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A spatial and seasonal climatology of extreme
precipitation return-levels: A case study.
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Abstract

A spatial and seasonal modeling approach for precipitation extremes is intro-
duced and exemplified for the Berlin-Brandenburg region in Germany. Monthly
maxima of daily precipitation sums are described with a generalized extreme
value distribution (GEV) with spatially and seasonally varying parameters.
This allows for a return-level prediction also at ungauged sites. The season-
ality is captured with harmonic functions, spatial variations are modeled with
Legendre polynomials for longitude, latitude and altitude. Interactions between
season and space allow for a spatially varying seasonal cycle. Orders of the har-
monic and Legendre series are determined using a step-wise forward regression
approach with the Bayesian Information Criterion (BIC) as model selection cri-
terion. The longest 80 series are used to verify the approach in a cross-validation
experiment based on the Quantile Skill Score (QSS). The model presented de-
scribes the observations at all these stations more accurately than a GEV applied
to each month and location separately. These improvements are due to the as-
sumption of smoothly varying GEV parameters in time and space; information
from neighboring observations in time and space are used to obtain parameters
at a given location. Apart from robustness, this approach allows also a season-
ally and spatially varying shape parameter and results are found to be more
accurate.
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1. Introduction

Severe meteorological events, such as extreme precipitation, severe winter
storms or heat waves can lead to considerable damages and might thus have
a strong impact on the environment, society and economy (Intergovernmental
Panel on Climate Change. Working Group II, 2014, and references therein).
Threats due to precipitation are either direct — in form of hail, freezing rain or
flash floods — or indirect due to increased erosion, mudslides or river flooding.
In particular for the latter the seasonality of extreme precipitation is relevant,
since flood risk increases if an increasing probability of extreme precipitation
coincides with already high water levels due to, e.g., snow melt (Schindler et al.,
2012b,a; Vormoor et al., 2015). In addition, the seasonal cycle of extreme pre-
cipitation has a strong impact on crop yields, in particular at early stages of the
growing season, the crop is highly vulnerable to damages (Parry et al., 2005;
Rosenzweig et al., 2001). Thus, a seasonally resolved risk assessment for extreme
precipitation is definitively relevant for certain groups of stakeholders. A risk
assessment frequently requires information at ungauged sites, e.g., for insurance
companies or for the design of hydraulic structures; spatial information is thus
indispensable for a comprehensive risk assessment framework.

To estimate the occurrence probabilities needed for risk assessment, a widely
applied concept is extreme value statistics (EVS) (Beirlant et al., 2004; Coles,
2001; Embrechts et al., 1997). Countless applications of EVS have been pub-
lished in hydrology and climatology (e.g., Lerma et al., 2015; Arns et al., 2015;
Brown and Katz, 1995; Coles and Tawn, 1996; Katz et al., 2002; Naveau et al.,
2005; Cid et al., 2015; Fischer et al., 2017; Ferreira et al., 2017), to name but
a few. One way to address extremes is the block maxima approach. Observa-
tions are divided into blocks of equal length and the probability distribution
for the maxima of these blocks is described with the generalized extreme value
distribution (GEV). Here, we promote a monthly block size contrary to the fre-
quently used annual blocks. However, instead of building a separate extreme
value model for each calendar month, we profit from the smooth variation of
the maxima’s probability distribution across adjacent calendar months. As this
variation is intrinsically periodic, the canonical choice is a series of harmonic
functions for the GEV parameters, a concept suggested by Rust et al. (2009);
Maraun et al. (2009) for the UK. Another advantage of this approach are more
accurate return-levels (quantiles) for annual maxima (cf., Fischer et al., 2017).
A second choice to model smooth temporal variations are cyclic cubic splines
using generalized additive models (Wood, 2006). This approach as been applied
by various studies before, e.g. for spatio-temporal climatology of precipitation
(Stauffer et al., 2016) or of lightnings (Simon et al., 2017).

Addionally to the generalized additive models, several other approaches of
spatial modelling have been established in the extreme value statistics commu-
nity, e.g., Regional Frequency Analysis (Hosking and Wallis, 2005; Soltyk et al.,
2014) where regions of similar statistical characteristics are combined and com-
mon probabilities for extremes are obtained, or Bayesian Hierarchical Models
(Cooley et al., 2007; Davison et al., 2012) where the spatial variations are taken
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care of by a large-scale contribution described with linear regression and local
variations captured by a spatial stochastic process.

Rust et al. (2013) and Ambrosino et al. (2011) suggest to use spatial co-
ordinates directly as covariates. Instead of expanding the unknown functional
relationship between the GEV parameters and the spatial covariates as a Tay-
lor series (i.e. using simple polynomials), they suggest Legendre Polynomials
to ensure independence of the terms. In the frame of generalized linear mod-
els (GLMs), Rust et al. (2013) and Ambrosino et al. (2011) obtain models for
precipitation occurrence (logistic regression) and daily precipitation amounts
(Gamma-regression). As this spatial covariates approach is conceptually the
same as the seasonal approach in (Rust et al., 2009; Fischer et al., 2017), we
combine both in this study.

