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FRACTAL HOMOGENIZATION OF MULTISCALE INTERFACE
PROBLEMS*

MARTIN HEIDAT, RALF KORNHUBER!, AND JOSCHA PODLESNY#

Abstract. Inspired by continuum mechanical contact problems with geological fault networks,
we consider elliptic second order differential equations with jump conditions on a sequence of multi-
scale networks of interfaces with a finite number of nonseparating scales. Our aim is to derive and
analyze a description of the asymptotic limit of infinitely many scales in order to quantify the effect
of resolving the network only up to some finite number of interfaces, and to consider all further
effects as homogeneous. As classical homogenization techniques are not suited for this kind of geo-
metrical setting, we suggest a new concept, called fractal homogenization, to derive and analyze an
asymptotic limit problem from a corresponding sequence of finite-scale interface problems. We pro-
vide an intuitive characterization of the corresponding fractal solution space in terms of generalized
jumps and gradients together with continuous embeddings into L? and H®, s < 1/2. We show exis-
tence and uniqueness of the solution of the asymptotic limit problem and exponential convergence of
the approximating finite-scale solutions. Computational experiments involving a related numerical
homogenization technique illustrate our theoretical findings.
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1. Introduction. Classical elliptic homogenization is concerned with second or-
der differential equations of the form

(1) - V(AVu) = f,

denoting A®(z) = A (%) with € > 0 and some uniformly bounded, positive coefficient
field A. Hence, A® is oscillating on a spatial scale of size € compared to the diameter
of the macroscopic computational domain Q c R%. In periodic homogenization, the
coefficient A is Y-periodic, where Y = [0,1[¢ is the unit cell in R%. In stochastic
homogenization, the coefficient A°(x) = A, (f) is a stationary (i.e., statistically shift
invariant) and ergodic (asymptotically uncorrelated) random variable on a probability
space (9, F,P) with w € Q. A variety of results have been derived in the field of
homogenization, and we refer to [1, 2, 11, 22] for the periodic case and to [24, 37] for
the stochastic case. For error estimates in homogenization, we refer to [3, 4, 11, 17,
18]. Mathematical modelling of polycrystals or composite materials typically leads to
elliptic interface problems with appropriate jump conditions on a microscopic interface
I'® ¢ Q. A periodic setting is obtained by I'® = e['y with scaling parameter € > 0 and
a piecewise smooth hypermanifold I'g with Y-periodic cells. The size of the cells is
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then of order e compared to the macroscopic domain. Denoting by [uc ], the jump of
ue in normal direction v on I'*; the condition

(2) ~ Oyue = [ueﬂu

on the normal derivatives d,u. is imposed at the boundary of each cell. Correspond-
ing stochastic variants have been studied in [20, 23]. The homogenization of such
kind of periodic multiscale interface problems has been studied in great detail; see
[12, 13, 19, 21] and the references therein. Similar concepts have been applied to
foam-like elastic media like the human lung; cf., e.g., [5, 10]. Classical (stochastic)
homogenization relies on periodicity (or ergodicity) and scale separation. The latter
means that homogenized problems in the asymptotic limit € - 0 usually decouple into
a global problem that describes the macroscopically observed behavior of the system,
and one or more local problems, often referred to as cell-problems, that capture the
oscillatory behavior.

In contrast to analytic homogenization, numerical homogenization addresses the
lack of regularity of solutions of problems with highly oscillatory coefficients A° in
numerical computations, either by local corrections of standard finite elements [14, 28]
or by multigrid-type iterative schemes [26, 27]. Both approaches are closely related [25]
and usually do not rely on periodicity or scale separation.

In this work, we consider elliptic multiscale interface problems without scale sepa-
ration in a nonperiodic geometric setting motivated by geology. Experimental studies
suggest that grains in fractured rock are distributed in a fractal manner [30, 34]. In
particular, this means that the size of grains and interfaces follows an exponential
law: The total number N (r) of grains larger than some r > 0 behaves according to

(3) N(r)=Cr P,

and D is often called the fractal dimension. This observation is also captured by
geophysical modelling of fragmentation by tectonic deformation [33], which is based
on the assumption that deformation of two neighboring blocks of equal size might
lead to fracturing in one of these blocks. It is unlikely, and therefore excluded in
this model, that bigger blocks break smaller ones or vice versa. A typical example
for corresponding multiscale interface networks is given by the Cantor-type geome-
try [34] as depicted in Figure 1. While each level-K interface network 5 clearly
is two-dimensional (2D), the limiting multiscale network T' = I'(®®) has fractal dimen-
sion In6/1n 2, which is in good agreement with experimental studies that often yield
D ~ 2.5. Observe that the cells representing the different grains are not periodically
distributed. They can also be arbitrarily small and cover the whole range up to half
of the given domain @ so that there is no scale parameter ¢ separating a small from
a large scale. Similar geometric settings, but with a completely different scope, occur
for thin fractal fibers [29].

Geological applications give rise to continuum mechanical problems with frictional
contact on such multiscale networks of interfaces or faults. The level-K network
) = UkK:1 T'x consists of single faults I'y, which are ordered from strong to weak in
the sense that discontinuities of displacements along I'j are expected to decrease for
increasing k, because “more fractured” media are expected to show higher resistance
(for a more detailed discussion; see, e.g., [7, 16, 31] and the references cited therein).

