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1. Introduction10

Severe meteorological events, such as extreme precipitation, severe winter11

storms or heat waves can lead to considerable damages and might thus have12

a strong impact on the environment, society and economy (Intergovernmental13

Panel on Climate Change. Working Group II, 2014, and references therein).14

Threats due to precipitation are either direct – in form of hail, freezing rain or15

flash floods – or indirect due to increased erosion, mudslides or river flooding.16

In particular for the latter the seasonality of extreme precipitation is relevant,17

since flood risk increases if an increasing probability of extreme precipitation18

coincides with already high water levels due to, e.g., snow melt (Schindler et al.,19

2012b,a; Vormoor et al., 2015). In addition, the seasonal cycle of extreme pre-20

cipitation has a strong impact on crop yields, in particular at early stages of the21

growing season, the crop is highly vulnerable to damages (Parry et al., 2005;22

Rosenzweig et al., 2001). Thus, a seasonally resolved risk assessment for extreme23

precipitation is definitively relevant for certain groups of stakeholders. A risk24

assessment frequently requires information at ungauged sites, e.g., for insurance25

companies or for the design of hydraulic structures; spatial information is thus26

indispensable for a comprehensive risk assessment framework.27

To estimate the occurrence probabilities needed for risk assessment, a widely28

applied concept is extreme value statistics (EVS) (Beirlant et al., 2004; Coles,29

2001; Embrechts et al., 1997). Countless applications of EVS have been pub-30

lished in hydrology and climatology (e.g., Lerma et al., 2015; Arns et al., 2015;31

Brown and Katz, 1995; Coles and Tawn, 1996; Katz et al., 2002; Naveau et al.,32

2005; Cid et al., 2015; Fischer et al., 2017; Ferreira et al., 2017), to name but33

a few. One way to address extremes is the block maxima approach. Observa-34

tions are divided into blocks of equal length and the probability distribution35

for the maxima of these blocks is described with the generalized extreme value36

distribution (GEV). Here, we promote a monthly block size contrary to the fre-37

quently used annual blocks. However, instead of building a separate extreme38

value model for each calendar month, we profit from the smooth variation of39

the maxima’s probability distribution across adjacent calendar months. As this40

variation is intrinsically periodic, the canonical choice is a series of harmonic41

functions for the GEV parameters, a concept suggested by Rust et al. (2009);42

Maraun et al. (2009) for the UK. Another advantage of this approach are more43

accurate return-levels (quantiles) for annual maxima (cf., Fischer et al., 2017).44

A second choice to model smooth temporal variations are cyclic cubic splines45

using generalized additive models (Wood, 2006). This approach as been applied46

by various studies before, e.g. for spatio-temporal climatology of precipitation47

(Stauffer et al., 2016) or of lightnings (Simon et al., 2017).48

Addionally to the generalized additive models, several other approaches of49

spatial modelling have been established in the extreme value statistics commu-50

nity, e.g., Regional Frequency Analysis (Hosking and Wallis, 2005; Soltyk et al.,51

2014) where regions of similar statistical characteristics are combined and com-52

mon probabilities for extremes are obtained, or Bayesian Hierarchical Models53

(Cooley et al., 2007; Davison et al., 2012) where the spatial variations are taken54
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care of by a large-scale contribution described with linear regression and local55

variations captured by a spatial stochastic process.56

Rust et al. (2013) and Ambrosino et al. (2011) suggest to use spatial co-57

ordinates directly as covariates. Instead of expanding the unknown functional58

relationship between the GEV parameters and the spatial covariates as a Tay-59

lor series (i.e. using simple polynomials), they suggest Legendre Polynomials60

to ensure independence of the terms. In the frame of generalized linear mod-61

els (GLMs), Rust et al. (2013) and Ambrosino et al. (2011) obtain models for62

precipitation occurrence (logistic regression) and daily precipitation amounts63

(Gamma-regression). As this spatial covariates approach is conceptually the64

same as the seasonal approach in (Rust et al., 2009; Fischer et al., 2017), we65

combine both in this study.66

Additional information of the magnitude and the occurrence probability of67

extreme precipitation might be beneficial as well. Thus, the goal of this paper is68

