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A B S T R A C T
We investigate a reduced point vortex model for a statistical and dynamical analysis of atmospheric block-
ing phenomena. Thereby, we consider high-over-low and omega blocking as equilibria of two and three
point vortices. Based on fields of the kinematic vorticity number, two novel methods, the contour and the
trapezoid method, are introduced in order to identify the vortices that form the blocking pattern as well as
their local positions and circulation magnitudes. Using an instantaneous blocking index a total number of
347 blocking periods were identified in NCEP-NCAR Reanalysis data for the Euro-Atlantic region dur-
ing the time period 1990-2012. This procedure provides the basis to corroborate the applicability of the
point vortex model to atmospheric blocking in a statistical framework. The calculated translation speed
of the point vortex systems associated with the atmospheric blocking appears to match the zonal mean
velocity reasonably well. This model explains the stationary behaviour of blocking patterns. A compari-
son between the theoretical and a statistical model further reveals that the circulation of the blocking high
follows the principles of the point vortex model to a large extent. However, the low-pressure-systems
behave more variable. Moreover, the stability of point vortex equilibria is analysed regarding the rela-
tive distances by considering linear stability analysis and simulations. This reveals, that the point vortex
blocking model corresponds to an unstable saddle point. Also, a possible transition between high-over-
low and omega blocking situations is indicated. Furthermore, we take viscosity and a Brownian motion
into account to simulate the influence of the smaller, subgrid-scale disturbances. As a result a clustering
near the equilibrium state emerges indicating the persistence of the atmospheric blocking pattern.

Keywords: Atmospheric blocking, point vortices, kinematic vorticity number, stability analysis, instantaneous blocking
index, circulation, vortex identification, vortex pattern recognition

1 Introduction1

Blocking events are large-scale, quasi-stationary phenomena2

that persist from several days to weeks and block the jet stream3

and thus the westerly flow. In general, a blocked atmospheric4

flow field is characterized by a mid-tropospheric high pressure5

system that lies polewards of one or two lows. The pattern is6

called high-over-low in case of two vortices and Omega block-7

ing in case of three vortices due to the Ω-shaped geopotential8

height isolines. Rex (1950) was one of the first who defined9

and studied blocking. Since then many theories have been de-10

veloped to describe blocking: Charney and DeVore (1979) for11

example suggested that a metastable equilibrium state can be12

? Corresponding author
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associated with blocking situations and Shutts (1983) proposed13

an eddy straining mechanism for the reinforcement and main-14

tenance of blocking. Also many indices have evolved to detect15

blocked situations mostly in gridded model data. Well-known16

examples include those from Tibaldi and Molteni (1990) based17

on geopotential height gradients and from Pelly and Hoskins18

(2003) who introduced the PV-θ (Potential Vorticity - potential19

temperature) approach.20

The persistent behaviour of blocking often causes extreme21

weather situations. An example of considerable impact is the22

Russian heatwave in summer 2010 which was accompanied by23

extreme rainfall in Pakistan (Galarneau Jr. et al., 2012). De-24

spite their large and manifold impact on our society, numeri-25

cal weather prediction models as well as climate models still26

need to be improved to produce adequate behaviour and ap-27

pearance of blocking: blocking onsets frequently coincide with28

low forecast skill of numerical weather prediction models (Rod-29

well et al., 2013; Ferranti et al., 2015) and climate models of-30
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ten underestimate their frequency (Mitchell et al., 2017). These31

deficiencies are often ascribed to the still not sufficiently un-32

derstood underlying dynamical mechanisms (e.g. Barnes et al.,33

2011; Yamazaki and Itoh, 2013; Luo et al., 2014; Pfahl et al.,34

2015; Kennedy et al., 2016).35

Obukhov et al. (1984) were the first who considered block-36

ing as a constellation of point vortices that on its own trans-37

lates westward and becomes stationary within a counteracting38

zonal westerly flow. Kuhlbrodt and Névir (2000) further con-39

sidered a latitudinal dependent zonal mean flow resulting in a40

stable oscillation for dipole vortex constellations whose time41

scale corresponds to the oscillation of an exemplary high-over-42

-low case. Further comparisons between case studies and point43

vortex systems also showed the transition from high-over-low to44

Omega blocking as well as the involvement of two neighbour-45

ing troughs in a four vortex framework (Kuhlbrodt and Névir,46

2000). More recently Müller et al. (2015) demonstrated for47

two exemplary blocked weather situations that the magnitude48

of the translation velocity matches that of the zonal mean flow49

and thereby confirmed the stationary weather pattern. A simi-50

lar view is presented by Altenhoff et al. (2008) regarding the51

blocking vortices as Potential Vorticity (PV) anomalies (instead52

of point vortices). These PV anomalies also counteract the am-53

bient westerly flow leading to stationary conditions. This vor-54

tex perspective of blocking is complementary to other blocking55

theories, e.g. the development mechanism of blocking is often56

ascribed to Rossby wave breaking (Tyrlis and Hoskins, 2008).57

This mechanism enforces a transition from waves to vortices,58

supporting our vortex view.59

Focusing on the stability of blocking, Faranda et al. (2015)60

proposed that blocking can be attributed to an unstable saddle61

point of the atmospheric dynamics. In the vicinity of this un-62

stable saddle point clustering can occur manifesting in the per-63

sistence of blocking. This is fortified by Schubert and Lucarini64

(2016) showing that the atmospheric circulation is more unsta-65

ble during blocking in comparison to unblocked flow.66

In this study, we will focus on the following research ques-67

tions:68

(i) Can the applicability of the point vortex model to atmo-69

spheric blocking (Müller et al., 2015) be statistically corrobo-70

rated, i.e. do atmospheric blocking behave similar to the point71

vortex model in general?72

(ii) Which dynamical characteristics of blocking can be rep-73

resented with the point vortex model?74

(iii) How sensitive is the point vortex model to perturbations75

and what implications can be derived for its stability?76

These research questions will be tackled in the following77

way: First, we will describe the theory of point vortices and78

how it can be applied to atmospheric blocking in Section 2. In79

order to give a more substantiated answer in a statistical frame-80

work, we will consider a large number of blocked weather situ-81

ations instead of single examples. Therefore, we will present an82

automated, more objective methodology based on Müller et al.83

(2015) to detect blocking periods and to identify and charac-84

terize the vortices constituting the blocking in Section 3. Sub-85

sequently, the constituent blocking parameters are statistically86

investigated in Section 4. In Section 5 we will compare the87

theoretical point vortex model with a statistical model given by88

a linear multiple regression. We remark that with regard to at-89

mospheric investigations reduced low-order dynamical models90

only rarely exist, allowing a comparison with statistical models91

based on reanalysis data sets. Furthermore, we will analyse the92

stability of blocked system by investigating the characteristics93

of the tripole relative equilibrium in Section 6. Finally, a sum-94

mary and discussion will be given in Section 7.95

2 The dynamical point vortex blocking model96

The theory of point vortices is characterized by the interac-97

tion of discrete vortices under the idealized conditions of a two-98

dimensional, incompressible, inviscid flow. Mathematically it is99

represented by a system of coupled non-linear ordinary differ-100

ential equations. Point vortices are determined by their circula-101

tion Γ, i.e. their strength, and their locations r = (x, y). The102

circulation is determined by the integral of the vorticity ζ over103

the vortex area A:104

Γ =

∮
A

ζdA. (1)105

The circulation can either be positive or negative correspond-106

ing to cyclonic or anticyclonic rotation. While the circulation is107

constant for each point vortex, the vorticity field is infinite at108

the point vortex locations and zero elsewhere. The equations of109

motion for n point vortices are given by (Helmholtz, 1858):110

dxi
dt

= − 1

2π

n∑
j=1,j 6=i

Γj(yi − yj)
l2ij

,

dyi
dt

=
1

2π

n∑
j=1,j 6=i

Γj(xi − xj)
l2ij

,

(2)111

where lij =
√

r2
i − r2

j denotes the distance between two point112

vortices i and j. Thereby, each point vortex i induces a velocity113

field that decreases with l−1
i . The superposition of the velocity114

fields induced by each point vortex then determines the motion115

of each vortex. Such point vortex systems conserve the hori-116

zontal Kelvin momenta, the angular momentum as well as the117

kinetic energy and therefore satisfy important physical charac-118

teristics of many fluid dynamical systems (see e.g. Müller et al.,119

2015). In general, point vortex systems rotate around their cen-120

tre of circulation121

C =

∑n
i Γiri∑n
i Γi

, (3)122

which is conserved due to the conservation of the Kelvin mo-123

menta. For systems with vanishing total circulation Γtotal =124 ∑n
i=1 Γi = 0 the centre of circulation moves to infinity. As a125