In this paper, we restrict our considerations to scalar elliptic model problems on
QT for each level K € N with weighted jumps along the network of interfaces I'%) |
instead of nonlinear frictional contact conditions. The ordering of the single interfaces
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Fic. 1. Level-K interface network ) for K =4, 5, and 6, as considered in [34].

T’y from strong to weak is reflected by scaling the contributions from the jumps along
I'y in the corresponding energy functional with exponential weights C (1 +¢)¥. Here,
Ck > 0 is a geometrical constant measuring the rate of fracturing for each k, and
¢ > 0 is a kind of material constant that determines the growth of resistance to
jumps with increasing fracturing. We exploit the hierarchical structure of the interface
networks I')) to derive a hierarchy of solution spaces Hy for the above-mentioned
level-K interface problems. Under usual ellipticity conditions, the problems admit
unique solutions ux € Hy for all K € N. The main concern of this paper is to
investigate the asymptotic behavior of ug for K — co. As classical homogenization
techniques are not suited for this purpose, we develop a new concept called fractal
homogenization. The starting point is the construction of an asymptotic fractal limit
space H, which arises in a natural way by completion of the union of the level-K
spaces Hg, K € N. We provide continuous embeddings H c L? and H c H®, s < %,
and a characterization of H in terms of generalized jumps and gradients. We then
formulate a fractal limit problem associated with the level-K interface problems and
show existence of a unique solution u € H together with convergence ux — w in
‘H. Imposing additional regularity assumptions on the geometry of the multiscale
interface networks ') K ¢ N, we are able to even show exponential estimates of
the fractal homogenization error |u - ug| in H for K — co. In order to illustrate
our theoretical findings by numerical experiments, we introduce a fractal numerical
homogenization scheme in the spirit of [26, 27] that is based on a hierarchy of local
patches from a hierarchy of meshes Ti,...,7x successively resolving the interfaces
M .7 This decomposition induces an additive Schwarz preconditioner to
accelerate the convergence of a conjugate gradient iteration. In numerical experiments
with a Cantor-type geometry, we found the theoretically predicted behavior of (finite
element approximations @y of) ux. We also observed that the convergence rates of
our iterative scheme appear to be robust with respect to increasing K. Theoretical
justification and extensions to model reduction in the spirit of [25, 28] are the subject
of current research.

The paper is structured as follows. In section 2, we introduce multiscale interface
networks together with associated level-K interface problems and prove existence and
uniqueness of solutions ux, K € N. In section 3, we derive and analyze an associated
fractal limit space H and provide some basic properties, such as Sobolev embeddings
and a Poincaré-type inequality. Then, we introduce a fractal interface problem and
show existence of a unique solution u € H as well as convergence ux — u in H.
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Exploiting additional assumptions on the geometry, we prove exponential homoge-
nization error estimates in section 4. Section 5 is devoted to numerical computations
based on (fractal) numerical homogenization techniques to illustrate our theoretical
findings.

2. Multiscale interface problems.

2.1. Multiscale interface networks. Let Q c R? be a bounded domain with
Lipschitz boundary 9dQ that contains mutually disjoint interfaces 'y, & € N. We
assume that each interface I'y is piecewise affine and has finite (d — 1)-dimensional
Hausdorff measure. We consider the multiscale interface network I' and its level-K
approximation I'!) | given by

oo K
r=yry, 1=, KeN,
k=1 k=1

respectively. For each K e N, the set

Qr= y ¢

GeG(K)

splits into mutually disjoint, open, simply connected cells G' € G () with the property
0G = 0G. The subset of invariant cells is denoted by

¢ ={Geg®| Geg®P vL> K},
and
(4) dx = max {diamG| Ge Q(K)\Q;K)}

is the maximal size of cells G € G5 to be divided on higher levels. Observe that
di > dy, holds for L > K. We assume

(5) dg - 0 for K — 0.

Denoting
(z,y) ={z+s(y-2)[s€(0,1)},

and the number of elements of some set M by #M € Nu {+oc0}, we also assume that

(6) #(x,y)nfk gC(k

holds for almost all z, y € Q with Cy € N depending only on k € N.

Ezample 2.1 (Cantor interface network in 3D [34]). Consider the unit cube I =
[0,1] in R® and the canonical basis (e;)iz1.23. Then T K e N, is inductively
constructed as follows. Set I'®) =Ty = 1. For k e Nu {0} define

Thsr = F(k)U(GQ + F(k))U(eg + F(k))U(eg tel+ P(’“))u(ez tep+ F(k))U(eg tegt+er + F(k))

to obtain 3
Tpor = (305 )\D,  TED =T uTy .

Note that T'®) and T' = U2, Ty are self-similar by construction. We infer dg = 27%
and Cj, = 21,
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Fia. 2. Construction of F(K), K =1,2,3,4, of a Cantor interface network in 2D.

See Figure 1 for an illustration of the Cantor interface networks M%) K = 4,5,6.
The construction process for a 2D-analogue is illustrated in Figure 2, where the newly
added interfaces I'1, I's, I's, and I'y are depicted in boldface in the four pictures from
left to right.

Remark 2.2. Since all Ty, k € N, have Lebesgue measure zero in R?, their count-
able union I' has Lebesgue measure zero as well. However, I' might have fractal
(Hausdorff-) dimension d — s for some s € (0,1) and infinite (d - 1)-dimensional mea-
sure.

