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Abstract. We consider a discrete–continuum model of a biomembrane with
embedded particles. While the membrane is represented by a continuous sur-

face, embedded particles are described by rigid discrete objects which are free

to move and rotate in lateral direction. For the membrane we consider a
linearized Canham–Helfrich energy functional and height and slope boundary

conditions imposed on the particle boundaries resulting in a coupled minimiza-

tion problem for the membrane shape and particle positions.
When considering the energetically optimal membrane shape for each par-

ticle position we obtain a reduced energy functional that models the implicitly

given interaction potential for the membrane-mediated mechanical particle–
particle interactions. We show that this interaction potential is differentiable

with respect to the particle positions and orientations. Furthermore we derive
a fully practical representation of the derivative only in terms of well defined

derivatives of the membrane. This opens the door for the application of mini-

mization algorithms for the computation of minimizers of the coupled system
and for further investigation of the interaction potential of membrane-mediated

mechanical particle–particle interaction.

The results are illustrated with numerical examples comparing the explicit
derivative formula with difference quotient approximations. We furthermore
demonstrate the application of the derived formula to implement a gradient

flow for the approximation of optimal particle configurations.

1. Introduction

Particles embedded into membranes are commonly expected to be crucial for
various biological processes involving the shaping of the membrane. Examples of
such particles are transmembrane and bar-domain proteins. For example the lat-
ter are conjectured to play an important role in early stages of clathrin-mediated
endocytosis [15]. The reason for the importance of proteins for membrane shap-
ing is, that they may induce local membrane deformations in their vicinity. Since
the membrane itself consists of a lipid bilayer, which—in the lateral direction—can
be seen as a fluid, such particles are able to move easily within the membrane.
As a consequence the local particle-induced membrane deformation implicitly in-
duces a membrane-mediated mechanical particle–particle interaction. Driven by
the corresponding interaction potential, particles may cluster and form energeti-
cally preferable patterns.

This observation and the fact that membrane-shaping particles seem to be crucial
for biological membrane functions stimulated various research directions on such
particles and membrane-mediated particle–particle interactions. A common ap-
proach is based on atomistic or coarse-grained molecular dynamics (MD) models of
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the membrane. To overcome the severe length scale limitations of such approaches,
alternative modeling techniques representing the membrane as continuous surface
that minimizes an elastic energy have been developed [3, 16]. Using such an mod-
els it was shown that there are long-range interactions between particles that are
predominantly membrane-mediated [10]. Since then further work has been done
to investigate particle interactions within elasticity models. Typically a flatness
assumption on the membrane is made and particles are modeled as circular disks
or points and their coupling to the membrane is prescribed by radially symmetric
boundary conditions for which the interaction energy can either be computed ana-
lytically or approximately by asymptotic expansion [20, 24, 6, 26, 9]. However, it
turns out that the shape of particles has a significant impact on their interaction
[19]. More recent work is also interested in numerical computations with pattern
formation of many non-circular particles [14, 18], and attention was also given to
situations where the flatness assumption is no longer fulfilled [7, 22, 23]. Also
more elaborate models for proteins in continuum elastic models have recently been
considered in [2].

To understand the pattern formation of particles it is desirable to quantify the
forces exerted on the particles by the membrane in a framework that is as widely
applicable as possible. General results in this direction have been obtained based
on arguments from differential geometry [5]. The methods derived therein give
insight into the qualitative behavior of particle interactions, but—to the best of
the authors’ knowledge—they have not yet been made fully available for numerical
computations.

In this paper we consider a discrete–continuum model where the membrane is
modeled as a continuous graph minimizing a linearized Canham–Helfrich bending
energy and where an arbitrary amount of particles are embedded into the mem-
brane. These particles are modeled as discrete entities which are coupled to the
membrane through certain boundary conditions. As particles are free to move
in the membrane, those boundary conditions depend on each particle’s position.
Consequently, the overall system’s energy given fixed boundary conditions and an
optimal membrane shape can be written as a function of the particle positions,
which we call the interaction energy.

In this setting we propose a method to prove differentiability of the interaction
energy for arbitrary shapes and boundary conditions. Furthermore, we derive an ex-
pression for the derivative that can be evaluated numerically within a finite element
scheme and where the evaluation error is bounded in terms of the discretization er-
ror of the finite element approximation. The proof is based on an application of
the implicit function theorem and ideas from shape calculus [17, 4]. As such, the
method is rather general and hence it naturally extends to a wider class of models
that for example use nonlinear elastic energies or certain other membrane–particle
couplings.

In the following we give an outline of this paper. In Section 2 we introduce
the Canham–Helfrich energy in Monge-gauge as a model for the membrane and
parametric boundary conditions for the coupling of the particles. Section 3 is then
concerned with further mathematical notation that we use in order to define the
interaction energy. There we also reformulate the parametric boundary conditions
as linear constraints by using trace operators and appropriate projection operators.
Afterwards, in Section 4, we prove differentiability of the interaction energy and
derive a numerically feasible expression for the gradient. Finally, Section 5 shows
some example computations that illustrate that the derived formula can indeed be
applied in a numerical scheme.
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2. Membrane and particle model

The Canham–Helfrich model of a membrane given as two-dimensional surface
M⊂ R3 is based on the elastic bending energy

JCH(M) :=

ˆ
M

κ

2
(H − c0)2 + κGK + σ dM

where H and K denote the mean and Gaussian curvature with corresponding bend-
ing rigidities κ and κG, σ is the surface tension, and c0 is the so called spontaneous
curvature. Considering membranes with fixed topology and fixed geodesic curvature
the Gaussian curvature term is a constant and can be dropped. For simplicity we
will also restrict our considerations to the case of vanishing spontaneous curvature
c0 = 0.

Assuming that the membrane is given by a graphM = {(x, u(x)) |x ∈ Ω} which
is almost flat in the sense that |∇u| � 1 we consider the well-established linearized
Canham–Helfrich model in Monge-gauge: Given a 2-dimensional reference domain
Ω ⊆ R2 and a function u ∈ H2(Ω), the membrane shape is described by the graph
of u. The bending energy of this membrane is approximated by

J(Ω, u) :=
1

2

ˆ
Ω

κ(∆u(x))2 + σ ‖∇u(x)‖2 dx

where κ > 0 and σ ≥ 0 denote the bending rigidity and the surface tension, respec-
tively. It is noted that this corresponds to the geometric linearization of the full
nonlinear Canham–Helfrich energy JCH near a flat membrane with ∇u = 0. For
more details on the model we refer to [8] and the references therein.

In absence of particles interacting with the membrane, this model determines
the stationary shape of the membrane solely by minimizing the energy J . In the
following we explain how the embedded particles are coupled to the membrane,
before we state the model problem that is central to this paper.

For simplicity we first consider a single transmembrane protein that interacts
with the membrane. Such a protein is not merely connected to one side of the
membrane surface but rather is included in the membrane. The reason for this
situation is that the protein has a hydrophobic belt which is shielded from the sur-
rounding water by the membrane lipids. As a consequence the membrane preferably
connects to the belt which in turn deforms the membrane according to its shape.
We assume that the particle does not undergo any deformation and denote its rigid
3-dimensional shape B ⊆ R3.

In the following we will suppose that the hydrophobic belt is approximated by
a curve G. We assume that G is a simple closed curve that can be parameterized
over the 2-dimensional Euclidean plane. This means that there exists a simple
closed curve Γ = ∂B ⊆ R2 and a continuous function g0 : Γ → R such that G =
{(x, g0(x)) | x ∈ Γ}. This gives rise to the boundary condition u|Γ = g0, which
models that the membrane is connected to the particle at the interface G. The
fact that the membrane is connected perpendicular to the hydrophobic region is
modeled by additionally assuming that it is attached to G with a fixed slope. To
this end, we impose the additional boundary condition ∂νu|Γ = g1 with a function
g1 : Γ→ R describing the slope. Here ν is an oriented unit normal on Γ and ∂νu|Γ
denotes the normal derivative of u on Γ. The situation is illustrated in Figure 2.1
showing the hydrophobic belt G, its projection to the plane Γ, and the boundary
conditions on Γ.