Additional information of the magnitude and the occurrence probability of
extreme precipitation might be beneficial as well. Thus, the goal of this paper is
to present a compact and parsimonious spatial-seasonal model which provides
monthly resolved return levels at gauged, as well at ungauged sites. This ap-
proach is applied to the region of Berlin-Brandenburg as a case study. As data
basis, we consider daily precipitation sums for more than 300 rain gauges, pre-
sented in Sec. 2. The spatial-seasonal model is based on the GEV for monthly
block maxima and is described in Sec. 3. The model selection and validation is
covered in Sec. 4 and monthly resolved 100-year return levels are presented in
Sec. 5. Finally, we discuss results in Sec. 6.
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2. Data

A selection of gauges recording daily precipitation amounts have been ob-
tained from the National Climate Data Center of the German Weather Service
(Deutscher Wetterdienst, DWD, https://werdis.dwd.de/werdis). Daily pre-
cipitation amounts from Hellman rain gauge with a nominal accuracy of 0.1lmm
are available for almost 5,600 stations. A subset of 322 stations covers the
region of Berlin-Brandenburg in the east of Germany (Fig. 1). Some series con-
tain missing observations within the study period. The amount of missing values
ranges from several days to several years. We consider the monthly maxima of
daily precipitation amounts; months with more than 3 days of missing obser-
vations have been excluded from the analysis. In total, our dataset contains
152,401 monthly maxima. For model verification in Sec. 4 we only consider the
most complete and longest 80 time series with more than 50 years of observa-
tions (blue dots in Fig. 1). The results for the station Berlin-Kopenick (orange
triangle) is discussed in more detail.

Figure 1: 322 stations in Berlin-Brandenburg (dots) in the east of Germany including 80
long time series with more than 50 years of observations (blue). The example station Berlin-
Kopenick is highlighted as a orange triangle.

Furthermore we use geo-referenced altitude from the DIVA-GIS project (http:
//www.diva-gis.org/Data) depicted for Berlin-Brandenburg in Fig. 2.
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Figure 2: DIVA-GIS geo-referenced altitude with respect to the sea level for Berlin-
Brandenburg.



3. Modeling spatial-seasonal extreme precipitation

A statistical description of extremes can be achieved with extreme value
statistics (EVS) (Beirlant et al., 2004; Embrechts et al., 1997). This is partic-
ularly useful if probabilities of exceeding a given level are to be estimated for
the range of observed levels or even beyond. One of the main routes of EVS is
the block-maxima approach with the Generalized Extreme Value distribution
(GEV) as a model for the probability distribution of maxima from blocks of a
certain length, e.g. monthly or annual maxima. Coles (2001) provides a very
good introductory text to this topic.

We use a monthly block size and describe the resulting monthly maxima of
daily precipitation amounts with the GEV. The GEV parameters are allowed to
vary throughout the course of the year and also in space, i.e., with the location
of the gauge. This approach follows the idea of linear modeling for the three
parameters of the GEV: location, scale and shape. Thus we have basically 3
different sets of linear predictors, one for each parameter. Equation (1) shows
the linear predictor for the location parameter p in a conceptual way:

g(1) = po + fi(season) + fa(space) + f3(season, space) (1)

where ¢ is a link function - for p the identity function, for ¢ the logartihm and
for ¢ the logarithm with an offset of 0.5. Moreover, pg is a constant intercept
and f; are non-linear components represented by linear pre-defined functions.
Spatial and seasonal variability are both expanded in terms of adequate basis
functions; for the seasonal variations the natural choice are harmonic functions
of increasingly higher order described in Sec. 3.2, and for the spatial dimen-
sion we chose Legendre polynomials as they form an orthogonal set and thus
reduce dependence between terms (Sec. 3.3). The spatial interactions and the
dependence to the seasonal variability (f3) is covered in (Sec. 3.4).

3.1. The block maxima approach

According to the Fisher-Tippett (or Three-Types) Theorem, for indepen-
dent and identically distributed copies X; of a random variables X and in
the limit of large block-sizes M, the probability distribution for block max-
ima Z = max; X;,7 = 1,...M converge towards the generalized extreme value
distribution (GEV)

G(Z;u70,§)=exp{—{1+£<20H>]_1/£} (2)

with {z : 1+ &(z —p)/o > 0}. The location parameter —oo < p < oo specifies
the position of the probability density function (PDF), the scale parameter
o > 0 and shape parameter —oo < £ < oo determine the width and shape of
the GEV, respectively Coles (2001). This theorem and the generalization for
dependent variables (e.g., Leadbetter et al., 1983) provide a strong theoretical
background for using the GEV as a model for block maxima.
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The block size needed for a sufficiently good approximation with the GEV
depends on the nature of the underlying variable and their dependence (Em-
brechts et al., 1997); the impact on the convergence rate for a few classes of
auto-correlated processes is exemplified in Rust (2009). Several studies (Rust
et al., 2009; Maraun et al., 2009; Fischer et al., 2017; Schindler et al., 2012a,b)
suggest that a monthly block size is suitable for daily precipitation sums at
least in the mid-latitudes. Figure 3, showing the monthly Q-Q-plots for the
example station Berlin-Képenick, confirms the choice of a monthly block size
for our data set. Monthly maxima can be treaten as independent in time; we
also assume independence in space which we justify with the high spatial vari-
ability of precipitation compared to the distance of stations. GEV parameters
are estimated using iteratively reweighted least squares (IRLS) (Green, 1984) to
approximate the maximum-likelihood estimate, as implemented in the package
VGAM (Yee, 2009) for the environment for statistical computing and graphics R
(R Core Team, 2014).