2.2. A multiscale hierarchy of Hilbert spaces. For each fixed K € N, we
introduce the space

Cio(Q) = {v:Q\I") SR | v|g e CHG) VG e §¥) and v]pq = 0}

of piecewise smooth functions on Q\I'¥ ). Let k=1,...,K. As T}, is piecewise affine,
there is a normal v¢ to I'y, at almost all € 'y, and we fix the orientation of v¢ such
that v¢ - ep, >0 with m =min{i = 1,...,d | v¢-e; # 0}, and {es,...,eq} denotes the
canonical basis of R%. For & e I'5) such that Vg exists and for x # y € R? such that
(z-y)-ve #0, the jump of v € C}<,O(Q) across I'y, at £ in the direction y—x is defined by

[v]e.y (&) =1im (v (§+ s(y —2)) ~v (£~ s(y - 2))) -
Up to the sign, [v],,(€) is equal to the normal jump of v € Cj ((Q),

[v](€) = [0]e-ve. 40 (€) 5

and defined at almost all € e I'..

For some fixed material constant ¢ > 0, which determines the growth of resistance
to jumps with increasing fracturing, and the geometrical constant Cy, taken from (6),
we introduce the scalar product

(7)
K
(v, “’>Kc:fQ\F<K) Vv.Vwdx+kZ::1(1+c)ka[Fk[[va}] Uy, v, weCko(Q),

)

with the associated norm [v]x . = (v, v)%i. Observe that (1 + ¢)* generates an

exponential scaling of the resistance to jumps across I'y.

We set
(8) Hi = Closure”“|K’cC11(70(Q)
to finally obtain a hierarchy of Hilbert spaces
(9) HiyccHrg1cHk, KeN,

with isometric embeddings.
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2.3. Level-K interface problems. For a given measurable function

(10) A:T->R
satisfying
(11) O<a<A(z)<A<oo ae onT

with suitable a,% € R and each K € N, we define the symmetric bilinear form
& k
w) = Vwd 1+0kc f A Ty, Jw e Hic.
ax (v, w) - Vv - Vw x+k;( +¢)" Cy . [v][w] dTy v,w e Hyg

For ease of presentation, we assume a < 1 < 2 without loss of generality. Then ax(-,-)
is uniformly coercive and bounded on Hp in the sense that

alvlk <ax(v,v),  ax(v,w) <Avf k. Jwl ke

holds for all K € N. With given functional ¢ € H), K € N, from the associated dual
space, we consider the following minimization problem.

PROBLEM 2.3 (level-K interface problem). For fized K € N, find a minimizer
ur € Hi of the energy functional

(12) Ex(v) = 2ax (v,v) - (v), veHk.

The following proposition is an immediate consequence of the Lax—Milgram lemma.

PROPOSITION 2.4. Problem 2.3 is equivalent to the variational problem of finding
ug € Hg, such that

(13) ar (ug,v) =L(v) Vo e Hg,

and admits a unique solution.

Successive resolution of the multiscale interface network I' by level- K approxima-
tions ') with increasing K € N motivates investigation of the asymptotic behavior
of finite level solutions uy for K — oco. This will be the subject of the next section.

3. Fractal homogenization.
3.1. Fractal function spaces. We consider the pre-Hilbert space
He = Hk
K=1

equipped with the scalar product defined by

<va)t = (v7w>max{K,L},c7 'UQHLv U)EHKv

1/2
c

and associated norm | - || = () A Hilbert space with dense subspace H° is

obtained by classical completion.

DEFINITION 3.1 (fractal space). The fractal space H. consists of all equivalence
classes of Cauchy sequences (Vi) ken tn H® with respect to the equivalence relation

(vk)ken ~ (WK)ken <= |vkx —wk|, >0 for K - oo0.
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For each Cauchy sequence in H°, we can find an equivalent Cauchy sequence
(v ) Ken in H° such that vk € Hy, K € N, by exploiting the hierarchy (9). We always
use such a representation of elements of H.. The following result is a well-known
consequence of the construction of ..

PROPOSITION 3.2. The fractal space H, is a Hilbert space equipped with the scalar
product

(14) (v,w), = lim (vE, WK )g v=(Vk)Ken, W= (Wk)Ken € He ,

—00

1/2

and associated norm | - |c = (-,-).

From now on, we identify the spaces Hg with their isometric embeddings in H,
defined by

Hi >vg — (vp)reny € He with vy, =vg if L> K and vy, =0 else.

By construction, we have the following approximation result.

PROPOSITION 3.3. For any fixed ¢ > 0, the hierarchy
(15) HyccHygccH
consists of closed subspaces Hy of H., K € N, with the property
(16) vgl{f;( Jw-v|c—>0 for K—->o00 VYweH,,

and Ugen C}(yo(Q) is dense in H..

Remark 3.4. For each fixed K € N, the spaces Hx are independent of ¢. This is
no longer the case for the limit space H., because v = (Vi ) gen € H, for a certain ¢ >0
implies that the jumps |[vk ]| z2(r,) are decreasing fast enough to compensate for the
exponential weights Cj, (1 +¢)* for this ¢, which might no longer be the case for larger
weights C (1 + ¢)¥ with some ¢ > ¢ so that v ¢ Hr.

From now on, we will mostly skip the subscript ¢ for notational convenience. A
more intuitive representation of the scalar product (-,-) in H and its associated norm
| -] in terms of generalized jumps and gradients will be derived in section 3.3 below.