Those constraints do not yet account for the fact that the particle is in principle
free to move in space. To this end we parameterize the current position of the
particle using translations zj along the xj-axes and rotations αj around the xj-
axes. More precisely, let B0 be a reference state of the particle that is centered in
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B

Γ

G

g0

ν

g1

Figure 2.1. Side view of a particle with hydrophobic belt G, its
projection to the plane Γ, and the height contour g0 and slope g1

prescribed at Γ.

the origin with hydrophobic belt G0 = {(x̂, g0
0(x̂)) | x̂ ∈ Γ0} for some Γ0 and let

Rj(αj) ∈ R3×3 be the αj-rotation matrix around the xj-axis. Then for ŷ ∈ B0 the
rigid body transformation Ψ(z, α) : B0 → R3 corresponding to (z, α) is given by

Ψ(z, α)(ŷ) := Ψ(z, α; ŷ) := R1(α1)R2(α2)R3(α3)ŷ + z

and we define the parameterized particle as

B = B(z, α) :=
{

Ψ(z, α)(ŷ) | ŷ ∈ B0
}
.

For the hydrophobic belt straight forward application of the parameterization would
lead to

G = G(z, α) :=
{

Ψ(z, α)(ŷ) | ŷ ∈ G0
}
.

and the corresponding projection Γ = {(y1, y2) | y ∈ G} to the plane. Given
the particle slope g0

1 : Γ0 → R on the reference curve, the membrane–particle
constraints introduced above could be imposed to the parametrized particle by
first transforming the membrane given by the graph of u according to Ψ(z, α)−1

and then imposing constraints

û|Γ∗ = g0
0 , ∂ν̂ û|Γ0 = g0

1

on the transformed graph of (if existing) û over the reference curve Γ0 with unit
normal ν̂. However, this approach suffers from several drawbacks related to the
rotations R1(α1) and R2(α2). First, they can easily exceed the regime where G can
be written as a graph over Γ and where the transformation of the graph of u is a
graph of some û. Second, the shape of the projected curve Γ differs from Γ0 and
normals of Γ0 do not transform to normals of Γ. To avoid these complications, we
will simplify the transformation assuming small rotational angles:

On the one hand we make the assumption that the reference set B0 is ori-
ented in such a way that the belt G0 is ’almost flat’, by which we mean that
maxx̂∈Γ0

∣∣g0
0(x̂)

∣∣ / ‖x̂‖ is small. On the other hand we assume that the angles α1

and α2 are small, such that the parameterized belt is still ’almost flat’. Based on
these assumptions we first replace R1(α1) and R2(α2) by first order Taylor expen-

sions R̃1(α1) and R̃2(α2) near α1 = 0 = α2 leading to

R1(α1)R2(α2)y ≈ R̃1(α1)R̃2(α2)y =

 1 0 −α2

−α1α2 1 −α1

α2 α1 1

 y =

 y1 − α2y3

y2 − α1α2y1 − α1y3

y3 + α2y1 + α1y2

 .
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Using y = R3(α3)ŷ for ŷ = (x̂, g0
0(x̂)) ∈ G0 and dropping higher order terms in α1,

α2, and y3 = ŷ3 = g0
0(x̂) finally leads to the approximate transformation

Ψ̃(z, α)(ŷ) :=

 1 0 0
0 1 0
α2 α1 1

R3(α3)ŷ + z ≈ Ψ(z, α)(ŷ)

and the corresponding parametrized particle belt

G(z, α) :=
{

Ψ̃(z, α)(ŷ) | ŷ ∈ G0
}
.

In the following we use the shortcut p = (z1, z2, α3) for the in-plane translation
and rotation. Introducing

R(α) :=

(
cos(α) − sin(α)
sin(α) cos(α)

)
.(2.1)

the in-plane transformation induced by p is given by the rigid body motion

ϕ(p)(x̂) := ϕ(p; x̂) := R(α3)x̂+

(
z1

z2

)
(2.2)

with its inverse

ϕ−1(p;x) := ϕ(p)−1(x) := R(−α3)

(
x−

(
z1

z2

))
.

Utilizing ϕ we can write Ψ̃ on G0 as

Ψ̃(z, α)(x̂, g0
0(x̂)) =

(
ϕ(p)(x̂)

g0
0(x̂) + z3 + (α2, α1)R(α3)(x̂)

)
.

Thus G(z, α) can be written as a graph over its projection to the plane

Γ(p) := Γ(z, α) := {(y1, y2) | y ∈ G(z, α)} =
{
ϕ(p)x̂ | x̂ ∈ Γ0

}
= ϕ(p; Γ0).

Figure 2.2 illustrates the reference particle curve Γ0 and the transformed particle
curve Γ(p) = Γ(z1, z2, α3). The figure shows a top view that complements the side
view of Figure 2.1.

Γ0

Γ(z1, z2, α3)

(z1, z2)
α3

Figure 2.2. Top view of reference particle Γ0 and moved particle
Γ(z1, z2, α3).

The zeroth and first order boundary condition for the parameterized particle are
now obtained by pulling back the graph of u using the approximate transformation

Ψ̃(z, α)−1 and then imposing the conditions for g0
0 and g0

1 on Γ0. Noting that
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Γ0 = ϕ−1(p; Γ(p)) and defining gk(p;x) := g0
k(ϕ−1(p;x)) the boundary conditions

then read

u(x) = g0(p;x) + α2(x1 − z1) + α1(x2 − z2) + z3 on Γ(z1, z2, α3),

∂νu(x) = g1(p;x) + α2ν1 + α1ν2 on Γ(z1, z2, α3),

where ν1 and ν2 denote the components of an oriented unit normal on Γ(p).
The dependence of these boundary conditions on the parameters (z, α) can

be split naturally into the nonlinear dependence on the in-plane position p =
(z1, z2, α3) and the linear dependence on variations of the height and tilt given
by (z3, α1, α2). We will exploit the latter by minimizing the membrane energy with
respect to u and (z3, α1, α2) simultaneously. It can easily be seen, that this can be
written equivalently be factoring out (z3, α1, α2) from the boundary condition in
the sense that they are only enforced up to an arbitrary selection of (z3, α1, α2).
Thus the boundary conditions become parametric boundary conditions:

∃γ ∈ R3 :

{
u|Γ(p)(x) = g0(p;x) + γ1x1 + γ2x2 + γ3

∂νu|Γ(p)(x) = g1(p;x) + γ1ν1 + γ2ν2.
∀x ∈ Γ(p).(2.3)

Notice that, z3, α1, and α2 are no longer relevant for describing the particle’s
position and are now rather implicit to the boundary conditions. A particle in the
model is then solely determined by its reference curve Γ0, its reference boundary
conditions g0

0 , g
0
1 , and its position p = (z1, z2, α3) in the Euclidean plane.

Parameterized boundary conditions for particle–membrane coupling with vari-
able height and tilt have first been considered in [8]. They can be interpreted
physically as the particles being tied only to the membrane such that they can
freely change their height and tilt angle with the membrane. In contrast, the lat-
eral motion of particles is an independent process. This is motivated by the fact,
that the membrane has a bending rigidity in normal direction but behaves like a
viscous fluid in tangential direction.