result, the system translates uniformly. An example of the mo-126

tion of n = 3 point vortices with Γtotal = 0 arranged on an127

equilateral triangle is illustrated in Fig. 1.128
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Alternatively, point vortex systems can be described by their129

intervortical distances lij as state variables, denoted as equa-130

tions of relative motion (Gröbli, 1877; Aref, 1979; Newton,131

2001):132

dl2ij
dt

=
2

π

n∑
k 6=i6=j

ΓkAijkσijk

(
1

l2jk
− 1

l2ik

)
, for n > 3, (4)133

whereAijk describes the area and σijk the orientation of the tri-134

angle composed of three vortices i, j, k. Thereby, σ is defined as135

+1 for a counter-clockwise order of i, j, k and −1 for a clock-136

wise order. Point vortex constellations that translate or rotate137

uniformly by preserving their relative constellation are called138

relative equilibria and correspond to fixed points in the frame-139

work of the relative motion, i.e. the distances remain constant.140

The point vortex constellation given in Fig. 1 corresponds to a141

relative equilibrium due to the equilateral arrangement. More-142

over, assuming Γtotal = 0, the point vortex system translates143

uniformly. In case of Γtotal 6= 0 the point vortex constellation144

rotates around its centre of circulation (3) but, as in the first case,145

the intervortical distances remain constant. Both states are rel-146

ative equilibria. For a more detailed overview on the theory of147

point vortices we refer to Newton (2001); Aref (2007); Müller148

et al. (2015).149

The quasi-two-dimensional behaviour of atmospheric block-150

ing allows for the representation of large-scale vortices by point151

vortices as suggested by Obukhov et al. (1984). This reduces the152

atmospheric flow field to a dynamical system described by ordi-153

nary differential equations. Thereby, we identify the high pres-154

sure system as anticyclonic point vortex and the low pressure155

systems as cyclonic point vortices. The n = 2, 3 point vortex156

systems representing the high-over-low and Omega blocking,157

respectively, are illustrated in Fig. 2. In the high-over-low case158

the circulations of the two vortices have the same absolute value159

with opposite signs (Γ1 = −Γ2), whereas for the Omega case160

the absolute value of the circulation of the anticyclonic vortex161

(Γ1) is equal to the sum of the circulation of the two cyclonic162

vortices (Γ2 = Γ3 = −0.5 Γ1, see also Fig. 1 for the Omega163

case). Both cases are characterized by their vanishing total cir-164

culation Γtotal = 0 which provoke the translation of the sys-165

tems (see (3)). For uniform westward translation the vortices166

are located on an equilateral triangle for the Omega case and on167

the same longitude for the high-over-low case. Under these con-168

ditions (Γtotal = 0, equilateral triangle) such point vortex con-169

stellations correspond to relative equilibria and translate west-170

wards with dipole velocity ud = −udi for the high-over-low171

model and tripole velocity u∆ = −u∆i for the Omega case172

(Newton, 2001):173

ud =
|Γ1|
2πl

, (5)174

u∆ =

√
1
2
(Γ2

1 + Γ2
2 + Γ2

3)

2πl
, (6)175

176

where l = l12 = l23 = l31 and i is the unit vector pointing177

to the east. For atmospheric blocking the zonal mean westerly178

flow ū = ūi counteracts this westward translation of the point179

vortex system. As a result, the system can become stationary, if180

the two velocities are of same magnitude:181

ū =

{
ud for high-over-low blocking
u∆ for omega blocking.

(7)182

It is emphasized that the translation velocities ud and u∆ cor-183

respond to the theoretical translation of a corresponding point184

vortex dipole/tripole. The actual, observable translation of a185

non-stationary blocking system will be denoted as uobs.186

3 Data and methods187

3.1 Data and zonal mean flow188

To analyse blocking systems, the NCEP-NCAR Reanalysis189

(Kalnay et al., 1996) is used with a horizontal resolution of190

2.5◦E × 2.5◦N and a temporal resolution of 6 hours. We re-191

stricted the analysis to blocking centred within 90◦W − 90◦E192

(approximately the Euro-Atlantic sector) occurring in the years193

1990-2012. For the analysis we used the fields at the 500 hPa-194

level. The zonal mean flow ū is determined as the zonal average195

of the global, zonal wind component within 20◦ − 80◦N .196

3.2 Identification of blocking periods197

At first, the time periods of blocked atmospheric flows are198

identified by using an Instantaneous Blocking Index (IBL)199

which is implemented on the Freie Universität Berlin Evalu-200

ation System (see freva, 2017; Richling et al., 2015, for more201

details). The blocking index is based on the 500 hPa geopo-202

tential height gradient, similar to the detection method from203

Tibaldi and Molteni (1990) combined with the approach of a204

seasonal and longitudinal varying reference latitude which rep-205

resents the position of the weather system activity (Pelly and206

Hoskins, 2003; Barriopedro et al., 2010; Barnes et al., 2011).207

Only those IBLs are considered as blocking periods that ex-208

tend over at least 15◦ longitudes with one (or more) longitudes209

blocked for a minimum of five days. Moreover, we determine an210

IBLmax as the longitude that is blocked most frequently during211

one blocking period. This IBLmax gives an approximate longi-212

tudinal location of the blocking.213

3.3 Identification of rotational flow using the kinematic214

vorticity number215

In a next step, we searched for prevalent rotational flow (i.e.216

vortices) in the identified blocking periods. The search proce-217

dure is based on the dimensionless kinematic vorticity number218

which was introduced by Truesdell (1953) as219

W
(3D)
k =

‖Ω‖
‖S‖ , (8)220

for three dimensions. Here, S and Ω are the symmetric and anti-221

symmetric tensors of the velocity gradient tensor∇v. Recently,222
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the kinematic vorticity number was successfully applied to at-223

mospheric data sets on two-dimensional surfaces by Schielicke224

et al. (2016). Explicitly, it reads:225

W
(2D)
k =

√
ζ2√

D2
h + Def + Def ′2

, (9)226

which can be evaluated at every point in the field and is used227

in this analysis. Here, ζ = ∂v
∂x
− ∂u

∂y
is the vertical vorticity,228

Dh = ∂u
∂x

+ ∂v
∂y

denotes the horizontal divergence, Def =229

∂u
∂x
− ∂v

∂y
defines the stretching deformation and Def ′ = ∂v

∂x
+ ∂u

∂y
230

denotes the shearing deformation. Hence, W (2D)
k as well as231

W
(3D)
k characterize the relation between rotation, deformation232

and shearing of a flow (see Schielicke et al., 2016, for more233

details). We differentiate three cases:234

Wk < 1 : deformation prevails over rotation
Wk = 1 : pure shearing flow
Wk > 1 : rotation predominates deformation

