
Weierstraß-Institut
für Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Three examples concerning the interaction of dry friction and

oscillations

Alexander Mielke

submitted: June 2, 2017

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: alexander.mielke@wias-berlin.de

Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
12489 Berlin-Adlershof
Germany

No. 2405

Berlin 2017

2010 Mathematics Subject Classification. 34C55, 47J20, 49J40, 74N30.

Key words and phrases. Rate-independent friction, averaging of friction, play operator with time-dependent thresholds,
locomotion, rate-and-state friction, Hopf bifurcation.

This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 “Scaling
Cascades in Complex Systems”, Project C05 “Effective models for interfaces with many scales”.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Three examples concerning the interaction of
dry friction and oscillations

Alexander Mielke

Abstract

We discuss recent work concerning the interaction of dry friction, which is a
rate independent effect, and temporal oscillations. First, we consider the temporal
averaging of highly oscillatory friction coefficients. Here the effective dry friction
is obtained as an infimal convolution. Second, we show that simple models with
state-dependent friction may induce a Hopf bifurcation, where constant shear rates
give rise to periodic behavior where sticking phases alternate with sliding motion.
The essential feature here is the dependence of the friction coefficient on the internal
state, which has an internal relaxation time. Finally, we present a simple model for
rocking toy animal where walking is made possible by a periodic motion of the body
that unloads the legs to be moved.

1 Introduction

The phenomenon as well as the microscopic origins of dry friction are well studied (see
e.g. [Pra28, Tom29, Pop10, PoG12, Mie12]). Here we understand dry friction in a gener-
alized sense, namely in the sense of rate-independent friction that includes an activation
threshold (critical force) to enable motion but then the friction force does not increase
with the velocity (or more generally the rate). New nontrivial phenomena arise in cases
where the critical force depends periodically on time, either given by an external process
or because of the dependence on another state variable of the system. The three examples
emphasize different realizations of this dependence.

We will study the effect that, in contrast to systems with viscous friction, systems
with rate-independent friction tend to wait in a sticking mode until the relevant friction
coefficient is small, and then they can make a very fast move (or even jump) to compensate
for the past waiting time. To be more precise, we denote by (q, z) the state of a system,
where z is the friction variable, and by R the dissipation potential for the dry friction.
Then R(q, z, q̇, ż) is nonnegative, convex in (q̇, ż) and positively homogeneous of degree
1 in ż, namely R(q, z, q̇, γż) = γR(q, z, q̇, ż) for all γ > 0. For simplicity we will assume
that R has an additive structure in the form

R(q, z, q̇, ż) = Rvi(q, z, q̇) +RRI(q, ż),

where “vi” stands for the viscous friction in the variable q, while “RI” stands for the rate-
independent friction in the variable z. Note that we further simplified by assuming that
RRI does not depend on z itself (see [BKS04, MiR07, MiR15] for more general cases).

The mathematical models we are interested in are given in the form

Mq̈ + ∂q̇Rvi(q, z, q̇) + DqE(t, q, z), 0 ∈ ∂żRRI(q, ż) + DzE(t, q, z).

The simplest case of such a system occurs when q(t) displays oscillatory behavior that is
totally independent of the variable z, but RRI depends on q. In that case we may reduce
to the equation for z alone and study

0 ∈ RRI(t/ε, ż) + DzE(t, z), (1.1)
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A. Mielke 2

where ε > 0 is a small parameter indicating the ratio between the period of ocillations and
the changes in the loading through t 7→ E(t, z). A typical application is plate compactor
(see Figure 1.1(A)), where an internal imbalance oscillates rapidly and thus changes the
normal pressure in the contact friction. In Section 2 we summarize the results from
[HeM17], where an explicit formula for the effective homogenized friction for ε → 0 was
derived, see Theorem 2.2 below.
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(B)
Figure 1.1: (A) Because of the in-built unbalance, the plate compactor vibrates vertically
leading to an oscillatory normal pressure. When pushing the plate compactor horizontally
it will move only when the normal pressure is very low. (B) The toy ramp walker in form
of a frog walks down only, when alternating the weight between the rigid downhill leg
and the hinged uphill leg.

In Section 3 we consider a system of the form

0 ∈ ∂żRRI(α, ż) + νż + DzE(t, α, z), α̇ = F (α, z).

Our system is stimulated by applications in geophysics that relate to earthquakes and
fault evolution, see [Rou14, PK∗16, Pip17]. There so-called internal states α are needed
to describe the relaxation effects after a sudden tectonic movement or change of shearing
motions. We will show that a very simple system under constant shear loading can gen-
erate oscillatory behavior that is similar to the famous squeeking chalk on the blackboard
or the vibrations arising when moving a rubber over a smooth surface.