to present a compact and parsimonious spatial-seasonal model which provides69

monthly resolved return levels at gauged, as well at ungauged sites. This ap-70

proach is applied to the region of Berlin-Brandenburg as a case study. As data71

basis, we consider daily precipitation sums for more than 300 rain gauges, pre-72

sented in Sec. 2. The spatial-seasonal model is based on the GEV for monthly73

block maxima and is described in Sec. 3. The model selection and validation is74

covered in Sec. 4 and monthly resolved 100-year return levels are presented in75

Sec. 5. Finally, we discuss results in Sec. 6.76
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2. Data77

A selection of gauges recording daily precipitation amounts have been ob-78

tained from the National Climate Data Center of the German Weather Service79

(Deutscher Wetterdienst, DWD, https://werdis.dwd.de/werdis). Daily pre-80

cipitation amounts from Hellman rain gauge with a nominal accuracy of 0.1mm81

are available for almost 5,600 stations. A subset of 322 stations covers the82

region of Berlin-Brandenburg in the east of Germany (Fig. 1). Some series con-83

tain missing observations within the study period. The amount of missing values84

ranges from several days to several years. We consider the monthly maxima of85

daily precipitation amounts; months with more than 3 days of missing obser-86

vations have been excluded from the analysis. In total, our dataset contains87

152,401 monthly maxima. For model verification in Sec. 4 we only consider the88

most complete and longest 80 time series with more than 50 years of observa-89

tions (blue dots in Fig. 1). The results for the station Berlin-Köpenick (orange90

triangle) is discussed in more detail.
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Figure 1: 322 stations in Berlin-Brandenburg (dots) in the east of Germany including 80
long time series with more than 50 years of observations (blue). The example station Berlin-
Köpenick is highlighted as a orange triangle.

91

Furthermore we use geo-referenced altitude from the DIVA-GIS project (http:92

//www.diva-gis.org/Data) depicted for Berlin-Brandenburg in Fig. 2.93
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Figure 2: DIVA-GIS geo-referenced altitude with respect to the sea level for Berlin-
Brandenburg.
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3. Modeling spatial-seasonal extreme precipitation94

A statistical description of extremes can be achieved with extreme value95

statistics (EVS) (Beirlant et al., 2004; Embrechts et al., 1997). This is partic-96

ularly useful if probabilities of exceeding a given level are to be estimated for97

the range of observed levels or even beyond. One of the main routes of EVS is98

the block-maxima approach with the Generalized Extreme Value distribution99

(GEV) as a model for the probability distribution of maxima from blocks of a100

certain length, e.g. monthly or annual maxima. Coles (2001) provides a very101

good introductory text to this topic.102

We use a monthly block size and describe the resulting monthly maxima of103

daily precipitation amounts with the GEV. The GEV parameters are allowed to104

vary throughout the course of the year and also in space, i.e., with the location105

of the gauge. This approach follows the idea of linear modeling for the three106

parameters of the GEV: location, scale and shape. Thus we have basically 3107

different sets of linear predictors, one for each parameter. Equation (1) shows108

the linear predictor for the location parameter µ in a conceptual way:109

g(µ) = µ0 + f1(season) + f2(space) + f3(season, space) (1)

where g is a link function - for µ the identity function, for σ the logartihm and110

for ξ the logarithm with an offset of 0.5. Moreover, µ0 is a constant intercept111

and fi are non-linear components represented by linear pre-defined functions.112

Spatial and seasonal variability are both expanded in terms of adequate basis113

functions; for the seasonal variations the natural choice are harmonic functions114

of increasingly higher order described in Sec. 3.2, and for the spatial dimen-115

sion we chose Legendre polynomials as they form an orthogonal set and thus116

reduce dependence between terms (Sec. 3.3). The spatial interactions and the117

dependence to the seasonal variability (f3) is covered in (Sec. 3.4).118

3.1. The block maxima approach119

According to the Fisher-Tippett (or Three-Types) Theorem, for indepen-120

dent and identically distributed copies Xi of a random variables X and in121

the limit of large block-sizes M , the probability distribution for block max-122

