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1 Introduction

In recent research on multiscale problems low-rank multilevel approximation meth-
ods are found to attack high-dimensional problems successfully and they offer op-
portunities for compact representation of large data sets [11, 3]. Specifically, hierar-
chical tensor product decomposition methods such as the Tree-Tucker format, [4],
and the Tensor Train format, [5, 13], are promising approaches for application to
data that are concerned with cascade-of-scales problems, for instance in turbulent
fluid dynamics. Beyond multilinear mathematics, those tensor formats are also suc-
cessfully applied in e.g., physics or chemistry, where they are used in many body
problems and quantum states.

Tensors are multidimensional arrays or mathematically more precisely polylin-
ear formats. For example, vectors are tensors of order d = 1, and tensors of order 3
or higher are generally denoted as higher-order tensors. Clearly, the storage require-
ment of a tensor depends on its order and on the mode sizes, that is, on the number
of entries, n, per dimension. A d-dimensional tensor with mode sizes n results in a
storage requirement of nd . Thus, in high dimensional problems or in so-called big
data applications one has to deal with a massive storage requirement. Tensor prod-
uct decomposition methods, first mentioned by [6], were developed to overcome
that curse of dimensionality.

Here, we test the capabilities of the Tensor Train decomposition to both, numer-
ically computed and experimentally measured flow profile data. We aim at captur-
ing coherent structures and self-similar patterns that might be hidden in the data,
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cf. [10]. Our study is concerned with the question of whether Tensor decomposition
methods can support the development of improved understanding and quantitative
characterisation of multiscale behavior of turbulent flows, cf. e.g. [14]. Results of
tests using synthetic data to evaluate the suitability of the method to generally detect
self-similar patterns are published in [17].

2 Tensor product decomposition method

The Tensor Train format is a hierarchical tensor format and a specific branch of the
hierarchical Tucker format. It is mainly based on the key idea to transform higher
order tensors into tensors of order 2 (matrices) that then allow for the application
of the matrix singular value decomposition (SVD). Generally, SVD of a matrix A ∈
Rm×n is written as A = UΣVT, where U ∈ Rm×m and V ∈ Rn×n. The matrix Σ
contains the singular values, σi, on its diagonal, Σ= diag(σ1, . . . ,σmin(m,n))∈Rm×n,
with σ1 ≥ σ2 ≥ σmin(m,n) ≥ 0. The number of singular values unequal 0 defines the
rank r of the matrix A: rank(A) = r. SVD often enables compact representation by
truncating U,Σ,V with respect to rank r, i.e., the size of the matrices is truncated
with respect to the singular values unequal 0.

Tensor Train decomposition makes use of the compact SVD in successive steps.
Figure 1 shows a sketch of the step-by-step procedure that we apply here to trans-
form a Tensor (of dimension 4 in this example) into the Tensor Train format. In
the first step, the input Tensor, A(n1,n2,n3,n4), is reshaped into a 2-dimensional
n1 × (n2n3n4) matrix A1 to which a compact SVD is applied, that is, a param-
eter r (so-called TT-rank) is set which compresses the size of the matrices. The
factor matrix U1 ∈ Rn1×r1 , so-called first core, is stored and the remaining part
Σ1VT

1 = A2 ∈ Rr1×n2n3n4 is used for the second step. In the second step, A2 is re-
shaped into a r1n2×n3n4 matrix to which again a SVD is applied leading to the sec-
ond core U2 ∈Rr1n2×r2 . Finally, the step-by-step procedure gives 4 cores U1, . . . ,U4

that are used for writing the Tensor A in the Tensor Train format

A(n1,n2,n3,n4) =
r1

∑
k1=1

r2

∑
k2=1

r3

∑
k3=1

U1(n1,k1) U2(k1,n2,k2) U3(k2,n3,k3) U4(k3,n4) .

(1)
Note, that the core tensors are linked by the TT-rank r which is kept fix in all steps
of the step-by-step procedure. The cores are tensors of order 3 except the first and
the last core which are of order2.

