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Abstract

Data assimilation algorithms are used to estimate the states of a dynamical system using partial and noisy

observations. The ensemble Kalman filter has become a popular data assimilation scheme due to its simplicity

and robustness for a wide range of application areas. Nevertheless, the ensemble Kalman filter also has limi-

tations due to its inherent Gaussian and linearity assumptions. These limitations can manifest themselves in

dynamically inconsistent state estimates. We investigate this issue in this paper for highly oscillatory Hamilto-

nian systems with a dynamical behavior which satisfies certain balance relations. We first demonstrate that the

standard ensemble Kalman filter can lead to estimates which do not satisfy those balance relations, ultimately

leading to filter divergence. We also propose two remedies for this phenomenon in terms of blended time-stepping

schemes and minimization based post-processing methods. The effects of these modifications to the standard

ensemble Kalman filter are discussed and demonstrated numerically for the balanced motion of highly oscilla-

tory Hamiltonian systems. In our context this scenario serves as prototypical example for applications from

meteorology.
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Balanced data assimilation

1 Introduction

A problem dating back as far as the advent of numerical weather prediction is the incorporation of physical obser-

vations into a dynamical model with more than one time scale. The famous first forecast of L. F. Richardson [33]

spectacularly failed, due to the choice of an unbalanced initial condition gained from observations. In essence the

observational data did not satisfy certain discrete energy balances which triggered the artificial oscillations in the

pressure, ultimately leading to the wrong result. In the context of data assimilation procedures, several solutions

to the issue of artificial fast oscillations in dynamical systems with multiple time scales were proposed over the last

decades. In [34] it was suggested to apply a digital filter after every assimilation step to filter out spurious fast

oscillations. This was applied to a weather prediction model. Strategies that incorporate the observational data in

the model evolution in a gradual and smooth way instead of using all the information about the observation at one

single point in time have been suggested for example in [7] and [6]. Other methods to overcome the issue of artificial

balances triggered by Bayesian data assimilation were proposed in [26] and [21]. In the context of variational data

assimilation the issue was addressed e.g. in [13].

1.1 Model problem

With atmospheric models in mind and in line with the seminal investigations of [30, 31] and, more specifically,

[8, 32, 11] we will address the issue of representing systems with multiple time scales that evolve in approximate

balance with respect to their fast modes in a simplified finite dimensional setting. In the following we therefore

discuss sequential data assimilation techniques for highly-oscillatory Hamiltonian systems with Hamiltonian energy

functional

Hε(q, p) =
1

2
pTp+

1

2ε2
g(q)TKg(q) + V (q), (1)

with momenta and coordinates p, q ∈ R
N . Here V : RN → R is a potential, g : RN → R

L, L ≤ N gives rise to

rapid oscillations with a diagonal matrix of force constants K > 0 ∈ R
L×L, and ε > 0 is a stiffness parameter. The

associated Hamiltonian equations of motion are then given by

q̇ = p

ṗ = −ε−2G(q)TKg(q)−∇V (q),

(2)

where G(q) := Dg(q) ∈ R
L×N denotes the Jacobian matrix of g at q. These equations pose challenges in their

numerical treatment as well as for sequential data assimilation techniques in the limit ε → 0. We observe that

solutions of (2) preserve the Hamiltonian energy functional (1) and bounded energy, i.e., Hε(q, p) = O(1) as ε→ 0,
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1.1 Model problem Balanced data assimilation

implies g(q) = O(ε). In other words, for ε ≪ 1 solutions q of bounded energy have to stay close to the constraint

manifold

M = {q ∈ R
N : ‖g(q)‖ = 0}. (3)

From here on we will assume that G is free of critical points so that an explicit local decomposition of q into fast

and slow modes is possible.

Lemma 1.1. Let Ω ⊆ R
N be open and bounded and let rankG(q) = L for all q ∈ Ω, then the linear map

Pq : RN → R
N given by

Pq := GT(q)(G(q)GT(q))
−1
G(q) (4)

is an orthogonal projection.

Remark 1.2. P⊥
q denotes the orthogonal projection onto the orthogonal complement of the image of Pq. For every

q ∈ M its image is included in the corresponding tangent space to M i.e. P⊥
q R

N → TqM.

The rapid oscillations orthogonal to the manifold M are locally characterized by the oscillatory Hamiltonian

Hε
osc(q, p) =

1

2
pTPqp+

1

2ε2
g(q)TKg(q). (5)

Remark 1.3. In general the energy (5) is not invariant under the evolution governed by (1).

Henceforth we will assume g to be locally smooth and G(q) to have full rank L for all q ∈ R
N satisfying

‖g(q)‖ ≤ C for sufficiently large constant C > 0. To state the setting more rigorously, we consider solutions

qε, pε ∈ C1([0, T ],RN) to (2) given the initial conditions

qε(0) = q00 + εq̄, q̄ ∈ R
N

pε(0) = p00 + εp̄, p̄ ∈ R
N .

(6)

where (p00, q
0
0) ∈ T M. Hereby T M denotes the tangential bundle of M which we will interpret as manifold in

phase space, i.e.,

T M = {(q, p) ∈ R
2N : q ∈ M∧ p ∈ TqM} . (7)

Therefore the initial data is, up to a perturbation of order ε, tangential [40], and we note in passing that the

oscillatory energy (5) is small of order O(ε) in this case . In the case of codimension N −L = 1 the work of [40, 9]
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1.1 Model problem Balanced data assimilation

proved existence of a unique solution q0, p0 to the differential algebraic equation system

q̇0 = p0 q0(0) = q00 ∈ M

ṗ0 = −GT(q0)Kλ−∇V (q0) p0(0) = p00 ∈ Tq0
0
M

0 = g(q0)

(8)

and convergence qε(t)
ǫ→0
−→ q0(t), pε(t)

ǫ→0
−→ p0(t) uniformly for t ∈ [0, T ]. The Lagrange multiplier λ ∈ C1([0, T ],RL)

can be algebraically determined for every t ∈ [0, T ] by

0 = g̈(q0) = −G(q0)
[

∇V (q0) +GT(q0)Kλ
]

+

L
∑

i=1

L
∑

j=1

(

(p0)
T
ei,jp

0
) ∂2g(q0)

∂qi∂qj
, (9)

where ei is the i-th cartesian unit vector of RN and ei,j = ei ⊗ ej ∈ R
N×N . Therefore this differential algebraic

system is of index 3 and we obtain the additional hidden constraint G(q0)p0 = 0 by differentiation of g(q0) = 0

with regard to the parameter. Under additional assumptions [5] could prove that solutions (qε, pε), initially ε-close

to (q0, p0), stay ε-close for exponentially long times.

Example 1.4. Consider a chain of L mass points with positions ri ∈ R
D and momenta vi ∈ R

D. The first point

(denoted by subscript 0) is assumed to be fixed, all points have equal mass and are under the influence of a

constant unidirectional force characterized by a0. All points are pairwise connected by L (linear) elastic bonds,

characterized by their force coefficients K = diag(k1, . . . kL) and their equilibrium lengths li > 0 for i = 1 . . . L.

Observing N = DL, we can describe the evolution of this mechanical system by (2), if we collect all components of

all positions and momenta in q and p, respectively. By means of classical mechanics we then conclude

g(q) =

(

‖r1‖ − l1 . . . ‖ri − ri−1‖ − li · · · ‖rL − rL−1‖ − lL

)T

V (q) =a0

L
∑

i=1

eTD ri,

(10)

where in this case eD ∈ R
D is the unit vector in the last component. If not stated differently, we assume D = 2.

Note that this is a genuinely nonlinear model with at least two time scales even for the simplest case of the elastic

pendulum with L = 1. Due to the work of [4], we expect solutions qǫ for this case to stay close to the solutions

of the classical pendulum q0 for long times. Since our goal is to observe and predict chaotic slow dynamics, we

wish for a system with solutions q0, which already exhibit chaotic behavior. For this reason we have to consider a

slightly more complex model and choose L = 2.
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li

ki
ri

Figure 1: A graphical depiction of (2) using (10) for the case of two mass points L = 2 moving in the plane D = 2.