235

As a result, rotational flow is identified as simply connected236

region of Wk > 1 which is used to define a vortex. For further237

analysis, we will only consider the vorticity field ζ whereWk >238

1, the other vorticity values are set to zero. This field will be239

called ζWk>1. It represents a field of vortices that were cut out240

from the continuous flow field.241

3.4 Vortex centre, circulations and intervortical242

distances243

Under the assumption that we know the exact size of a vortex,244

we can determine vortex properties such as the circulation and245

the vortex centre in the following way: The circulation Γi of246

vortex i is computed as the area weighted sum of vorticity as247

approximation to (1):248

Γi ≈
n∑
m

Γm =

n∑
m

ζmam, (10)249

250

where we sum over all n grid points that form vortex i. Γm =251

ζmam corresponds to the circulation of each grid point m, that252

is approximated as the product of the vorticity ζm and the area253

am of this grid point.254

For each vortex i the location of its vortex centre Ci is cal-255

culated likewise to the centre of circulation of a point vortex256

system (3) as the circulation centre of all n grid points belong-257

ing to the area of the vortex i:258

Ci =

∑n
m Γmrm

Γi
, (11)259

260

where m represents the grid point index of all grid points n261

belonging to the area of vortex i. Although, this definition is262

similar to the definition of the circulation centre of a point vor-263

tex systems, the latter is defined as centre of all n point vortices264

while the vortex centre is the circulation centre of a single ex-265

tended vortex.266

The intervortical distances lij between two vortices i and j267

are calculated as secants through the vortex centres.268

3.5 Extracting vortex areas constituting the blocking269

The most challenging part is to determine the areas of the vor-270

tices that constitute the blocking in an automated and objective271

way. In the following, we will introduce two methods, the con-272

tour and the trapezoid method, that have different approaches273

to determine these areas.274

3.5.1. Contour method for high-over-low and Omega275

blockings276

Here, we will give a short overview of the contour method277

combining dynamical and statistical aspects; a detailed descrip-278

tion can be found in the supplementary material (Section 1). A279

schematic diagram illustrating the method and an example are280

shown in Fig. 3. The contour method is based on the ζWk>1281

fields which are averaged over each blocking period. In these282

averaged ζWk>1 fields, we identify stationary vortex structures283

as simply connected grid points with either statistically sig-284

nificantly positive or negative vorticity values. Significance is285

computed with a t-test (Wilks, 2005) based on a significance286

level α which is initially set to α0 = 0.01. Coherent structures287

of such significant areas are identified by enclosing contours.288

These structures ideally represent isolated, persistent and sta-289

tionary high (negative vorticity) or low (positive vorticity) pres-290

sure systems. In the following, the term contour refers to these291

values of significantly positive or negative, vorticity.292

The high is determined by the contour with the smallest (neg-293

ative) circulation that contains the IBLmax. Depending on their294

location and distance to the high, one or two of the nearest pos-295

itive contours south of the high are chosen as the blocking lows296

(see the supplementary material for details). In case of one iden-297

tified low in the averaged fields the whole blocking period is298

characterized as high-over-low, otherwise as Omega blocking.299

Yet sometimes the contours do not correspond to a single iso-300

lated vortex but enclose several connected vortex regions result-301

ing in elongated contours. To avoid the selection of such elon-302

gated contours theα-value is modified in case of unsuitable (e.g.303

too wide) high or low contours as illustrated in Fig. 3b. When-304

ever some variation in α still fails to identify suitable contours,305

the whole blocking period is omitted.306

Finally, we obtain a mask of stationary vorticity areas that307

represent the n = 2, 3 vortices forming the blocking. The mask308

is derived on basis of the averaged fields. We will apply it to the309

6-hourly fields in order to calculate the vortex centres, circula-310

tions and intervortical distances of the vortices constituting the311

blocking on a 6-hourly basis.312

3.5.2. Trapezoid method for Omega blockings313

In contrast to the previous discussed method the basic con-314

cept of the trapezoid method is to determine the area of the315

blocking by a trapezoid that minimizes the total circulation as316

suggested by (Müller et al., 2015). Thereby, the upper part of317

the trapezoid corresponds to the high pressure system, while318
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the lower left and right parts correspond to the two low pressure319

systems (see Fig. 4). Therefore, it can only be applied to Omega320

blockings.321

The trapezoid is determined for each single time step. In322

order to determine the location and size of the trapezoid, the323

largest high pressure system is identified by the largest area en-324

closed by a negative ζWk>1 contour (ζWk>1< −10−8) within325

the blocked longitudes between 40◦ − 85◦N. This region was326

chosen, since it represents approximately the Jet region, where327

blocking develops. The contour needs to satisfy two constraints:328

(i) longitudes of the contour and the IBLs overlap by at least329

25%, (ii) the ratio of the latitudes and longitudes covered by the330

contour is larger than 0.25. If no suitable contour for the high331

pressure system is found, the single time step is omitted. Oth-332

erwise the initial trapezoid is set according to Figure 4a, where333

the northern, north-western and north-eastern boundaries of the334

trapezoid are determined by the northern, western and eastern335

limits of the contour. The southern boundary of the trapezoid is336

initially set to be 30◦ south of the averaged latitude of the high337

contour. The southern corners are always set to be 20◦ longi-338

tudes smaller/larger than the corresponding northern values.339

Inside this trapezoid three partly overlapping subregions are340

defined corresponding to the region of the blocking high and the341

two blocking lows (see Fig. 4a). Thereby, the southern boundary342

of the high’s subregion is given by the southern most latitude of343

the high contour. The subregions for the lows are bounded to the344

north by the averaged latitude of the high contour and separated345

by the mean longitude of the trapezoid. Only positive/negative346

vorticity values inside the subregions of the lows/high con-347

tribute to the circulation of the lows/high. Note, that the bound-348

aries of the trapezoid might cut through vortices.349

In order to minimize the total circulation Γtotal = ΓH +350

ΓLe + ΓLw inside the trapezoid, small changes of the initial351

trapezoid are considered: Mainly the southern border is shifted352

up to 10◦ north and south (in 2.5◦ intervals) since the more vari-353

able low pressure systems are more difficult to identify. This354

results in higher uncertainties for the southern border. Also the355

northern border is shifted up to 5◦ to the north and the eastern356

and western boundaries also only up to 5◦ to the east or the357

west. Only for very narrow initial trapezoids, i.e. when the up-358

per width of the trapezoid is smaller than 40◦ longitudes, shifts359

of up to ±10◦ are allowed. This yields a large number of dif-360

ferent possible trapezoids. For each of the trapezoids the total361

circulation is calculated. The trapezoid that minimizes the to-362

tal circulation is then chosen. An example comparing the initial363

and final trapezoid for a single time step is given in Fig. 4. Note,364

how the southern border of the final trapezoid (Fig. 4b) clearly365

deviates from the initial trapezoid (Fig. 4a) and how the final366

trapezoid adequately encloses the region of the blocking.367

Finally, we determine the vortex centres, circulations and in-368

tervortical distances for each time step.369

3.5.3. Differences between contour and trapezoid method370

To summarize, in contrast to the contour method the trape-371

zoid method is not able to distinguish between high-over-low372

or Omega blockings itself and is only applied to Omega block-373

ings, that were previously identified by the contour method.374

However, the trapezoid method allows for a translation of the375

blocking since vortex areas, i.e. the trapezoid, are determined376

for each single time step. In the contour method, the vortex ar-377

eas are determined only once for the whole blocking period.378

Furthermore, while the trapezoid method minimizes the total379

circulation to adopt the point vortex relative equilibrium con-380

dition (Γtotal = 0), there is no such constraint for the contour381

method. However, the latter rather displays complete, enclosed,382

albeit averaged vortex structures while the trapezoid method can383

cut through vortices in order to satisfy the minimization crite-384

rion.385

3.6 Translation velocities386

The translation velocity of the point vortex equilibria is com-387

puted according to (5) and (6). In case of the high-over-low388

blocking, (5) presumes both circulations to have the same ab-389

solute value. To account for deviations from this assumption,390

we will use the averaged absolute value of the circulations of391

the two vortices in the identified high-over-low cases.392

In case of the Omega blocking, point vortex theory assumes393

that the vortices are arranged on an equilateral triangle of side394

length l. For the identified Omega blocking, we will use the av-395

erage of the three intervortical distances for l in (6). Minimum396

and maximum values of u∆ are calculated by using the maxi-397

mum and minimum distance. We will consider these values as398

approximate error intervals.399

4 Statistical analysis of the constituting blocking400

parameters based on NCEP data401

In this section, we will present a climatology of the prop-402

erties (composites, circulations, intervortical distance) of high-403

over-low and Omega blocking in the Euro-Atlantic sector for404

the years 1990-2012. The statistical analysis is based on the405

NCEP reanalysis data and the constituting vortices were identi-406

fied with the methods described in Section 3.5.1. Furthermore,407

we will calculate the translation velocities and compare these to408

the zonal mean flow. Finally, we will shortly discuss the results409

and the methods.410

4.1 Results411

4.1.1. Composites and averaged blocking properties412

The identification method (Section 3.2) found a total of 347413

blocking periods during the time period 1990-2012 in the cho-414

sen area. With help of the contour method (Section 3.5.1.) we415

identified 106 of these blocking periods as high-over-low and416
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141 as Omega blocking periods. For the remaining 100 block-417