3 Results

We begin this section with an exemplary demonstration of the Tensor Train decom-
position method, that is, we apply it to numerically computed data of a Taylor-Green
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Vortex flow. Then, we show results of application to in-situ data of the atmospheric
stable boundary layer. Finally, we analyse data of a direct numerical simulation
(DNS) of a channel turbulence flow.

We write the relative error between the original data Tensor and the approximated
Tensor in the Frobenius norm that reads

||A||=

√√√√ N1

∑
n1=1

N2

∑
n2=1
· · ·

Nd

∑
nd=1

x2
n1···nd

, (2)

where A is a d-dimensional Tensor with entries n1, . . . ,nd . Then, the relative error
reads

e =
||(Y−A)||
||A|| , (3)

with Y as approximation of A.

3.1 Taylor-Green Vortex

In computational fluid dynamics, Taylor-Green Vortex flow is a classical test bed for
at least two reasons. First, it is computed using a fully periodic box with analytical
initial conditions. Second, depending on the Reynolds number, it shows a transition
from laminar flow to a fully turbulent state and homogeneous, isotropic decay of
turbulence with fully developed inertial range.

A

n1

n2

n3

n4
reshape

A1

n1 n2 n3 n4
SVD

U1 (Σ1V
T
1 )

n1 r1 n2 n3 n4
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r1 n2 n3 n4
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A2

r1 n2 n3 n4
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U2 (Σ2V
T
2 )
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A2 = (Σ1V
T
1 )

A3

r2 n3 n4
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A3

r2 n3 n4
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U3 (Σ3V
T
3 )

r2 n3 r3 n4

A3 = (Σ2V
T
2 ) (Σ3V

T
3 ) → r3 × n4 → U4

Fig. 1 Scheme of the Tensor Train decomposition. Note that r1 = r2 = r3.
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Here, we use data of a 3D direct numerical simulation; data courtesy of G.
Gassner (University of Cologne, Germany). The Reynolds number is Re = 800 and
the grid size 256×256×256 in (x,y,z). To demonstrate the capabilities of the Ten-
sor Train approximation, we extract a 2D (x,y) horizontal slice at height z = 10.
The snapshot is taken at t = 12 s; at this time step the flow state shows a mirror
symmetric profile in x− and y−axis relation (figure 2, left panel). We make use
of the mirror symmetry and reshape the 2D data set into a Tensor T of order 4,
i.e., T[2,128,2,128]. The Tensor Train decomposition is then applied to this input
Tensor.

Figure 2 and figure 3 show results of the approximation of the input Tensor T at
various TT-ranks. Already at TT-rank 6 we find a remarkable low relative error (e≈
0.02 %) and the compression factor is about 27 (storage requirement 2382 compared
to 65536 of the original 2D snapshot). At higher ranks also the small-scale structures
are getting well resolved, linked with an increase of the storage requirement.

Fig. 2 TGV. Left: (x,y)-slice at height z = 10. Snapshot is taken at t = 12 s. Right: approximation
at TT-rank 6.

Fig. 3 TGV. Log-log plot of
storage requirement against
relative error for various TT-
ranks. Note that the increment
is 2 up to TT-rank 100 and 5
up to 200.
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3.2 Atmospheric stable boundary layer

During the Snow-Horizontal Array Turbulence Study (SnoHATS) at the Plaine
Morte Glacier in the Swiss Alps [1, 12] time series of velocity and temperature
data were measured in the atmospheric stable boundary layer (SBL). Analysis of
SBL turbulence data, [16], shows that data can be clustered according to different
interactions of submesoscale wind velocity and vertical velocity fluctuations.