As it is of codimension N −L = 2 the results of [40] are not longer valid. Nevertheless one can, under additional

assumptions, conclude convergence of the solution limε→0 q
ǫ = q0 by the means of [42, 9]. For L > 1 and non

resonant configurations [5] proved solutions qε to stay close to q0 for long times, if initially so.

Remark 1.5. As demonstrated in [37]

g(qε) = ε2λ(qε, pε), (11)

where λ(q, p) is determined by (9), is a better approximation to the slow dynamics of (2) than the zeroth order

balance relation (q, p) ∈ TM. Replacing the constraint in (8) by (11) leads to the concept of soft or flexible

constraints as introduced in [37, 45].

Remark 1.6. It should be noted that initial conditions with unconstrained momentum of the form

qε0 = q00 + εq̃0 q00 ∈ M, q̃0 ∈ R
N

pε0 = p̃0 p̃0 ∈ R
N .

(12)

lead to an oscillatory energy (5) of order O(1) instead of O(ε). In this case, an additional force term can appear in

the limiting equations (8). See [40, 42, 9] for more details.

1.2 Bayesian data assimilation

When describing physical processes by models there are several sources for uncertainties, such as model errors or an

uncertainty about the initial conditions. Data assimilation combines model outputs with error prone observational

data to estimate the probability distribution of the model state conditioned on the observations. There are two main

approaches. First, variational data assimilation estimates a trajectory of the process over an entire time interval by

solving a related minimization problem. A well known candidate of this kind is 4D-VAR, as explained e.g. in [39,

p. 186].
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1.2 Bayesian data assimilation Balanced data assimilation

Another approach is sequential Bayesian data assimilation. This method alternates between a forecast step, in

which the probability distribution is evolved in time according to the model until a new observation yobs becomes

available. The resulting distribution is called the prior or forecast distribution. The second part of this approach

includes an assimilation step which – by applying Bayes’ theorem – takes the observations into account and, thus,

provides the posterior (or analysis) distribution by

πa(z|yobs) ∝ π(yobs|z)π
f(z), (13)

where here and in the following z = (qT, pT)T ∈ R
2N denotes the state of the model. We denote the posterior and

prior density by πa and πf respectively.

In this work we focus on the second approach, and how to apply sequential Bayesian data assimilation to models

of the form (2). To this end we consider the deterministic evolution under these model equations, given the normally

distributed initial data z(0) ∼ N (z0, Q) where z0 ∈ TM. Furthermore we assume linear observations

yobs(tk) = Hobsz(tk) + ζ (14)

where Hobs ∈ R
I×2N is the matrix representing the linear observation map, and ζ ∼ N (0, R) is the measurement

error with Gaussian statistics. Hereby I ∈ N is the dimension of the observation space.

For linear models, Gaussian measurement error and Gaussian initial data, the Kalman filter solves the problem of

matching forecast distribution to the observations optimally [24]. Since the Gaussian structure is exactly preserved in

this case, the prior and posterior densities are completely characterized by their means z̄f(tk), z̄
a(tk) and covariances

P f (tk), P
a(tk) at time tk.

When the model equations are nonlinear and therefore the forecast distribution is not Gaussian anymore,

we still can recover the main idea of the Kalman filter and approximate z̄f(tk) and P f(tk) by their empirical

counterpart and use the ensemble Kalman filter (EnKF) [15] to obtain the posterior mean z̄a(tk) and covariance

P a(tk). To be more specific we draw samples (zi(tk−1))i∈1...M from πa(z, tk−1) and evolve them according to the

model equations in time until tk. Now the resulting (zi(tk))i∈1...M are samples of the prior density πf (z, tk) and

we use z̄f(tk) ≈ 1
M

∑M
i=1 zi(tk) =: z̄f and P f(tk) ≈

1
M−1

∑M
i=1(zi(tk) − z̄f)(zi(tk) − z̄f)T to estimate the first and

second moments of πf (z, tk). To finally transform the prior samples to samples of the posterior, we assume a linear
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transformation (15), but still are left with a choice of the transformation matrix coefficients of σij [39]

zaj (tk) =

M
∑

i=1

zfi(tk)σij(tk) j = 1, . . . ,M. (15)

In the following our choice will be the ensemble square root filter (ESRF) as described e.g. in [39, p.211-212]. The

corresponding transfer matrix coefficients are given by

σij = wi −
1

M
+ Sij , (16)

where S and the weights w by

S =

(

I +
1

M − 1
(HobsA)

TR−1HobsA

)− 1
2

∈ R
M×M , (17)

w =
1

M

M
∑

i=1

ei −
1

M − 1
S2ATHT

obsR
−1(Hobsz̄

f − yobs) ∈ R
M . (18)

Here the ensemble anomalies are denoted by A, i.e.

A =
[

zf1(tk)− z̄f(tk) . . . zfM (tk)− z̄f(tk)
]

∈ R
N×M . (19)

Using a ensemble square root filter, we avoid the perturbation of the observations as necessary for non deterministic

versions of the EnKF [44]. Nevertheless our statements do not depend on the specific choice made here.

1.2.1 Failure of the plain ensemble square root filter

Although the Hamiltonian (1) is conserved under the model dynamics (2), i.e.,

Hε(zεi
f(tk+1)) = Hε(zεi

a(tk)), (20)

it is not conserved under transformation (15) which implements the data assimilation step. In particular, one often

observes a severe increase in the oscillatory energy (5), i.e.

Hε
osc(z

ε
i
a(tk)) ≫ Hε

osc(z
ε
i
f(tk)), (21)

7



1.2 Bayesian data assimilation Balanced data assimilation

which, in practice, can lead to a destabilization of the simulation after a few data assimilation cycles. Nevertheless

we can control the situation for linear scalar balance relations.

Lemma 1.7. Let σ ∈ R
M×M be the transformation matrix of a linear ensemble transform filter. Let g : RN → R≥0

be a non negative linear functional. Then for every ensemble of prior samples qfj ∈ R
N and posterior samples

qaj ∈ R
N with j ∈ {1 . . .M}

g
(

qaj (tk)
)

≤ C max
i=1...m

g
(

qfi(tk)
)

(22)

at every time point tk with C =
∑m

i=1 |σij |.

Proof. Due to the linearity of g we can immediately conclude

g
(

qaj
)

= g

(

m
∑

i=1

qfiσij

)

=

m
∑

i=1

g
(

qfiσij
)

=

m
∑

i=1

σijg
(

qfi
)

≤
m
∑

i=1

|σij | max
l=1...m

g
(

qfl
)

. (23)

Corollary 1.8. If the ensemble of prior samples is exactly balanced, i.e. satisfies g(qfi) = 0 for every i = 1 . . .M

then the ensemble of posterior samples will satisfy g(qfi) = 0 for every i = 1 . . .M , too.

For genuinely nonlinear g we have to give up hope for such results, since we cannot even expect (22) or Corol-

lary 1.8 to hold any longer.

Although not of immediate importance for the current assimilation cycle, the assimilation reduces the mean

distance of the ensemble to the observations as expected, but the subsequent forecast can be drastically wrong. In

the case of rather small ε this can ultimately lead to filter divergence. An example of this situation is illustrated in

Figure 2.
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−2 −1 0 1 2
x

−2

−1

0

y

ens. ESRF

est. ESRF

ens. bESRF

est. bESRF

reference observations

0.0 0.2 0.4 0.6 0.8 1.0

time

10−9

10−6

10−3

100

|g
(q
)|

Figure 2: The divergence of an ensemble square root filter (ESRF) applied to the elastic stiff double pendulum

as described in Example 1.4. The initial state was chosen as q0 = (1, 0, 2, 0)
T
, p0 = (0, 0, 0, 0)

T
and the model

parameters according to Table 1. The left figure depicts the ensemble trajectories (ens.) of the second mass point
and the associated ensemble means (est.). The plain ESRF diverges after a couple of assimilation cycles, whereas
the balanced version (bESRF) performs qualitatively well. The right figure shows the residual ‖g(q)‖. The residual
of the reference solution is non-zero as expected, but stays small. The residual of the balanced ESRF is drastically
lower than that of the plain ESRF. We obtain these results using the method proposed in (88) and the setup as
described in Chapter 3, c.f. Table 1. In contrast to the situation there, we increase the initial spread and choose
ρ0 = 0.1.