In the case where multiple particles are present we state the constraints analo-
gously by imposing the above constraints for each particle separately.

3. Interaction energy

Before we can formulate the final model problem, we need to introduce some no-
tation. We also augment the parametric boundary conditions by Dirichlet boundary
conditions on the outer boundary ∂Ω which reflects the fact that we consider a small
almost flat patch of the full membrane. For a discussion of other possible bound-
ary conditions we refer to [8]. Particle–membrane coupling and outer boundary
conditions will both be formulated using simple linear operators in the following.

We consider N particles with reference curves Γ0
i , height profiles g0

i0 and slopes
g0
i1. Given a particle configuration p = (pi)i=1,...,N ∈ RN×3 we define the curves

Γi(pi) := {ϕ(pi; y) | y ∈ Γ0
i }

and Γ0 := Γ0
0 := ∂Ω. Their union is Γ(p) :=

⋃N
i=0 Γi(pi) where we use p0 := 0

and Γ0(p0) := Γ0 for the sake of a consistent notation. For i > 0 we denote the
set enclosed by Γi(pi) by Bi(pi) and the union of these is denoted by B(p) :=⋃N
i=1Bi(pi). We define the p-dependent reference domain as Ω(p) := Ω \B(p).
Based on this we define the interior of the set of feasible particle configurations

as

Λ◦ :=
{

p ∈ RN×3 | ∀i, j ∈ {1, . . . , N}, i 6= j : Γi(pi) ⊆ Ω◦ ∧ Bi(pi) ∩Bj(pj) = ∅
}

,

and set Λ := Λ◦.
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Now suppose p ∈ Λ. Then we define the trace operators

Ti(p) : H2(Ω(p)) −→ H3/2(Γ0
i )×H1/2(Γ0

i )

u 7−→
(

u|Γi(pi)
◦ ϕ(pi)

(∂νu|Γi(pi)
) ◦ ϕ(pi)

)
.

(3.1)

Here ν is the unit outer normal on Γ(p) with respect to the domain Ω(p). We define
the joint trace operator by T (p)u := (Ti(p)u)i=0,...,N . We also define g0

0k := 0,
g := ((g0

i0, g
0
i1))i=0,...,N , and gi = (g0

i0, g
0
i1).

In the next step we prove a useful reformulation of the parametric boundary
conditions as linear constraints. The aim is to get rid of the parameters γ in
conditions of the form (2.3) for the i-th particle by writing it as PiTi(p)u = Pigi
for a suitable projection operator

Pi : L
2(Γ0

i )× L2(Γ0
i ) −→ L2(Γ0

i )× L2(Γ0
i ).

For the domain boundary represented by i = 0 we can simply use P0(v1, v2) :=
(v1, v2). While all Pi are different, the construction works exactly the same for all
i ∈ {1, . . . , N}. Thus, to simplify the notation, we will drop the index i in the
following construction of Pi = P . Define for x̂ ∈ R2 the functions

η1(x̂) := x̂1, η2(x̂) := x̂2, η3(x̂) := 1,

spanning the space V := span{η1, η2, η3}.
We will define P such that {(v, ∂ν̂v) | v ∈ V } ⊂ L2(Γ0)×L2(Γ0) is the kernel of

P where ν̂ again denotes the unit normal to Γ0. To this end let P : L2(Γ0) → V
be the L2(Γ0)-orthogonal projection into V . Notice that P can easily be computed
using

P(v) = Θ

G−1

〈v, η1〉L2(Γ0)

〈v, η2〉L2(Γ0)

〈v, η3〉L2(Γ0)


where G ∈ R3×3 is the Gramian matrix with Gjk = 〈ηk, ηj〉L2(Γ0) and Θ : R3 →
V the coordinate isomorphism with Θ(ξ) = ξ1η1 + ξ2η2 + ξ3η3. Now we define
P : L2(Γ0)× L2(Γ0) −→ L2(Γ0)× L2(Γ0) by

P (v1, v2) =

(
v1 − P(v1)|Γ0

v2 − ∂ν̂P(v1)|Γ0

)
.

Since P is an orthogonal projection into V , we have

0 = P (v1, v2) ⇐⇒ v1 ∈ V and v2 = ∂ν̂v1.

Hence {(v, ∂ν̂v) | v ∈ V } ⊂ L2(Γ0)× L2(Γ0) is indeed the kernel of P .

Lemma 3.1 (parametric boundary conditions as linear constraint). Let i ∈ {1, . . . , N}.
Then Pi is a well-defined linear projection operator such that for all u ∈ H2(Ω(p))

PiTi(p)u = Pigi(3.2)

holds if and only if

∃γ ∈ R3 :

{
u|Γi

(x) = gi1(ϕ(pi)
−1(x)) + γ1x1 + γ2x2 + γ3

∂νu|Γi
(x) = gi2(ϕ(pi)

−1(x)) + γ1ν1 + γ2ν2

∀x ∈ Γi(pi).

(3.3)

For i = 0 equation (3.2) is equivalent to u|∂Ω = ∂νu|∂Ω = 0.

Proof. The statement for i = 0 is trivial, hence we only consider i ∈ {1, . . . , N} and
again drop the index i for simplicity. Well-definedness of P directly follows from the
fact that η1, η2, η3 ∈ L2(Γ0) are linearly independent such that P is well-defined.
P is linear, because it is the composition of linear maps.
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To show that P is a projection, let (v1, v2) ∈ L2(Γ0)×L2(Γ0) and set (w1, w2) =
P (v1, v2). Since P is an L2(Γ0)-orthogonal projection we have

P(w1) = P(v1)− P(P(v1)|Γ0) = P(v1)− P(P(v1)) = 0

and thus P 2(v1, v2) = P (w1, w2) = (w1, w2) = P (v1, v2).
Finally we show equivalence of (3.2) and (3.3). To this end we first note that

∂νη1 = ν1, ∂νη2 = ν2, and ∂νη3 = 0. Furthermore, since ϕ(p) is a rigid body
motion in R2, the normal vectors ν̂ and ν of Γ0 and Γ(p) and corresponding normal
derivatives transform according to

ν(ϕ(p)(x̂)) = (Dϕ(p))(x̂)ν̂(x̂), ∂ν̂(v ◦ ϕ(p)) = (∂νv) ◦ ϕ(p),

where Dϕ(p) denotes the Jacobian of the map ϕ(p). Using the trace operator and
the formulas for ∂νηk from above, we can write (3.3) compactly as

∃γ ∈ R3 : ((T (p)u)− g) ◦ ϕ(p)−1 =

3∑
k=1

γk

(
ηk
∂νηk

)
.

By transformation with ϕ(p) we find that this is equivalent to

∃γ ∈ R3 : (T (p)u)− g =

3∑
k=1

γk

(
ηk ◦ ϕ(p)

(∂νηk) ◦ ϕ(p)

)
=

3∑
k=1

γk

(
ηk ◦ ϕ(p)

∂ν̂(ηk ◦ ϕ(p))

)
which can also be written as

(T (p)u)− g ∈
{

(v, ∂ν̂v) | v = w ◦ ϕ(p), w ∈ V
}

=
{

(v, ∂ν̂v) | v ∈ V
}
.

Here we used the fact, that the transformation of the space V of affine linear
functions by ϕ(p) is V itself. Since the right-hand-side is the kernel of P , the last
inclusion is equivalent to

P (T (p)u− g) = 0

and thus (3.2). �

For notational convenience we define Pv := (Pivi)i=0,...,N . The set of feasible
membranes given the particle configuration p is defined by

U(p) :=
{
u ∈ H2(Ω(p)) | P (T (p)u− g) = 0

}
.