Here, we apply the Tensor Train decomposition to a time series of temperature
data of cluster 4 as described in [16]; data courtesy of N. Vercauteren (Freie Univer-
sitaet Berlin, Germany). We limit the scalar data series to 218 = 262144 entries and
reshape it into a Tensor of dimension 18, i.e., each dimension has 2 entries. Thus,
we ignore any a priori knowledge about the physics hidden in the data that has been
described in [16]. Applying the Tensor Train decomposition with a given TT-rank
2 approximates the data series with a relative error of 20.0%, and the storage re-
quirement in the Tensor Train format is 138 which corresponds to a compression
factor of about 1900. Interestingly, reconstruction of the data series at TT-rank 2
reveals a periodic signal with a cycle length of about 819 s, see fig. 4. This value is
in good agreement with the results of [16] who found both, turbulence motion and
wave activity in the cluster under consideration.

3.3 Application to channel turbulence flow

Finally, we consider a fully turbulent 3D channel flow generated in a numerical
study by [15]; data courtesy of M. Uhlmann (Karlsruhe Institute of Technology,
Germany). The grid size is 600×352×600 in (x,y,z), the friction-based Reynolds
number is Reτ = 590. We focus on data of vorticity magnitude calculated from the
DNS velocity data as turbulence is heavily linked with vorticity.

Fig. 4 SBL. Time series
of measured temperature
data from cluster 4 (gray) in
[16] and approximated data
modelled with TT-rank 2
(black).
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The Q-criterion, [8, 9], a scalar quantity defined to identify vortex (coherent)
structures within turbulent flows, represents the balance of shear strain rate and
vorticity magnitude. Figure 5 shows iso-surfaces of the Q-criterion. Various vortex
tubes of different size and shape, stretched and rotated, can be identified indicating
the highly turbulent regime.

To capture the broad range of space scales, the vorticity field is reshaped into its
prime factors. Thus, the input Tensor to which the Tensor Train decomposition is
applied is of order 18

T[n1, . . . ,n18] = T[2,2,2,2,3,5,5,2,2,2,2,2,11,2,2,2,2,3,5,5]. (4)

Figure 6 shows (x,y)-slices of the resulting approximated data at various TT-
ranks. Qualitatively, the trend of a decrease in the relative error and accompanying
increase in the TT-rank is similar to our finding for the TGV flow. However, we
find a large relative error at small TT-ranks (e ≈ 0.42 at rank 100) and the error is
still relative large at larger TT-ranks (e ≈ 0.12 at rank 1000). This is reasonable as
vorticity dominates at small scales that are approximated at higher but not at lower
TT-ranks. As observed in the previous tests, approximation at low TT-ranks averages
also the turbulent vorticity field.

4 Conclusion

In this study, we apply the Tensor Train decomposition method to flow profiles of
computational and experimental fluid dynamics. We found the Tensor Train format
to be an efficient method to compress big data. The occurrence of (self-)similar
structures results in low relative errors at low TT-ranks. Especially, for low-rank ap-
proximation of the data the Tensor Train format acts similar to an average filter as
the approximated data represent a smooth version of the original profiles. In par-

Fig. 5 Channel turbulence
flow. Iso-surfaces of the Q-
criterion. Colored surfaces
represent unfiltered data of
Q = 9. Gray surfaces (large
tubes) represents data of Q =
2 filtered with a box-filter of
size 10. Colors represents the
angle α of vorticity between
the unfiltered and the filtered
data set, green is α = 0◦,
yellow is α = 90◦, and red is
α = 180◦, cf. [2].
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a) b)

c) d)

Fig. 6 Channel turbulence flow. (x,y)-slice at z = 300 (mid-channel) of approximated vorticity
data. a) for TT-rank 100 (e≈ 0.42), b) for TT-rank 500 (e≈ 0.21), c) for TT-rank 1000 (e≈ 0.12),
d) original data. Note that the colorbar scale is the same for all panels, that is, it is a linear scale
from 0 (blue) to 8 (red).

ticular, analysis of the atmospheric SBL data set uncovers a periodic signal that is
hidden in the data.

The present results are very promising. In future work, we will apply different
multiscale and advanced data analysis methods such as, e.g., shearlets, wavelets, and
turbulent event detection methods to detect self-similar structures that might emerge
repeatedly in time on different spatial scales.
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