ima Z = maxiXi, i = 1, ...M converge towards the generalized extreme value123

distribution (GEV)124

G(z;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
}

(2)

with {z : 1 + ξ(z − µ)/σ > 0}. The location parameter −∞ < µ <∞ specifies125

the position of the probability density function (PDF), the scale parameter126

σ > 0 and shape parameter −∞ < ξ < ∞ determine the width and shape of127

the GEV, respectively Coles (2001). This theorem and the generalization for128

dependent variables (e.g., Leadbetter et al., 1983) provide a strong theoretical129

background for using the GEV as a model for block maxima.130
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The block size needed for a sufficiently good approximation with the GEV131

depends on the nature of the underlying variable and their dependence (Em-132

brechts et al., 1997); the impact on the convergence rate for a few classes of133

auto-correlated processes is exemplified in Rust (2009). Several studies (Rust134

et al., 2009; Maraun et al., 2009; Fischer et al., 2017; Schindler et al., 2012a,b)135

suggest that a monthly block size is suitable for daily precipitation sums at136

least in the mid-latitudes. Figure 3, showing the monthly Q-Q-plots for the137

example station Berlin-Köpenick, confirms the choice of a monthly block size138

for our data set. Monthly maxima can be treaten as independent in time; we139

also assume independence in space which we justify with the high spatial vari-140

ability of precipitation compared to the distance of stations. GEV parameters141

are estimated using iteratively reweighted least squares (IRLS) (Green, 1984) to142

approximate the maximum-likelihood estimate, as implemented in the package143

VGAM (Yee, 2009) for the environment for statistical computing and graphics R144

(R Core Team, 2014).145

Ultimate goal of an EVS analysis is to obtain GEV quantiles for specific146

probabilities of exceedance, also called the return-levels. The associated return-147

period T = 1/(1− p) is related to the non-exceedance probability p. Thus, the148

return-level specifies a magnitude which is expected to be exceeded on average149

once in a certain time period. In engineering contexts, the 100-year or 1000-year150

return-level is frequently the basis for dimensioning structures, such as dams or151

bridges. Asymptotic confidence intervals for return-levels can be derived using152

the delta method (Coles, 2001).153

3.2. Seasonal variations154

In the present case, we expect precipitation maxima to vary together with155

the seasonal cycle. To account for the periodic nature of the seasonality, the156

time dependence of GEV parameters is described with a series of harmonic157

functions, e.g., for the location parameter158

f1(season) =

H∑
h=1

[µh,sin sin(hω ct) + µh,cos cos(hω ct)] , (3)

with t = 1, . . . , 12 the months in the year, ct the center of the t-th month given159

in days starting from January, 1st, ω = 2π/365.25 the angular frequency of160

earth’s rotation around the sun and H being the order of the harmonic series161

expansion (Rust et al., 2009; Maraun et al., 2009; Fischer et al., 2017; Schindler162

et al., 2012a,b).163

3.3. Spatial variations164

To capture spatial variations, Ambrosino et al. (2011) and Rust et al. (2013)165

suggest a series expansion using Legendre polynomials for longitude x, latitude166

y and altitude z. Legendre polynomials form a set of orthogonal basis functions167

7
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Figure 3: QQ-Plot of all monthly maxima divided into months for the example station Berlin-
Köpenick.
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on [−1, 1], ensuring linearly independent covariates. We thus obtain as the168

spatial term in the linear predictor for the location parameter169

f2(space) =

J∑
j=1

µj,PPj(x) +

K∑
k=1

µk,PPk(y) +

L∑
l=1

µl,PPl(z) , (4)

with Pj(.) denoting the j-th Legendre polynomial which are used for x, y and z,170

resulting from shifting and scaling longitude, latitude and altitude, respectively.171

Longitude, latitude and altitude within the cuboid [−14.8,−11.2]× [51.3, 53.6]×172