ing periods, the method was not able to classify the pattern and418

these periods were disregarded. Both high-over-low and Omega419

cases were analysed by the contour method, but only the Omega420

cases were investigated by the trapezoid method. The compos-421

ites for all Omega blocking and all high-over-lows are displayed422

in Fig. 5. Thereby the IBLmax of each blocking period is relo-423

cated to 0◦E to enable a comparison between periods located at424

different longitudes. The flow in Fig. 5a is dominated by a high-425

over-low structure and the average strengths of the high and low426

are similar. The Omega structure for Omega blocking in Fig. 5b427

is less pronounced although differences between the high-over-428

-low composite are visible. The composite for all identified429

Omega patterns shows a considerably weaker cyclonic vortex430

structure directly below the high than the high-over-low com-431

posite. While the latter shows almost vanishing vorticity south-432

east and south-west of the high the values in the Omega com-433

posite are clearly larger, consistent with the expected positions434

of the two lows.435

The condition of vanishing total circulation is approximately436

satisfied for the trapezoid method (Γ(trapez.)
total = 1 ·107m2s−1).437

In comparison, the cyclonic vortices dominate for the contour438

method (Γ(contour)
total = 3.5 · 107m2s−1). Furthermore, we ob-439

serve that the contour method generally gives larger intervorti-440

cal distances and smaller averaged circulations, especially for441

the high, compared to the trapezoid method (see Fig. 5b). This442

is further confirmed by a direct comparison of the two methods443

concerning all circulations averaged over each blocking period444

(see Fig. 6). This analysis shows that the contour method yields445

generally smaller values for the circulations of the highs than446

the trapezoid method. However, the circulations of the highs447

yield a high correlation while the circulations of the two lows448

are much lesser correlated.449

4.1.2. Intervortical distances (6-hourly time steps):450

The distances between the two vortices of the high-over-low451

blocking show a broad peak around 2200 km (see Fig. 7a). This452

is equal to a difference in latitudes of about 20◦. While this453

distribution is approximately retained for the distances between454

the high and the lows of the Omega blocking, the distances be-455

tween the two lows are significantly larger. This can be observed456

for both methods (see Fig. 7b,c). However, the contour method457

shows larger intervortical distances and wider, less regular dis-458

tributions than the trapezoid method.459

4.1.3. Circulations (6-hourly time steps):460

For the high-over-low configurations (Fig. 7d) the maximum461

of the total circulation lies approximately at zero, suggesting462

that most high-over-low blockings consist of two equally strong463

vortices as the theory demands. For the Omega blocking, we464

observe that the circulations of the highs are generally larger465

for the trapezoid method than for the contour method. Regard-466

ing the lows this effect cannot be observed as clearly. The dis-467

tributions of the total circulations
∑

Γ are centred symmetri-468

cally around zero for the trapezoid method (Fig. 7f). Because469

the minimized total circulation was chosen as constraint for the470

trapezoid selection, this is expected. For the contour method471

(Fig. 7e), the distribution of the total circulations also shows472

a maximum at approximately zero but the distribution is asym-473

metric in a way that more positive values are observed. This474

means that the two lows together tend to be stronger than the475

high for the contour method.476

4.1.4. Comparing translation velocity and zonal mean flow477

A central meteorological focus is the examination of the478

steady state of the blocked vortex configuration. Therefore, we479

compare the translation velocity magnitudes u∆ and ud with the480

zonal mean flow ū. Under the assumption of stationary blocking481

conditions, ideally, the absolute values of the translation veloc-482

ity and zonal mean flow should be equal, i.e. the values of the483

corresponding scatter plots in Figure 8 should lie on the bisect-484

ing line for stationary blocking systems. For the Omega block-485

ings analysed with the trapezoid method, the velocity values lie486

near the bisecting line (see Figure 8a). A significantly positive487

slope follows from a linear regression estimate with a correla-488

tion of 0.73. However, the linear regression differs considerably489

from the bisecting line: especially for large zonal mean veloci-490

ties, u∆ is smaller than ū. This difference between u∆ and ū re-491

mains also if ū is calculated for other latitudinal bands, nonethe-492

less, the observed slope of the linear regression estimate and its493

correlation still remain similar (not shown).494

The contour method does not yield such a strong relationship495

between the two velocities, neither for the Omega nor the high-496

-over-low blocking (Fig. 8b and 8c), since most u∆ and ud are497

smaller than ū and the slope is more even. This could have sev-498

eral reasons and could be improved by a better handling of the499

identification of the vortices and thus a better estimation of the500

circulations and relative distances.501

So far the blocking systems have been assumed to be sta-502

tionary. However, many blocking translate slowly east- or west-503

ward and it is interesting to study the relation between this504

observed translation uobs and the difference udiff between505

the theoretical translation u∆/ud and the zonal mean flow ū.506

This difference is also visible in Fig. 8, which shows that the507

u∆/ud is generally smaller than ū. This suggests the possi-508

bility of more eastward propagating blocking systems. Exam-509

ples (Omega blocking analysed with the trapezoid method)510

confirmed, that positive/negative udiff correspond to observed511

east-/westward translation uobs of the actual blocking system.512

Yet due to high variability of the blocking positions as analysed513

with the trapezoid method and the thereby arising difficulty in514

determining the translation uobs no statistically significant re-515

sults could be obtained.516
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4.2 Discussion of the statistical results and methods517