Finally, Section 4 is devoted to the mechanism of walking of humans or animals.
Clearly, an animal wants to reduce friction when moving the extremities on the ground.
To do so, the weight on the leg to be moved has to be reduced. Thus, for making
walking efficient it turns out that the body should oscillate in such a manner that without
much extra energy the weight on the legs to be moved is minimal. Simple mechanical
toys, where this interplay can easily be studied, are the so-called descending woodpecker
(cf. [Pfe84]), the toy ramp walker, see Figure 1.1(B), and the rocking toy animal, see
Figure 4.1. We refer to [GND14, DGN15, GiD16b, GiD16a] for models on locomotion
for micro-machines or animals and to [RaN14] for the slip-stick dynamics of polymers on
inhomogeneous surfaces.

We suggest a simple ODE model for the walking of simple mechanical toys such as
the rocking toy animal, where the essential point is that there is some internal oscillatory
mechanism that moves the normal pressure from one leg to the other such that the leg
with lowest friction can move. One non-trivial feature is that the natural damping of the
rocking motion has to be compensated by some energy supply, where the walking motion
feeds energy back into the rocking motion.

2 Prescribed oscillatory friction
In this section we summarize the results from [HeM17] concerning the averaging of highly
oscillatory rate-independent friction. As we will see there is a major difficulty intrinsic to
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Examples for interaction of dry friction and oscillations 3

rate-independent systems that we only obtain a priori bounds for the rate in BV([0, T ];X),
but not in a weakly closed Banach space like W1,p([0, T ];X) for p ∈ ]1,∞[. Thus, even
in the case of classical evolutionary variational inequalities we will not be able to pass to
the limit variational inequality but have to use the more flexible formulation in terms of
energetic solutions.

2.1 Evolutionary variational inequalities

While [HeM17] contains more general results, we restrict our discussion to the case of
a Hilbert space Z and a quadratic energy E(t, z) = 1

2
〈Az, z〉 − 〈`(t), z〉 with a loading

` ∈ W1,∞([0, T ], Z∗) and a bounded, symmetric and positive definite linear operator
A : Z → Z∗. The dissipation potential is given in the form Rε

RI(t, ż) = Ψ(t/ε, ż), where
Ψ : S1 × Z → [0,∞[ is assumed to be continuous, and we assume Ψ(0, v) ≤ CΨ(s, v) ≤
C2Ψ(0, v) for some C > 1 and all (s, v) ∈ S× Z.

Clearly, the equation 0 ∈ ∂żΨ(t/ε, ż(t)) +Az(t)− `(t) is equivalent to the variational
inequality

∀a.a.t ∈ [0, T ] ∀ v ∈ Z : 〈Az(t)−`(t), v−ż(t)〉+ Ψ(t/ε, v)−Ψ(t/ε, ż(t)) ≥ 0. (2.1)

The key to the analysis in [HeM17] is that z : [0, T ] → Z solves (2.1) if and only if it is
an energetic solution, i.e.

(S) ∀ t ∈ [0, T ] ∀ ẑ ∈ Z : E(t, z(t)) ≤ E(t, ẑ) + Ψ(t/ε, ẑ−z(t));

(E) E(T, z(T )) +

ˆ T

0

Ψ(s/ε, ż(s))ds ≤ E(0, z(0))−
ˆ T

0

〈 ˙̀(s), z(s)〉ds.
(2.2)

2.2 A scalar hysteresis operator

We now illustrate the difficulty in passing to the limit ε → 0 in (2.1) by a very simple
scalar hysteresis model by choosing Z = R and

E(t, z) =
1

2
z2 − `(t)z, Ψ(s, ż) = ρ(s)|ẏ|, and z(0) = 0

with `(t) = 5t − t2 and an arbitrary ρ ∈ C1(S) (where S := R/Z) satisfying ρmin :=
min{ ρ(s) | s ∈ S } > 0.

Starting from the initial condition z(0) = 0, we see that z cannot decrease but needs
to lie in the stable interval [`(t)−ρ(t/ε), `(t)+ρ(t/ε)], see (S) in (2.2). Thus, the solution
zε : [0, T ] → R of 0 ∈ ρ(t/ε)Sign(ż(t)) + z(t) − `(t) has, for sufficiently small ε > 0, the
representation

zε(t) =

{
max{ 0, `(τ)− ρ(τ/ε) | τ ∈ [0, t] } for t ∈ [0, 5

2
+
√
ρmin],

min{ 25
4
−ρmin, `(τ)+ρ(τ/ε) | τ ∈ [5

2
+
√
ρmin, t] } for t ≥ 5

2
+
√
ρmin.

It can be checked by direct calculation that this is the unique solution. Moreover, we
obtain uniform convergence to the limit solution given in the form

z0(t) =

{
max{0, `(τ)− ρmin} for t ∈ [0, 5

2
+
√
ρmin],

min{25
4
−ρmin, `(τ)+ρmin} for t ∈ [5

2
+
√
ρmin, T ].

