragraph before Lemma 6.2, we now define the operators Bε(V ) and B0(V ) as the inverses of −Lε
ω +

RεV and −L0 +V , respectively. For V ≥ 0, we further consider the spectrum of the operators Bε(V ), where we drop
the argument “(V )” for readability:

ψε
k ∈Hε, Bεψ

ε
k = με

kψ
ε
k , k = 1,2, . . . ,

με
1 ≥ με

2 ≥ · · · ≥ με
k · · · , με

k > 0,〈
ψε

k ,ψε
l

〉
Hε

= δkl,

(7.1)

as well as the spectrum of the operator B0(V ), where we also drop the argument “(V )” for readability:

ψ0
k ∈ H0, B0ψ

0
k = μ0

kψ
0
k , k = 1,2, . . . ,

μ0
1 ≥ μ0

2 ≥ · · · ≥ μ0
k · · · , μ0

k > 0,〈
ψ0

k ,ψ0
l

〉
Hε

= δkl .

(7.2)

Remark 7.1. The eigenfunctions {ψε
k }k of the operator Bε and the eigenfunctions {ψ0

k }k of the operator B0 coincide
with the eigenfunctions of the operators −Lε

ω +RεV and −L0 + V , respectively. Their eigenvalues relate to those of
−Lε

ω +RεV and −L0 + V by

με
k = (λε

k

)−1
, μ0

k = (λ0
k

)−1
, k = 1,2, . . . .

Lemma 7.2.

(i) For any u ∈H0, the following is true:

‖Rεu‖Hε
≤ ‖u‖H0 . (7.3)

Further,

lim
ε→0

〈
uε, vε

〉
Hε

= 〈u,v〉H0 . (7.4)
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provided that u,v ∈H0 and uε, vε ∈Hε and

lim
ε→0

∥∥uε −Rεu
∥∥
Hε

= 0 and lim
ε→0

∥∥vε −Rεv
∥∥
Hε

= 0. (7.5)

Let V : Rd → R be a non-negative, continuous potential. If Assumptions 1.1 and 1.2(a′) are fulfilled, then furthermore
the following statements hold.

(ii) Let f ∈ H0 and let f ε ∈Hε . Then the following is true: If

lim
ε→0

∥∥f ε −Rεf
∥∥
Hε

= 0, (7.6)

then

lim
ε→0

∥∥Bεf
ε −RεB0f

∥∥
Hε

= 0, P-a.s. (7.7)

(iii) For any sequence f ε ∈ Hε such that supε ‖f ε‖Hε
< ∞, there exists a subsequence f ε′

and a vector w0 ∈ H0
such that

lim
ε′→0

∥∥R∗
ε′Bε′f ε′ − w0

∥∥
H0

= lim
ε′→0

∥∥Bε′f ε′ −Rε′w0
∥∥
Hε′

= 0.

Proof. For (i): Let u ∈ H0. By Jensen’s inequality it follows that

‖Rεu‖2
Hε

= εd
∑
z∈Zd

ε

ε−2d

(∫
b(z, ε

2 )

udx

)2

≤ εd
∑
z∈Zd

ε

ε−d

(∫
b(z, ε

2 )

u2 dx

)
= ‖u‖2

H0
.

For (7.4) we first observe that

∣∣〈uε, vε
〉
Hε

− 〈u,v〉H0

∣∣≤ ∣∣〈vε,uε −Rεu
〉
Hε

∣∣+ ∣∣∣∣∑
z∈Zd

ε

∫
b(z, ε

2 )

u
(
R∗

εv
ε(z) − v

)
dx

∣∣∣∣
≤ ∥∥vε

∥∥
Hε

∥∥uε −Rεu
∥∥
Hε

+ ‖u‖H0

∥∥vε −Rεv
∥∥
Hε

. (7.8)

The second term on the above RHS converges to zero by assumption. For the first term we note that the triangle
inequality together with (7.3) yields∥∥vε