2 Proposed methods

To overcome the abovementioned issue, we propose two different methods. The first, subsequently called “penalty

method”, observes and corrects the balance residuals after the assimilation algorithm. For this purpose we solve

a minimization problem structurally similar to the 3DVar method (see e.g. [25]). The second, subsequently called

“blended time stepping method”, is an extension of ideas first formulated in [3]. This approach does not modify

the assimilated states but leverages an intermediate model as part of the forecast step that drives the evolution

towards balanced states.

2.1 Ensemble based penalty method

Henceforth we will denote the members of an ensemble u ∈ R
N×M by ui ∈ R

N and we use ū := 1
M

∑M
i=0 ui for the

ensemble mean for notational convenience.

Using this notation, let q̂i and p̂i denote the coordinates and momenta of an analysis ensemble provided by

9



2.1 Ensemble based penalty method Balanced data assimilation

any linear ensemble transform filter. We propose to subsequently apply the current transformation (15) for the

ensemble to the forecasted values of g, i.e.

ĝj :=

M
∑

i

g(qfi)σij j ∈ {1, . . . ,M} (24)

and minimize the functional L : RN×M → R after each assimilation procedure as post processing step, where

L(u) =
1

2

M
∑

i=1

(ui − q̂i)
TB(ui − q̂i) + Si(ui(s)) (25)

Si(ui) = (g(ui)− γĝi)
TΛ(g(ui)− γĝi). (26)

Hereby B ∈ R
N×N is a symmetric positive definite matrix and Λ ∈ R

L×L is a positive definite diagonal matrix

which weights between the importance of the proposed analysis ensemble and the balanced state. Furthermore we

choose by γ ∈ [0, 1], the amount of balance we wish to achieve relative to the assimilated balance residual ĝ. The

post processed balanced posterior samples then are given as some minimizers, i.e.

za =
(

argmin
u
L(u), p̂

)

. (27)

Remark 2.1. We deliberately refrain from combining the assimilation algorithm and the post processing step for

the sake of transparency and to advertise the flexibility of this approach.

2.1.1 Quasi-Newton minimization

The gradient of (25) evaluated at any minimizer thereof vanishes i.e.

0 =
∂L

∂ui
(u) = B(ui − q̂i) +∇Si(ui) ∀i ∈ {1, . . . ,M}. (28)

For approximation of this system of coupled nonlinear equations we first consider the Gauss-Newton algorithm,

where we first linearize the cost functional (25) by

g(ui) ≈ g(u∗i ) +G(u∗i )(ui − u∗i ) (29)

10
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for some ensemble u∗ close to u and therefore obtain

(

B +GT(u∗i )ΛG(u
∗
i )
)

(ui − u∗i ) ≈ −B(u∗i − q̂i)−∇Si(u
∗
i ) ∀i ∈ {1, . . .M} (30)

as condition for critical points. Solving this system of linear equations for the increment ensemble ∆uk := u − u∗

is equivalent to the inversion of B̃i ∈ R
N×N for i ∈ {1, . . . ,M}, given by

B̃i :=
(

B +G(u∗i )
TΛG(u∗i )

)

. (31)

Each of these matrices is indeed invertible, since B is symmetric positive definite.

This allows us to formulate the update increment for each ensemble member of the increment independently.

∆u∗i = −B̃−1
i (B(u∗i − q̂i) +∇Si(u

∗
i )) . (32)

Remark 2.2. For L ≪ N we can reduce the computational costs for each iteration step by expressing B̃−1
i =

(B +G(u∗i )
TΛG(u∗i ))

−1 by the Sherman-Morrison-Woodbury formula [20, p. 51].

Subsequently we follow the Quasi-Newton method again and descend along the gradient using

uk+1
i − uki = h∆uki . (33)

Hereby h > 0 is a step size determined by a line search for a local minimum of the balance functional L, for details

see e.g. [36].

2.1.2 Continuous formulation

Instead of using the gradient descend proposed by the Gauss-Newton methods, we can aim to solve (28) using

a different direction of descent. To this end we will introduce a slightly modified search direction, obtained by

replacing Λ in (31) by Λh where h > 0. We follow (32) and denote the increment obtained by this method by

∆ũ∗. It is important to observe, that all fixed points of uk 7→ uk + h∆ũk are solutions of (28) and therefore again

candidates for minimizers. If we drop all the terms of O(h2) we obtain a stable numerical integration method for a

system of differential equations given by

d

ds
ui = −(ui − q̂i)−B−1GT(ui)Λ(g(ui)− γĝi) ∀i ∈ {1, . . . ,M} (34)

11



2.1 Ensemble based penalty method Balanced data assimilation

which is then applied to the initial value problem determined by our choice of the initial guess, ui = q̂i.

Remark 2.3. The evolution governed by (34) is a gradient flow driven by L and the geometry of diag(B−1, . . . , B−1) ∈

R
MN×MN . We therefore expect the solution of (34) to converge to an equilibrium solution u∞ = limt→∞ u(t)

satisfying (28).

Proposition 2.4. The numerical method governed by (32)

un+1
i = uni − h

(

B + hGT(uni )ΛG(u
n
i )
)−1

(B(uni − q̂i) +∇Si(u
n
i )) (35)

is consistent with (34). For h ∈ (0, 1) there exists δ > 0 such that every sequence (un)n∈N
determined by (35) and

starting in the open ball Bδ(u
∞) converges to an equilibrium solution u∞.

un

u(t) u∞

h→0
n→∞

t→∞

Figure 3: The commuting diagram shows the stability property of discretization (35).

Proof. We recall that B ∈ R
N×N is invertible and bounded as it is finite dimensional. The expansion given by the

Neumann series now gives

(

B + hGT(uni )ΛG(u
n
i )
)−1

=
(

1+hB−1GT(uni )ΛG(u
n
i )
)−1

B−1 =

∞
∑

k=0

(

−B−1GT(uni )ΛG(u
n
i )
)k
B−1

= B−1 +O(h).

(36)

This allows to conclude consistency by a standard Taylor argument, expanding the solution u at tn and assuming

un = u(tn). For this purpose first rewrite

un+1
i = uni − h

(

B + hGT(uni )ΛG(u
n
i )
)−1 ∂L

∂ui
(un) (37)

= uni − hB−1 ∂L

∂ui
(un) +O(h2) (38)

and subsequently conclude

‖ui(t
n+1)− un+1

i ‖ = ‖ui(t
n)− hB−1 ∂L

∂ui
(u(tn))− uni + hB−1 ∂L

∂ui
(un) +O(h2)‖ = ‖O(h2)‖. (39)

12



2.1 Ensemble based penalty method Balanced data assimilation

This implies global first order consistency and the first part of the statement. For the second part let h ∈ (0, 1).

Subtracting by u∞i on both sides and furthermore using

0 = B(u∞i − q̂i) +G(uni )Λ(g(u
n
i )− ¯̂g) (40)

allows us to conclude equivalence of (35) and the following identity.

un+1
i − u∞i = uni − u∞i − h

(

B + hGT(uni )ΛG(u
n
i )
)−1 (

B(uni − u∞i ) +GT(uni )Λ(g(u
n
i )− g(u∞i ))

)

=
(

1−h
(

B + hGT(uni )ΛG(u
n
i )
)−1 (

B +GT(uni )ΛG(u
n
i )
)

)

(uni − u∞i ) + h r(uni , u
n
i − u∞i )

(41)

The last equality is valid as long as un ∈ Bρ(u
∞) for sufficiently small ρ > 0. In this case we can apply Taylor

expansion which also gives us

R(wi) := sup
v∈Bρ(u∞)

‖r(vi, wi)‖ ∈ O(‖wi‖
2). (42)

The fact that B and G(uni )
TΛG(uni ) are both symmetric positive definite allows us to conclude the following estimate

‖un+1
i − u∞i ‖ ≤ ‖1−h

(

B + hGT(uni )ΛG(u
n
i )
)−1 (

B +GT(uni )ΛG(u
n
i )
)

‖‖uni − u∞i ‖+ hR(uni − u∞i ) (43)

≤ (1 − h)‖
(

B + hGT(uni )ΛG(u
n
i )
)−1

B‖‖uni − u∞i ‖+ hR(uni − u∞i ) (44)

≤
(1− h)‖B‖

‖(B + hGT(uni )ΛG(u
n
i ))‖

‖uni − u∞i ‖+ hR(uni − u∞i ) (45)

≤ (1 − h)‖uni − u∞i ‖+ hC1‖u
n
i − u∞i ‖2 (46)

≤ (1 − h+ hC1‖u
n
i − u∞i ‖)‖uni − u∞i ‖ (47)

≤ C2‖u
n
i − u∞i ‖. (48)

Hereby the constant satisfies C1 < 1 as long as uni is already close enough to u∞i . If so, then we immediately

obtain
∥

∥un+1
i − u∞i

∥

∥C1 < 1 and therefore C2 < 1 too. An inductive argument finally implies convergence to the

equilibrium solution u∞i for sufficiently close initial value.