Ultimate goal of an EVS analysis is to obtain GEV quantiles for specific
probabilities of exceedance, also called the return-levels. The associated return-
period T'=1/(1 — p) is related to the non-exceedance probability p. Thus, the
return-level specifies a magnitude which is expected to be exceeded on average
once in a certain time period. In engineering contexts, the 100-year or 1000-year
return-level is frequently the basis for dimensioning structures, such as dams or
bridges. Asymptotic confidence intervals for return-levels can be derived using
the delta method (Coles, 2001).

3.2. Seasonal variations

In the present case, we expect precipitation maxima to vary together with
the seasonal cycle. To account for the periodic nature of the seasonality, the
time dependence of GEV parameters is described with a series of harmonic
functions, e.g., for the location parameter

H
(season) Z Ph,sin SN(Rw cr) + fn,cos cos(hwey)], (3)

with ¢ = 1,...,12 the months in the year, ¢; the center of the ¢-th month given
in days starting from January, 1%, w = 27/365.25 the angular frequency of
earth’s rotation around the sun and H being the order of the harmonic series
expansion (Rust et al., 2009; Maraun et al., 2009; Fischer et al., 2017; Schindler
et al., 2012a,b).

8.8. Spatial variations

To capture spatial variations, Ambrosino et al. (2011) and Rust et al. (2013)
suggest a series expansion using Legendre polynomials for longitude z, latitude
y and altitude z. Legendre polynomials form a set of orthogonal basis functions
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Figure 3: QQ-Plot of all monthly maxima divided into months for the example station Berlin-
Ko6penick.
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n [—1,1], ensuring linearly independent covariates. We thus obtain as the
spatial term in the linear predictor for the location parameter

<

L
2(space) Z wipPj(x) + Z e, pPr(y) + Z w,pPi(z), (4)
=1

with P;(.) denoting the j-th Legendre polynomial which are used for z, y and z,
resulting from shifting and scaling longitude, latitude and altitude, respectively.
Longitude, latitude and altitude within the cuboid [—14.8, —11.2] x [51.3, 53.6] x
[—5,441] (°North x °East x m) are shifted and scaled to (z,y,z) such that
(z,y,2) € [-1,1] x [-1,1] x [0,1]. The maximum altitude of 441 m lies in the
south-west of the investigation area shown in Fig. 2, while within the region
the highest elevation do not exceed values of 205 m. The spatial term of the
predictors for scale and shape are set up analogously.

3.4. Interactions

To allow the seasonal cycle of extreme precipitation to be different in different
locations, a spatial variation of the seasonality needs to be accounted for. Within
the frame of a GLM, this is realized by so called interaction terms between
season aNd fispace. This can be thought of as a model for the spatial variation of
the seasonal dependence. In practice, these interactions result as products of the
spatial and seasonal covariates. Additionally, dependencies between the different
spatial dimensions are integrated as well. Equation (5) gives the interaction for
the location parameter u

Hieas,x Jseas,x

ing = Z Z P, jsin Sin(hg wer) Pj(x) + ph, jcos coS(hywer) Pj(z)]
hy=1 j=1

sens.y Kseas.y

+ Z Z [thy Jo,sin SI0(hy w ) Pyo(y) + fih, kcos €08(hy wer) Pr(y)]
hy=1

Hsecas,z Lseas,z

+ > Z fth. 1sin SIN(he w er) Pi(2) + pn. 1cos cos(he wer) Pi(z)]
h.=1 I=1

+ Z Z Hjaryeny Piiy (@) Proy, ()]

jz y:1 kz y:1

+ Z Z 1o o Pj () P, . (2)]

jT Z_l l’l‘ Z_l

T Z Z By iy Py (0) P, (2)] (5)

ky =11, =1

Interactions for scale o and shape £ are set up analogously.
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modelselection modelverification

1) stationary
3 coefficients

2) seasonal (u,0)
23 coefficients

3) spatial-seasonal (u,0) Reference Model (RM):
36 coefficients GEV for month and
VS station separately
4) spatial (4,0) — seasonal (i,0,¢) 3,864 models
47 coefficients 11,592 coefficients

5) spatial-seasonal (u,0,§)
48 coefficients

6) spatial-seasonal (u,0,§) with
interactions
86 coefficients

Figure 4: Overview of the model selection steps for monthly maxima of daily precipitation
sums (left) and the reference model (right) used for the model verification. The number of
coefficients states the amount selected with the BIC.