We use the shorthand J(p, u) := J(Ω(p), u) to define the interaction energy

J (p) := min
u∈U(p)

J(p, u)

where we use the convention min(∅) := +∞. Altogether, our model problem then
reads

min
p∈Λ
J (p).

In order to ensure well-posedness of the minimization problems on U(p) we will
from now on assume that g is smooth enough. Then the following lemma allows to
show well-posedness using Lax–Milgram’s theorem.

Lemma 3.2. Let p ∈ Λ. Then the affine subspace U(p) can be written as U(p) =
U0(p) + ĝ for a closed subspace U0(p) of H2(Ω(p)) and some ĝ ∈ H2(Ω(p)). Fur-
thermore the bilinear form

a(u, v) =

ˆ
Ω(p)

κ∆u∆v + σ∇u · ∇xdx

is H2(Ω(p))-elliptic on U0(p).
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Proof. First let ĝ ∈ H2(Ω(p)) a function such that T (p)ĝ = g. Then it is clear that

U0(p) := U(p)− ĝ =
{
u ∈ H2(Ω(p)) | PT (p)u = 0

}
is a subspace of H2(Ω(p)). Continuity of the trace operator T (p) and the L2-
projection P implies that P ◦ T (p) is continuous and hence U0(p) and U(p) are
closed.

Continuity of a(·, ·) on U0(p) and U(p) is obvious. To show coercivity let u ∈
U0(p). First we note that u = ∂νu = 0 on ∂Ω. Using similar arguments as in the
proof of Lemma 3.1 we find that for each i ∈ {1, . . . , N} the trace of u on Γi(pi)
coincides with some affine linear function wi ∈ V . Hence, in each Bi(pi) we can
extend u by the corresponding function wi to obtain a function ũ ∈ H2

0 (Ω) which
coincides with u in Ω(p) and is affine linear in each Bi(pi).

Using the notation ‖ · ‖0,M and | · |2,M for the L2-norm and the H2-half norm
on the domain M , respectively, we now have

‖∆u‖20,Ω(p) = ‖∆ũ‖20,Ω = |ũ|22,Ω = |u|22,Ω(p).

In the first and third step we used that all second order partial derivatives of
ũ|Bi(pi)

= wi vanish on Bi(pi). The second step follows from ũ ∈ H2
0 (Ω) (see, e.g.,

[11, Lemma 5]). Finally we obtain for some constant C > 0 independent of u

a(u, u) ≥ κ−1‖∆u‖20,Ω(p) = κ−1|u|22,Ω(p) ≥ Cκ
−1‖u‖2H2(Ω(p)).

The last bound follows from the fact that U0(p) does not contain any nontrivial
affine linear functions due to the boundary conditions on ∂Ω (see, e.g., [11, Corol-
lary 2]). �

4. Differentiation of the reduced interaction energy

In this section we investigate the differentiability of J on Λ◦. First we derive a
technical result which shows that the admissible membrane sets U(p) are isomorphic
and which allows us to pose our problem locally over a fixed reference domain Ω(p).
Afterwards we apply the implicit function theorem to prove differentiability of the
reduced interaction potential and use matrix calculus to derive an explicit and
numerically feasible expression for the first order derivatives.

4.1. Trace-preserving diffeomorphisms between the reference domains.
In this part we construct a local diffeomorphism between the domains Ω(p) that
preserves the boundary conditions. The basic setting is, that given a particle con-
figuration p ∈ Λ◦ we want to investigate the problem under changes of p along a
given direction q ∈ RN×3. To this end we will construct a diffeomorphism X (q)
from Ω(p) to Ω(p + q) and show that is has the desired properties. The construc-
tion is based on ordinary differential equations (ODEs) and in particular requires
the following result from ODE theory.

For a function F depending on multiple arguments, we denote by ∂F
∂a the de-

rivative with respect to the argument denoted by a. If one of the arguments is a
spatial coordinate in R2 we denote the m-th order derivative with respect to the
spatial coordinate by Dm.

Lemma 4.1. Let B ⊆ RN×3 be an open connected set, m > 1 and let V ∈
Cm([0, 1] × B × R2,R2) be Lipschitz-continuous. For q ∈ B and x ∈ R2 let
η(·, q, x) : [0, 1]→ R2 be the unique solution of the ordinary differential equation

∂η

∂t
(t, q, x) = V(t, q, η(t, q, x)), η(0, q, x) = x.

Then the map X defined by X (q, x) := η(1, q, x) fulfills X ∈ Cm(B × R2,R2) and
is an m-diffeomorphism onto its image for all q ∈ B.
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For all q̂ ∈ RN×3 with ηq̂ ∈ C([0, 1]× B × R2,R2) as the unique solution of

∂ηq̂
∂t

(t, q, x) =
∂V
∂q

(t, q, η(t, q, x)) q̂ +DV(t, q, η(t, q, x))ηq̂(t, q, x)

ηq̂(0, q, x) = 0
(4.1)

holds ∂q̂X (q, x) = ηq̂(1, q, x). Also, for all y ∈ R2 with ηy ∈ C([0, 1]× B × R2,R2)
as the unique solution of

∂ηy
∂t

(t, q, x) = DV(t, q, η(t, q, x))ηy(t, q, x), ηy(0, q, x) = y(4.2)

holds ∂yX (q, x) = ηy(1, q, x).

Proof. The global existence and uniqueness of η is a consequence of the Lipschitz-
continuity of V and the well-known Picard–Lindelöf theorem. In particular, X is
well-defined.

The smoothness of X and the characterization of its derivatives is a consequence
of [13, Theorem 3.1, Theorem 4.1]

Concerning the inverse of X (q), we note that η̃(t,q, x) := η(1 − t,q, x) solves
the equation

∂η̃

∂t
(t,q, x) = −V(1− t,q, η̃(1,q, x)), η̃(0,q, x) = η(1,q, x) = X (q, x).

Since η̃(1,q, x) = x, the inverse of X (q) is given by X (q)−1 := η̃(1,q, ·). Again,
the smoothness of V implies m-smoothness of η̃, and consequently X is an m-
diffeomorphism. �

In the following we restrict ourselves to a special class of vector fields that is
described in the result below. We show afterwards that the diffeomorphisms induced
by such vector fields have a certain trace preserving property that again can be used
to construct an isomorphism between the admissible membrane sets.

Lemma 4.2. Let p ∈ Λ◦ and m ≥ 1. Then there exists an open neighborhood
B ⊆ RN×3 of 0 ∈ RN×3 and a Lipschitz-continuous map V ∈ Cm([0, 1]×B×R2,R2)
such that for all t ∈ [0, 1], q ∈ B, and i ∈ {0, . . . , N} holds

V(t, q, ·)|Γi(pi+tqi)
=

(
qi1
qi2

)
+ qi3

(
0 −1
1 0

)(
· −
(
pi1 + tqi1
pi2 + tqi2

))
DV(t, q, ·)|Γi(pi+tqi)

= qi3

(
0 −1
1 0

)
.

(4.3)

Proof. This is a consequence of the Whitney extension theorem, see Appendix
Theorem 7.1. It uses the fact that the Γi are pairwise disjoint and that the right-
hand-sides in (4.3) smoothly extend to R2. �

Next we show that X (q) is indeed a trace preserving diffeomorphism from Ω(p)
to Ω(p + q).

Lemma 4.3. Let V be as in Lemma 4.2 for m ≥ 2 and let X as in Lemma 4.1 be
induced by V. Then X (0, ·) = idR2 , X (q,Ω(p)) = Ω(p+q), and for all u ∈ H2(Ω(p))
holds

T (p)u = T (p + q)(u ◦ X (q)−1).(4.4)

Proof. From V(t, 0, ·) = 0 follows immediately that X (0, x) = η(1, 0, x) = x, i. e.
X (0) = idR2 .