A surprising result is the observed vorticity maximum south518

of the high in the Omega composite (Fig. 5b), as an ideal Omega519

pattern would suggest a gap in between the two lows. A possible520

explanation concerning the dynamics of this behaviour could521

be a larger variability of the locations of the lows in the Omega522

blocking cases. This means that the two lows are sometimes dis-523

placed more to the east or west of the high, which could result524

in these higher values directly south of the high. Possibly, there525

are more than 3 vortices involved or the real triangular arrange-526

ment of the vortices forming the Omega blocking could be a ro-527

tated Omega state such that the arrangement resembles a high-528

-over-low with an additional second low located west or east of529

the high-over-low. This behaviour is an interesting aspect and530

might be related to the stability of point vortex equilibria which531

will be discussed in more detail in Section 6. It also indicates a532

possible transition between high-over-low and Omega configu-533

rations. Furthermore, this transition might mislead the contour534

method in assigning a pattern since its definition is quite strict: a535

blocking is either identified as high-over-low or Omega block-536

ing, but not both. This might also be the reason why such a537

high number of blocking periods could not be assigned to either538

of the classes. Moreover, the contour method is not impeccable539

and more high-over-lows could have been mistaken as Omega540

pattern than the other way around.541

One of the great challenges of atmospheric and fluid dynam-542

ics is the proper definition of the size of a vortex (e.g. Jeong and543

Hussain, 1995; Neu et al., 2013). Since ‘an accepted definition544

of a vortex is still lacking’ (Jeong and Hussain, 1995), we deter-545

mined the areas of the blocking vortices with the contour and the546

trapezoid methods, i.e. two methods with different approaches.547

The contour method takes stationary persistent vortex structures548

over the whole blocking periods into account. Hence, it is rather549

related to the assumption that the blocking is formed by (the550

same) stationary vortices. In contrast, the trapezoid method se-551

lects the actual vortex areas at each time step with the constraint552

of minimum total circulation inside the trapezoidal pattern. This553

might lead to intersected lows. Furthermore, the blocking pat-554

tern can be formed by different individual vortices. Neverthe-555

less, using two different methods has the advantage that we are556

able to evaluate the robustness of our results by comparing the557

outcomes of the two methods. Although, the contour method558

yields smaller values for the highs due to relatively small con-559

tours identified by the method, we observed that the circulations560

of the highs are well-correlated between both methods while the561

circulations of the two lows show a lower correlation (Figure 6).562

This suggests that the determination of the high is more reliable563

while the two lows are more difficult to capture, as they are564

more variable. Furthermore, the difficulty in capturing the areas565

of the low pressure systems also causes higher uncertainties in566

the position of the vortices.567

An ideal point vortex Omega blocking requires an equilateral568

triangle. However, using reanalysis data sets we find that this569

is only approximately realized in the Omega blocking because570

the distance between the two lows is considerably larger than571

the distance between the high and the lows. Nonetheless, the572

relation between the calculated translation velocity u∆ of the573

Omega blocking and the mean zonal flow ū is a strong confir-574

mation that the point vortex model is a reasonable description575

of atmospheric blocking. To further corroborate the applicabil-576

ity of the point vortex systems to blockings a statistical model577

of the blocking vortex system is considered and compared to the578

theoretical model in the following section.579

5 Comparison of the theoretical and a statistical580

model of Omega blocking581

The results derived in the previous section allows for a statis-582

tical model that can be compared to the analytic solution of the583

point vortex equation in a relative equilibrium. The tripole trans-584

lation velocity u∆ of the theoretical point vortex model given in585

(6) depends on the circulations and the intervortical distances.586

Thus the questions arise if one of these parameters contribute587

more to the relationship between the zonal mean flow ū and588

u∆ than others and how well the theoretical relationship of (6)589

fits to the observed one. We dealt with these questions with a590

multiple linear regression model (Wilks, 2005) representing the591

behaviour of Omega blocking.592

5.1 Set-up of the theoretical and statistical models:593

By considering only the behaviour near a reference point a,594

(6) can be approximated by a Taylor series expansion. As ref-595

erence point we choose: a = (ΓH ,ΓLw,ΓLe, l), where the bar596

above the variables denotes the average of the corresponding597

variable calculated from the methods. The indices stand for H:598

the high, Lw: the westerly low, Le: the easterly low, and l is599

the averaged intervortical distance. Then, the first order Taylor600

series for the tripole translation velocity reads:601

u∆ ≈ u∆(a) + αH(ΓH − ΓH) + αLw(ΓLw − ΓLw)

(12)
602

+αLe(ΓLe − ΓLe) + αl(l − l),603
604

where αi with i = (H,Le, Lw, l, lHLe, lHLw, lLeLw) are the605

corresponding derivatives at the reference point a. For example,606

αH is given by:607

αH =
∂u∆

∂ΓH

∣∣∣∣
a

=
ΓH

4πl

√
0.5(Γ

2
H + Γ

2
Lw + Γ

2
Le)

.608

609

By using the averaged values at the reference point, the αi be-610

come constants1. In a next step, we assume u∆ to have the same611

1 Note, l is considered as the average of the three distances, but also
α-values are calculated using lHLe, lHLw, lLeLw .