4. Model building and verification

A spatial-seasonal extreme value model is used to describe the data in the
study area. A stationary GEV for monthly maxima at every station with pa-
rameters estimated separately for every month of the year is used as a reference
model (RM). To analyse the predictors of the final model in detail, different
steps of the model selection will be considered: step 1 forms a stationary GEV
ingnoring any spatial and seasonal variations. In step 2 the seasonal cycle in lo-
cation and scale parameter are added using harmonic functions. Subsequently,
the spatial variation is included in the predictor for location and scale using Leg-
endre Polynomials of transformed longitude, latitude and altitude, the shape &
is held constant over space and time (step 3). In the following, we allow for
seasonal (step 4) and additionally spatial (step 5) variation of the shape param-
eter . Finally, interactions between spatial and seasonal terms yield the final
step 6. See Fig. 4 for an overview of the different model selection steps and the
reference model.

A step-wise forward regression based on the Bayesian Information Criterion
(BIC) (Wilks, 2011) is carried out to find the appropriate orders of the har-
monic and/or Legendre series expansion. Compared to the RM, the number of

10
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parameters in 6) were reduced by a factor of almost 135 to 86. We thus consider
model 6) as a successful development if this immense reduction in parameters
does not lead to a loss in skill with respect to RM.

4.1. Model building steps

Reference Model (RM). The reference is the canonical stationary GEV with
three parameters estimated individually for every month and at every station.
This approach leads to 11,592 parameters to estimate: 3 parameters per month
at each of the 322 station (3-12-322 = 11,592). The reference model is used
for the model verification in Sec. 4.2.

Stationary GEV for all data (1). Starting point of the model selection builds a
stationary GEV with three coefficients including all data such that no spatial
and temporal variations are considered.

Seasonality in location and scale (2). To describe the variation of the monthly
maxima throughout the year a seasonally varying GEV based on harmonic func-
tion for location and scale parameter is set up. Higher order harmonics are
included subsequently until the BIC is not decreasing anymore. In this setup
the whole region is characterized by the same seasonal cycle. Since the shape
parameter £ is difficult to estimate for small datasets, many investigations held
this parameter constant (Coles, 2001; Rust et al., 2009; Maraun et al., 2011;
Fischer et al., 2017). We will analyse the influence of a seasonal and spatial
varying shape parameter in detail in step 4) and 5). For this step the number
of preferred coefficients rise up to 23.

Spatial variation in location and scale (3). The seasonal model (2) is straightfor-
wardly extended to a spatial-seasonal model with the BIC as criterion defining
the appropriate orders for the Lengendre Polynomials in longitude, latitude and
altitude for location and scale. The shape parameter is held constant for the
whole study area, yielding a model with 36 coefficients.

Seasonal variation in shape (4). In the following, we aim to give more flexibility
to the spatial-seasonal model (3) based on the spatial framework: analogously
to the location and scale parameters, the shape parameter £ is now allowed to
vary throughout the year based on a harmonic series. Order selection is again
based on the BIC. This leads to 47 coefficients in total.

Spatial variation in shape (5). The subsequent step introduces a spatial compo-
nent in the shape parameter £, analogously to the spatial component in location
and scale. Order selection is again based on BIC. The resulting model has 48
coeflicients.

11



order I o 3
H 5 5 5
J 5 1 0
K 4 1 1
L 2 1 0

Hseasx / JseaSJU 3/1 4/1 5/1
Hseasy / Kseasy O/O 3/1 3/1
Hseasz /Lseasz 0/0 0/0 O/O
oy | Koy 2/110/0 | 0/0
Ky./ L. 0/0 | 0/0]0/0

Table 1: Orders of harmonic series expansion, Legendre Polynomials and interactions for
model 5). The orders H refer to Eq. (3), J, K, L to Eq. (4) and Hint, , Jint,, Hint, s Kinty,
Hintz s Lintz to Eq. (5)

Spatial-seasonal interactions (6). Finally, allowing for interactions between the
spatial and seasonal predictors, yields one single model for the study area with
86 coefficients to estimate. The selection of interaction terms is again based
on the BIC. Compared to the reference model, we have reduced the number
of parameters by a factor of almost 135 to describe the same 152,401 monthly
maxima. Tab. 1 provides an overview on selected orders.

Pronounced seasonal variations can be seen for all three parameters of the
GEV, while the spatial variations are mainly restricted to the location param-
eter. Although, a dependence of the seasonal cycle on altitude could be found
for Germany (Fischer et al., 2017), the seasonality is here only dependent on
the longitude and latitude; the study area has no prominent orography. Fur-
thermore, an interaction between the longitude and latitude is only significant
for the location parameter, while the altitude do not show any dependency to
the longitude or latitude.

4.2. Verification

To investigate the gain in performance for the individual steps in model
building, we use the Quantile Skill Score (QSS) (Bentzien and Friederichs, 2014;
Friederichs and Hense, 2007). It is based on the Quantile Score (QS) for the N
observations o, and the p-quantile z, ,

1 N
QS = N Z pp(0n — me) (6)
n=1

using the so-called check-function p, for v =0, — 2,

_ Jpu u>0
pp<u>—{(p_1)u = (7

12
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The Quantile Score is positively oriented and obtains it’s optimal value at zero.
It extends straightforwardly to the Quantile Skill Score (QSS) for evaluating
the performance gain with respect to a reference model

QSmodel

QSS =1 — —<omodel
QSreference

(8)

Positive/negative values of the QSS indicate a gain/loss in skill with respect to
the reference.