We now prove (4.4). First we show that X preserves the boundaries. Let i ∈
{1, . . . , N} and x ∈ Γi(pi) and define σ(t) := ϕ(pi + tqi;ϕ

−1(pi;x)). We will show
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that η(t,q, x) = σ(t) solves the ODE with right-hand-side V from Lemma 4.2. To
this end we will make use of the properties

R(α+ β) = R(α)R(β), R(α)−1 = R(−α), R′(α) =

(
0 −1
1 0

)
R(α)

of the rotation matrix R. Inserting the definition of ϕ and ϕ−1 into σ(t) we get

σ(t) = R(tqi3)

(
x−

(
pi1
pi2

))
+

(
pi1 + tqi1
pi2 + tqi2

)
.

Since we have σ(t) ∈ Γi(pi + tqi) by construction, we can use the formula (4.3) for
V on Γi(pi + tqi). Inserting σ(t) then gives

V(t,q, σ(t)) =

(
qi1
qi2

)
+ qi3

(
0 −1
1 0

)(
σ(t)−

(
pi1 + tqi1
pi2 + tqi2

))
=

(
qi1
qi2

)
+ qi3

(
0 −1
1 0

)
R(tqi3)

(
x−

(
pi1
pi2

))
=
∂σ

∂t
(t).

Hence η(t,q, x) = σ(t) solves the ODE and we have

X (q, x) = σ(1) = ϕ
(
pi + qi;ϕ

−1(pi;x)
)

.(4.5)

Recalling the convention q0 := p0 := 0, this is also true for i = 0.
In particular holds X (q,Γi(pi)) = Γi(pi + qi). Another immediate consequence

of (4.5) is – now recalling the definition of the rotation matrix R in (2.1) – that

ν|Γi(pi+qi)
(X (q, x)) = R(qi3)ν|Γi(pi)

(x)(4.6)

for x ∈ Γi(pi). And, similarly, using the properties (4.3) of V also allows us to
compute ∂X

∂x (q, x) on Γi(pi) from solving the ODE (4.2). The result is

DX (q, x) = R(qi3).(4.7)

Now, let ũ := u ◦ X (q)−1. From (4.5) we infer for x ∈ Γi(pi + qi) that

ũ(x) = u
(
ϕ(pi;ϕ

−1(pi + qi;x)
)

.(4.8)

Also, from (4.6) and (4.7) we infer for x ∈ Γi(pi + qi) that

∂ν ũ(x) = Du(X−1(q;x))
∂X−1(q;x)

∂x
ν|Γi(pi+qi)

(x)

= Du(X−1(q;x))R(−qi3)R(qi3)ν|Γi(pi)
(X−1(q;x))

= ∂νu(X−1(q;x))

= ∂νu
(
ϕ(pi;ϕ

−1(pi + qi;x))
)

.

(4.9)

Recalling the definition of the trace operators, (3.1), we have for almost-every
x ∈ Γ0

i by (4.8)

Ti1(p + q)ũ(x) = ũ(ϕ(pi + qi;x)) = u (ϕ(pi;x)) = Ti1(p)u(x)

and by (4.9)

Ti2(p + q)ũ(x) = ∂ν ũ(ϕ(pi + qi;x)) = ∂νu (ϕ(pi;x)) = Ti2(p)u(x).

Altogether this proves equation (4.4).
In order to show the equality X (q,Ω(p)) = Ω(p + q) we define the set

Z = {(t, η(t,q, x)) | x ∈ ∂Ω(p)} .

Now let x0 ∈ Ω(p)◦ and assume that X (q, x0) = η(1,q, x0) /∈ Ω(p + q). By conti-
nuity of X this would imply that there exists a t̂ ∈ [0, 1] such that η(t̂,q, x0) ∈ Z
and therefore, by definition of Z, there would exist a x1 ∈ ∂Ω(p) such that
η(t̂,q, x0) = η(t̂,q, x1). As of x0 6= x1 this would be a contradiction to the unique-
ness of η. �
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Lemma 4.4. Let X be as in Lemma 4.3. Then for all q ∈ B the map

Φ(q) : U(p) −→ U(p + q), u 7−→ u ◦ X (q)−1

is well-defined and an isomorphism.

Proof. From Lemma 4.3 we know for every q ∈ B that the restriction X (q, ·)|Ω(p)

is a 2-diffeomorphism onto Ω(p + q). Because Ω(p) is compact we can assume
without loss of generality that det ∂

∂xX (q, x) is uniformly bounded, i. e. that there

exists a c ∈ R>0 such that for all q ∈ B and x ∈ Ω(p) holds c ≤
∣∣det ∂

∂xX (q, x)
∣∣ ≤

1
c . Elsewise we may replace B by an appropriate sub-neighborhood. Hence, [1,
Theorem 3.35] is applicable and the map

Φ̃(q) : H2(Ω(p)) −→ H2(Ω(p + q)), u 7−→ u ◦ X (q)−1

is well-defined and an isomorphism, and in particular also the restriction Φ(q) =

Φ̃(q)|U(p) is well-defined and an isomorphism onto its image.
It remains to show that range(Φ(q)) = U(p + q). Suppose u ∈ U(p) and

ũ ∈ U(p + q). Because of the trace preserving property (4.4) and by definition of
U(p) and U(p + q) it follows that Φ(q)u = u ◦ X (q) ∈ U(p + q) and Φ(q)−1ũ =
ũ ◦ X (q) ∈ U(p), and so range(Φ(q)) = U(p + q). �

4.2. Differentiability. In this part we use the maps X from Lemma 4.3 and Φ
from Lemma 4.4 to transform the domain of definition for the functions J(p + q)
from U(p + q) to U(p). Afterwards we apply the implicit function theorem to
derive a differentiability result.

For q ∈ B and u ∈ U(p) the transformed energy is defined as

Ĵ(q, u) := J(p + q,Φ(q, u)),(4.10)

and the transformed reduced interaction energy is

Ĵ (q) := min
v∈U(p)

Ĵ(q, v).

As in Lemma 3.2 we write the affine linear subspace U(p) as U(p) = U0 + ĝ
where U0 ⊆ H2(Ω(p)) is a linear subspace and ĝ ∈ H2(Ω(p)) is a function such
that T (p)ĝ = g.

For notational convenience we defineDk := ∂k

∂xk to be the differential with respect
to the spatial coordinates.

Lemma 4.5. Let q ∈ B and define

A(q, x) := |detDX (q, x)| (DX (q, x))−1(DX (q, x))−T .

It holds

Ĵ(q, u) =
1

2

ˆ
Ω(p)

κ
div (A(q)∇u)

2

|detDX (q)|
+ σ ‖∇u‖2A(q) dx(4.11)

and Ĵu ∈ Cm−2(B × U(p), U ′0).

Proof. Equation (4.11) is a direct application of Lemma 7.3 applied to X = X (q).
Furthermore, for all v ∈ H2(Ω) we have

Ĵu(q, u; v) =

ˆ
Ω(p)

κ
div(A(q)∇u) div(A(q)∇v)

|detDX (q)|
+ σA(q)∇u · ∇v dx.

As of X ∈ Cm we know that DX (q) and D2X (q) are both (m− 2) times continu-
ously differentiable. Because the X (q) are diffeomorphisms with X (0) and because

X is continuous we have det(DX (q)) > 0. Because Ω(p) is compact, we can assume
without loss of generality that there exists a c ∈ R>0 such that det(DX (q)) > c,
else we replace B by a suitable sub-neighborhood. Consequently, the integrand of
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Ĵu is (m − 2) times differentiable with respect to q. Moreover, the integrand is
even smooth with respect to u and hence application of the dominated convergence
theorem yields Ĵu ∈ Cm−2(B × U(p), U ′0). �

Lemma 4.6. There exists a neighborhood B̂ of 0 ∈ RN×3 such that J ∈ Cm−2(B̂+

p) and for all q ∈ B̂ and multi-indices α with |α| ≤ m− 2 holds

∂α

∂pα
J (p + q) =

∂α

∂qα
Ĵ (q).