2.1.3 Gradient free approximation

Assume g to be the observation operator and let ĝ be a constant observation, then the time evolution of the

Ensemble-Kalman-Bucy filter, introduced in [6], is determined by

d

ds
ui = −P−1

uu (GT(ū)(g(ū)− ĝ) +GT(ui)(g(ui)− ĝ)) ∀i ∈ {1, . . . ,M}. (49)
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Hereby Puu denotes the empirical covariance matrix

Puu :=
1

M − 1

M
∑

i=0

(ui − u) (ui − u)
T
. (50)

If we consider B in (34) to be the inverse background error covariance matrix we can approximate B−1 ≈ Puu

to obtain evolution equations which share some structure with the Ensemble-Kalman-Bucy filter with nonlinear

observation operator g. Motivated by this analogy to the Ensemble-Kalman-Bucy filter we argue that it is reasonable

and computationally more efficient to use a modified ensemble approximation of the Kalman-Bucy filter in the spirit

of (35), as we are more interested in the reduction of the residual of g for each ensemble member than in finding an

accurate solution to (25). As e.g. pointed out in [23] we can compute such an ensemble approximation observation

matrix free i.e. without the evaluation of the gradient G at the expense of certain linearizations. For this purpose

we reconsider Remark 2.2 and express the inverse by

B̃−1
i = (B +GT(u∗i )ΛG(u

∗
i ))

−1
= B−1 −B−1GT(u∗i )Λ

1/2(1+Λ1/2G(u∗i )B
−1GT(u∗i )Λ

1/2)
−1

Λ1/2G(u∗i )B
−1. (51)

We linearize and introduce an error of the same order of magnitude as the ensemble spread by the use of the

following empirical estimates (c.f. [14])

B−1 ≈ Puu :=
1

M − 1

M
∑

i=0

(ui − u) (ui − u)
T
, (52)

B−1GT(u∗) ≈ B−1GT(u∗i ) ≈ Pug :=
1

M − 1

M
∑

i=0

(ui − u)
(

g(ui)− g(uj)
)T

, (53)

G(u∗i )B
−1GT(u∗i ) ≈ G(u∗i )B

−1GT(u∗) ≈ Pgg :=
1

M − 1

M
∑

i=0

(

g(ui)− g(uj)
)(

g(ui)− g(uj)
)T

. (54)

These approximations drastically simplify (51) which now reads

B̃−1
i ≈ Puu − PugΛ

1/2(1+Λ1/2PggΛ
1/2)

−1
Λ1/2PT

ug. (55)

As we substitute into (32), we finally obtain a gradient free version of the increment

∆uki ≈−
(

Puu − PugΛ
1/2(1+Λ1/2PggΛ

1/2)
−1

Λ1/2PT
ug

)

Puu(u
∗
i − ûi)

−
(

Pug − PugΛ
1/2(1+Λ1/2PggΛ

1/2)
−1

Λ1/2Pgg

)

Λ (g(u∗i )− ĝi) .

(56)
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2.2 Blended time-stepping

Motivated by the results of [3], we introduce a numerical time stepping scheme that extends a classical projection

approach by subsequent blending steps. These steps continuously blend between the reduced limit model (8)

and the unconstrained model (2). This approach was originally developed in the context of incompressible fluid

dynamics where the singular perturbation arises by the vanishing Mach number limit Ma → 0. In addition to the

classical projection schemes introduced by [12], much effort was spent on developing asymptotic preserving low

Mach number numerical schemes and variants thereof. The essential point is their ability to blend between the

(weakly) compressible and the incompressible dynamics without additional stability constraints. As observed in [3],

solving the incompressible model immediately after the assimilation and subsequently blending smoothly and over

a few time steps back to the compressible one, can further reduce artificial imbalances caused by data assimilation,

relative to an approach that simply projects the system state onto the incompressible manifold in one step and then

proceeds with the compressible model.

To adapt this strategy to our situation, we would like to investigate a numerical method

zn+1 = ψα
h (z

n) α ∈ [0, 1]. (57)

For the case α = 0 we aim to obtain a projection method, which keeps the momenta tangential and is consistent

with the constrained system (8). For the case α = 1 the method should resolve the unconstrained model (2). In

between, i.e., for α ∈ (0, 1), we suggest to follow a dissipative model to be introduced below. In this approach we

accept a non vanishing consistency error with respect to the fast model when evolving the system with α ∈ [0, 1).

As discussed in the beginning, however, we can assume the solutions of the unconstrained system to stay ε – close

to the solutions of the constrained one. This enables us to locally decompose the consistency error into two parts,

one in M, caused by the nonlinearity of V and another orthogonal to M. The slow first part is assumed to be

captured by the data assimilation, whereas the second fast part has, as discussed before, only magnitude of order

O(ε). Given artificial imbalances, the latter is not necessarily true. For this purpose the discrete evolution of the

blended method will dampen the fast oscillations orthogonal to M rapidly, as long as α ∈ (0, 1) and until they

attain the correct amplitude of O(ε). To this end we propose to use the blending method (57) as follows. We denote

the blending window by k ≥ 1 and start our forecast at time tn. Let η be the number of forecast time integration

steps, then the following two steps are repeated in every forecast cycle (c.f. Figure 4).
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1. Blending: Let α ∈ R
k such that 0 = α1 < α2 ≤ · · · ≤ αk−1 < αk = 1. Integrate until tn+k using

qn+k =
(

ψαk

h ◦ ψ
αk−1

h ◦ · · · ◦ ψα1

h

)

(qn) (58)

2. Forecast: Obtain forecast at tn+η by evolving qn+k along ψ1
h for η − k – times.

tn−2 tn−1 tn+1 tn+2

ψ1
h ψ1

h ψα1=0
h ψα2

h . . .

forecast
analysis

forecast

blending

tn+k tn+k+1

. . . ψαk=1
h ψ1

h

Figure 4: Blended time stepping applied after analysis with blending window k. The numerical flow ψα
h with step

width h is given by (57).

Figure 5 illustrates the qualitative behaviour of the blended time stepping for the stiff elastic double pendulum,

introduced in Example 1.4, with slightly unbalanced initial coordinates. We observe that with respect to the balance

residual the blended time stepping improves the situation drastically. After short time the residuals of the initially

unbalanced and initially balanced solution match. Since we dissipate energy in the fast variables (c.f. Lemma 2.8)

as long as α /∈ {0, 1}, the overall energy of the system decreases as expected and the slow rotational motion of the

stiff double pendulum is therefore resolved reasonably well with regard to balance and energy. Nevertheless, due to

the lack of a priori knowledge so far, we chose α ∈ [0, 1] continuously, but as we already can guess from the form

of the decay, this is a brute force and suboptimal choice in the sense that we can find a smaller range of α within

which the solution relaxes to the slow motion more quickly. We leave the development of an optimized control of

the blending sequence for future work.