As we are interested in the performance gain through the spatial-seasonal
modeling approach with respect to the popular station-based approach, we esti-
mate the QSS for models 1) to 6) with RM as the reference, cf. Fig. 4. A robust
score is obtained using a block cross-validation procedure (Wilks, 2011). We
divide each time series into blocks of three continuous years; each block is used
once as validation set. The model is trained in each iteration with the remaining
data not falling into the validation set and not into the year before and after it.
The QS is then calculated for the associated validation set, the mean QS over
all iterations is obtained and the QSS yields the final verification score.

At this point, we only consider the longest 80 stations (blue dots in Fig. 1)
for the cross-validation approach. Since the length of the time series differs, the
number of cross-validation iterations varies as well. In the steps 1) to 6) we
consider the data from all stations for model training except the 5-year block
(validation set and year before/after) of the respective time series. For calcu-
lating the QS of RM we take the same cross validations sets for the respective
stations.

Figure 5 shows the mean cross-validated QSS for the quantiles with p =
0.9, 0.95, 0.99 at each station as dots and the distribution of QSS over all sta-
tions as box-whisker plot for the model selection steps 1) to 6). Red values
mark locations with a positive QSS, denoting a performance gain with respect
to RM. Considering the reference model against the stationary approach for all
data (RM vs 1) indicates that spatial and seasonal variations are crucial for
describing the observations. Including only the seasonal variations in location
and scale parameter does not result in a positive QSS at all stations and con-
sidered quantiles (RM vs 2)). Similar, adding the spatial component does not
show a considerable performance gain (RM vs 3)). However, the possibility to
“borrow strength” from neighboring stations and months allows to model the
shape variable in space and throughout the year: a large improvement is ob-
tained by including the seasonality in £ (RM vs 4)) while adding the spatial
component to £ on top brings only minor changes (RM vs 5)). Adding more
flexibility such that different seasonal cycles are allowed at different locations
and including dependencies between the spatial dimensions, we end up with a
spatial-seasonal model representing the observations at almost all 80 station and
for all considered quantiles more accurate than the reference does (RM vs 6)).

13
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Figure 5: Mean cross-validated QSS for the 80 longest stations for p=0.9,0.95,0.99 (top to
bottom line) as colored dots and the whole distribution as box-whisker plot for the steps of

the model selection 1) to 6) (from left to right) with reference to RM. Positive values (red)
mark an improvement of the model.
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Figure 6: Return level with an annual occurrence probability of 1% (100-year return level) for
the center day of each month calculated with the spatial-seasonal model (step 6)).

5. Spatial-seasonal return levels

Since the 100-year return level is typically of particular interest in risk as-
sessment and infrastructure planning, Fig. 6 maps this quantity for the study
area for each month of the year. A pronounced seasonal cycle is visible with
100-year return levels lower than 32 mm/day in the winter month and more
than 120 mm/day in the southern part in summer. We interpret this as a sign
of convective precipitation events dominating in summer. We will analyse this
in further investigations.

Figure 7 shows the monthly maxima of daily precipitation sums for the
example station Berlin-Kopenick (observation period: 1969-01-01 to 1995-12-
31) as Box-Whisker-Plot (Grey) with the empirical 0.99-quantile marked as a
horizontal black line for each month. Additionally, the four panels show return
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level estimates for non-exceeding probabilities p = 0.25, p = 0.5, p = 0.75, and
p = 0.99 as colored solid lines from bottom to top obtained from the reference
model (a), and the subsequent model building 1), 2) and 4) (b-d). For the
1st to 3rd quartile (p = 0.25, p = 0.5 and p = 0.75) the three model setups
all agree quite well with the empirical quantiles, although slight differences
exist. Discrepancies are more readily visible for larger quantiles, e.g. for the
0.99-quantile (100-year return levels, blue solid lines) in Fig. 7. As already
discussed in Sec. 4.2, the model of step 1) (panel b), which excludes all spatial
and temporal variations, can not represent the observations sufficiently. The
levels obtained from the reference model are in general higher, particularly the
peak in August cannot be reproduced very well by step 2) (panel ¢). The rigidity
of the “seasonal only”-model, particularly the constant shape throughout the
year, is responsible for the very smooth and moderate 0.99-quantile; the single
shape parameter in the seasonal model characterizes extremes for all months,
whereas in the more flexible RM each month is associated with an individual
shape parameter. As particularly the shape parameter is difficult to estimate,
uncertainty is large in the RM and it bears the risk of over-parameterization.
On the contrary, the model of step 2) is likely to be too rigid as it is not
able to capture the strong extremes in with a shape parameter being constant
throughout the year and thus not able to account for different characteristics of
winter and summer events with different precipitation mechanisms dominating.
The model of step 2) does show a peak in the 0.99-quantile in August but much
smaller than in RM. The results of step 2) and step 4) indicates that a seasonal
variation of the shape parameter seems to be necessary for the situation at hand
with dominating precipitation mechanisms varying throughout the year. This is
then realized in the spatial-seasonal framework (steps 4) to 6)). The quantiles
selected for presentation do not differ visually between these three models (4)
to 6)). Panel (d) in Fig. 7 shows that the spatial-seasonal model including
interactions (model 6)) leads to a relatively smooth seasonal cycle which is,
however, able to reflect the large summer extremes and the lower winter events.