In particular, if m ≥ 3 and u = arg minv∈U(p) J(p, v) then

∂

∂p
J (p) =

∂

∂q
Ĵ(0, u).(4.12)

Proof. Let Ĵu := ∂
∂u Ĵ and Ĵuu := ∂2

∂u2 Ĵ . Define

F : B × U0 −→ U ′0, (q, v) 7−→ Ĵu(q, v + ĝ).

Suppose that u ∈ U(p) is the unique solution of minv∈U(p) J(p, v), and define
û := u − ĝ. Then by (4.10) and because of Φ(0)u = u it also follows that u is the

unique minimizer of Ĵ(0, ·) over U(p) and therefore and therefore

F (0, û) = Ĵu(0, û+ ĝ) = Ĵu(0, u) = 0 ∈ U ′0.

Moreover, for all v, w ∈ U0 holds

Fu(0, û; v, w) = Ĵuu(0, u; v, w) =

ˆ
Ω(p)

κ∆v∆w + σ∇v · ∇w dx.

This defines an elliptic bilinear form over U0 (cf. Lemma 3.2) and hence Fu(0, û)
is invertible in U0 by virtue of Lax–Milgram’s theorem. Application of the implicit
function theorem, Theorem 7.2, yields a neighborhood B̂ ⊆ B of 0 and a function
û ∈ Cm−2(B̂, U0) such that û(0) = û and F (0, û(q)) = 0 for all q ∈ B̂. In particular,

Ĵ (q) = Ĵ(q, û(q) + ĝ) for all q ∈ B. From J (p + q) = Ĵ (q) we infer

∂α

∂pα
J (p) =

∂α

∂qα
Ĵ (q)

for all multi-indices α with |α| ≤ m− 2. For m ≥ 3 this in particularly implies

∂

∂p
J (p) =

∂

∂q
Ĵ(0, û(0) + ĝ) + Ĵu(0, û(0) + ĝ)

∂

∂q
û(0) =

∂

∂q
Ĵ(0, u).

�

4.3. A numerically feasible representation of the first derivative. In the
following paragraphs we discuss a way to derive a numerically feasible expression
for the first order derivative ∂eJ (p) of the reduced interaction energy J in p ∈ Λ◦

in direction of an e ∈ RN×3.
An important component of the integrand’s derivative is ∂eX (0) and its spatial

derivatives. From (4.1) we know that this derivative can be evaluated by solving an
ODE. This is not practically feasible, however, because those computations would
be too expensive. Besides, it also requires knowledge of the vector field V, which
may be hard to construct explicitly. Instead we restrict ourselves to a subclass of
vector fields in the sense of Lemma 4.2 for which ∂eX (0) is can be computed easily
from information that is available a-priori.
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To this end, suppose a vector field V : Ω(p)→ R2 such that for i ∈ {0, . . . , N}

V |Γi(pi)
=

(
ei1
ei2

)
+ ei3

(
0 −1
1 0

)(
· −
(

pi1
pi2

))
DV |Γi(pi)

= ei3

(
0 −1
1 0

)(4.13)

where we again use the convention e0 := 0. Usually it is easy to construct such a
V in a way that it is also numerically accessible. Next we extend this to a vector
field V such that (4.3) is fulfilled, where we can make the simplifying assumption
that B is a ball of radius r ∈ R>0, and such that for all t ∈ [0, 1] and λ ∈ (0, r) the
scaling properties

V(t, λe, x) =
λ

r
V
(
λ

r
t, re, x

)
V(0, re, x) = rV (x)

(4.14)

hold.
In view of (4.1) and given x ∈ Ω(p), we have ∂eX (0, x) = ηe(1, x) where ηe(·, x)

solves the ODE

∂ηe
∂t

(t, x) = ∂eV(t, 0, η(t, 0, x)) +DV(t, 0, η(t, 0, x))ηe(t, x), ηe(0, x) = 0.

As of V(t, 0, ·) ≡ 0 we have η(t, 0, x) = x and DV(t, 0, η(t, 0, x)) = 0. Furthermore,
from (4.14) we are able to conclude

∂eV(t, 0, x) = lim
λ↘0

V(t, λ e, x)− V(t, 0, x)

λ
= lim
λ↘0

V
(
λ
r t, re, x

)
r

= V (x).

Therefore, ηe is the solution of the ODE

∂ηe
∂t

(t, x) = V (x), ηe(0, x) = 0,

which implies ηe(t, x) = t V (x) and hence also ∂eX (0) = V .
When computing the derivative, we will make use of the following identities from

matrix calculus.

Lemma 4.7. Suppose M ∈ C1(Rd,Rn×n) and that M(x) is invertible for all x ∈
Rd. Then

∂

∂xi
det(M(x)) = det(M) Tr

(
M(x)−1 ∂

∂xi
M(x)

)
(4.15)

∂

∂xi
M(x)−1 = −M(x)−1 ∂M(x)

∂xi
M(x)−1(4.16)

∂

∂xi
Tr(M(x)) = Tr

(
∂

∂xi
M(x)

)
.(4.17)

Proof. See literature on matrix calculus, e. g. [21, Chapter 9]. �

Lemma 4.8. Let V := ∂eX (0), u := arg minv∈U(p) J(p, u), and

A′(0) := div(V )I −DV −DV T .

Then

∂eJ (p) =

ˆ
Ω(p)

κ∆u

(
A′(0) : D2u−∆V · ∇u− 1

2
div(V )∆u

)
dx

+

ˆ
Ω(p)

σ

2
‖∇u‖2A′(0) dx.

(4.18)
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Proof. From (4.12) we know that ∂eJ (p) = ∂eĴ(0, u) and hence it suffices to
compute the latter. In the following we use without further emphasis the identities
DX (0, ·) ≡ idR2 and detDX (0) ≡ 1. Based on this and on the identities (4.15) and
(4.16) we have

∂

∂e
det(DX (q))

∣∣∣∣
q=0

= det(DX (q)) Tr

(
DX (q)−1 ∂

∂e
DX (q)

)∣∣∣∣
q=0

= Tr

(
∂

∂e
DX (q)

)
= div(V )

(4.19)

∂

∂e
DX−1(q)

∣∣∣∣
q=0

= −DX (q)−1 ∂DX (q)

∂e
DX (q)−1

∣∣∣∣
q=0

= −∂DX (0)

∂e
= −DV .

(4.20)

By definition of A we have

A(q) = det(DX (q))DX (q)−1DX (q)−T ,

where we again used det(X (q)) > 0. The product rule together with the identities
(4.19) and (4.20) then leads us to

∂

∂e
A(p)

∣∣∣∣
q=0

=
∂ det(DX (q))

∂e

∣∣∣∣
q=0

DX (q)−1DX (q)−T

+ det(DX (q))
∂DX (q)−1

∂e

∣∣∣∣
q=0

DX (q)−T

+ det(DX (q))DX (q)−1 ∂DX (q)−T

∂e

∣∣∣∣
q=0

= div(V )I −DV −DV T

= A′(0).