2.2.1 Model hierarchy

We aim to understand the proposed strategy in terms of a model hierarchy. For this purpose we first introduce and

discuss a dissipative version of model (2) given by

˙̃q = p̃

˙̃p = −ε−2G(q̃)TKg(q̃)− dPq̃ p̃−∇V (q̃),

(59)
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Figure 5: Energy, residual of balance relation and solution for the stiff elastic double pendulum c.f. Example 1.4.
Initially unbalanced numerical solutions based on the Störmer-Verlet (SV) (blue) and the blending method (red),
respectively. The corresponding parameter α for the blended time stepping is shown and the start of the pure
forecasting region is marked by a vertical dotted line. As the reference we display the data for an initially balanced
solution, computed again by the Störmer-Verlet method (dashed).

where d is an additional scalar damping coefficient. The direction of the damping is chosen to enable consistency

with the original model (2) and was first proposed in the context of stabilization techniques in [18]. Since fast

and slow energy parts of the Hamiltonian (1) can be separated only by an asymptotic argument and are coupled

nonlinearly, we do not expect to completely dissipate fast energy of (1) by the evolution of (59). Nevertheless in

reasonably well separated cases the impact will be negligible, especially in the context of data assimilation, where

the correct slow energy itself is known only up to some random perturbation. More concretely we will argue that

trajectories produced by a blended method will locally relax to the constraint manifold by similar means as in the

context of stabilization of differential algebraic equations [2]. Henceforth we will consider (8) in a slightly more

general form.

q̇ = p q(0) = q0 ∈ R
N

ṗ = −G(q)TKλ−∇V (q) p(0) = p0, G(q0)p0 = 0

g(q) = g(q0)

(60)

Remark 2.5. After differentiating the constraint G(q)p = 0, λ is given as before by (9). For g(q0) = 0 this system is

equivalent to the constrained system (8) in the sense that M is invariant under the evolution in time following (60).

Due to continuous dependency on initial data we furthermore conclude that solutions to (60) approach solutions
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of (8) as g(q0) → 0.

To develop an intuition regarding the behavior of solutions to (59) we discuss the arguably simplest model in

the class of such problems with multiple scales, the uncoupled harmonic oscillator.

Example 2.6 (Damped harmonic oscillator). Let q = (µ, ν)T, p = (η, ζ)T, K = diag(ε2, 1) and V (q) = 0

µ̇ = η η̇ = −µ (61)

ν̇ = ζ ζ̇ = −
1

ε2
ν − 4dζ (62)

The well known analytical solutions for the damped harmonic oscillator are given by µ = µ0 cos(t) + ν0 sin(t) and

ν =















e−2dt (ν0 + t(2dν0 + ζ0)) 2d = 1
ε

e−2dt
(

(ν0 +
ζ0
ωd

)eiωdt + (ν0 −
ζ0
ωd

)e−iωdt
)

2d 6= 1
ε

(63)

where the frequency for the fast damped component is given by ωd =
√

1
ε2 − 4d2. We immediately realize that

d = 0 gives us the solution for the highly oscillatory system (2) and furthermore relaxes to the constraint (in this

case also slow) manifold exponentially fast. In the general nonlinear and coupled case we present the corresponding

result in Lemma 2.8.

For the overdamped limit, i.e., for dε→ ∞ as ε→ 0 and d→ ∞, we conclude uniform convergence to the same

solution (µ, 0) as for the constrained system as long as ν0 ∈ o(1/d) and ζ0 ∈ o(1). Again this result can be stated

for in more general form and is presented in Lemma 2.10.

The following lemma summarizes the well known (c.f. [38]) split of variables into a slow tangential and a fast

normal part. It will enable us to identify slow and fast variables with respect to the different asymptotic limits.

Lemma 2.7. Any solution (q, p) of System (59) can be split into components µ, η and ν, ζ which satisfy

q = ETµ+GT(GGT)
− 1

2 ν

p = ETη +GT(GGT)
− 1

2 ζ .

(64)

In the new coordinates ((µ, η), (ν, ζ)), system (59) is equivalent to

µ̇ = Ėq + η η̇ = Ėp− E∇V (q) (65)

ν̇ =

(

d

dt
(GGT)

− 1
2G

)

p+ ζ ζ̇ =

(

d

dt
(GGT)

− 1
2G

)

p− ε−2(GGT)
1
2Kg(q)− dζ − (GGT)

− 1
2G∇V (q). (66)
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Furthermore the fast energy Hosc satisfies

Hε
osc((ν, ζ), (µ, η)) =

1

2
ζTζ +

1

2ε2
g(q(µ, ν))TKg(q(µ, ν)) (67)

Proof. For the sake of readability we will omit the argument q for G,E throughout the proof. We split momenta

tangential and orthogonal to M denoted by η and ζ as well as the coordinates denoted by µ and ν, respectively.

More concretely we choose

µ = Eq η = Ep

ν = (GGT)
− 1

2Gq ζ = (GGT)
− 1

2Gp

(68)

where the columns of E ∈ R
(N−L)×N are an orthonormal basis of

(

PqR
N
)⊥

. It is easy to check that ETE is a

orthogonal projection onto
(

PqR
N
)⊥

and since orthogonal projections onto a fixed subspace are unique (for every

q), we already know ETE = P⊥
q = 1−Pq. Substituting (68) into the right hand side of (64) we get

ETEq +GT(GGT)−1Gq = P⊥
q q + Pqq = q. (69)

Since we used the same geometry to split the momenta this already implies (64).

We differentiate (68) and use system (59) for q̇ and ṗ. Since by construction GTE = 0 = ETG most of the

terms drop and we conclude (65) and (66) after some straightforward algebraic manipulation. Recalling GGT is

symmetric positive definite, the last statement (67) finally follows from

Hε
osc(q, p) =

1

2
pTPqp+

1

2ε2
g(q)TKg(q) (70)

=
1

2
pTGT(GGT)

− 1
2

T

(GGT)
− 1

2Gp+
1

2ε2
g(q)TKg(q) (71)

=
1

2
ζTζ +

1

2ε2
g(q)TKg(q). (72)

Lemma 2.8. Let d = c
ε , with c > 0 fixed. Then solutions to (59) which initially satisfy Hε

osc(q, p) ∈ O(ε−2),

dissipate fast energy down to some residual of order Hε
osc ∈ O(1), if only ε is sufficiently small.

Proof. Again we will omit the arguments of E and G for notational convenience. Additionally we introduce Γ :=

(GGT)−
1
2G. We will prove the statement by arguments from geometric singular perturbation theory [16]. For this

purpose we split system (59) into slow and fast parts by the means of Lemma 2.7. Subsequently we multiply by ε
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and rescale ζ̂ = εζ which results in

µ̇ = Ėq + η η̇ = Ėp− E∇V (q) (73)

εν̇ = εΓ̇q + ζ̂ ε
˙̂
ζ = ε2Γ̇p− (GGT)

1
2Kg(q)− εdζ̂ − ε2(GGT)

− 1
2G∇V (q). (74)

We denote the right hand side of the fast variables by

F ((ν, ζ̂), (µ, η), ε(d)) =







εΓ̇ + ζ̂

−ε2Γ̇p− (GGT)
1
2Kg(q)− εdζ̂ − ε2(GGT)

− 1
2G∇V (q)






(75)

In the limit dε = const., ε→ 0 we identify the critical manifold as

ˆT M :=
{

(η, ζ̂, ν, µ) ∈ R
2N : g(q(µ, ν)) = 0 ∧ ζ̂ = 0

}

. (76)

Next we prove normal hyperbolicity of the critical manifold, i.e., we show that there are no eigenvalues of ∂F

∂(ν,ζ̂)

with vanishing real part. The gradient evaluated on the manifold ˆT M and for ε = 0 is given by the block matrix

DF :=
∂

∂(ν, ζ̂)
F ((ν, ζ̂), (µ, η), ε)|(ν,ζ̂)∈ ˆT M,ε=0 =







0 1

−(GGT)
1
2K(GGT)

1
2 −1






. (77)

To compute the eigenvalues of this non symmetric matrix, we first recall that (GGT)
1
2 is symmetric positive

definite and since K is a strictly positive diagonal matrix, K̃ := (GGT)
1
2K(GGT)

1
2 is symmetric and positive

definite, i.e., it has L positive eigenvalues ωK̃,j > 0. Therefore we conclude zero is no eigenvalue of DF by

detDF = det(−1) det(−K̃). Using the Schur complement again we argue for some eigenvalue ω 6= 0 of DF

det(DF − ω 1) = det(−ω 1) det(−(1 + ω)1−
1

ω
K̃). (78)

The determinant vanishes if and only if there is j ∈ {1, . . . , L} such that

− ω(ω + 1) = ωK̃,j . (79)
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Solving this quadratic equation already provides us with all possible eigenvalues by

ω±,j =
−1±

√

1− 4wK̃,j

2
. (80)

We directly observe Reω±,j < 0 for all j ∈ {1, . . . L} and therefore notice that ˆT M is normally hyperbolic.