3.2. Sobolev embeddings. We now investigate the embedding of the fractal
space H into the fractional Sobolev spaces H*(Q), s € (0, %), equipped with the
Sobolev-Slobodeckij norm

) v(z) - v(y)[? :
olircar = [ e+ [, [ PR gy}

LEMMA 3.5. Let KeN,ve C}QO(Q), andx #y € Q. Then the following inequality
holds for every ¢ >0 and for a.e. x,y e R%:

o) =0 < (14 Doy [ 190+ s(y- o) ds
K

s+ Y a+ofar Y 2,0,

k=1 £e(z,y)nTk

(17)

where Vu(z + s(y —x)) is understood to be zero if x + s(y —x) e T,
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Proof. Let x,y be such that (z,5) n ) is finite. Using the Cauchy Schwarz

inequality and the binomial estimate 2ab < %CL2 +¢b? with ¢ > 0 and a,b € R, we infer

() - v ()P
K 1 2
s(Z % [0l [ vo@ssy-a))-(y-o) ds)

k=1 ge(a,y)nls

2 ! 2 X, ’
<1+ Hla-yf [ 190@+sy-2) ds+<1+c>(z > ﬂvﬂm,y@))

k=1 ¢ge(x,y)nTy,
S(1+%)|1:—y|2v[O |Vv(1:+s(y—a:))|2 ds
2 X 2
+<1+c><1+1>( » [[vﬂx,y(f)) +<1+c>2(z » [[v}]x,y(é)) .
Ee(z,y)nl'y k=2¢e(z,y)nT

According to the Cauchy—Schwarz inequality and the definition of Cf in (6), we have

( > [[v}]z,y(é“)) <G Y [E,©,

ge(z,y)nl'y £e(z,y)nTy

and the assertion follows by induction. 0
We are ready to state the main result of this subsection.

THEOREM 3.6. The continuous embeddings
(18) Hec Lz(Q) and Hec H*(Q)

hold for every ¢ >0 and every s € [0, %) In particular, the Poincaré-type inequality

s k
(19) [017(g) < Co (||Vv|i2(Q\F) + > (1+¢)" Ck[v] |%2(rk))
=1

holds with Cy = (1 + 1) diam(Q) max{diam(Q), 1}.

Proof. We use an approach introduced by Hummel [23]. Let K €N, v ¢ C}(,O(Q),

and k=1,..., K. We extend v by zero to a function v: R? - R, fix some 1 >0 to be
specified later, and consider the orthonormal basis (e;);-1,... 4 of R?. Exploiting that
the determinant g; of the first fundamental form of I'j, satisfies g > 1, we obtain

/;2 Z Hvﬂ%m,z+nel)(5) dz

ge(z,x+ner )Ny,

< _/]R (‘[Rd—l Z [U}]?m7m+nel)(£)\/‘g—kdx2 . dxd) dml

ge(z,z+ner)nly

<[ ( [ km((xhxlw)xwl)[[v}]?z,mq)(f)drk)dxl
i [F (f:_l”[”ﬂ%fvr+nel> dwl) (&)l =1 fr [v]*(€)dTx,
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where we used that [v]2(€) is well defined a.e. on 'y and € = (£1,€") € Tpn( (21, 71 +1)x
R4 1) is equivalent to 1 € (& —n,&1) with € = (€1,¢") € I'y. The same arguments
provide

(20) Joo L Z WP@dssa [ [oFar,

(z,z+ne)nly,

for any unit vector e € R%. Inserting (20) after integrating (17) with y = = + ne over
Q leads to
(21)

K
[Q [o(@) —v(@ +ne)dv <n(1+1) (77 HVU||2Lz(Q\r<K>) + 3 (1+0)" Ok l[v] |%2(rk)) :
k=1

We select nn > diam(Q) to obtain the Poincaré-type inequality (19) and thus H. c
1%(Q).
Next, we divide (21) by |n|*2* and integrate over
Q < {ne|n < diam(Q), e €S,

where S? denotes the unit sphere in R?, to find that
2 1 2 K k 2
(22)  [olieqy < (1+7)Cs (IWILz(Q\p<K>) + 2, (1+0)" Gy [v}]lm(rk))
k=1

holds for all v € Ck o(Q) and all K € N with C; = max{diam(Q), 1}|S?| ;™ ¥ 5~2dy

< oo for every s € [0, %) By Proposition 3.3, the subspace Ugen C}(’O(Q) is dense in
H. This concludes the proof. O

Remark 3.7. For any given (vi)gen € H, there is a unique v € Mo<s<l H*(Q)
such that

(23) lv-vk| sy >0 for Koo, Vse(0,3)

as a consequence of Theorem 3.6.

3.3. Weak gradients and generalized jumps. Let (vg)xeny € H and observe
that

o o
Q\l'=Qn (U rk) cQ\r'
k=1

is Lebesgue measurable. Hence, we have
2 < k 2 2
IVor 2y + 20 A+ ) Crllvklzer,y < vkl YK eN.
k=1

Therefore, (Vv )keny and ([vg]) ey are Cauchy sequences in L2(Q\I')? and in the
sequence space (L?(I'x))gen equipped with the weighted norm

1

Il = (2(1 + Ol |iz(m,>) Cd= G € (E2(T) e

k=1

respectively. In light of the completeness of L2(Q\I')¢ and of (L?(T'}))ken, this leads
to the following definition.
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DEFINITION 3.8. Let (vi ) ken € H with associated v € Mo<s<l H*(Q) that is char-
acterized by (23). Then the limits
Vo = I%im Vug in L*(Q\T) and [v]= I%im [ve] in (LA(Tk)) ke
are called the weak gradient and generalized jump of v, respectively.