[−5, 441] (◦North × ◦East × m) are shifted and scaled to (x, y, z) such that173

(x, y, z) ∈ [−1, 1] × [−1, 1] × [0, 1]. The maximum altitude of 441 m lies in the174

south-west of the investigation area shown in Fig. 2, while within the region175

the highest elevation do not exceed values of 205 m. The spatial term of the176

predictors for scale and shape are set up analogously.177

3.4. Interactions178

To allow the seasonal cycle of extreme precipitation to be different in different
locations, a spatial variation of the seasonality needs to be accounted for. Within
the frame of a GLM, this is realized by so called interaction terms between
µseason and µspace. This can be thought of as a model for the spatial variation of
the seasonal dependence. In practice, these interactions result as products of the
spatial and seasonal covariates. Additionally, dependencies between the different
spatial dimensions are integrated as well. Equation (5) gives the interaction for
the location parameter µ

µint =

Hseas,x∑
hx=1

Jseas,x∑
j=1

[µhx,j,sin sin(hx ω ct)Pj(x) + µhx,j,cos cos(hx ω ct)Pj(x)]

+

Hseas,y∑
hy=1

Kseas,y∑
k=1

[
µhy,k,sin sin(hy ω ct)Pk(y) + µhy,k,cos cos(hy ω ct)Pk(y)

]
+

Hseas,z∑
hz=1

Lseas,z∑
l=1

[µhz,l,sin sin(hz ω ct)Pl(z) + µhz,l,cos cos(hz ω ct)Pl(z)]

+

Jx,y∑
jx,y=1

Kx,y∑
kx,y=1

[
µjx,y,kx,y Pjx,y (x)Pkx,y (y)

]
+

Jx,z∑
jx,z=1

Lx,z∑
lx,z=1

[
µjx,z,lx,z

Pjx,z
(x)Plx,z

(z)
]

+

Ky,z∑
ky,z=1

Ly,x∑
ly,z=1

[
µky,z,ly,z

Pky,z
(y)Ply,z

(z)
]

(5)

Interactions for scale σ and shape ξ are set up analogously.179
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Figure 4: Overview of the model selection steps for monthly maxima of daily precipitation
sums (left) and the reference model (right) used for the model verification. The number of
coefficients states the amount selected with the BIC.

4. Model building and verification180

A spatial-seasonal extreme value model is used to describe the data in the181

study area. A stationary GEV for monthly maxima at every station with pa-182

rameters estimated separately for every month of the year is used as a reference183

model (RM). To analyse the predictors of the final model in detail, different184

steps of the model selection will be considered: step 1 forms a stationary GEV185

ingnoring any spatial and seasonal variations. In step 2 the seasonal cycle in lo-186

cation and scale parameter are added using harmonic functions. Subsequently,187

the spatial variation is included in the predictor for location and scale using Leg-188

endre Polynomials of transformed longitude, latitude and altitude, the shape ξ189

is held constant over space and time (step 3). In the following, we allow for190

seasonal (step 4) and additionally spatial (step 5) variation of the shape param-191

eter ξ. Finally, interactions between spatial and seasonal terms yield the final192

step 6. See Fig. 4 for an overview of the different model selection steps and the193

reference model.194

A step-wise forward regression based on the Bayesian Information Criterion195

(BIC) (Wilks, 2011) is carried out to find the appropriate orders of the har-196

monic and/or Legendre series expansion. Compared to the RM, the number of197

10



parameters in 6) were reduced by a factor of almost 135 to 86. We thus consider198

model 6) as a successful development if this immense reduction in parameters199

does not lead to a loss in skill with respect to RM.200

4.1. Model building steps201

Reference Model (RM). The reference is the canonical stationary GEV with202

three parameters estimated individually for every month and at every station.203

This approach leads to 11,592 parameters to estimate: 3 parameters per month204

at each of the 322 station (3 · 12 · 322 = 11, 592). The reference model is used205

for the model verification in Sec. 4.2.206

Stationary GEV for all data (1). Starting point of the model selection builds a207

stationary GEV with three coefficients including all data such that no spatial208

and temporal variations are considered.209

Seasonality in location and scale (2). To describe the variation of the monthly210

maxima throughout the year a seasonally varying GEV based on harmonic func-211

tion for location and scale parameter is set up. Higher order harmonics are212

included subsequently until the BIC is not decreasing anymore. In this setup213

the whole region is characterized by the same seasonal cycle. Since the shape214

parameter ξ is difficult to estimate for small datasets, many investigations held215