In particular, we have ‖zε − z0‖∞ ≤ Cε.
However, the situation for the rates żε : [0, T ]→ R is quite different. From the explicit

formula we see that żε(t) either equals 0 (stiction) or żε(t) = ˙̀(t)− 1
ε
ρ′(t/ε). Thus, within
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Figure 2.1: Left: the energetic solution zε : [0, 5] → R for ε = 0.1. Right: the energetic
solution z0 : [0, 5]→ R for ε = 0. The limiting stable region (in orange) can be understood
as the intersection of all stable regions for ε > 0.

the intervals [kε, (k+1)ε] we typically have żε = 0 for most of the time and żε ≈ 1/ε
for intervals of length O(ε2), see Figure 2.1. As a consequence we conclude that żε does
not converge weakly to ż0 in Lp([0, T ]) for any p ∈ [1,∞[. We only have żε

∗
⇀ ż0 in

M([0, T ]) = C0([0, T ])∗, i.e. in the sense of measures when testing with continuous test
functions.

2.3 The averaging result for oscillatory friction

We now provide the announce averaging result, which can be understood in terms of an
integral inf-convolutions as follows. We define

Ψav(V ) := inf
{ ˆ

S
Ψ(s, v(s))ds

∣∣∣ v ∈ L1(S),

ˆ

S
v(s)ds = V

}
. (2.3)

This formulation justify the colloquial term that oscillatory rate-independent systems
watch for the easiest opportunity to move: during the microscopic time s = t/ε ∈ S there
is an instant such that moving in the direction v(s) ∈ Z is optimal, hence the overall
motion in direction V ∈ Z will be decomposed into an oscillatory motion s 7→ v(s).

Example 2.1 For Z = R2 consider Ψ(s, v) = (2− cos(2πs))|v1| + (2+ cos(2πs))|v2|.
Then, Ψav(v) = |v1|+ |v2|, since moving in z1-direction is optimal for s ≈ 0 while motion
in z2-direction is optimal for s ≈ 1/2.

The first observation is that Ψav can be characterized in terms of the Legendre-Fenchel
dual Ψ∗(s, ξ) = sup

{
〈ξ, v〉 −Ψ(s, v)

∣∣ v ∈ Z
}
. From the 1-homogeneity of Ψ(s, ·) we see

that

Ψ∗(s, ·) = χK(s)(ξ) =

{
0 for ξ ∈ K(s),
∞ otherwise, (2.4)

where K(s) := ∂Ψ(s, 0) is a closed convex set containing ξ = 0 ∈ Z∗. In [HeM17,
Prop. 3.6] it is shown that

Ψ∗av(ξ) = χKav(ξ) with Kav =
⋂

s∈S
K(s).

The averaging result now reads as follows.
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Theorem 2.2 (see [HeM17, Thm. 1.1]) Consider a quadratic energetic system (Z, E ,Ψ)
as in Section 2.1 and an initial condition ẑ0 ∈ Z such that

0 ∈ ∂żΨ(s, 0) + Aẑ0 − `(0) for all s ∈ S.

Under the unique solutions zε : [0, T ] → Z of (2.1) with zε(0) = ẑ0 satisfy zε(t) ⇀ z0(t)
in Z, where z0 is the unique solution of the averaged equation

0 ∈ ∂Ψav(ż(t)) + Az(t)− `(t), z0(0) = ẑ0.

The proof relies heavily on the following asymptotic equicontinuity result:

∃modulus of cont. ω ∀ ε ∈ ]0, 1[ ∀ t1, t2 ∈ [0, T ] :

‖zε(t2)− zε(t1)‖Z ≤ ω(ε) + ω
(
|t2−t1|

)
.

(2.5)

As is seen by the scalar example in Section 2.2 it is not possible to provide a better
equicontinuity result. First it is then standard to extract a subsequence such that zεn(t)
converges to some z0(t) weakly for all t ∈ [0, T ]. The limit passage is then done in the
energetic formulation (2.2). Using the definition of Ψav in (2.3) we have Ψav ≤ Ψ(s, ·), and
it is easy to obtain the upper energy estimate (E), namely E(T, z0(T ) +

´ T

0
Ψav(ż0) dt ≤

E(0, ẑ0)−
´ T

0
〈 ˙̀, z0〉ds.

For the stability condition (S) we can use the equivalent formulation 0 ∈ ∂Ψ(t/ε, 0) +
Azε(t) − `(t). Exploiting the equicontinuity (2.5) we can also have zε(τ̂(t, s, ε)) ⇀ z0(t)
whenever τ̂(t, s, ε) → 0. Thus, we may choose τ̂(t, s, ε) such that τ̂(t, s, ε)ε mod 1 = s
and obtain 0 ∈ ∂Ψ(s, 0) +Az0(t)− `(t) for all s ∈ S. By (2.4) we conclude 0 ∈ ∂Ψav(0) +
Az0(t)−`(t) which is (S) for the limit equation. By standard arguments we then conclude
that z0 is the desired unique solution.

3 Self-induced oscillations in state-dependent friction

The modeling of rate-and-state dependent friction is a classical area in geophysics as it
describes basic mechanisms in the frictional movement of tectonic plates or faults in the
earth crust, see [AbK13, PK∗16] and [Rou14, PK∗16] for more mathematical approaches.
In [HMP17] the following work will be presented in the wider context of continuum
mechanics . Here we rather restrict to a simple ODE in the spirit of the spring-block
sliders studied in [AbK13].