The 0.99-quantile is strongly influenced by the shape parameter, depicted
in Fig. 8 for all months calculated with the RM (black) and the final spatial-
seasonal model (blue). The differences of the shape parameters are very pro-
nounced, as the seasonal smoothness for the spatial-seasonal model does not
allow such a strong deviation for only one month. In addition, Fig. 8 illustrates
the general characteristic of the seasonal precipitation: in the winter month
the shape parameter is around zero or even negative, resulting in return levels
with an upper bound, while in summer the shape parameter reaches exclusively
positive values leading to a distribution with more extreme events.

Uncertainties of the return levels can be quantified using the asymptotic
approximation and the delta method (Coles, 2001). For the models shown in
Fig. 7 (a) and (b), the 95% uncertainty intervals are to large to display, in
particular for the 100-year return levels.

Figure 9 shows the logarithm of the variance of the 100-year return level
for Berlin-K&penick colored for the different months. It can be seen, that the
uncertainties of the reference model (RM) and all model selection steps are in
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Figure 7: Monthly maxima of daily precipitation sums of the Station Berlin-K&penick (1969-
01-01 to 1995-12-31) as Box-Whisker Plot (Grey) with the median as black line within the
box, first and third quartile as box boundaries, the whiskers extend to the maxima/minima
but measure at most the 1.5 inter-quartile range, data points outside the whiskers are plotted
as open circles. Additionally, the empirical 0.99-quantiles are plotted as horizontal lines. To
each panel Return levels are added as solid lines for p = 0.25 (red), p = 0.5 (blue), p = 0.75
(green) and p = 0.99 (violet) obtained from the reference model (a) and the model building
steps 1),2) and 4) (b-d). The results of step 3) do not differ visually from step 2) and step 5)
and 6) are similar to step 4).
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Berlin-K6penick for the reference model (RM) and the models 1) to 5) for all months of the
year.

general lower in winter than in summer. Due to the small number of coeflicients
and a comparably large number of data points for modeling steps 1) and 2), the
variance is low compared to other modeling steps with more coefficients. Due to
the lack of skill (Fig. 5) and the lack of spatial information those modeling steps
are not favourable here. Steps 3) to 5) partly result in higher uncertainties than
the reference model, probably due to the lower flexibility of those models. While
the seasonal modeling in p and o (step 2) lead to a gain only in the summer
month, the seasonal variation of the shape parameter (step 4) is important for
the winter month. The spatial variations only (models 3 and 5) do not lead
to smaller variances for the return levels. It can be seen, that the interaction
terms are necessary: the final spatial-seasonal model (step 6) provides the lowest
uncertainties in all months.
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6. Conclusion

We describe monthly precipitation maxima of 322 stations in Berlin-Bran-
denburg with a spatial-seasonal extreme value model based on the Generalized
Extreme Value distribution (GEV) with parameters depending on space and
season. The seasonal variations in the parameters are captured with a series
of harmonic functions and their spatial variations with Legendre Polynomials
for longitude, latitude and altitude. Furthermore, we add interactions between
seasonal and spatial predictors as well as for the different spatial dimensions.
Order selection for the harmonic series and the Legendre polynomials is based
on the Bayesian Information Criterion (BIC) in the frame of a step-wise for-
ward regression. The reference for the model verification is a stationary GEV
describing monthly maxima separately for every month of the year and for ev-
ery station. Starting point of the model selection builts a stationary approach
for all data such that no variation in time and space are included. In a next
step seasonal variations for location and scale parameter are considered. This
is augmented in a third step towards a spatial-seasonal model for location and
scale parameter, the shape parameter is held constant. As the framework of one
spatial-seasonal model for all stations allows to “borrow strength” for parameter
estimation from the neighboring stations and months, we allow in the following
steps the shape parameter to vary throughout the year (model 4) and addi-
tionally in space (model 5). Finally, interactions between seasonal and spatial
predictors and spatial dimensions are included, i.e. the seasonal dependence is
now allowed to vary in space. This final model uses 86 parameters to describe
more than 150,000 monthly maxima. Compared to the canonical 3-parameter
GEYV for every station and month, this is a reduction in parameters by a factor
of almost 135.

The intermediate steps and the final model 6) are compared in a forecast
verification setting against the reference model using block-cross-validation with
the Quantile Skill Score (QSS) for the longest 80 time series. The stationary
model (step 1) shows a negative skill for all stations, and the seasonal-only model
(step 2), as well as the spatial-seasonal model (step 3) for a number of stations.
A considerable improvement in skill comes with the possibility of a seasonally
varying shape parameter in the spatial-seasonal models (step 4, 5 and 6). The
spatial-seasonal model with interactions finally leads to positive skill at all 80
stations considered for verification.

Additionally, we show a map of monthly 100-year return levels for Berlin-
Brandenburg and thus return-level information at ungauged sites derived from
the final spatial-seasonal model. The region is characterized by a very pro-
nounced seasonal cycle with lower return levels in winter and higher levels in
summer; likely a result of convection being the dominating mechanism for ex-
treme precipitation in summer, but not in winter. This results in particular
attention to the management of fire brigade operations in summer months (e.g.
pumping-out of flooded basements, rescue and evacuation) or for protection of
growing plants.