By finally applying Fenichel’s theorem we obtain existence of slow manifolds Sε (c.f. [27]) ε-close to a compact

submanifold S ⊂ ˆT M of the critical one as long as ε is sufficiently small. More specifically we conclude for any

((ηε, ζε), (µε, νε)) ∈ Sε

g(q(µε, νε))
T
Kg(q(µε, νε)) ≤ c1ε

2 (81)

ζ̂εTζ̂ε ≤ c2ε
2 (82)

and therefore

max
(ηε,ζε),(µε,νε))∈S

Hε
osc((η

ε, ζε), (µε, νε)) ∈ O(1). (83)

Another consequence of Fenichel’s theorem is that the dynamical behaviour of the linearization DF of the fast

subsystem on the critical manifold already determines the dynamical behaviour of solutions starting off a slow

manifold Sε. Since all eigenvalues of DF have negative real part, we conclude S as well Sε is attracting. Therefore

any solution starting nearby will approach some Sε which finally implies the energy dissipation as stated.

Subsequently we will use (59) to establish a model hierarchy which resembles the analytical counterparts dis-

cretized by the blended numerical method (57). The following two lemmata concern the behaviour of the limit

cases d→ 0 and d→ ∞. The first one is based on the classical result of continuous dependency on initial data and

parameters for ordinary differential equations with continuously differentiable right hand side. In both cases we fix

ε > 0 and omit this standard proof.

Lemma 2.9. Let ε > 0 be fixed. Solutions (q̃, p̃) of the dissipative system (59) approach solutions of the purely

Hamiltonian system (2) as d→ 0 .

For the other part d → ∞ we use again geometric singular perturbation theory and we can conclude a slightly

different type of statement in terms of invariant manifolds.

Lemma 2.10. For sufficiently large d and ε2 ∈ o(1/d) there exists a Manifold M1/d which lies within O(1/d) of

any compact subset of M∞ := {(q, p) ∈ R
2N : ζ(q, p) = 0} (c.f. Lemma 2.7) and is invariant under the evolution

of (59). Furthermore every solution starting off, but sufficiently close to this subset will approach M1/d.
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Proof. As pointed out we aim to apply geometric singular perturbation theory again. Therefore we start as before

by splitting slow and fast momenta explicitly utilizing Lemma 2.7. Contrary to the situation in Lemma 2.8 the

coordinates then are both slow variables. By dividing the momentum equation in (66) by d and passing to the limit

d→ ∞ we obtain the critical manifold as M∞ = {(q, p) ∈ R
2N : ζ(q, p) = 0}. We denote the right hand side of the

momentum equation in (66) by F ((η, ζ), q, 1/d) and linearize on M∞.

DF :=
∂

∂ζ
F ((η, ζ), q, 1/d)|(ν,ζ̂)∈M∞,ε=0 = −

(

GGT
)

(84)

Since GGT is positive definite and by assumption rank(GGT) = L we conclude that −
(

GGT
)1/2

has exactly L

negative Eigenvalues. M∞ is therefore normally hyperbolic and we now infer by Fenichel’s theorem [27] existence

of an invariant (with respect to (59)) manifold M1/d, 1/d – close to a compact subset of our choice of M∞, exactly

as stated. Since we additionally have only a stable subspace on M∞ we gain the attractive behavior of M1/d by

the same theorem.

Remark 2.11. The same statement is true if we take a compact submanifold of M∞ and therefore also cover the

case where the evolution starts on the constraint manifold M ⊆ M∞.

Corollary 2.12. For sufficiently large d there exists a Manifold M1/d which lies within O(1/d) of any compact

subset of M and is invariant under the evolution of (59). Furthermore every solution starting off but sufficiently

close to this subset will approach M1/d.

Remark 2.13. Although the preceding corollary tells us there is a at least one slow manifold for large d that satisfies

the constraint, this does not imply we approach one of this kind, when starting slightly off M.

So far we have only considered the analytical properties of the dissipative system (59). Building upon the

insights gained, we now propose a related numerical method.

2.2.2 Discretization

As already pointed out previously our method is supposed to be consistent with the unconstrained system (2) and

system (8) for α = 1 and α = 0 respectively. For the first case we furthermore require conservation of the energy H

for discrete solutions as well and choose the method to be symplectic i.e. such that the gradient of the discrete flow

Dψ1
h satisfies

(Dψ1
h)

TJ(Dψ1
h) = J :=







0 1

−1 0






. (85)
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This property is shared with the analytical flow and responsible for exact conservation of the energy functional

H for analytical solutions as well as preservation of a modified energy functional for discrete solutions. For an

extensive presentation and discussion on this topic see e.g. [22] or [28].

We build our method on the symplectic (c.f. (85)) Störmer Verlet method (86). Despite its simplicity this

method performs exceptionally well and is extensively discussed in detail in e.g. [22].

qn+
1
2 = qn + h pn

pn+1 = pn − h∇V (qn+
1
2 ))−

h

ε2
GT(qn+

1
2 )Kg(qn+

1
2 )

qn+1 = qn+
1
2 + h pn+1

(86)

In contrast to (2), the constrained model equations (8) are in fact a system of differential algebraic equations of index

3 [1]. Solving these equations numerically leaves the choice to fulfill the constraint exactly or accept a numerical

approximation error for g(qn) = 0. In the Hamiltonian context, the first choice suggests the SHAKE and RATTLE

schemes (c.f. [28]). Given initial states qn and tangential momenta pn, both algorithms use a projection to ensure

qn+1 ∈ M and pn+1 ∈ Tqn+1M.

The second approach for solving a system of differential algebraic equations is to accept approximation errors for

the constraint itself. This approach relies on index reduction of the analytical system and subsequent discretization

c.f. e.g. [1]. In this context a common task is to design stabilized methods [2] which allow for a discrete evolution

close to the constraint manifold such that the error on the constraint stays small for long times.

Since we do not aim to run the constrained model α = 0 for more than a few time steps in the blended method,

we will employ an index reduction approach but ignore the issue of stabilization at this point. Motivated by the

Störmer-Verlet method we propose a projection method for (8) which satisfies the hidden constraint

G(q)p = 0 (87)

up to a given tolerance and the constraint g(q) = 0 in (8) up to a global error of order O(h2). The proposed blended

method reads

qn+
1
2 = qn +

h

2
pn

pn+1,α = pn − h∇V (qn+
1
2 )− hGT(qn+

1
2 )
( α

ε2
Kg(qn+

1
2 ) + (1− α)λn+

1
2

)

qn+1,α = qn+
1
2 +

h

2
pn+1,α

G(qn+1,0)pn+1,0 = 0.

(88)
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Remark 2.14. For the implementation we need to solve the weakly nonlinear equations (89) in λn+
1
2

pn+1,0 = pn − h∇V (qn+
1
2 )− hGT(qn+

1
2 )λn+

1
2 (89a)

hG

(

qn+
1
2 +

h

2
pn+1,0

)

GT(qn+
1
2 )λn+

1
2 = G

(

qn+
1
2 +

h

2
pn+1,0

)

(

pn − h∇V (qn+
1
2 )
)

(89b)

Even though our method does not preserve the constraint exactly, we can conclude at least the following

consistency results.