Our simple scalar model of a block slider is described by the position z(t) over the
flat surface and a state variable α (that may be interpreted as a local temperature). The
importance is that the friction coefficient µ for the rate-independent friction occuring
through ż depends nontrivially on α, namely µ = µ̃(α) with µ′(α) < 0, while friction |ż|
increases α.

For simplicity we restrict to the following simple coupled system:

0 ∈ µ̃(α)Sign(ż(t)) + νż + k
(
z(t)−`(t)

)
, α̇ = α0 − α + µ̃(α)|ż|+ νż2. (3.1)

Here k > 0 is the elastic constant of the spring connecting the external loading `(t)
with the body, and ν ≥ 0 is a small viscosity coefficient in the friction law. Thus the
friction is rate-dependent as well as state-dependent through α, namely for ż > 0 we have
ξfrict = µ̃(α) + νż. Note that the relaxation time for the state variable α was set to 1
without loss of generality.

DOI 10.20347/WIAS.PREPRINT.2405 Berlin 2017
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For the later analysis it is advantageous rewrite the first equation in (3.1) as an explicit
ODE. Defining the functions

G(ξ, α) :=





(
ξ−µ̃(α)

)
/ν for ξ ≥ µ̃(α),

0 for |ξ| ≤ µ̃(α),(
ξ+µ̃(α)

)
/ν for ξ ≤ −µ̃(α),

we find the equivalent form

ż = G
(
k(`(t)−z, α)

)
, α̇ = 1− α + k(`−z)G

(
k(`−z), α

)
. (3.2)

The typical experiment is the model with a constant shear velocity V , i.e. `(t) = V t.
Indeed, the problem is translationally invariant if ` and z are changed together. Thus, it
is useful to work with V (t) = ˙̀(t) and to consider the difference U(t) = `(t)− z(t), which
satisfies the ODE system

U̇(t) = V (t)−G
(
kU(t), α(t)

)
, α̇(t) = α0 − α + kU(t)G

(
kU(t), α(t)

)
. (3.3)

In [HMP17] the response of the system to varying shear rates V (t) is studied in regimes
where the system prefers to return into a steady state, whenever V (t) has a plateau.

Here, we want to show that under suitable conditions on the function α 7→ µ(α) the
system displays self-induced oscillations for constant shear rates V (t) ≡ V∗. In that case
(3.3) is a planar autonomous system which can be discussed in the phase plane for (U, α).
Without loss of generality we assume V∗ > 0 and choose k = α0 = 1 for notational
simplicity. We first calculate the equilibria (U∗, α∗) and note that no equilibria with
U∗ ≤ µ̃(α∗) can exist because then G(U∗, α∗) ≤ 0. Hence, the relations for equilibria
reduce to

U∗ = µ̃(α∗) + νV∗ and α∗ = 1 + V∗U∗.

Using our major assumption µ̃′(α) ≤ 0 we immediately see that there is a unique equi-
librium determined by the relation α∗ = 1 + V∗µ̃(α∗) + νV 2

∗ . Clearly, α∗ as a function of
V∗ is monotonously increasing from α∗ = 1 at V∗ = 0.

To study the stability of the solution we calculate the linearization of the vector field
d
d

(
U
α

)
= F (U, α) in q∗ = (U∗, α∗) giving the Jacobi matrix

DF (q∗) =

(
−∂UG(q∗) −∂αG(q∗)/ν

V∗+U∗∂UG(q∗) −1+U∗∂αG(q∗)

)
=

(
−1/ν −µ̃′(α∗)

V∗+U∗/ν −1−U∗µ̃′(α∗)/ν

)
.

As a result we find that the determinant det DF (q∗) = (1−V∗µ̃′(α∗))/ν is always positive.
For the trace we obtain

trace
(
DF (q∗)

)
:= −1−

(
1+U∗µ̃

′(α∗)
)
/ν = −1− µ̃′(α∗)V∗ −

(
1 + µ̃(α∗)µ̃

′(α∗)
)
/ν.

Clearly the equilibrium is stable if trace
(
DF (q∗)

)
< 0, undergoes a Hopf-bifurcation for

trace
(
DF (q∗)

)
= 0, and is unstable for trace

(
DF (q∗)

)
> 0.

Theorem 3.1 (Periodic oscillations) Assume that V∗ > 0 is chosen such that the
unique equilibrium q∗ = (U∗, α∗) satisfies trace

(
DF (q∗)

)
> 0, then there exists a stable

periodic orbit.

Proof. The result follows from standard phase-plane arguments, since the equilibrium is
unstable, and there exists a positively invariant region. Indeed, setting Umax = µ̃(0)+νV∗
we find U̇ = V∗ − G(U, α) ≤ 0 for whenever U ≥ Umax. Hence, for U ∈ [0, Umax] we
have G(U, α) ≤ Gmax = U2

max/ν and conclude that α̇ = 1 − α + UG(U, α) ≤ 0 for
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α ≥ αmax = 1 + Gmax. Thus, the rectangle [0, Umax] × [0, αmax] is positively invariant.
By the Poincaré–Bendixson the existence of at least one limit cycle follows. Standard
argument show that there must also be one stable periodic orbit.