8
HIRT ET AL.

absolute value as ū. Then the above linearised theoretical equa-612

tion (12) can be compared to the following model for a multiple613

linear regression:614

u = β0 + βH · ΓH + βLw · ΓLw + βLe · ΓLe +615

βlH Lw · lH Lw + βlH Le · lH Le + βlLeLw · lLeLw616

The β values denote the corresponding regression estimates. In617

the case that the observed blocking, i.e. the determined values618

obtained from the contour and trapezoid methods, behave ac-619

cordingly to the theoretical model, the α values should coincide620

with the β values. Note, that we assumed that the blocking is621

stationary.622

5.2 Results and Discussion:623

For the trapezoid method the α, β values are summarized in624

Table 1. Concerning the circulation of the blocked high pres-625

sure system ΓH we have αH ≈ βH where a small p-value sug-626

gests significance. For the other parameters, the α, β pairs do627

not match as well, but they are also less significant. Similar re-628

sults can also be obtained for the contour method (not shown).629

Again, the theoretical value (−2.7 · 10−8m2s−1) and the re-630

gression estimate (−2.4±0.7 ·10−8m2s−1) for the circulation631

of the high fits adequately, while the others do not coincide as632

well. Although we neglect higher order terms in the Taylor se-633

ries, the high pressure systems (i.e. their circulations) behave in634

relation to the zonal mean flow in accordance with the simpli-635

fied point vortex theory. This is remarkable, because it implies636

that the high pressure system of blocking situations can be de-637

scribed by this simplified point vortex theory to a certain extent.638

In summary, this behaviour confirms with statistical signifi-639

cance what we have already inferred in Section 4 on a climato-640

logical basis: The circulation of the high pressure system is de-641

termined in a more reliable way whereas the other circulations642

and the distances are less trustworthy due to higher variability643

of the lows. We conclude, that the behaviour of the high is in644

accordance with the theoretical point vortex model.645

6 A stability analysis approach of blocked646

systems647

A remaining challenge in the context of large-scale atmo-648

spheric dynamics is the analysis of the stability of the block-649

ing phenomenon. For example, Rodwell et al. (2013) state that650

weather prediction models often fail to capture the onset and651

decay of blockings. So we will now examine (i) the stability of652

blockings in terms of the Lyapunov stability of n = 3 point653

vortex equilibria and by perturbing the side lengths of the equi-654

lateral triangle in accordance with the climatological results of655

Section 4 and (ii) the clustering behaviour close to the relative656

equilibrium state by modelling the influence of smaller, subgrid-657

scale disturbances as Brownian motion.658

6.1 Stability considerations659

In Section 4 we found that the distances between the three660

blocking vortices as computed with the contour and trapezoid661

method do not show an equilateral triangle. We will now anal-662

yse how such deviations from the equilateral triangle affect the663

point vortex system. In the following, the equations of motion664

for the relative distances (4) are applied to represent the equi-665

lateral triangle constellation as a fixed point in the phase space666

spanned by the three relative (intervortical) distances lij with667

i, j ∈ (1, 2, 3). An analysis considering the Lyapunov stabil-668

ity (see e.g. Strogatz, 2014) can then give information on the669

stability properties of the fixed point. A detailed derivation of670

this stability analysis can be found in the supplementary mate-671

rial (Section 2). A similar study has already been conducted by672

Synge (1949) (using trilinear coordinates) resulting in the fol-673

lowing condition for stability:674

Γ2Γ3 + Γ1Γ2 + Γ1Γ3 > 0.675

For the relations of the circulations according to the atmospheric676

blocking model, i.e. Γ1 = −2Γ2, Γ2 = Γ3 > 0, the above sta-677

bility criterion is not satisfied resulting in an unstable fixed point678

with Γ2Γ3+Γ1Γ2+Γ1Γ3 = −3Γ2
2 < 0. Thus, within the vicin-679

ity of the fixed point deviations from the fixed point increase ex-680

ponentially in time. More precisely the fixed point corresponds681

to a saddle point2 with one neutral, one unstable and one stable682

direction. This is illustrated in Figure 9, where three simulated683

trajectories are displayed in the vicinity of a fixed point (red684

cross). Each simulation is initialized at a perturbed state lying685

on the direction of an eigenvector. For the unstable case, the tra-686

jectory departs from the equilibrium constellation, whereas the687

stable trajectory converges towards the equilibrium. The neutral688

case corresponds to the uniform expansion of the equilateral tri-689

angle, which results again in a fixed point. However, trajecto-690

ries, that do not start directly on the stable or neutral direction,691

are unstable. Therefore, the fixed point is unstable. See the sup-692

plementary material (Section 2), Synge (1949) or Tavantzis and693

Ting (1988) for further information.694

6.1.1. Model set-up695

To illustrate the non-linear behaviour of the initially unstable696

motion in the configuration space the positions of the point vor-697

tices have been simulated with perturbed equilateral triangles.698

In accordance with the results obtained from the NCEP statistics699

(Section 4, Fig. 7c,e), the circulations of the vortices were set700

to (ΓH ,ΓLe,ΓLw) = (1.3, 0.65, 0.65) · 108 m2/s and the side701

length of the equilateral triangle was set to 2000 km. The inte-702

gration is carried out by a Runge-Kutte-method of 4th order as703

implemented in Matlab (MATLAB, 2013). We used two differ-704

ent perturbed set-ups shown in Fig. 10a,b denoted as constella-705

tion 1. In the first simulation (Fig. 10a), we decreased the initial706

2 The saddle point arises from the existence of both stable/negative and
unstable/positive eigenvalues.



ANALYSING BLOCKING WITH AN IDEALIZED POINT VORTEX MODEL
9

distance between the two lows to 1800 km. In the second set-up707

(Fig. 10b), we increased the distance between the two lows to708

3000 km (in accordance to Fig. 7c). In both cases, the initial tri-709

angle constellation is still isosceles and the distances between710

the high and the two lows remain lHLe = lHLw = 2000 km711

roughly corresponding to their mean distance observed in Fig-712

ure 7.713

6.1.2. Results714

Reducing the distance between the two lows leads to the fol-715

lowing observations: The point vortices oscillate between the716

isosceles triangle constellations 1 and 4 and two other, collinear717

constellations 3 and 5 (Fig. 10a). It can be seen that the order718

of the vortices changes after the collinear constellations as the719

two lows switch their positions. This causes unstable eigenvec-720

tors to switch to stable ones (and reverse) leading to the attrac-721

tion to the perturbed equilateral triangle, i.e. the isosceles tri-722

angle. As Constellation 2 moves away from the isosceles con-723

stellation towards the collinear constellation (i.e. the deviation724

from the equilateral constellation increases with time), it corre-725

sponds to an unstable point vortex constellations. Constellation726

6 however converts to the isosceles constellation (i.e. the devia-727

tion from the equilibrium decreases) and thus represents a stable728

one. This behaviour can be viewed similar to the behaviour of729

real blocking events, where often a transition from high-over-730

-low to Omega and reverse takes place. Moreover, variable lo-731

cations of the lows can be explained, whereas the high pressure732

system is stationary over a longer time period.733

An increase of the distance lLeLw of the two lows in ac-734

cordance with our statistics leads to an oscillating anticyclonic735

point vortex (see Fig. 10b), i.e. in the collinear state the high is736

located between both lows. Thereby, the distance between the737

high and the southern (northern) low increases (decreases). Ig-738

noring the northern low, such a collinear state resembles a high-739

over-low configuration. In our case the time between the isosce-740

les triangle constellation 1 and the collinear state 2 is about 6.2741

days and a whole convulsion takes 12.4 days. The triangle con-742

figurations stay close to the isosceles pattern for about 3 days:743

e.g. constellation 2 in Fig. 10b is reached 1 day after the initial-744

ization (and a mirror constellation would be reached 1 day be-745

fore configuration 1). Overall, the translation speed of the three746

point vortex system is smaller compared to set-up 1.747

6.1.3. Discussion748

Although persistent weather patterns are often denoted as749

stable weather situations in meteorological terms, the stability750

analysis of the corresponding point vortex system yields an un-751

stable saddle point. This is also confirmed by Faranda et al.752

(2015) who indicate that blocking events correspond to an un-753

stable saddle point (in the high dimensional phase space of the754

atmosphere) without considering any vortex models. Schubert755

and Lucarini (2016), using covariant Lyapunov vectors, also756

show that the atmospheric circulation is more unstable when the757

flow is blocked compared to non-blocked flow. This highlights758

that the concept of ’stable’ (i.e. persistent) weather patterns does759

not necessarily correspond to stability in a dynamical systems760

view.761

6.2 Clustering behaviour762

Faranda et al. (2015) showed that clustering, i.e. an extraor-763

dinary long persistence near a point in phase space, can occur764

in the vicinity of unstable fixed points within chaotic attractors765

causing the persistence of blocking. These results motivated766

us to search for a clustering near the unstable fixed point of767

the point vortex blocking model to demonstrate the similarities768

of the point vortex blocking model with atmospheric blocking769

events.770

6.2.1. Model set-up771

To eliminate the conservative character of our point vortex772

model friction was introduced according to Zhu and Cheng773

(2010) as Brownian motion. Thereby, (4) is complemented by a774

viscous and a noise term:775

dl2ij
dt

=
2

π
ΓkAσ

(
1

l2jk
− 1

l2ik

)
+ 8ν +

√
8νlijẆij (13)776

777

where ν represents the viscosity coefficient and Wij the 1D778

Brownian motion for each lij . Ẇij denotes the temporal deriva-779

tive of Wij . Similar to Hasselmann (1976), who regarded780

weather as Brownian motion influencing the climate system,781

this noise can be considered as the impact of smaller scale782

phenomena on the positions of the larger scale blocking vor-783

tices. The modified point vortex system is regarded according784

to the Itô integral of stochastic differential equations as in Zhu785

and Cheng (2010) and numerical solutions are obtained using786

the Euler-Maruyama method. Thereby, Ẇij = N (0, sd)/
√
dt787

whereN (0, sd) denotes a normal distribution of zero mean and788

standard deviation sd (Higham, 2001).789

We tested several (3721) initialisations (l′LeLw = lLeLw ±790

30 km and l′HLe = lHLe ± 30 km in 1 km steps) with different791

initial intervortical distances in the vicinity of the mean isosce-792

les triangle (lLeLw, lHLe, lHLw) = (3000, 2000, 2000) km793

that followed from the NCEP statistics. Accordingly, the cir-794

culations were set to (ΓH ,ΓLe,ΓLw) = (1.3, 0.65, 0.65) ·795

108 m2/s. And the initial orientation of the triangle is σ =796

+1. The simulations were calculated with R (R Core Team,797

2015) for time steps of 10 min over a total integration time of798

4000 hours (≈ 166.7 days). The Brownian motion is modeled799

as normal distribution of zero mean and with standard devia-800

tion set to sd = 30 km. This sd-value seems to be reasonable801

in comparison to the initial configuration based on the coarsely-802

resolved NCEP data (2.5◦). For the viscosity we used the stan-803

dard atmosphere kinematic viscosity at a height of 5500 m804

(≈ 500 hPa): ν = 2.3 ·10−5 m2/s. We tested for clustering near805
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an equilateral triangle constellation. Thereby, clustering was de-806