The station Berlin-Kopenick is used to illustrate the effects of the different
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steps in the model building procedure with a focus on the 100-year return level.
The reference model allows for individual shape parameters for each month and
shows levels considerably larger in summer than in winter, pointing towards the
need of a seasonal shape parameter. As the models 2) and 3) do not allow for
seasonality in the shape, they cannot account for the observed seasonal changes
in extreme precipitation characteristics. Only models 4) to 6) with a seasonally
varying shape are able to capture this effect. Compared to the reference, a
dramatic reduction in the number of parameters (factor 135) can be achieved
with model 6), accompanied by a 10% gain skill in performance (for the 0.99
quantile) and a reduction in uncertainty.

The presented strategy does not account for influences on extreme precip-
itation, for example orographic lifting is only partially captured by including
altitude. Thus a transfer of this approach to regions with strong orographic vari-
ations might not be appropriate. In those regions, a modeling approach might
profit from the inclusion of predictors accounting for the orography-induced
mechanisms. Other approaches for spatial extreme value modeling might also
perform well, e.g. Bayesian Hierarchical Models (BHM) (i.e. Cooley et al., 2007;
Davison et al., 2012) or Generalized Additive Models (GAM) implemented in R
for example in the mgev package (Wood, 2017). .

We consider the approach presented as a highly valuable extension to risk
assessment. The advantages over conventional stationary (single-station, single
months) extreme value models are: straightforward extension of conventional
GEV modeling with covariates, information at ungauged sites, dramatically less
parameters to be estimated, reduced uncertainty and improved performance.

21



432

467

468

Acknowledgments

This study has been partially funded by the Deutsche Forschungsgemein-
schaft (DFG) within the research training programme NatRiskChange GRK
2043/1 at Potsdam University and partially by Deutsche Forschungsgemein-
schaft (DFG) through grant CRC 1114 "Scaling Cascades in Complex Systems",
Project A01 “Coupling a multiscale stochastic precipitation model to large scale
atmospheric flow dynamics”. HWR acknowledges support by the Freie Univer-
sitdt Berlin within the Excellence Initiative of the German Research Founda-
tion. Additionally, the authors thank the National Climate Data Center of the
German Weather Service (DWD) for providing and maintaining the precipita-
tion datasets via the online portal WebWerdis (https://werdis.dwd.de). The
analysis was carried out using R, an environment for statistical computing and
graphics (Team, 2016), based on the VGAM package (Yee, 2015).

References

Ambrosino, C., Chandler, R. E., Todd, M. C., 2011. Southern african monthly
rainfall variability: An analysis based on generalized linear models. Journal
of climate 24 (17), 4600-4617.

Arns, A., Wahl, T., Haigh, I. D., Jensen, J., 2015. Determining return water
levels at ungauged coastal sites: a case study for northern germany. Ocean
Dynamics 65 (4), 539-554.

Beirlant, J., Goegebeur, Y., Segers, H., Teugels, J., 2004. Statistics of Extremes:
Theory and Applications. Series in Probability and Statistics. Wiley.

Bentzien, S., Friederichs, P., 2014. Decomposition and graphical portrayal of
the quantile score. Quarterly Journal of the Royal Meteorological Society
140 (683), 1924-1934.

Brown, B. G., Katz, R. W., 1995. Regional analysis of temperature extremes:
spatial analog for climate change? Journal of Climate 8 (1), 108-119.

Cid, A., Menéndez, M., Castanedo, S., Abascal, A. J., Méndez, F. J., Med-
ina, R., 2015. Long-term changes in the frequency, intensity and duration of
extreme storm surge events in southern europe. Climate Dynamics, 1-14.

Coles, S. G., 2001. An Introduction to Statistical Modelling of Extreme Values.
Springer, London.

Coles, S. G., Tawn, J. A., 1996. A Bayesian analysis of extreme rainfall data.
Appl. Stat. 45, 463-478.

Cooley, D., Nychka, D., Naveau, P., 2007. Bayesian spatial modeling of extreme
precipitation return levels. Journal of the American Statistical Association
102 (479), 824-840.

22



504

505

Davison, A. C., Padoan, S., Ribatet, M., 2012. Statistical modeling of spatial
extremes. Statistical Science, 161-186.

Embrechts, P., Kliippelberger, C., Mikosch, T., 1997. Modelling Extremal
Events for Insurance and Fincance. Springer, Berlin.

Ferreira, A., Friederichs, P., de Haan, L., Neves, C., Schlather, M., 2017. Es-
timating space-time trend and dependence of heavy rainfall. arXiv preprint
arXiv:1707.04434.

Fischer, M., Rust, H. W., Ulbrich, U., 2017. Seasonality in extreme precipita-
tion— using extreme value statistics to describe the annual cycle in german
daily precipitation extreme. Meteorologische Zeitschrift, accepted.

Friederichs, P., Hense, A., 2007. Statistical downscaling of extreme precipitation
events using censored quantile regression. Monthly weather review 135 (6),
2365-2378.