(4.21)

Equation (4.21) gives us, using ∂i := ∂
∂xi

,

∂iA′(0) =

(
2∑
k=1

∂ikVk

)
I − ∂iDV − ∂iDV T

and so

2∑
i=1

∂iA′ij(0) =

2∑
i,k=1

∂ikVkδij −
2∑
i=1

(∂ijVi + ∂iiVj)

=

2∑
k=1

∂jkVk −
2∑
i=1

(∂ijVi + ∂iiVj)

=

2∑
i=1

(
∂jiVi − ∂ijVi −

2∑
i=1

∂iiVj

)
= −∆Vj

(4.22)
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for j ∈ {1, 2}. Noting

div(A(q)∇u) =

2∑
i=1

∂i

 2∑
j=1

A(q)ij∂ju


=

2∑
i,j=1

(A(q)ij∂iju+ ∂iA(q)ij∂ju)

= A(q) : D2u+

2∑
j=1

(
2∑
i=1

∂iA(q)ij

)
∂ju

we therefore conclude

∂

∂e
div(A(q)∇u)

∣∣∣∣
q=0

= A′(0) : D2u−∆V · ∇u(4.23)

where ∆V := (∆Vi)i=1,...,n ∈ R2.
We recall

Ĵ(q, u) =
1

2

ˆ
Ω(p)

κ
div(A(q)∇u)2

detDX (q)
+ σA(q)∇u · ∇udx.

Combining (4.19), (4.21) and (4.23) yields

∂

∂e
Ĵ(q, u)

∣∣∣∣
q=0

=
1

2

ˆ
Ω(p)

2κdiv(A(q)∇u)
∂

∂e
div(A(q)∇u)

∣∣∣∣
q=0

dx

− 1

2

ˆ
Ω(p)

κ
div(A(q)∇u)2

(detDX (q))
2

∂

∂e
det(DX (q))

∣∣∣∣
q=0

dx

+
1

2

ˆ
Ω(p)

σ
∂

∂e
A(q)

∣∣∣∣
q=0

∇u · ∇udx

=

ˆ
Ω(p)

κ∆u

(
A′(0) : D2u−∆V · ∇u− 1

2
div(V )∆u

)
+
σ

2
‖∇u‖2A′(0) dx,

which proves the claim as stated. �

In general, the exact minimizer for J (p) is unknown and can only be approxi-
mated. The following result gives an upper bound on the approximation error.

Lemma 4.9. Let u = arg minv∈U(p) J(p, v) and ũ ∈ H2(Ω(p)). Then there exists
a constant C > 0 such that∣∣∣∂eĴ(0, u)− ∂eĴ(0, ũ)

∣∣∣ ≤ C ‖V ‖C2(Ω(p)) ‖u+ ũ‖H2(Ω(p)) ‖u− ũ‖H2(Ω(p))

Proof. Note from (4.18) that Ĵu is induced by a non-symmetric bilinear form, i. e.

there exists a bilinear form a : H2(Ω(p))×H2(Ω(p))→ R such that Ĵu(v) = a(v, v).
Upon investigation of the coefficients of a it is readily seen that there exists a
C ∈ R>0 such that for all v, w ∈ H2(Ω(p))

|a(v, w)| ≤ C ‖V ‖C2(Ω(p)) ‖v‖H2(Ω(p)) ‖w‖H2(Ω(p)) .

Now, consider∣∣∣∂eĴ(0, u)− ∂eĴ(0, ũ)
∣∣∣ = |a(u, u)− a(ũ, ũ)|

=

∣∣∣∣12a(u+ ũ, u− ũ) +
1

2
a(u− ũ, u+ ũ)

∣∣∣∣
≤ C ‖V ‖C2(Ω(p)) ‖u+ ũ‖H2(Ω(p)) ‖u− ũ‖H2(Ω(p)) .
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Figure 5.1. Left: Elastic energy for two circular inclusions as a
function of their distance. Right: Comparison of difference quo-
tients with the derivative formula (4.18) for this function.

�

It is important to note that while the derivative ∂
∂eJ (p) itself is independent of

V , the actual choice of V very well enters the approximation error. Therefore it is
desirable to construct a V with a bounded C2-norm.

5. Numerical Examples

In this section we illustrate our formula for the derivative by numerical com-
putations for various particle configurations. Here we always defined the bending
rigidity κ = 1 and specified no surface tension σ = 0. The optimal membrane
shapes u(p) for fixed particle configurations p were approximated by finite element
discretizations uh(p) ≈ u(p). A possible discretization using a penalty approach
is discussed in [12] where we also gave a proof of convergence. The vector fields
V that occur in the derivative were explicitly constructed in such a way that they
both fulfill (4.13) and can be represented as finite element functions within the
used discretization. The expressions for the discretized derivatives were evaluated
exactly by using standard quadrature methods.

5.1. Two circular particles. Let Ω = [−10, 10]2 and consider two circular parti-
cles of radius one B1, B2 that each induce on Γi := ∂Bi the boundary conditions

u|Γi(y) = 0 + γi1y1 + γi2y2 + γi3, ∂νu|Γi(y) = 1 + γi1ν1(y) + γi2ν2(y).

We are interested in the interaction energy as a function of the distance of these
two particles and therefore we define

q̂ :=

(
−1 0 0
1 0 0

)
, q :=

q̂

‖q̂‖
, f(r) := J (rq).

In this formulation r is the distance between the particle centers and the particles
touch for r = 2.

On the left picture of Fig. 5.1 we depict the approximate values of f(r) for
2.06 ≤ r ≤ 7.94 that we obtained from our discretization, and on right we show
two approximations of f ′(r). One approximation was obtained by computing the
difference quotients from the function values and the other one was obtained from
the derivative formula (4.18).
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Figure 5.2. Left: Level set view of the optimal membrane shape
for the particle configuration p. Right: Rendered 3D view.

Figure 5.3. Left: Plot of f1(t). Right: Comparison of difference
quotients with the derivative formula (4.18).

5.2. Two peanut shaped particles. Let Ω = [−5, 5]2 and consider particles
whose shape is defined by the zero level set of

1

20
− x4 +

19

20
x2 − 2x2y2 − 19

20
y2 − y4.

We assume that each particle induces the following boundary conditions:

u|Γi
(y) = 0 + γi1y1 + γi2y2 + γi3, ∂νu|Γi

(y) = ∂νg(y) + γi1ν1(y) + γi2ν2(y)

where g(y) := 1
2 (y2

1 + y2
2). Since the particles are not rotationally symmetric,

the interaction energy might not just depend on the particle distance, but on the
distances in x- and y-direction and the relative rotation angle. To investigate all
three directions we define

p =

(
−2.5 0 0
2.5 0 0

)
, q1 =

(
1 0 0
0 0 0

)
, q2 =

(
0 1 0
0 0 0

)
, q3 =

(
0 0 1
0 0 0

)
and fi(t) := J (p + tqi). Then f1, f2, and f3 represent the interaction energy along
changes of the relative distance in x- and y-direction and of the relative rotation,
respectively.

In Fig. 5.2 we show an example of an optimal membrane shape given the particle
configuration p as obtained from our discretization. In Fig. 5.3, Fig. 5.4 and Fig. 5.5
we evaluate the functions fi(t) for −1.4 ≤ t ≤ 1.4 and compare the approximation
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Figure 5.4. Left: Plot of f2(t). Right: Comparison of difference
quotients with the derivative formula (4.18).

Figure 5.5. Left: Plot of f3(t). Right: Comparison of difference
quotients with the derivative formula (4.18).

of f ′i(t) by difference quotients with the approximation obtained from evaluating
the derivative formula (4.18).

Also in this setting we observe that our formula is generally in good agreement
with the approximation by difference quotients.