this parameter constant (Coles, 2001; Rust et al., 2009; Maraun et al., 2011;216

Fischer et al., 2017). We will analyse the influence of a seasonal and spatial217

varying shape parameter in detail in step 4) and 5). For this step the number218

of preferred coefficients rise up to 23.219

Spatial variation in location and scale (3). The seasonal model (2) is straightfor-220

wardly extended to a spatial-seasonal model with the BIC as criterion defining221

the appropriate orders for the Lengendre Polynomials in longitude, latitude and222

altitude for location and scale. The shape parameter is held constant for the223

whole study area, yielding a model with 36 coefficients.224

Seasonal variation in shape (4). In the following, we aim to give more flexibility225

to the spatial-seasonal model (3) based on the spatial framework: analogously226

to the location and scale parameters, the shape parameter ξ is now allowed to227

vary throughout the year based on a harmonic series. Order selection is again228

based on the BIC. This leads to 47 coefficients in total.229

Spatial variation in shape (5). The subsequent step introduces a spatial compo-230

nent in the shape parameter ξ, analogously to the spatial component in location231

and scale. Order selection is again based on BIC. The resulting model has 48232

coefficients.233
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order µ σ ξ
H 5 5 5
J 5 1 0
K 4 1 1
L 2 1 0

Hseasx / Jseasx 3/1 4/1 5/1
Hseasy / Kseasy 0/0 3/1 3/1
Hseasz / Lseasz 0/0 0/0 0/0
Jx,y / Kx,y 2/1 0/0 0/0
Jx,z / Lx,z 0/0 0/0 0/0
Ky,z / Ly,z 0/0 0/0 0/0

Table 1: Orders of harmonic series expansion, Legendre Polynomials and interactions for
model 5). The orders H refer to Eq. (3), J , K, L to Eq. (4) and Hintx , Jintx , Hinty , Kinty ,
Hintz , Lintz to Eq. (5)
.

Spatial-seasonal interactions (6). Finally, allowing for interactions between the234

spatial and seasonal predictors, yields one single model for the study area with235

86 coefficients to estimate. The selection of interaction terms is again based236

on the BIC. Compared to the reference model, we have reduced the number237

of parameters by a factor of almost 135 to describe the same 152,401 monthly238

maxima. Tab. 1 provides an overview on selected orders.239

Pronounced seasonal variations can be seen for all three parameters of the240

GEV, while the spatial variations are mainly restricted to the location param-241

eter. Although, a dependence of the seasonal cycle on altitude could be found242

for Germany (Fischer et al., 2017), the seasonality is here only dependent on243

the longitude and latitude; the study area has no prominent orography. Fur-244

thermore, an interaction between the longitude and latitude is only significant245

for the location parameter, while the altitude do not show any dependency to246

the longitude or latitude.247

4.2. Verification248

To investigate the gain in performance for the individual steps in model249

building, we use the Quantile Skill Score (QSS) (Bentzien and Friederichs, 2014;250

Friederichs and Hense, 2007). It is based on the Quantile Score (QS) for the N251

observations on and the p-quantile zp,n252

QS =
1

N

N∑
n=1

ρp(on − zp,n) (6)

using the so-called check-function ρp for u = on − zp,n253

ρp(u) =

{
pu u ≥ 0

(p− 1)u u < 0
(7)
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The Quantile Score is positively oriented and obtains it’s optimal value at zero.254

It extends straightforwardly to the Quantile Skill Score (QSS) for evaluating255

the performance gain with respect to a reference model256

QSS = 1− QSmodel
QSreference

. (8)

Positive/negative values of the QSS indicate a gain/loss in skill with respect to257

the reference.258

As we are interested in the performance gain through the spatial-seasonal259

modeling approach with respect to the popular station-based approach, we esti-260

mate the QSS for models 1) to 6) with RM as the reference, cf. Fig. 4. A robust261

score is obtained using a block cross-validation procedure (Wilks, 2011). We262

divide each time series into blocks of three continuous years; each block is used263

once as validation set. The model is trained in each iteration with the remaining264

data not falling into the validation set and not into the year before and after it.265