We also want to understand the limit behavior ν → 0, which means that the friction
part converges to its rate-independent limit while the variable α remains rate dependent.
In that case, we expect that the oscillations become very fast with a period of order O(νδ)
for some δ > 0. To analyze this case we consider a special scaling limit that shows a
non-standard bifurcation. In particular, we assume that V is positive but also small with
ν, i.e. we unfold ν and V simultaneously. Moreover, to simplify the notations we assume
that the bifurcation takes place at α = 1 already.

In particular, we consider the scalings

V = νv̂, U = µ̃(α) + ν2β, α = 1 + νγ, µ̃(α) = µ(νγ)−√νB,

where B ∈ R is an unfolding parameter, which is chosen with a particular scaling to
generate periodic solutions with a phase of sticking and a phase of frictional sliding. The
function µ is assumed to satisfy

1 + µ(0)µ′(0) = 0 with µ0 := µ(0) > 0 and µ′(0) = −1/µ0 < 0. (3.4)

This gives the following equivalent system

νβ̇ = v̂ − β+ − µ′(νγ)γ̇, γ̇ = −γ +
(
µ(νγ)−√νB + ν2β

)
β+,

where β+ := max{β, 0}. The special assumption in (3.4) leads to a cancellation when we
insert the equation for γ̇ into the equation for β̇, namely

β̇ =
v̂

ν
+ A(ν, γ)β+ +

µ′(νγ)

ν
γ − νµ′(νγ)ββ+,

γ̇ = −γ +
(
µ(νγ)−√νB

)
β+ + ν2ββ+,

(3.5)

where the coefficient A(ν, γ) stays is order 1/
√
ν for ν → 0, namely

A(ν, γ) :=
µ′(νγ)

(√
νB − µ(νγ)

)
− 1

ν
=

B

µ0

√
ν

+O(1)ν→0,

where we used the first relation in (3.4).
The solutions we will construct below will satisfy estimates of the form γ(t) ∈ [0, C]

and β(t) ≤ [−Cv̂/ν, C/√ν], hence it will be justified to drop the higher order terms.
Using b = B/µ0 we will consider the simplified system

β̇ = v̂ν
(
1−b√ν

)
+

b√
ν
β+ − 1

νµ0

γ, γ̇ = µ0β
+ − γ, (3.6)

which is a piecewise linear system and has the unique steady state (β∗, γ∗) = (v̂, µ0v̂).
Since the system is positively homogeneous of degree 1, the solutions for general v̂ are
obtained from the solution (β1(t), γ1(t)) for v̂ = 1 by a simple multiplication, namely
(v̂β1(t), v̂γ1(t)).

We are especially interested in the case b ∈ ]0, 2[ where the fixed point is an unstable
focus with eigenvalues

λ1,2 =
b/2√
ν
± i

ωb√
ν

+O(1), where ωb =
√

1−b2/4.
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β

γ
γ̇ = 0

µ0v̂
β̇ = 0

v̂

Figure 3.1: The phase plane for the piecewise linear system (3.6) for v̂ = 1 and µ0 = 1:
For β ≥ 0 we have an unstable focus, while for β ≤ 0 we have the simple system
β̇ = 1/ν − γ/(νµ0), γ̇ = −γ.

In the phase plane for (β, γ) we can construct periodic solutions by piecing together the
piecewise linear systems, see Figure 3.1. For the explicit construction of a periodic orbits
we decompose the axis { (0, γ) | γ ≥ 0 } into the two parts {0} × Aj with

A1 := [0, µ0v̂[ and A2 := ]µ0v̂,∞[.

Then solutions starting in A1 will move according to the unstable focus in (β∗, γ∗) =
(v̂, µ0v̂): First they rapidly move to the right, then turn slowly upwards, and reach β̇ = 0
when β is of order 1/

√
ν. Then, the solutions move rapidly back to the axis β = 0. Let

us denote this Poincaré mapping by Φ+ : A1 → A2. Since the motion between β = 0
and β = v̂ only takes a time of order ν, it can be neglected compared to the travel time
around the fixed point. Thus the travel time associated to Φ+ is half the period, namely
πωb/

√
ν. During that time the solutions are stretched, so that

Φ+(ν, ·) :

{
A1 → A2,
γ 7→ µ0v̂ + ρb(µ0v̂−γ) +O(

√
ν),

with a stretching factor ρb := eπb/(2ωb) > 1.
Similarly the linear flow for β ≤ 0 provides a Poincaré map Φ− : A2 → A1. As

the solutions starting in A2 are given by γ(t) = e−(t−t0)γ(t0) and νβ(t) = v̂(t−t0) +
1
µ0

(1−et0−t)γ(t0) we obtain Φ−(γ(t0)) = γ(t1), where t1 = t0+T is defined via v̂T =

(1−e−T )γ(t0)/µ0. Since the function B : ]0,∞[ → ]0, 1[; T 7→ (1−e−T )/T is strictly
decreasing it has a smooth inverse C : ]0, 1[→ ]1,∞[ which gives

Φ−(ν, ·) :

{
A2 → A1,
γ 7→ e−C(µ0v̂/γ)γ,

which is even independent of ν, because this regime relates to the sticking phase U < µ(α)
where the viscosity ν is irrelevant. By construction it follows that Φ− is convex and
monotonously decreasing with slopes in ]−1, 0[.