fined as being close to an equilateral triangle constellation for807

at least 10 days over the whole integration time. The closeness808

was determined with help of the dimensionless distance809

` =

√
l2LeLw + l2HLe + l2HLw

lLeLw + lHLe + lHLw
(14)810

811

in phase space. We required ` < 0.03 for at least 10 days.812

6.2.2. Results and Discussion813

Although only for a fraction (≈ 1%) of the tested set-ups,814

it was indeed possible to observe a clustering of the point vor-815

tex model near the equilateral triangle configuration during the816

integration times. An example is given in Fig. 11, where the817

system remains near the fixed point (l ≈ 2000 km) for about818

15 days starting approximately at 105 days after the integration819

is initiated. Moreover, we notice that in the first period up to820

about 100 days the distance between one of the two lows and821

the high remains constant at about 1500 km and after the cluster-822

ing the distance between the other low and the high is similarly823

stable while the other vortex moves more freely. This reminds824

of the high-over-lowdipole patterns with an additional vortex.825

However, the dipole might also rotate; hence, the high and low826

might change their positions. Nonetheless, it is an impressive827

result that even though we started far away from the equilat-828

eral triangle configuration the N=3 point vortex system clusters829

close to the equilibrium state for such a long time period. Es-830

pecially, since we used a realistic atmospheric conditions of the831

mid-troposphere for slightly viscous flow. This is a promising832

outcome that further confirms the applicability of the point vor-833

tex model to atmospheric blockings. However, further analyses834

(longer integration times, different set-ups, test for high-over-835

low resembling behaviour) might be needed to give a more sub-836

stantiated view of the point vortex clustering behaviour and its837

relation to the atmospheric blocking.838

7 Conclusions839

The focus of this paper is the corroboration of the applicabil-840

ity of the point vortex model to atmospheric blocking events.841

Two methods to identify and characterize blocking vortices842

in an automated way were proposed. The contour method se-843

lects the areas of the blocking vortices as contours of station-844

ary vorticity and is able to distinguish between high-over-lows845

and Omega blockings. The trapezoid method after Müller et al.846

(2015) on the other hand is only applied to Omega blockings847

and adapts a trapezoid to fit the blocking vortices at each time848

step. Both methods evaluate a rather novel atmospheric field:849

the vorticity determined in the field of the dimensionless kine-850

matic vorticity number Wk larger than 1 where the Wk > 1851

criterion extracts the vortex structures embedded in the con-852

tinuous flow field (see also Schielicke et al., 2016). From 347853

blocking periods in total during 1990-2012, 106 were identified854

as high-over-lows and 141 as Omega blocking. A comparison of855

the two methods revealed that the high pressure systems were856

appropriately captured while the identification of the more vari-857

able lows is less reliable. The magnitudes of the circulations,858

distances and velocities are in accordance with the case stud-859

ies of Müller et al. (2015). The condition of the vanishing total860

circulation is acceptably well satisfied, whereas clear deviations861

from the equilateral triangle are observed. However, the magni-862

tude of the translation velocities u∆ and ud of the point vortex863

tripole/dipole fits well with the zonal mean flow but the zonal864

mean flow is slightly stronger. Choosing different regions for865

the calculation of ū (e.g. smaller latitudinal bands or the lat-866

itudes within the selected trapezoid) only modifies the results867

slightly. Such differences could lead to non-stationary blocking868

systems and it was indeed observed that many blocking trans-869

late slowly.870

Moreover, this allows us to compare the linearised analytic871

solution of the point vortex equilibrium with a statistical model.872

As a result of the multiple linear regression, we found that the873

circulation of the high pressure systems behaves in relation to874

the zonal mean flow according to the point vortex model. The875

circulations of the lows and the distances yield larger devia-876

tions between theory and statistics. It is commonly known that877

the persistent high pressure system is a major characteristic of878

blockings. Our analysis confirms that the high pressure system879

as anticyclonic vortex is dynamically relevant for the blocking880

phenomenon.881

Another central point of this study was the analysis of the sta-882

bility of the blocking, i.e. the response to perturbations from the883

equilateral triangle. A stability analyses was considered, find-884

ing that the equilateral triangle constellation (or the ideal point885

vortex blocking model) corresponds to an unstable saddle point886

in accordance with the findings from Faranda et al. (2015) and887

Schubert and Lucarini (2016). By considering the non-linear888

motion in the whole phase space (instead of only the local, lin-889

ear behaviour near the fixed point), simulations showed an os-890

cillatory behaviour of the lows in accordance with real blocking891

events. Thereby, a transition from Omega blocking to high-over-892

-low is indicated. If the equilateral triangle is perturbed similar893

to the observed deviations, i.e. lows are further apart, the sim-894

ulation reveals a more variable, oscillating anticyclonic vortex.895

This behaviour needs to be further studied in comparison to re-896

alistic atmospheric blocking behaviour, possibly using a higher897

number of point vortices. Furthermore, the clustering behaviour898

described in Faranda et al. (2015) can also be observed in the899

point vortex model concerning the relative distances when fric-900

tion in terms of noise is included. This clustering may illustrate901

the persistent (’stable’) behaviour of blocking as well as the902

difficulty in predicting the onset and offset of blocking. How-903

ever, we notice that the reduced point vortex model does not904

include effects like divergence, baroclinicity, Rossby waves or905

the Earth’s rotation that also play a role in modifying the can-906

cellation of the zonal mean flow and the theoretically calculated907

translation velocity from the point vortex blocking model. Other908

vortices, e.g. those embedded within the zonal mean flow, have909
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not been taken into account explicitly, only indirectly in terms910

of the averaged zonal mean flow.911

To answer the research questions from the introduction we912

can conclude that atmospheric blockings, especially their high913

pressure systems, behave in many ways similar to the idealized914

point vortex blocking model. We have shown that not only the915

stationary behaviour of the blocking high can be modelled with916

point vortices, but also the instability and the consequently lim-917

ited predictability due to clustering behaviour.918
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ing Index data. Peter Névir and Annette Müller thank Deutsche921

Forschungsgemeinschaft for their support within the framework922

of CRC 1114 ’Scaling Cascades in Complex Systems’, project923

A01. Lisa Schielicke was funded by the Helmholtz graduate924

school GeoSim.925

References926

A. M. Altenhoff, O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C.927

Davies, 2008. Linkage of atmospheric blocks and synoptic-scale928

Rossby waves: a climatological analysis. Tellus A, 60 (5): 1053–929

1063.930

H. Aref, 1979. Motion of three vortices. Physical Fluids, 22.931

H. Aref, 2007. Point vortex dynamics: A classical mathematics play-932

ground. Journal of Mathematical Physics, 48.933

E. A. Barnes, J. Slingo, and T. Woollings, 2011. A methodology for934

the comparison of blocking climatologies across indices, models and935

climate scenarios. Climate Dynamics, 38 (11-12): 2467–2481.936

D. Barriopedro, R. Garcı́a-Herrera, and R. Trigo, 2010. Application of937

blocking diagnosis methods to general circulation models. Part I: A938

novel detection scheme. Climate dynamics.939

J. G. Charney and J. G. DeVore, 1979. Multiple Flow Equilibria in the940

Atmosphere and Blocking. Journal of the Atmospheric Sciences, 36941

(7): 1205–1216.942

D. Faranda, G. Masato, N. Moloney, Y. Sato, F. Daviaud, B. B.943

Dubrulle, and P. Yiou, 2015. The switching between zonal and944

blocked mid-latitude atmospheric circulation: a dynamical system945

perspective. Climate Dynamics, pages 1–13.946

L. Ferranti, S. Corti, and M. Janousek, 2015. Flow-dependent verifica-947

tion of the ecmwf ensemble over the euro-atlantic sector. Quarterly948

Journal of the Royal Meteorological Society, 141 (688): 916–924.949

freva, 2017. Freie Universität Berlin evaluation system (Freva).950

https://freva.met.fu-berlin.de/. Accessed: 2017-06-951

29.952

T. J. Galarneau Jr., T. M. Hamill, R. M. Dole, and J. Perlwitz, 2012.953

A Multiscale Analysis of the Extreme Weather Events over Western954

Russia and Northern Pakistan during July 2010. Monthly Weather955

Review, 140 (5): 1639–1664.956
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A. Müller, P. Névir, L. Schielicke, M. Hirt, J. Pueltz, and I. Sonntag,990