The QS is then calculated for the associated validation set, the mean QS over266

all iterations is obtained and the QSS yields the final verification score.267

At this point, we only consider the longest 80 stations (blue dots in Fig. 1)268

for the cross-validation approach. Since the length of the time series differs, the269

number of cross-validation iterations varies as well. In the steps 1) to 6) we270

consider the data from all stations for model training except the 5-year block271

(validation set and year before/after) of the respective time series. For calcu-272

lating the QS of RM we take the same cross validations sets for the respective273

stations.274

Figure 5 shows the mean cross-validated QSS for the quantiles with p =275

0.9, 0.95, 0.99 at each station as dots and the distribution of QSS over all sta-276

tions as box-whisker plot for the model selection steps 1) to 6). Red values277

mark locations with a positive QSS, denoting a performance gain with respect278

to RM. Considering the reference model against the stationary approach for all279

data (RM vs 1) indicates that spatial and seasonal variations are crucial for280

describing the observations. Including only the seasonal variations in location281

and scale parameter does not result in a positive QSS at all stations and con-282

sidered quantiles (RM vs 2)). Similar, adding the spatial component does not283

show a considerable performance gain (RM vs 3)). However, the possibility to284

“borrow strength” from neighboring stations and months allows to model the285

shape variable in space and throughout the year: a large improvement is ob-286

tained by including the seasonality in ξ (RM vs 4)) while adding the spatial287

component to ξ on top brings only minor changes (RM vs 5)). Adding more288

flexibility such that different seasonal cycles are allowed at different locations289

and including dependencies between the spatial dimensions, we end up with a290

spatial-seasonal model representing the observations at almost all 80 station and291

for all considered quantiles more accurate than the reference does (RM vs 6)).292
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Figure 5: Mean cross-validated QSS for the 80 longest stations for p=0.9,0.95,0.99 (top to
bottom line) as colored dots and the whole distribution as box-whisker plot for the steps of
the model selection 1) to 6) (from left to right) with reference to RM. Positive values (red)
mark an improvement of the model.
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Figure 6: Return level with an annual occurrence probability of 1% (100-year return level) for
the center day of each month calculated with the spatial-seasonal model (step 6)).

5. Spatial-seasonal return levels293

Since the 100-year return level is typically of particular interest in risk as-294

sessment and infrastructure planning, Fig. 6 maps this quantity for the study295

area for each month of the year. A pronounced seasonal cycle is visible with296

100-year return levels lower than 32 mm/day in the winter month and more297

than 120 mm/day in the southern part in summer. We interpret this as a sign298

of convective precipitation events dominating in summer. We will analyse this299

in further investigations.300

Figure 7 shows the monthly maxima of daily precipitation sums for the301

example station Berlin-Köpenick (observation period: 1969-01-01 to 1995-12-302

31) as Box-Whisker-Plot (Grey) with the empirical 0.99-quantile marked as a303

horizontal black line for each month. Additionally, the four panels show return304
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level estimates for non-exceeding probabilities p = 0.25, p = 0.5, p = 0.75, and305

p = 0.99 as colored solid lines from bottom to top obtained from the reference306

model (a), and the subsequent model building 1), 2) and 4) (b-d). For the307

1st to 3rd quartile (p = 0.25, p = 0.5 and p = 0.75) the three model setups308

all agree quite well with the empirical quantiles, although slight differences309

exist. Discrepancies are more readily visible for larger quantiles, e.g. for the310

0.99-quantile (100-year return levels, blue solid lines) in Fig. 7. As already311

discussed in Sec. 4.2, the model of step 1) (panel b), which excludes all spatial312

and temporal variations, can not represent the observations sufficiently. The313

levels obtained from the reference model are in general higher, particularly the314

peak in August cannot be reproduced very well by step 2) (panel c). The rigidity315

of the “seasonal only”-model, particularly the constant shape throughout the316

year, is responsible for the very smooth and moderate 0.99-quantile; the single317

shape parameter in the seasonal model characterizes extremes for all months,318

whereas in the more flexible RM each month is associated with an individual319

shape parameter. As particularly the shape parameter is difficult to estimate,320

uncertainty is large in the RM and it bears the risk of over-parameterization.321