5.3. Gradient flow. An immediate application of our findings is to employ a gra-
dient flow

p′(t) = −∇J (p(t)), p(0) = p0

in order to investigate stable particle configurations.
In Fig. 5.6 we illustrate some time steps of the flow for two elliptic particles of

different size on a square domain Ω. Here we assume the boundary conditions

u|Γi(y) = γi, ∂νu|Γi(y) = 1

for each particle. The computations use a discretization of the gradient flow by an
explicit Euler scheme

pk+1 := pk − τ∇J (pk)

with a fixed time step size τ > 0. The gradient ∇J (pk) is approximated using
the derivative formula (4.18) for a finite element approximation of u. In fact, the
time discrete gradient flow can be viewed as gradient descent method with fixed
step size for the computation of minimizers of J . Notice, that the simple gradient
flow approach was used to simplify the presentation and that more sophisticated
iterative methods based on first order derivatives could be used.
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Figure 5.6. Time steps p0,p5,p10, and p75 of a discretized gra-
dient flow for J with two elliptic particles (from left to right, top
to bottom).

For the given setting with initially unaligned particles, the gradient flow leads to
a configuration where the long axes of the elliptic particles are aligned. Furthermore
the distance of the particles is initially reduced and remains unchanged in a later
stage indicating that the implicit particle–particle interaction is attractive and that
this configuration is (close to) a local minimizer of J .

6. Conclusion

This paper considered a typical model for membrane-mediated particle inter-
actions where the membrane is described as a continuous surface and where the
particles are treated as discrete entities that couple to the membrane through cer-
tain constraints. Based on methods from shape calculus and the implicit function
theorem we were able to give a proof for the differentiability of the interaction
energy. Matrix calculus then enabled us to derive a formula for the first deriva-
tive that is numerically feasible in the sense that it can be evaluated from a finite
element approximation of the optimal membrane shape for a fixed particle configu-
ration and that it is possible to bound the approximation error of the derivative in
terms of the discretization error of the finite element method. Numerical examples
suggest the correctness of our results.
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We emphasize that the approach chosen in this paper is rather general and we
expect that it can be used to prove similar results for other model formulations, too.
Furthermore, as the differentiability proof is based on the implicit function theorem
this readily gives constructive instructions on how to derive analogous formulas for
higher order derivatives.

Our results allow the efficient differentiation of the interaction potential and may
therefore be applied in order to develop new algorithms for investigating stable
particle configurations.

7. Appendix

Theorem 7.1 (Whitney extension theorem). Let A ⊆ Rn be closed, m ∈ N∪{∞},
and fα : A → R for all multi-indices α ∈ Nn with |α| ≤ m. Suppose that for all
multi-indices α with |α| ≤ m and all x, x′ ∈ A holds

fα(x′) =
∑

|β|≤m−|α|

fα+β(x)

β!
(x′ − x)β +Rα(x′;x)

where Rα : A × A → R is such that for all x0 ∈ A and all ε ∈ R>0 there exists
δ ∈ R>0 such that

∀x, x′ ∈ A : ‖x− x0‖ < δ ∧ ‖x′ − x0‖ < δ =⇒ |R(x′;x)| ≤ ‖x− x′‖m−|α| ε.

Then there exists a function F ∈ Cm(Rn) such that ∂αF (x) = fα(x) for all x ∈ A
and all multi-indices α with |α| ≤ m.

Proof. See [25, Theorem I]. �

Theorem 7.2 (Implicit function theorem). Let X, Y , Z real Banach spaces, A ⊆
X ×Y open, F : A→ Z and (x0, y0) ∈ A such that F (x0, y0) = 0. Suppose that the
partial Fréchet-derivative Fy exists on A, and F and Fy are continuous in (x0, y0).

If Fy(x0, y0) is invertible, then there exists an open neighborhood B(x0) and a
unique function y : B(x0) → Y such that (x, y(x)) ∈ A and F (x, y(x)) = 0 for
all x ∈ B(x0). Furthermore, if F ∈ Cm(A,Z) for some m ∈ N, then also y ∈
Cm(B, Y ).

Proof. See [17]. �

Lemma 7.3 (Transformation of derivatives). Suppose X : Ω1 → Ω2 is a diffeomor-
phism and let u ∈ H2(Ω1). Then

ˆ
Ω2

κ(∆(u ◦X−1))2 + σ
∥∥∇(u ◦X−1)

∥∥2
dx =

ˆ
Ω1

κ
div (A∇u)

2

|detDX|
+ σ ‖∇u‖2A dx

where

A(x) := |detDX(x)| (DX(x))−1(DX(x))−T

and

‖∇u(x)‖2A(x) := ∇u(x)TA(x)∇u(x).

Proof. First note that for x ∈ Ω2 and v ∈ H1(Ω)

∇(v ◦X−1)(x) = (D(X−1)(x))T∇v(X−1(x)) = (DX(X−1(x)))−T∇v(X−1(x))

(7.1)
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holds almost-everywhere. Equation (7.1) together with the transformation formula
applied to the diffeomorphism X we obtain for all v, w ∈ H1(Ω)

ˆ
Ω2

(
∇(v ◦X−1)(x)

)T ∇(w ◦X−1)(x) dx

=

ˆ
Ω2

∇v(X−1(x))T (DX(X−1(x)))−1(DX(X−1(x)))−T∇w(X−1(x)) dx

=

ˆ
Ω1

∇v(x)TDX(x)−1DX(x)−T∇w(x) |detDX(x)| dx

=

ˆ
Ω1

〈∇v(x),∇w(x)〉A(x) dx.

(7.2)

By integration by parts and (7.2) we know that for all φ ∈ C∞0 (Ω1) holds

ˆ
Ω2

∆(u ◦X−1)(x) (φ ◦X−1)(x) dx

= −
ˆ

Ω2

∇(u ◦X−1)(x) · ∇(φ ◦X−1)(x) dx+

ˆ
∂Ω2

∂ν(u ◦X−1)(x) (φ ◦X−1)(x) dx

= −
ˆ

Ω1

(A(x)∇u(x)) · ∇φ(x) dx

=

ˆ
Ω1

div (A(x)∇u(x)) φ(x) dx−
ˆ
∂Ω1

(A(x)∇u(x)) ∂νφ(x) dx

=

ˆ
Ω1

div (A(x)∇u(x)) φ(x) dx

(7.3)

where the boundary terms vanish as of φ ◦ X−1 ∈ C∞0 (Ω2) and φ ∈ C∞0 (Ω1),
respectively. On the other hand, application of the transformation formula also
yields

ˆ
Ω2

∆(u ◦X−1)(x) (φ ◦X−1)(x) dx =

ˆ
Ω1

∆(u ◦X−1)(X(x))φ(x) |detDX(x)| dx.

(7.4)

Combining (7.3) and (7.4) leads toˆ
Ω1

|detDX(x)|∆(u ◦X−1)(X(x))φ(x) dx =

ˆ
Ω1

div (A(x)∇u(x)) φ(x) dx

for all φ ∈ C∞0 (Ω1). The fundamental theorem of calculus of variations then readily
implies that

∆(u ◦X−1)(X(x)) =
div (A(x)∇u(x))

|detDX(x)|
(7.5)

holds for almost-every x ∈ Ω1. Because X is a diffeomorphism, this expression
is well-defined as of |detDX(x)| 6= 0 for all x ∈ Ω1. Hence, by virtue of the
transformation formula and (7.5) we obtainˆ

Ω2

(∆(u ◦X−1)(x))2 dx =

ˆ
Ω1

(
∆(u ◦X−1)(X(x))

)2 |detDX(x)| dx

=

ˆ
Ω1

div (A(x)∇u(x))
2

|detDX(x)|
dx.

(7.6)

Finally, the desired assertion is a direct consequence of (7.2) and (7.6). �
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