Since the fractal (and Hausdorff-) dimension of I' might be larger than d -1, it is
not obvious how to define L?(T') (and to infer convergence of ([ur])xey in L*(T)),
because it is not obvious which measure to choose.

PROPOSITION 3.9. Let (vk)ken € H with associated v € Myeyes H*(Q) that is
characterized by (23). Then the weak gradient Vv and the generalized jump [v] of v
are related by the identity

24 fUV' da;:—f V- dx+°°f Vlo-vndTy Vo e O (RY
(24) o'V o VU ];Fk[HQOkk ¢ e C5°(R?)

Proof. Let ¢ € C°(R?)? and recall that T' has Lebesgue measure zero in R?
according to Remark 2.2. As a consequence, we have

:f VvK-godx+f Vug - dr — f Vu-pdr for K - oo,
Q\l T\r ) Q\l

which by Definition 3.8 leads to

_[vi.wdxzfy—r&,[Qva'@dI
K
:%Tio(_L\F(K) V’UK-(pda'}-i-k;’/I:k[[UKﬂ(p-yk dFk)
:—/ Vv'<pdx+2f [v]e - v dTy . |
Q\r k=1YT&

THEOREM 3.10. Let vy = (vk)ken, Wy = (Wi )ken € H with associated v, w €
Nocs<r H*(Q) that are characterized by (23). Then we have

(25) @H,W)Z/ VoV dz + Z(1+c)kaf [v][w] dT.
Q\l k=1 I
Proof. By Definition 3.8 of generalized jumps, we have
K 0
S (1+0)*C f o llwi] d0y — 3 (1+0)* Oy f [v][w] dT), for K — oo,
k=1 Ix k=1 Dk
and as T' has Lebesgue measure zero in R? (cf. Remark 2.2), we obtain

f VUK-VdeJ::f Vug - Vwg dr — f Vv-Vwdxr for K — oco.
Q\I'(¥) Q\l' Q\r

This concludes the proof. 0

From now on, we identify (vg)key € H with v € 00<s<% H?*(Q) characterized by
(23) and use the representation (25) of the scalar product (-,-) in H.

For the Cantor interface network (cf. Example 2.1), the weighting factors (1 +
¢)¥Cy, in (25) are exponentially increasing with k, causing exponentially decreasing
generalized jumps across I'.
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3.4. Fractal interface problems. We consider the functional

€(U):/;2fv dx

with some given f € L*(Q). Note that the Poincaré-type inequality (19) implies
¢ e H c Hy for all K € N. The solutions ug of the level-K interface problem,
Problem 2.3, for K € N then satisfy the uniform stability estimate

(26) luk | < Coa™ | flr2(q), K €N,

with the constant Cy appearing in (19).
We define the symmetric bilinear form

(27) a(v,w):f Vv.dex+Z(1+c)kaf Alv][w] dT'y, wv,we™H,
Q\l k=1 Tk

with A: T — R taken from (10). Note that a(-,-) is well defined, coercive, and bounded
in light of Definition 3.8 and assumption (11). Now, we are ready to formulate an
asymptotic limit of the level-K interface problem, Problem 2.3, for K — oo.

PROBLEM 3.11 (fractal interface problem). Find a minimizer u € H of the energy
functional
E() = 2a(v,v) - £(v), veH.

In light of Proposition 3.3, the following existence and approximation result is a
consequence of the Lax—Milgram lemma and Céa’s lemma.

THEOREM 3.12. Problem 3.11 is equivalent to the variational problem of finding
u € H, such that

(28) a(u,v) =£(v) VueH,

and admits a unique solution. Moreover, the error estimate
29 —ug| <2 inf |u-

(29) lu—uxl <G mf fu-vl

implies convergence |u—ugl| - 0 for K — oo,

In the next section, we will improve the straightforward error estimate (29) under
more restrictive assumptions on the geometry of the multiscale interface network.

4. Exponential error estimates. We concentrate on the special case that all
cells G € G¥) | K e N, are hypercuboids with edges eqi,t=1,..., d2971 either parallel

or perpendicular to the unit vectors e;, i =1,...,d. For K € N, we set
A5 = maxleq |, dE"=minlegi|, GeG¥) and dp"= min_dg;"
2 i Geg(K

and assume that there is a constant g > 0 such that
(30) d Vg <dB>* <dVPgdm™ vGeG®) KeN,

with space dimension d and di taken from (4). Note that (30) implies uniform shape
regularity of all G € G together with quasi-uniformity of the partition G \ gio’o.
We also assume that Q(K) is regular for all K € N in the sense that two cells G €
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€1

dg

FiG. 3. Construction of £1,g:: G € G gf,oK) with TE) A G = YL,G,1 YL,cg,2 and G5
(dashed), light gray Ul G2, and dark gray U g,z

G | g;K) and G/ € G have an intersection F = G n G/ with nonzero (d-1)-
dimensional Hausdorff measure if and only if F is a common (d-1)-face of G and G'.
Note that the Cantor set described in subsection 2.1 satisfies both of these additional
assumptions.

The derivation of error estimates will rely on a representation of the residual of the
approximate solution ug of Problem 2.3 in terms of its normal traces on I'y, L > K
(cf., e.g., variational formulations of substructuring methods [32]). This requires
additional regularity in a neighborhood of I'y,, L > K.