Lemma 2.15. Let α = 0 and κ ∈ N. Let (qκ, pκ) be the numerical solution given by applying method (88) κ – times

to initial data (q0, p0) ∈ R
2N , which satisfy G(q0)p0 = 0. Then (qκ, pκ) is consistent with the analytical solution

(q, p) of (60) at time T = hκ for initial condition q0, p0. More specifically,

‖pκ − p(T )‖ ≤ ch (90)

‖qκ − q(T )‖ ≤ c̃h2 (91)

‖G(qκ)pκ‖ = 0 (92)

‖g(q(T ))− g(qκ)‖ ≤ ĉh (93)

where the constants c̃, ĉ, c are independent of h and κ.

Proof. The proof is following [29]. While first order consistency is essentially proven by a classical Taylor expansion

argument, one still needs to address the algebraic constraint. At the continuous level this is readily achieved by

reference to (9) which becomes

λ = −
(

G(q)G(q)T
)−1

G(q)∇V (q) +
(

G(q)G(q)T
)−1

L
∑

i=1

L
∑

j=1

(

pTei,jp
) ∂2g(q)

∂qi∂qj
. (94)

The momentum equation in (8) is then equivalent to

ṗ = −P⊥
q ∇V (q) +G(q)T(G(q)G(q)T)−1

L
∑

i=1

L
∑

j=1

(

pTei,jp
) ∂2g(q)

∂qi∂qj
. (95)
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For the discrete case we observe

G(qn+1,0)pn = G(qn)pn +
N
∑

i=0

N
∑

j=0

(qn+1,0 − qn)ei,jp
n ∂

2g(qn)

∂qi∂qj
+O(h2) (96)

= h

N
∑

i=0

N
∑

j=0

pn+1,0 + pn

2
ei,jp

n ∂
2g(qn+

1
2 )

∂qi∂qj
+O(h2), (97)

by Taylor expansion, whereG(qn)pn = 0 holds due to the tangential update of the previous time step or if applicable,

by the initial condition in (88). Using this identity and the second and fourth update rules in (88) we can express

hλ explicitly by

hλ =
(

G
(

qn+1,0
)

GT(qn+
1
2 )
)−1

G
(

qn+1,0
)

(

pn − h∇V (qn+
1
2 )
)

(98)

=− h
(

G
(

qn+1,0
)

GT(qn+
1
2 )
)−1

G
(

qn+1,0
)

∇V (qn+
1
2 ) (99)

+ h
(

G
(

qn+1,0
)

GT(qn+
1
2 )
)−1





N
∑

i=0

N
∑

j=0

pn+1,0 + pn

2
ei,jp

n ∂
2g(qn+

1
2 )

∂qi∂qj



+O(h2).

Expanding by Taylor again, this identity now enables us to rewrite the momentum update to

pn+1,0 = pn − hP⊥
qn+1

2

∇V (qn+
1
2 )

− hGT(qn+
1
2 )
(

G(qn+
1
2 )GT(qn+

1
2 )
)−1 N

∑

i=0

N
∑

j=0

pn+1,0 + pn

2
ei,jp

n∂
2g(qn+

1
2 )

∂qi∂qj
+O(h2).

(100)

If we compare the momentum update in closed form (95) and the discretization (100) we immediately observe

second order local consistency and therefore first order global consistency

‖pκ − p(T )‖ ≤ ch. (101)

To bound the consistency error in the coordinates one combines the update rules in (88) to

qn+1,0 = qn + h
pn + pn+1,0

2
. (102)

Since pn+1 this a locally second order consistent approximation we obtain

qn+1,0 = qn + h
p(tn) + p(tn+1)

2
+O(h3). (103)
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The implicit midpoint rule is of local third consistency order and we obtain

‖qn+1,0 − q(tn+1)‖ = O(h3) (104)

and therefore

‖qκ − q(T )‖ ≤ c̃h2. (105)

The bound for the constraint (93) follows then directly by expanding g(q(T )) around g(qn).

Corollary 2.16. Let additionally g(q0) = 0, then (qκ, pκ) is consistent with (8).

So far we consider only initial data, which is tangential, i.e., satisfies G(q)p = 0. This is of course necessary in

the context of consistency, since the underlying model is not well posed otherwise. Nevertheless the proposed usage

in data assimilation procedures introduces exactly such initial data. The subsequent two statements will clarify

what to expect if we apply method (88) to general initial data while α = 0.

Lemma 2.17. Let α = 0. The method given in (88) approximates the projection of momentum P⊥
q p in the following

sense.

‖P⊥
qnp

n − pn+1,0‖ ≤ ch (106)

Proof. Using the expression for λ as stated in (89b) and subsequently Taylor expansion we conclude

pn+1,0 = pn −GT(qn+
1
2 )
(

G
(

qn+1,0
)

GT(qn+
1
2 )
)−1

G
(

qn+1
)

pn +O(h) (107)

= pn −GT(qn)
(

G (qn)GT(qn)
)−1

G (qn) pn +O(h) (108)

= P⊥
qnp

n +O(h). (109)

Corollary 2.18. Let α = 0 and q0, p0 ∈ R
N , then method (88) is globally first order consistent to the solution

given by (60) and initial data q0 and P⊥
q0p

0.

Consequently we now establish a consistency result for the blending method, which will provide a connection

between the discrete and the analytical evolution.
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Lemma 2.19. Let κ ∈ N and let α = max(0, 1 − dh). Furthermore let (qκ, pκ) be the numerical solution given

by applying (57) κ-times to initial data (q0, p0) ∈ R
2N . Then (qκ, pκ) is consistent with the solution (q, p) of the

dissipative system (59) at time T = hκ. More specifically,

‖qκ − q(T )‖ ≤ ch2 (110)

‖pκ − p(T )‖ ≤ c̃h (111)

where c, c̃ is a constant independent of h and κ.

Proof. We start by expressing λ explicitly and rewriting the momentum update as

pn+1,α = pn − h∇V (qn+
1
2 )− αhε−2GT(qn+

1
2 )Kg(qn+ 1

2
)− (1− α)hGT(qn+

1
2 )λ (112)

= pn − h∇V (qn+
1
2 )− αhε−2GT(qn+

1
2 )Kg(qn+

1
2 ) (113)

− (1 − α)GT(qn+
1
2 )
(

G
(

qn+1
)

GT(qn+
1
2 )
)−1

G
(

qn+1,α
)

(

pn − h∇V (qn+
1
2 )
)

= pn − h(P̃⊥
qn+1

2

+ αP̃
qn+1

2
)∇V (qn+

1
2 )− hαGT(qn+

1
2 )Kg(qn+

1
2 ) + (1− α)P̃

qn+1
2
pn (114)

where P̃
qn+1

2
= GT(qn+

1
2 )
(

G
(

qn+1,α
)

GT(qn+
1
2 )
)−1

G
(

qn+1,α
)

satisfies by Taylor expansion P̃q
n+1

2

= Pq
n+1

2

+O(h).

For sufficiently small h we now can substitute α = max(0, 1− hd) by 1− hd since d is a fixed number. Expanding

by Taylor we conclude first order global consistency by the form of

pn+1,α = pn − h(P̃⊥
qn+1

2

+ (1 − hd)P̃
qn+1

2
)∇V (qn+

1
2 )− h(1− hd)GT(qn+

1
2 )Kg(qn+

1
2 )− hdP̃

qn+1
2
pn (115)

= pn − h∇V (qn+
1
2 )− hGT(qn+

1
2 )Kg(qn+

1
2 )− hdP

qn+1
2
pn +O(h2). (116)

The update of the coordinates can be rewritten as

qn+1 = qn + h
pn + pn+1

2
(117)

and therefore the same proof as in Lemma 2.15 leads to the statement.

Remark 2.20. Although the fact that we have to change α depending on h to achieve convergence to a certain

model, may seem odd at first thought, this does not contradict the fact that given an a priori choice of α, discrete

solutions of the blended method are consistent approximations to solutions of system (59) for a certain d.

To complete and illustrate the overall picture we collect most of the preceding results and references for the
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proof of the following commuting diagram.

Proposition 2.21. Let α = max(0, 1 − hd). Let φ and ψ be the analytical and numerical flows respectively, with

regard to the models as mentioned below, then the diagram in Figure 6 commutes.