Periodic solutions are now obtained as fixed points of Ψ := Φ− ◦ Φ+ : A1 → A1.
From the lowest order expansions of Φ± we see that Ψ is convex and strictly increasing.
Moreover Ψ(µ0v̂) is slightly below µ0v̂ and Ψ′(µ0v̂) = ρb > 1. Thus, there is a unique fixed
point γb in the interior, while the fixed point at γ = µ0v̂ of the lowest-order expansion
does not survive. As ρb = eπb/(2ωb) is strictly increasing with b ∈ ]0, 2[ from 1 to∞, we see
that b 7→ γb is strictly decreasing with limits γ0 = µ0v̂ to γ2 = 0. Since 0 < Ψ′(γb) < 1,
we also conclude that the associated periodic orbit is stable.
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A1 A2
γ

A1

A2

γ

Φ+

Φ−

A1
γ

A1

γ

Φ− ◦ Φ+

Figure 3.2: On the left, the two Poincaré maps Φ+ : A1 → A2 and Φ− : A2 → A1 are
displayed. The right shows Φ− ◦Φ+ : A1 → A1, where the unique fixed point gives to the
stable limit cycle.

sticking
sliding

sticking
sliding t

U(t)

α(t)

α = 1

Figure 3.3: The periodic functions U(t), α(t) displaying long phases of sticking and short
phases of fast slip.

The important observation is that the travel times in the two Poincaré mappings Φ+

and Φ− are quite different. The time with β > 0 is of order
√
νπ/ωb+O(ν) while the time

with β < 0 is of order 1. Thus, looking at the temporal behavior we have a relatively
long period of sticking, while there is a relatively short period of sliding. Transforming
our solutions back into the original variables we obtain, in the case β > 0 the expansion

U(t) = µ(νγ)−√νB + ν2β = µ0 −
√
νB − ν γ(t)

µ0

+O(ν3/2), α(t) = 1 + νγ(t),

whereas in the case β(t) < 0 we have β = O(1/ν) and thus

U(t) = µ0 −
√
νB + νv̂ (t−tk)− ν

γ(tk)

µ0

+O(ν3/2), α(t) = 1 + νe−(t−tk)γ(tk),

where tk is the last time, where the solution switched from β > 0 to β < 0. The behavior
is illustrated in Figure 3.3.

We emphasize that all the solutions we have obtained in this scaling limit have a
phase in the lower half plane, which means U(t) ≤ µ̃(α(t)) and hence U̇ = V . In the
original variables this means ż = 0 which is the sticking phase. Physically this means
that the system rest for a short time until the shear has build up to reach the critical
threshold. However, then the state α (e.g. the temperature) is increased so that the
friction coefficient drops. Thus z(t) = V t − U(t) moves forward a lot and reduces the
shear stress significantly. But then α again decreases and thus the friction coefficient
again raises, which leads to the next sticking phase.
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4 A model for the rocking toy animal

Our third example concerning the interaction of Coulomb friction and oscillations relates
to a very simplistic model for walking of so-called rocking toy animals. A similar model
could be derived for the toy ramp walker shown in Figure 1.1(B).

4.1 Description of the mechanical toy

The toy animal has two right and two left legs that usually move together so we identify
them and speak of the right and the left leg. The toy is pulled forward by a string that
hangs over the edge of a table, where a suitable weight provides a constant pulling force.
A related walking toy is the ramp walker, which oscillates in the direction of walking. It
has only two legs, the forward and the backward one, which are alternatingly loaded and
unloaded, see Figure 4.1 for a pictures and two schematic views of a rocking toy cow.

This model has the following features:

(i) Walking is a periodic motion that is enabled by perpendicular oscillations, which
change the weight on the left and right legs.

(ii) The force in the pulling string needs to be substantially less for the oscillating
motion than for the sliding motion without oscillations. For very small pulling
force no motion occurs.

(iii) To compensate for damping in the perpendicular oscillations, energy has to be
transferred from the forward motion into the perpendicular oscillation.

4.2 A model with inertia

We model the system of the toy animal by three degrees of freedom, i.e. we assume that
both legs on the right side and both legs on the left side move together respectively and
can be described by the average position xR(t) ∈ R and xL(t) ∈ R. To simiplify notations
we abbreviate x = (xR, xL). The third degree of freedom is given by the angle ψ of the
animals symmetry line against the vertikal axis.