LemMmA 4.1. Let KeN, Ge GUONGE) L> K, and Ty nG = UL, v.c.i, such
that e; L vyr,G,i, t=1,...,d. Then, for eachi=1,...,d there are open sets Up ¢; c G
with v1,.G,i € UL, such that Qux € H* (UL ;) and the a priori estimate

(31) dedhurc |3y o < (1R + 100k e rpirony)

holds with a constant ¢ depending only on g and d.

Proof. The main idea of the proof is to first provide local a priori H'-bounds for
difference quotients Dl'ug = %(uK( +e;h) —ug) that are uniform in A on suitable
subsets U, g,;. These H'-bounds then lead to related H'-bounds for d;ux by well-
known arguments from Evans [15] so that the desired a priori estimates (31) finally
follow from the trace theorem. Most of the proof is devoted to the local a priori H'-
bounds for Dfur. They are derived from the weak formulation (2.3) of the problem
by inserting test functions of the form v = —D;h(SQDZh)uK € Hx with sophistically
constructed smooth functions § = {1, ¢,; with local support in some suitable U} . ;
and £ =1 on the final subset U ¢,i c U ¢ ;-

Let G=(-g,9)%¢ (1S AN ngK), for simplicity, and consider some fixed i = 1,...,d.
We start with the construction of {7, ¢ ;, which is illustrated in Figure 3. Note that
YL,G,1 = {(0’8) | S € (_g’g)} and YL.G2 = {(Sakg | k=1,0,-1,s ¢ (_g’g)} in this
illustration. We select &7, € Cg°(R) with support in [-g + dFi/2, g — d¥*/2] and
the properties 0 < é(x) < 1 for all 2 € R, &1(z) = 1 if |2 < g — dP", and &) () <
2(din)~1 < 2gd;t. We further select &g € C5°(RY) with support in G,

Gi={zeR*|yeG: [r-y|<dk, (x-y) ¢ =0},

satisfying 0 < {g(z) <1 for all z € RY, £(x) =1 for all z € G with |z;] < g — dP", and
[Véa ()] < (d™)~! < gdid < gd! for all z € RY. We finally set &1, ¢i(2) = €1 (24)éc (2)
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for z e RY,
UE’GJ =int supp {16 G, and Upg,;=int {reG|&(x)=1}c UE’GJ— .

For notational convenience, we mostly write U™ = U} ¢ ; and § = {1, ¢,; in what follows.
Note that

(32) Vel < [6LVEal + [€Léal < Bady -
Extending v € H# from Q to R? by zero, we define
Dy = F(v(z+eh)-v(x)), veH,

with |h| > 0. Let h > 0 be sufficiently small to provide —D;"(¢2DMuy) € Hyx. Then
(13) yields

(33) a(ug, -D;"(€2D}uk)) = £(-D;"(€* Dlux)) -
Exploiting
(34) %) A (he; + U*) c T 0 G

for sufficiently small |h| > 0, we get

/Q ey VUK V(-D;"(€2D!'ug)) da

_ hy o |2¢2 by o (e2Y Dl
, f*\w) IV Dlu|?e dm[w\m) VD uge -V (€2) Dhug da .
Similarly, (34) leads to
f Alux|[-D" (2Dt ug )] dTy, = f A[DMug]2€2 dry,
Ty U*nly,

for all k=1,... K. Utilizing (34), the fundamental theorem of calculus, and a density
argument, it can be shown that

(35) / |D;"v|? dx < f 00> dz VveH .
U* U*\T(K)
Together with the Cauchy—Schwarz inequality and U* c G}, this leads to
[0(-D;" (£’ D}tux))| < (RAFEIEER

1/2
<ULz ( [, o 1€ Dt w0 da)

D" (& D}uk)| 2w+

We insert the above identities and this estimate into (33) to obtain
h, |2¢2 & k h, 722
VD, dx + g 1+¢)"C f A|D; dar
/U*\r(m' k| e de k:l( ) Ch U*nly, [D7ux]"¢" dT

1/2
< Il ( [, oo €D w0R o)+ [ D] [9(63)] 1Dl ux] da
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Now (32) and multiple applications of Young’s inequality yield
f*\F(K) VD ug*¢? da < 2”]””%%@;) +9g°d; €D} ue ||2L2(G;) +36g°d;” ||D?UK”%2(G;)

1 h, 1204 1 h, 1262

1 D! 2 D; .

+9 fU*\F(K) |VD{ur|*¢" dx + ; fU*\I‘(K) VD ug| 6" dx
Utilizing ¢* < €2 <1 and (35), this leads to
[ 1Dkl dw < e (11 xcr) + i 103 grarcoy)-
L,G,i

Now the desired regularity d;ux € H' (UL ¢ ;) and the corresponding a priori estimate

(36) HV@UKH%%UL,G,I-) sc (Hf”L?(G;) +dy? HaiuK”%%G:\F(K)))

are a consequence of [15, Chapter 5.8.2, Theorem 3].

It remains to show the a priori bound (31). Let i = 1,...,d be fixed, v = v1.G,is
and G, € G1) such that « is a (d - 1)-face of G.,. Utilizing affine transformations of
G, nUr g, and 7 to the reference domains (0,1)¢ and (0,1)4" x {0}, respectively,
we obtain

fv|v|2 dy < Cg* (ddQL ||VUH%2(GWUL,G,1-) + ”’UHiQ(GwﬁUL,G,i)) Voe H' (G, nULG,i)

with the generic constant C' emerging from the trace theorem on (0,1)¢. Now (31)
follows by inserting v = d;ux and utilizing the a priori estimate (36). |

After these preparations, we are ready to state the main result of this section.