ψ1
h ψα

h ψ0
h

φε φ̃d φ̃∞ φ0

d→0

h→0

d→∞

h→0 h→0

d→0

ε→0

d→∞ on M

Figure 6: The commuting diagram shows the connections between the analytical model hierarchy given by the
flow φǫ of the Hamiltonian system (2), the flow φ̃d of the dissipative system (59) and the flow φ̃∞ of the relaxed
constrained model (60). Furthermore the diagram depicts the consistency results, of the Störmer-Verlet method (86)
and the blended method (57) denoted by ψα

h . The flow for the constrained model (8) is mentioned by ψ0.

Proof. The consistency of the Störmer-Verlet method is stated in e.g. [22] and for an overview of all the other

connections in the commuting diagram in Figure 6 we refer to Figure 7.

ψ1
h ψα

h ψ0
h

φε φ̃d φ̃∞ φ0

(88)

[22]

(88)

Lem. 2.19 Lem. 2.15

Lem. 2.9

[40]

Lem. 2.10 Rem. 2.11

Figure 7: The diagram depicts the same situation as in Figure 6, but refers to the previously established results
and relevant literature, instead of the limits.

3 Numerical Results

For experiments in the context of data assimilation one immediate obstacle arises from potential model errors. We

avoid this question by considering an initially balanced reference reference solution of (2) which is approximated by

the Störmer-Verlet method (86). Henceforth this solution will be denoted by zref. The observations then are given

by yobs(tk) = Hzref(tk) + ζk. Hereby ζk is the realization of the normally distributed measurement error at some

time tk = k∆tobs, when the observation becomes available. We assume the measurement error to have zero mean

and covariance R = ρI The resulting evolution of observations is assimilated by the proposed data assimilation
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scheme. The advantage of this setup is the straightforward assessment of the quality of the data assimilation method

by comparing the reference solution to, e.g., the ensemble members or the point estimate of their mean.

According to (c.f. [39]), due to finite ensemble sizes the true covariances of the posterior distributions are

underestimated in ensemble based data assimilation methods. One technique to address this issue is ensemble

inflation which amounts to an artificial increase of the spread of the ensemble after each assimilation step by

znewi := z̄ + σinfl(zi − z̄). (118)

In the experiments we apply the ensemble inflation as last step of the assimilation procedure. For the comparison

of the presented methods we choose again the stiff elastic double pendulum from Example 1.4 as the dynamical

model. The initial ensemble is generated by observations from the initial value of zref . Subsequently we balance

the initial data by solving (25) without the regularization term and for γ = 0. This is a natural modification of the

penalty method for the first step. To compare the methods, we apply this projection to the initial data for every

experiment.

For the blended time stepping method we choose a linear ramp for α as depicted in 5 where α = 0 initially and

α = 1 at the end of the blending window. The analysis of (59) is based on linearization and suggests that similarly

to the situation of the harmonic oscillator one could find values of α i.e.also the damping d to resolve dynamics

close to the aperiodic case. As we do not further investigate the question for optimal α we choose a linear ramp to

step through different values of the damping coefficient as brute force approach.

For the numerical values of the parameters of the experiments we refer to Table 1. As with regard to the

B L l ε K a0 ∆t M Hz ∆tobs ρ ρ0 σinfl T

1 2 (1, 1) 0.001 diag(1, 0.04) 9.81 0.001 20 q 0.1 0.05 0.05 1.05 500

Table 1: Parameters for the numerical experiments using the double pendulum model.The model parameters are
given by the equilibrium lengths l ∈ R

L, the scale separation parameter ε, the stiffness matrix K and the gravity
a0. The model is discretized by the Störmer-Verlet method (86) with step width ∆t. M denotes the ensemble
size, ∆tobs the interval between two observations and Hz the observed variable. We choose ρ as covariance of the
measurement error, ρ0 as the initial uncertainty i.e. the covariance of the initial ensemble and ρinfl as the inflation
factor. Finally T denotes the duration of the experiment.

implementation details, we solve functional (25) using either the Broyden-Fletcher–Goldfarb-Shanno [10, 17, 19, 41]

method as implemented in scipy [43] or the proposed algorithm of (35). For the first we require a tolerance of

10−8 and as initial values we choose the results of the plain EnKF. In the second case we choose a fixed step

size of h = 10−3 and iterate as long as the maximal absolute value of the increment (32) does not exceed 10−8.

Additionally we need to solve a nonlinear system for the implicit part of the blended time stepping method (88)
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i.e. in the case where α = 0. This system is solved using the scipy [43] wrapper for the modified Powell method

from the MINPACK [35] subroutine hybrd. The initial value is the zero vector of dimension L and the tolerance for

the nonlinear problem is set to double precision i.e. 10−16. To quantify the error of the methods we use the time

averaged root mean square error as given in [39]

TRMSE(Z) =

√

√

√

√

1

NT

NT
∑

i

‖Ẑ(ti)− Z(ti)‖
2
. (119)

Hereby Ẑ denotes the estimate for the quantity Z and both are evaluated at NT time points tk ∈ [0, T ].

In the following we show this scoring rule in dependence on the tuning parameters of the respective method. For

comparison we furthermore show the results for the unmodified ensemble Kalman filter. As one can see in Figures 8 –

10, the forecast quality for the coordinates and the momenta improve drastically when choosing appropriate tuning

parameters for the respective methods.

For the penalty method we realize from Figures 8 and 9 that we obtain the best results, when forcing the

analysis balance residual of each ensemble member to be close to the respective one inferred from the forecast. We

can enforce this by the penalty method when setting γ = 1. We also find that increased weights do add to the

forecast quality only up to certain extent.

The blending method does only allow for one tuning parameter, the windows size. Comparing several choices

in Figure 10, we can observe the best results when choosing a window large enough to capture a full period of the

less stiff spring in the blending window. This happens approximately around 2πε√
k2

≈ 0.3∆tobs.

4 Conclusions

We have proposed two modifications of the standard EnKF when applied to highly oscillatory systems; namely

ensemble-based penalization and blended time-stepping. The first one allows flexible use as post processing step

for rather generic ensemble based data assimilation algorithms. Both methods perform well in forecast quality

and allow accurate state estimation in situations where the standard EnKF fails to do so. The dependency of the

forecast skill with regard to the tuning parameters behaves as expected in our prototypical test case of the elastic

double pendulum.

We provided a rigorous justification for the blended time-stepping method by the means of asymptotic analysis

as well as a numerical method in resemblance of [3]. The optimal choice of the blending window is topic of further

investigation.
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Figure 8: The left figure depicts the time averaged root mean square error (TMRSE) of the coordinates obtained
by the penalty method obtained by solving the functional (25) using the previously mentioned BFGS solver. In the
right figure we show the results for the same experiment, but using the penalty method solved by (35). In orange
we depict the results obtained by the unmodified ensemble Kalman filter.
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Figure 9: The left and right figures show the time averaged root mean square error in the tangential component of
the unobserved momenta, for the penalty method solved by the BFGS and (35) respectively. In orange we depict
the results obtained by the unmodified ensemble Kalman filter.
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Figure 10: On the left we can see the time averaged root mean square error for the coordinates obtained by the
blending method. The right figure shows the same for the tangential component of the unobserved momenta. For
comparison the results obtained by the unmodified ensemble Kalman filter are shown in orange. The abscissa
describes the ratio of the length of the blending window and the observation interval.

The broader application areas of the two proposed stabilization techniques is ensemble based data assimilation

for geophysical processes. This application area shares the situation of small oscillatory energy and conservative

motion along a slow manifold. A natural extension of this work will be the investigation of the proposed methods

in more realistic geophysical models governed by partial differential equations as e.g. the rotational shallow water

equations or the Euler equations. Depending on the scale we can observe several balances in those models. One

specific example would be the geostrophic balance. In contrast to the present work, these balances often are linear

and therefore Lemma 1.7 actually applies which then implies the weak generation of imbalances. This effect is

amplified by the use of localization in the assimilation algorithm which breaks the assumption of a linear filter

transformation and therefore gives raise to imbalances again. We emphasize that our methodologies both directly

translate to this context, since neither of the algorithms leverages the linearity of the filter. In further publications

we will present detailed investigation of the proposed methods applied to a rotational shallow water model as well

as a vertical slice model.
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