On the contrary, the model of step 2) is likely to be too rigid as it is not322

able to capture the strong extremes in with a shape parameter being constant323

throughout the year and thus not able to account for different characteristics of324

winter and summer events with different precipitation mechanisms dominating.325

The model of step 2) does show a peak in the 0.99-quantile in August but much326

smaller than in RM. The results of step 2) and step 4) indicates that a seasonal327

variation of the shape parameter seems to be necessary for the situation at hand328

with dominating precipitation mechanisms varying throughout the year. This is329

then realized in the spatial-seasonal framework (steps 4) to 6)). The quantiles330

selected for presentation do not differ visually between these three models (4)331

to 6)). Panel (d) in Fig. 7 shows that the spatial-seasonal model including332

interactions (model 6)) leads to a relatively smooth seasonal cycle which is,333

however, able to reflect the large summer extremes and the lower winter events.334

The 0.99-quantile is strongly influenced by the shape parameter, depicted335

in Fig. 8 for all months calculated with the RM (black) and the final spatial-336

seasonal model (blue). The differences of the shape parameters are very pro-337

nounced, as the seasonal smoothness for the spatial-seasonal model does not338

allow such a strong deviation for only one month. In addition, Fig. 8 illustrates339

the general characteristic of the seasonal precipitation: in the winter month340

the shape parameter is around zero or even negative, resulting in return levels341

with an upper bound, while in summer the shape parameter reaches exclusively342

positive values leading to a distribution with more extreme events.343

Uncertainties of the return levels can be quantified using the asymptotic344

approximation and the delta method (Coles, 2001). For the models shown in345

Fig. 7 (a) and (b), the 95% uncertainty intervals are to large to display, in346

particular for the 100-year return levels.347

Figure 9 shows the logarithm of the variance of the 100-year return level348

for Berlin-Köpenick colored for the different months. It can be seen, that the349

uncertainties of the reference model (RM) and all model selection steps are in350
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(b) Step 1
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(c) Step 2
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(d) Step 4

Figure 7: Monthly maxima of daily precipitation sums of the Station Berlin-Köpenick (1969-
01-01 to 1995-12-31) as Box-Whisker Plot (Grey) with the median as black line within the
box, first and third quartile as box boundaries, the whiskers extend to the maxima/minima
but measure at most the 1.5 inter-quartile range, data points outside the whiskers are plotted
as open circles. Additionally, the empirical 0.99-quantiles are plotted as horizontal lines. To
each panel Return levels are added as solid lines for p = 0.25 (red), p = 0.5 (blue), p = 0.75
(green) and p = 0.99 (violet) obtained from the reference model (a) and the model building
steps 1),2) and 4) (b-d). The results of step 3) do not differ visually from step 2) and step 5)
and 6) are similar to step 4).
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Figure 8: Shape parameter for the reference model (RM, black) and the final spatial-seasonal
model (step 6), blue).
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Figure 9: Logarithm of the variance of the 100-year return level for the example station
Berlin-Köpenick for the reference model (RM) and the models 1) to 5) for all months of the
year.

general lower in winter than in summer. Due to the small number of coefficients351

and a comparably large number of data points for modeling steps 1) and 2), the352

variance is low compared to other modeling steps with more coefficients. Due to353

the lack of skill (Fig. 5) and the lack of spatial information those modeling steps354

are not favourable here. Steps 3) to 5) partly result in higher uncertainties than355

the reference model, probably due to the lower flexibility of those models. While356

the seasonal modeling in µ and σ (step 2) lead to a gain only in the summer357

month, the seasonal variation of the shape parameter (step 4) is important for358

the winter month. The spatial variations only (models 3 and 5) do not lead359

to smaller variances for the return levels. It can be seen, that the interaction360

terms are necessary: the final spatial-seasonal model (step 6) provides the lowest361

uncertainties in all months.362
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6. Conclusion363