THEOREM 4.2. For each K € N, the approximate solution ux of Problem 2.3
satisfies the error estimate

(37) -l <€ (sp G5 1112 gy 1+ 00
>

with C only depending on the space dimension d, shape regularity g in (30), coercivity
a in (11), and the Poincaré-type constant Cy in (19).

Proof. For u # ux we get the residual error estimate

1

lu-ukl <a™rg(u=-ug)/|u-uk| <a™|ri|s,

which trivially holds for u = uf as well. Hence, we derive an upper bound for |rg |4

Let G € G¥) and G € GP) for some L > K such that G ¢ G. Furthermore,
let v and 7 be the outer normal of G and G, respectively. We first observe that
-Aug = f on G with -0,ux = [ug] on OG. In particular, we note that Vug -
v € L?(0G). Furthermore, by the regularity obtained in Lemma 4.1, we see that
Vug -7 € L?(0G). Now we can use a version of Green’s formula proved by Casas and
Ferndndez [9, Corollary 1], exploiting (in the notation of [9]) that Vuz € W2(div, G)
and v e W(G) n L=(G), to obtain

(38) rr(v) =4(v) - a(ug,v Z f Oyugv] dTy

k=K+1
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for any test function v € Ci,o(Q) The Cauchy—Schwarz inequality then yields

L
r(v) = (1+) 20 P0,uk ) (1 + ¢)*2C[v]) dT
" k:;+1frk( k K)( k ) k
1/2

L
< ( > (1+o)*C o ukl? dFk) o] -

k=K +1 71k

Since L can be arbitrarily large, we infer

|7k |13, < (Sup C,;ldgl) (sup dk|auuK|%2(Fk)) (1+¢)™F (Z(l + c)_k) ,
k>K k>K k=1

and Lemma 4.1 provides the a priori estimate

d
dy, Haz/uKH%Z(Fk) = Z Z di HaiuKHiQ(’Yk,D,i)
GegUOH\g{O i=1

<3de (A1 132 (q) + | Vur |22 (qurany ) < ClI 132 (g

for all £ > K with C' depending only on d, g, a, and the Poincaré-type constant Cy in
(19). Inserting Y52, (1 +¢)™ = L, this concludes the proof. 0

c )
Recall that the factor supy,  C;'d;! depends on the geometry of the actual in-
terface network.

Remark 4.3. For the Cantor interface network described in Example 2.1, we have
Cl_(ld;(l =2 for all K € N. Hence, Theorem 4.2 implies exponential convergence of the
solution ug of the level-K interface problem, Problem 2.3, to the solution u of the
fractal interface problem, Problem 3.11, according to the error estimate

lu—ur| <Clflr2@z L+~

with C depending only on d, g, a, and on the Poincaré-type constant Cp in (19).

Remark 4.4. The exponential decay of |u — uk|| is essentially due to the expo-
nential growth of the weights (1 +¢)* on the interfaces. It is an interesting question
for future investigations whether these weights can be replaced by another monoton-
ically increasing function f(k). However, note that the Poincaré-type inequality (19)
indicates exponential growth of f(k).

5. Numerical computations. Let 7() be a partition of Q into simplices with
maximal diameter h; > 0 which is regular in the sense that the intersection of two
simplices from 7 is either a common n-simplex for some n = 0, ..., d or empty. Then
T denotes the partition of Q resulting from K — 1 uniform regular refinements
of TW (cf., e.g., [6, 8]) for each K € N. The maximal diameter is hr = hi2571,
and N ) stands for the set of vertices of simplices in 7(5). We assume that the
partition 7 resolves the piecewise affine interface network T!) . i.e., for all k < K
the interfaces I'y can be represented as a sequence of (d — 1)-faces of simplices from

TE) | For each K € N and each G € G we introduce the space SéK) of piecewise

affine finite elements with respect to the local partition ’TC(T,K) ={TeTH) | TcG).
The discretization of the level-K interface problem, Problem 2.3, with respect to the
corresponding broken finite element space

S(K) :{’UiQ—>R| U|G€SéK) VGEQ(K)}CHK
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amounts to finding u ¢ S such that
(39) a(tg,v) =£L(v) voeSHE)

For each K € N, existence and uniqueness of a solution follows from the Lax-Milgram
lemma.

5.1. Exponential convergence of multiscale interface problems. In case
of the Cantor interface network (cf. Example 2.1) the solutions ug of the level-K
interface problem, Problem 2.3, for K € N converge exponentially to the solution u
of the fractal interface problem, Problem 3.11 (cf. Remark 4.3). For a numerical
illustration, we consider this example in d = 2 space dimensions with ¢ = 1, f = 1,
A =1, and the geometrical parameter O = 2571, Note that the | - || norm in H (cf.
(25)) is identical to the energy norm induced by a(:,-) (cf. (27)) in this instance.

Fia. 4. Initial triangulation T uniform refinement T(2), together with the Cantor interface
network T'US) for K =1, 2, and 8 in d =2 space dimensions.