∥∥
Hε

≤ ‖Rεv‖Hε
+ ∥∥vε −Rεv

∥∥
Hε

≤ ‖v‖H0 + ∥∥vε −Rεv
∥∥
Hε

,

which is bounded from above. It follows that the first term on the RHS of (7.8) converges to zero as well.
Part (ii) follows directly from Proposition 2.4 and (7.4).
Similarly, Part (iii) follows from Proposition 2.4 and (7.4) since supε ‖f ε‖2 < ∞ implies that there exists a subse-

quence ε′ along which R∗
ε′f ε′

⇀ f in L2. �

8. Proof of Proposition 2.8

Proof of Proposition 2.8. This proof is an application of the Gärtner–Ellis theorem and goes along the lines of [21,
Theorem 1.8]. For the convenience of the reader, we outline the main steps here.

Let V : Rd →R be a bounded, continuous function. We define the generating cumulant function

�t(V ) := α2
t

t
log Eω

0

[
exp

{
− t

α2
t

∫
Q

V (y)Lt (y)dy

}∣∣∣X[0,t] ⊂ αtQ

]
. (8.1)
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As in [21], it suffices to show that

�(V ) := lim
t→∞�t(V ) = −λ1(V ) + λ1(0), (8.2)

where λ1(V ) denotes the principal Dirichlet eigenvalue of −L0 + V on Q with zero Dirichlet boundary conditions.
Then the claim follows by the Gärtner–Ellis theorem.

In order to show (8.2), we define the operator Pω,V
t acting on real-valued functions f ∈ �2(αtQ ∩Z

d) by

(
Pω,V

t f
)
(z) := Eω

z

[
exp

{
− t

α2
t

∫
Q

V (y)Lt (y)dy

}
1{X[0,t]⊂αtQ}f (Xt )

]
,
(
z ∈ αtQ ∩Z

d
)
. (8.3)

Since Lt is a step function, Pω,V
t admits the semigroup representation

Pω,V
t = exp

{−tα−2
t

[−α2
t Lω + Vt

]}
, (8.4)

where the operator in the exponent is considered with zero Dirichlet conditions at the boundary of αtQ ∩Z
d and

Vt(z) :=
∫

[− 1
2 , 1

2 ]
V

(
z + y

αt

)
dy

(
z ∈ αtQ ∩Z

d
)
.

Let λ
(t)
1 (V ) denote the principal Dirichlet eigenvalue of −α2

t Lω + Vt on αtQ ∩ Z
d with zero Dirichlet boundary

conditions. Let ψ
(t)
1 (V ) be the corresponding principal Dirichlet eigenfunction. Then, in order to show (8.2), we have

to show that

lim
t→∞

α2
t

t
log
(
Pω,V

t 1
)
(0) = lim

t→∞λ
(t)
1 (V ) = λ1(V ) (8.5)

for any V ∈ Cb(R
d). The second equality follows by virtue of Theorem 2.5. It remains to prove the first equality. For

this purpose we notice that an eigenvalue expansion together with Cauchy–Schwarz and Parseval’s identity yields that

(
Pω,V

t 1
)
(0) ≤√|αtQ| exp

{
− t

α2
t

λ
(t)
1 (V )

}
.

On the other hand, since Pω,V
t ≥ 0, we can estimate from below

(
Pω,V

t 1
)
(0) ≥ 1

supαtQ
ψ

(t)
1

(
Pω,V

t ψ
(t)
1

)
(0) ≥ ψ

(t)
1 (0) exp

{
− t

α2
t

λ
(t)
1 (V )

}

since ψ
(t)
1 is a normalized eigenfunction. Thus, if ψ

(t)
1 (0) decays at most polynomially, we have proved the claim.

Similarly to the proof in [21], we obtain that

ψ
(t)
1 (0) ≥ e−λ(V )−V ∗(

max
x∈αtQ∩Zd

ψ
(t)
1

)(
min

x∈αtQ∩Zd
P

α2
t ω

0 [X1 = x]
)
, (8.6)

where V ∗ is an upper bound for V . Since ψ
(t)
1 is normalized and

min
x∈αtQ∩Zd

P
α2

t ω

0 [X1 = x] = min
x∈α2

t Q∩Zd
Pω

0 [Xαt = x]

decays at most polynomially by Assumption 2.7, the claim follows. �
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