Green, P. J., 1984. Iteratively reweighted least squares for maximum likelihood
estimation, and some robust and resistant alternatives. Journal of the Royal
Statistical Society. Series B (Methodological), 149-192.

Hosking, J. R. M., Wallis, J. R., 2005. Regional frequency analysis: an approach
based on L-moments. Cambridge University Press.

Intergovernmental Panel on Climate Change. Working Group 11, 2014. Climate
Change 2014: Impacts, Adaptation, and Vulnerability.

Katz, R. W., Parlange, M. B., Naveau, P., 2002. Statistics of extremes in hy-
drology. Advances in Water Resources 25, 1287-1304.

Leadbetter, M. R., Lindgren, G., Rootzén, H., 1983. Extremes and related
properties of random sequences and processes. Springer Series in Statistics.
Springer, New York.

Lerma, A. N., Bulteau, T., Lecacheux, S., Idier, D., 2015. Spatial variability
of extreme wave height along the atlantic and channel french coast. Ocean
Engineering 97, 175—185.

Maraun, D., Rust, H. W., Osborn, T. J., 2009. The annual cycle of heavy
precipitation across the UK: a model based on extreme value statistics. J.
Climatol. 29 (12), 1731-1744.

Maraun, D.; Rust, H. W., Osborn, T. J., 2011. The influence of synoptic air-
flow on UK daily precipitation extremes. Part I: observed spatio-temporal
relations. Clim. Dyn. 36 (1-2), 261-275.

Naveau, P.,; Nogaj, M., Ammann, C., Yiou, P., Cooley, D., Jomelli, V., 2005.
Statistical methods for the analysis of climate extremes. C.R. Geoscience 377,
1013-1022.

23



Parry, M., Rosenzweig, C., Livermore, M., 2005. Climate change, global food
supply and risk of hunger. Philosophical Transactions of the Royal Society of
London B: Biological Sciences 360 (1463), 2125-2138.

R Core Team, 2014. R: A language and environment for statistical computing.
r foundation for statistical computing, vienna, austria, 2012.

Rosenzweig, C., Iglesias, A., Yang, X., Epstein, P. R., Chivian, E., 2001. Climate
change and extreme weather events; implications for food production, plant
diseases, and pests. Global change & human health 2 (2), 90-104.

Rust, H. W., 2009. The effect of long-range dependence on modelling extremes
with the generalised extreme value distribution. Europ. Phys. J. Special Top-
ics 174, 91-97.

Rust, H. W., Maraun, D., Osborn, T. J., 2009. Modelling seasonality in extreme
rainfall: a UK case study. Europ. Phys. J. Special Topics 174, 99-111.

Rust, H. W., Vrac, M., Sultan, B., Lengaigne, M., Jun. 2013. Mapping weather-
type influence on senegal precipitation based on a spatial-temporal statistical
model. J. Climate 26, 8189-8209.

URL http://dx.doi.org/10.1175/JCLI-D-12-00302.1

Schindler, A., Maraun, D., Luterbacher, J., 2012a. Validation of the present day
annual cycle in heavy precipitation over the british islands simulated by 14
rcms. Journal of Geophysical Research: Atmospheres (1984-2012) 117 (D18).

Schindler, A., Maraun, D., Toreti, A., Luterbacher, J., 2012b. Changes in the
annual cycle of heavy precipitation across the british isles within the 21st
century. Environmental Research Letters 7 (4), 044029.

Simon, T., Umlauf, N., Zeileis, A., Mayr, G. J., Schulz, W., Diendorfer, G.,
2017. Spatio-temporal modelling of lightning climatologies for complex ter-
rain. Natural Hazards and Earth System Sciences 17 (3), 305.

Soltyk, S., Leonard, M., Phatak, A., Lehmann, E., et al., 2014. Statistical mod-
elling of rainfall intensity-frequency-duration curves using regional frequency
analysis and bayesian hierarchical modelling. In: Hydrology and Water Re-
sources Symposium 2014. Engineers Australia, p. 302.

Stauffer, R., Mayr, G. J., Messner, J. W., Umlauf, N., Zeileis, A., 2016. Spatio-
temporal precipitation climatology over complex terrain using a censored ad-
ditive regression model. International Journal of Climatology.

Team, R. C., 2016. R: A language and environment for statistical computing.
vienna: R foundation for statistical computing; 2014.

Vormoor, K., Lawrence, D., Heistermann, M., Bronstert, A., 2015. Cli-
mate change impacts on the seasonality and generation processes of floods—
projections and uncertainties for catchments with mixed snowmelt/rainfall
regimes. Hydrology and Earth System Sciences 19 (2), 913-931.

24



555

Wilks, D. S., 2011. Statistical methods in the atmospheric sciences. Vol. 100.
Academic press.

Wood, S., 2006. Generalized additive models: an introduction with R. CRC
press.

Wood, S., 2017. Generalized Additive Models: An Introduction with R, 2nd
Edition. Chapman and Hall/CRC.

Yee, T. W., 2009. VGAM: Vector Generalized Linear and Additive Models. R
package version 0.7-9.
URL http://CRAN.R-project.org/package=VGAM

Yee, T. W., 2015. Vector Generalized Linear and Additive Models: With an
Implementation in R. Springer, New York, USA.

25