ψ(t)

xL(t)
xR(t)

Figure 4.1: Rocking toy animal. Left: A weight beyond the table edge pulls the toy
aninaml forward, while the perpendicular rocking motions allows the lifted legs to swing
forward because of the reduced normal pressure. Middle: changes in the perpendicular
rocking angle ψ(t) lifts either the right or the left leg. Right: the string pulls the animal
forward and increases the potential energy slightly when the hing of a leg is moved over
the leg’s contact point.
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The total energy E(x, ψ, ẋ, ψ̇) = Eani(x, ψ, ẋ, ψ̇) + Eweight(x, ẋ) is given by

Eanimal(x, ψ, ẋ, ψ̇) = Φ(xR−xL, ψ) +
mb

2
(ẋR+ẋL)2 +

ml

2

(
(ẋR)2+(ẋL)2

)
+
Ib
2
ψ̇2,

Eweight(x, ẋ) = −gmW
1

2
(xR+xL) +

mW

2
(ẋR+ẋL)2,

where Ib is the rotational inertia of the body, and mb, ml, and mW are the masses of the
body, the legs, and the weight, respectively.

The main mechanism for walking originates from the dissipation, which we assume to
have the form

R(x, ψ, ẋ, ψ̇) =
δ

2
(ψ̇)2 +

(
ρ+HR(ψ)

)
|ẋR|+

(
ρ+HL(ψ)

)
|ẋL|+

ν

2

(
ẋR
)2

+
ν

2

(
ẋL
)2
,

where δ, ν > 0 induce simple viscous friction. The main feature of the model is the
dependence of the rate-independent Coulomb friction of the two legs on the tilt angle
ψ through the two functions HR and HL, which indicate the normal pressure times the
friction coefficient on the right and the left leg, respectiviely, while ρ > 0 is the dry
friction in the joints, which is independent of the normal pressure. We assume

HR(ψ) +HL(ψ) = H∗ = const., HR(ψ) = HL(−ψ),

HR(ψ) = HL(ψ) =
1

2
H∗ for |ψ| ≤ ψ0, HR(ψ) = 0 for ψ ≥ ψ1 > ψ0.

An important point in the modeling is that 0 < ρ � H∗/2, i.e. the friction in the joints
is much smaller than the friction of moving the non-rocking animal.

Denoting by q = ψ, xR, xL) the state of the system, the equation to be studied is the
damped Hamiltonian system

d

dt

(
∂q̇E(q, q̇)

)
+ ∂q̇R(q, q̇) + ∂qE(q, q̇) = 0.

Thus, the full model takes the form of a coupled three-degrees of freedom system:

Ibψ̈ + δψ̇ + ∂ψΦ(xR−xL, ψ) = 0, (4.1a)
(mW+mb)(ẍR+ẍL) +mlẍR

+νẋR +
(
ρ+HR(ψ)

)
Sign(ẋR) + ∂dΦ(xR−xL, ψ) = gmW/2, (4.1b)

(mW+mb)(ẍR+ẍL) +mlẍL

+νẋL +
(
ρ+HL(ψ)

)
Sign(ẋL)− ∂dΦ(xR−xL, ψ) = gmW/2, (4.1c)

where d = xR − xL is the (signed) distance between the right and the left leg.
The main mathematical task in studying this model is to show that there are time-

periodic translating motions, i.e.

ψ(t) = Ψper(t), xR(t) = vt+Rper(t), yL(t) = vt+ Lper(t),

where v is the average walking speed while (Ψper, Rper, Lper) : R → R3 is periodic. The
trivial solution is the non-rocking solution (Ψper, Rper, Lper) ≡ 0, where the velocity and
the pulling force are related by

νv + ρ+
1

2
H∗ =

1

2
gmW.

Thus, even for arbitrary small velocities v > 0, the pulling force must overcome the full
Coulomb friction for the full weight of the toy. The point is that a symmetry breaking
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leading to an oscillatory behavior can lead to larger velocities v even for much lower
pulling forces gmW.

In principle, this model could be studied for the desired oscillatory behavior, but we
will simplify the model further such that the existence of relevant periodic motions can
be shown more easily.

4.3 A simplified model without translational inertia

We consider a simplified model, where we neglect interial effects in the translation di-
rection but not in the transverse oscillations. Thus, we neglect all terms in the energy
arising through (ẋR, ẋL). Similarly, we may keep the

pulling force P := gmW

constant and then set ml = mb = mW = 0. Moreover, we choose a simple quadratic
energy potential, where it is important to couple the leg distance d = xR − xL and the
angle ψ, namely

Φ(d, ψ) =
a

2
d2 +

b

2
ψ2 − cdψ with a, b, ab−c2 > 0.

Hence, the trivial smmetric state (xR−xL, ψ) = (0, 0) is stable. It is important to have
c > 0, which reflects the fact of symmetry breaking for the walking toy: the tilt angle
restoring force is ∂ψΦ(d, ψ) = bψ − cd, so if d > 0 (right leg before left one) then there is
a stronger tendency to fall to the left than to fall to the right.

The simplified system now takes the form

Ibψ̈ + δψ̇ + bψ − c(xR−xL) = 0, (4.2a)
(ρ+HR(ψ)Sign(ẋR) + a(xR−xL)− cψ = P, (4.2b)
(ρ+HL(ψ)Sign(ẋL)− a(xR−xL) + cψ = P. (4.2c)

The equations (4.2b) and (4.2c) for xR and xL, respectively, are simple play operators
(cf. [Vis94, BrS96]), however the thresholds ρ + HR,L(ψ(t)) vary in time and are even
influenced by x through (4.2a).