We describe monthly precipitation maxima of 322 stations in Berlin-Bran-364

denburg with a spatial-seasonal extreme value model based on the Generalized365

Extreme Value distribution (GEV) with parameters depending on space and366

season. The seasonal variations in the parameters are captured with a series367

of harmonic functions and their spatial variations with Legendre Polynomials368

for longitude, latitude and altitude. Furthermore, we add interactions between369

seasonal and spatial predictors as well as for the different spatial dimensions.370

Order selection for the harmonic series and the Legendre polynomials is based371

on the Bayesian Information Criterion (BIC) in the frame of a step-wise for-372

ward regression. The reference for the model verification is a stationary GEV373

describing monthly maxima separately for every month of the year and for ev-374

ery station. Starting point of the model selection builts a stationary approach375

for all data such that no variation in time and space are included. In a next376

step seasonal variations for location and scale parameter are considered. This377

is augmented in a third step towards a spatial-seasonal model for location and378

scale parameter, the shape parameter is held constant. As the framework of one379

spatial-seasonal model for all stations allows to “borrow strength” for parameter380

estimation from the neighboring stations and months, we allow in the following381

steps the shape parameter to vary throughout the year (model 4) and addi-382

tionally in space (model 5). Finally, interactions between seasonal and spatial383

predictors and spatial dimensions are included, i.e. the seasonal dependence is384

now allowed to vary in space. This final model uses 86 parameters to describe385

more than 150,000 monthly maxima. Compared to the canonical 3-parameter386

GEV for every station and month, this is a reduction in parameters by a factor387

of almost 135.388

The intermediate steps and the final model 6) are compared in a forecast389

verification setting against the reference model using block-cross-validation with390

the Quantile Skill Score (QSS) for the longest 80 time series. The stationary391

model (step 1) shows a negative skill for all stations, and the seasonal-only model392

(step 2), as well as the spatial-seasonal model (step 3) for a number of stations.393

A considerable improvement in skill comes with the possibility of a seasonally394

varying shape parameter in the spatial-seasonal models (step 4, 5 and 6). The395

spatial-seasonal model with interactions finally leads to positive skill at all 80396

stations considered for verification.397

Additionally, we show a map of monthly 100-year return levels for Berlin-398

Brandenburg and thus return-level information at ungauged sites derived from399

the final spatial-seasonal model. The region is characterized by a very pro-400

nounced seasonal cycle with lower return levels in winter and higher levels in401

summer; likely a result of convection being the dominating mechanism for ex-402

treme precipitation in summer, but not in winter. This results in particular403

attention to the management of fire brigade operations in summer months (e.g.404

pumping-out of flooded basements, rescue and evacuation) or for protection of405

growing plants.406

The station Berlin-Köpenick is used to illustrate the effects of the different407
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steps in the model building procedure with a focus on the 100-year return level.408

The reference model allows for individual shape parameters for each month and409

shows levels considerably larger in summer than in winter, pointing towards the410

need of a seasonal shape parameter. As the models 2) and 3) do not allow for411

seasonality in the shape, they cannot account for the observed seasonal changes412

in extreme precipitation characteristics. Only models 4) to 6) with a seasonally413

varying shape are able to capture this effect. Compared to the reference, a414

dramatic reduction in the number of parameters (factor 135) can be achieved415

with model 6), accompanied by a 10% gain skill in performance (for the 0.99416

quantile) and a reduction in uncertainty.417

The presented strategy does not account for influences on extreme precip-418

itation, for example orographic lifting is only partially captured by including419

altitude. Thus a transfer of this approach to regions with strong orographic vari-420

ations might not be appropriate. In those regions, a modeling approach might421

profit from the inclusion of predictors accounting for the orography-induced422

mechanisms. Other approaches for spatial extreme value modeling might also423

perform well, e.g. Bayesian Hierarchical Models (BHM) (i.e. Cooley et al., 2007;424

Davison et al., 2012) or Generalized Additive Models (GAM) implemented in R425

for example in the mgcv package (Wood, 2017). .426

We consider the approach presented as a highly valuable extension to risk427

assessment. The advantages over conventional stationary (single-station, single428

months) extreme value models are: straightforward extension of conventional429

GEV modeling with covariates, information at ungauged sites, dramatically less430

parameters to be estimated, reduced uncertainty and improved performance.431
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