2015. Applications of point vortex equilibria: blocking events and991

the stability of the polar vortex. Tellus A, 67.992

U. Neu, M. G. Akperov, N. Bellenbaum, R. Benestad, R. Blender,993

R. Caballero, A. Cocozza, H. F. Dacre, Y. Feng, K. Fraedrich, et al.,994

2013. Imilast: A community effort to intercompare extratropical cy-995

clone detection and tracking algorithms. Bulletin of the American996

Meteorological Society, 94 (4): 529–547.997

P. K. Newton, 2001. The N-Vortex Problem: Analytical Techniques.998

Springer-Verlag.999

A. M. Obukhov, M. V. Kurgansky, and M. S. Tatarskaya, 1984. Dynam-1000

ical conditions for origin of droughts and other large-scale weather1001

anomalies. Meteorologiya i Gidrologiya (Meteorology and Hydrol-1002

ogy Journal of the USSR), 10.1003

J. L. Pelly and B. J. Hoskins, 2003. A new perspective on blocking.1004

Journal of the atmospheric sciences, 60 (5): 743–755.1005

S. Pfahl, C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli,1006

2015. Importance of latent heat release in ascending air streams for1007

atmospheric blocking. Nature Geoscience, 8 (8): 610–614.1008

R Core Team, 2015. R: A Language and Environment for Statistical1009

Computing. URL: http://www.r-project.org/.1010

D. F. Rex, 1950. Blocking Action in the Middle Troposphere and its1011

Effect upon Regional Climate. Tellus, 2 (October): 196–211.1012

A. Richling, C. Kadow, S. Illing, and O. Kunst, 2015. Freie Universität1013

Berlin evaluation system (Freva) - blocking. https://freva.1014

met.fu-berlin.de/about/blocking/. (Documentation of1015

the Blocking Plugin), Accessed: 2017-06-29.1016

M. J. Rodwell, L. Magnusson, P. Bauer, P. Bechtold, M. Bonavita,1017

C. Cardinali, M. Diamantakis, P. Earnshaw, A. Garcia-Mendez,1018



12
HIRT ET AL.

L. Isaksen, E. Källén, D. Klocke, P. Lopez, T. McNally, A. Persson,1019

F. Prates, and N. Wedi, 2013. Characteristics of Occasional Poor1020

Medium-Range Weather Forecasts for Europe. Bulletin of the Amer-1021

ican Meteorological Society, 94 (9): 1393–1405.1022
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ΓL

ΓH

ΓL

ΓH= 2·ΓL

Fig. 1. Schematic illustration of the interaction of three point vortices arranged according to the atmospheric Omega pattern, where
the circles indicate the direction and relative strength of rotation. The dotted arrows represent the influence of the other two vortices
on the velocity of the corresponding point vortex. Their vector addition given by the solid lines represents the resulting velocity
vector for the corresponding vortex. The anti-cyclonic vortex (red) is assumed to be twice as strong as the cyclonic vortices (blue),
therefore the induced velocity field is stronger. This interaction can also be derived from Equations 2.

Fig. 2. (Left) Two exemplary blocking events, one resembling an Omega (top) and the other a high-over-low (bottom). Shown are
the vorticity (coloured) and the geopotential height isolines (grey isolines in 8 dm intervals, bold line represents the 552 dm line)
at 500 hPa. (Right) Illustration how the corresponding blocking can be realized in the point vortex model. Upper right figure by
courtesy of Müller et al. (2015).
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Fig. 3. Illustration of the contour method. (a) ζWk>1(coloured) and geopotential height (grey isolines in 8 dm intervals, bold line
represents the 552 dm line) fields for an exemplary blocking period (mean field). The blue and red contours enclose regions with
significantly positive and negative vorticity (α = 0.5). The solid black line qualitatively represents the number of timesteps, that the
corresponding longitude was blocked during the blocking period. The dots mark the IBLmax. The identified blocking vortices are
marked as bold (red and blue) contours and their centres are indicated by the circles with their circulation given in 107m2s−1. (b)
Flow chart of the contour method.
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Fig. 4. ζWk>1and geopotential height fields (as in Figure 3a) for an examplary time step to illustrate the trapezoid method. (a) The
contour of the largest high pressure system defines the preliminary trapezoid: The minimum and maximum longitudes of the high
contours define the northern boundaries of the trapezoid. The dashed lines mark the latitudes, where the minimum vorticity is used
(local minimum) within the blocked longitudes. (b) Adapted trapezoid with resulting circulations (in 107m2s−1) and vortex centres
marked as crosses

Fig. 5. Composite of (a) all 106 high-over-low blockings and (b) all 141 Omega blockings that were identified from 347 blockings
during 1990-2012. The mean positions and circulations (in 107m2s−1) of the identified blocking vortices are marked for the contour
method with circles and for the trapezoid method with crosses. The ζWk>1and geopotential height fields are shown as in Figure 3a.
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Fig. 6. Scatter plot of the circulations [108m2s−1] (averaged for each blocking period) for the two methods. The dashed line
shows the ideal case, the bisecting line. The regression line, the correlation coefficient and the R2 value are shown for the high. The
red points show the circulations of the high, the light/dark blue points those of the western/eastern low.
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Fig. 7. Histogram of the distances l between the vortices (a-c) and the circulations Γ (d-f) of the single time steps for Omega
blocking as analysed with the (b,e) contour method and (c,f) trapezoid method, and (a,d) high-over-lows as analysed with the
contour method. Due to overlapping distributions, the colors accordingly appear darker.
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Fig. 8. Scatter plot of the velocities u∆ and ud with the zonal mean zonal velocity ū averaged over 20− 80◦N . The grey dashed
line indicates the bisecting line, the blue line shows the linear regression. Error intervals (only for Omegas) show the velocities when
using the minimum and maximum distances between the vortices instead of the average distance.
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Fig. 9. Phase space of relative distances lij . The fixed point is marked as red cross and the three eigenvectors are displayed as green
(stable), blue (unstable) and grey (neutral) lines. Three exemplary trajectories are displayed as points. The elapsed time between two
consecutive points corresponds to 8h. The initial condition is marked as star in corresponding colour. Note that the grey trajectory
lies on the neutral eigenvector at the initial position and is therefore stationary.
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Fig. 10. Simulations of two N=3 point vortex systems applying realistic atmospheric conditions. The initial triangles (1) are dis-
turbed from the relative equilibrium of the equilateral triangle of side length l = 2000 km. The distance between the two lows is
(a) decreased with lLeLw = 1800 km, (b) increased with lLeLw = 3000 km. The coloured lines mark the trajectories of the corre-
sponding point vortices. Some exemplary triangle constellations 1-6 as realized in the simulations are added for the following times:
(a) (1, 2, 3, 4, 5, 6) ≈ (0.0, 1.5, 2.9, 5.9, 8.8, 14.0) days; (b) for (1, 2, 3, 4, 5, 6) ≈ (0.0, 1.0, 6.2, 12.4, 18.5, 25.0) days. When they
appear after the equilateral triangle constellation (constellation 1 and 4) and before the trilinear constellation (constellations 3 and
5), the triangles are changed according to the unstable direction, as e.g. constellation 2. Triangles, changed in the stable direction
exist after the triliniear constellation and before the equilateral triangle constellation, as e.g constellation 6.
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Fig. 11. Intervortical distances of the N=3 point vortex system of an exemplary simulation with friction as in Zhu and Cheng
(2010). Initial set-up of the distances was (lLeLw, lHLe, lHLw) = (2981, 1995, 2000) km. Random numbers were drawn from a
normal Gaussian distribution of zero mean and standard deviation sd = 30 km using R function set.seed(12345) in order to estimate
the Brownian motion. The other initial conditions are described in the text.
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predictor theory (α) regression estimates (β) p-value

ΓH −3.7 · 10−8m−1 −3.4 ± 1.4 · 10−8m−1 0.02

ΓLw 2.2 · 10−8m−1 −0.7 ± 1.4 · 10−8m−1 0.64

ΓLe 1.8 · 10−8m−1 2.7 ± 1.7 · 10−8m−1 0.11
l −3.2 · 10−6s−1

lHLe −4.1 · 10−6s−1 2.0 ± 1.2 · 10−6s−1 0.09

lHLw −4.3 · 10−6s−1 3.4 ± 1.1 · 10−6s−1 0.75
lLeLw −2.1 · 10−6s−1 −1.2 ± 0.8 · 10−6s−1 0.10

Table 1. Results of the multiple linear regression for Omega blocking as characterized with the trapezoid method. The α values
show the coefficients of the linearised point vortex equations and the β values denote the estimates from the linear regression. Small
p-values indicate more significant regression estimates.