Nevertheless, we will be able to reduce this coupled system to an oscillator for ψ
involving a hysteresis operator induced by the relations for xR and xL. For this we first
observe that the relations (4.2b) and (4.2c) restrict the leg distance d(t) := xR(t)− xL(t)
because of Sign(ẋR,L) ∈ [−1, 1] as follows:

g(t) ∈ [G−R(ψ), G+
R(ψ)] ∩ [G−L (ψ), G+

L (ψ)] with

G±R(ψ) =
1

a

(
P + cψ ±

(
ρ+HR(ψ)

))
,

G±L (ψ) =
1

a

(
−P + cψ ±

(
ρ+HL(ψ)

))
.

We now explain that for a given continuous function t 7→ ψ(t) there is a hysteresis operator
H such that the output d(t) = H[ψ(·)](t) is explicitly given through the boundary curves
G+ > G− via the formulas

G+(ψ) := min{G+
L (ψ), G+

R(ψ)} and G−(ψ) := max{G−L (ψ), G−R(ψ)}.

Of most interest are the local minimum of G+ at ψ1 > 0 and the local maximum of
G− at −ψ1 < 0 (see ψ1 = 1 in Figure 4.2). For simplicity, we choose constants ψ∗, H∗ > 0
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-15

-10

-5

5

10

15

ψ

d = xR−xL

ψ∗
−ψ∗

G+
R(ψ) (ẋR < 0)

G−R(ψ) (ẋR > 0)

G+
L (ψ) (ẋL > 0)

G−L (ψ) (ẋL < 0)

Figure 4.2: Sketch of the sets [G−R(ψ), G+
R(ψ)] and [G−L (ψ), G+

L (ψ)]. The solutions have
to stay inside the intersection of the two shaded regions. We have ḋ ≤ 0 at the up-
per curve G+ : ψ 7→ min{G+

L (ψ), G+
R(ψ)} and ḋ ≥ 0 at the lower curve G− : ψ 7→

max{G−L (ψ), G−R(ψ)}. Between these two curves we have ḋ ≡ 0.

with H∗ > 2cψ∗ and restrict to the piecewise affine case

HR(ψ) =





0 for ψ ≤ −ψ∗,
H∗(ψ+ψ∗)/(2ψ∗) for |ψ| ≤ ψ∗,

H∗ for ψ ≥ ψ.

Thus, we can calculate the local minimum of G+ and the local maximum of G−
explicitly, namely

(ψ∗,−X) and (−ψ∗,X) with X :=
1

a

(
P − ρ− cψ∗

)
,

where we further assume X > 0 (i.e. P > ρ+ cψ∗) and H∗ > 2P .

4.4 Restriction to simple period motions

We now restrict to a special period motion where the hysteresis operator can be replaced
by an ordinary function, namely in the region

ψ ∈
[
−ψ2, ψ2

]
with ψ2 := 2ρ/c+ ψ∗.

where we set d(t) = G(ψ(t), ψ̇(t)) with

G(ψ, ψ̇) =

{
Γ(ψ) if ψ̇ ≥ 0,

−Γ(−ψ) if ψ̇ < 0.
with Γ(ψ) :=





X for ψ ∈ [−ψ2, ψ3],
G+

L (ψ) for [ψ3, ψ∗],
−X for ψ ∈ [ψ∗, ψ2],

where ψ3 is the unique solution of X = G+
L (ψ) in [0, ψ∗]. (Note that G+

L (0) = (ρ+H∗/2−
D)/a > 0 and G+

L (ψ∗) = −X < 0.)
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ψ

−Γ(−ψ)

Γ(ψ)

ψ2−ψ2 ψ∗

−ψ∗

ψ3

−ψ3

Figure 4.3: The two branches of the function G(ψ, ψ̇), namely Γ(ψ) for ψ̇ > 0 and
−Γ(−ψ) for ψ̇ < 0.

Thus, we have eliminated all dependence on the variables xR and xL and are left with
a nonlinear oscillator equation for ψ, namely

Ibψ̈ + δψ̇ + bψ − cG(ψ, ψ̇) = 0.

Note that this is a piecewise linear equation, where G switches between the two constant
values ±X with some linear transition region inbetween. The point is that this switching
feeds energy into the system which may compensate the damping through δ > 0.

It is now possible to show that there are suitable parameters such that this equation
has a periodic orbit. This can be done in a similar way using Poincaré sections as in
the previous section. We refer to subsequent work for precise statements and proofs. We
conclude with some numerical results showing the conververgence into a stable periodic
orbit for ψ and x(t)−v(t, t) with a suitable walking speed v > 0.
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Figure 4.4: Simulation for the simplified system (4.2). Left: (ψ(t), ψ̇(t) spirals towards
a stable limit cycle. Right: The functions ψ(t), xR(t), and xL(t) show periodic behavior
up to a linear translational mode for xR,L.
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