The initial triangulation 7() with h; = 27! is depicted in the left picture in
Figure 4 (gray lines) together with the initial Cantor network I'™) (black lines). Suc-
cessive uniform refinement of 7 provides the triangulations 7 with hg = 2K
resolving the interfaces T5) on subsequent levels K. The case K = 2 is illustrated in
the middle, while the right picture in Figure 4 shows the Cantor network e,

The linear systems associated with the corresponding finite element discretizations
(39) on each level K are solved directly. Exploiting

lu-uk| < u-ug|+|ug —ux|,  KeN,
the fractal homogenization error is replaced by the heuristic error estimate
(40) ek = |0 —dg| + g - k|,  K=1,...,8.

The first term in (40) is intended to capture the error made by resolving a “large”
but finite number of interfaces instead of infinitely many, while the second term aims
at the additional contribution made by resolving only the actual “small” number of
K=1,...,8 levels.

Figure 5 shows the error estimates ex over the levels K (dotted line) together
with the expected asymptotic bound of order (1 +¢)™® (solid line) for K = 1,...,8.
Both curves have very similar slope, which nicely confirms our theoretical findings.
As |u = ug| > |uo — ug| and |y — k]| = 0 for K =9, we would expect that eg
underestimates the fractal homogenization error for increasing K. This could explain
the slight deviation from the expected asymptotic behavior.



310 MARTIN HEIDA, RALF KORNHUBER, AND JOSCHA PODLESNY

energy error e
1
10

— + —error estimates
asymptotic bound

F1c. 5. Ezponential decay of fractal homogenization error.

5.2. Fractal numerical homogenization. Aiming at an iterative solution of
the discrete problems (39) with a convergence speed that is independent of the number
of levels K € N, we now present a multilevel preconditioner in the spirit of [26, 27].

To this end, we introduce the sets of local patches

QW - {Q} for k=1,
- {wgk)c§|xe./\/‘(k_1)} for k>2,

with w;.k) c Q consisting of all simplices 7' € T~ with common vertex z e N/*~1),
The decomposition of @ into patches w € Q(’C ) gives rise to the decomposition

(41) SE = S gk keN,
weQ k)

into the local finite element spaces

Sc(f) ={ve S | v|Q\int w =0}, we@® .
For each fixed K € N, this leads to the splitting
K
S09- 57 % s
k=1 ueQ(®

and the corresponding multilevel preconditioner [35, 36]

K
(42) Tk=3 ¥ Py,

k=0 e
with Py : ) — V denoting the Ritz projection, defined by
(43) a(Pyw,v) =a(w,v) YveV.
Note that the evaluation of each local projection PSSC) amounts to the solution of

a (small) self-adjoint linear system on the patch w € Q(k). Therefore, Tk can be
regarded as a multilevel version of the classical block Jacobi preconditioner.

The analysis of upper bounds for the condition number of Tk as well as fractal
counterparts of multiscale finite elements [25, 28] will be considered in a separate
publication.
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TABLE 1
Algebraic error reduction factors for the Cantor interface network.

v K=5 K=6 K=7 K=8 K-=9
1 0.479  0.481 0.481 0.482  0.482
2 0.445 0.464 0483 0.500 0.514
3 0.453  0.448 0.442 0.437 0.439
4 0.429 0.452 0.474 0.493 0.503
5 0.451  0.465 0.468 0.472  0.477
6 0.432 0.444 0.459 0.477 0.494
7 0.447 0.467 0.463 0.456  0.455
8 0.450  0.483  0.487 0.489  0.490
PK 0.448  0.463 0.469 0.475  0.481

5.2.1. Cantor interface network. We consider the level-K interface problem,
Problem 2.3, for the Cantor interface network with parameters, finite element dis-
cretization, and initial triangulation 7(*) as previously described in subsection 5.1.

Let ﬂﬁ?), v € N, denote the iterates of the preconditioned conjugate gradient
method with preconditioner Tk given in (42) and initial iterate ﬁg) =1ug. The corre-
sponding algebraic error reduction factors

~  ~(v)
(44) A Ll 4
s -]

of each iteration step are depicted in Table 1 for v = 1,...,8, together with their
geometric average px for K =5,...,9. The averaged reduction factors px seem to
saturate with increasing level K.

In practical computations, it is sufficient to reduce the algebraic error |ux —ﬁgg) |
up to discretization accuracy |ux — g |. Galerkin orthogonality implies

laren —anc|® + Ju =g |? = Ju-ax]? .
We utilize the stopping criterion
(45) Jiisc = a%) < Jivreon = ]| < e

provided by the resulting lower bound for the discretization error and the final iter-
ate on the preceding level K — 1 as the initial iterate on the actual level K (nested
iteration). Then, only vy = 1 step of the preconditioned conjugate gradient iteration

is sufficient to provide an approximation ﬁg';(’) of tix with discretization accuracy for
all K=2,...,9.

5.2.2. Layered interfaces. We consider the level-K interface problem, Prob-
lem 2.3, in d = 2 space dimensions with parameters ¢ =1, f =1, A = 1, and non-
intersecting interfaces I'y ¢ @ = (0,1)? described as follows. Figure 6 shows the
initial triangulation 7) (gray lines) with hy = 27 together with the three macroin-
terfaces forming I'Y. Again, 7(® is obtained by uniform refinement of 7, and
Iy = F(K)\I‘(K’l) is composed of six randomly selected, nonintersecting polygons
consisting of edges of triangles T € T one above and one below each macrointer-
face from I'™). For K = 2, this is illustrated in the middle picture in Figure 6. Note
that at most C = 2% — 1 interfaces are cut by any straight line through Q. The final
interface T'(®) is displayed in the right picture.
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/

7

Fic. 6. Initial triangulation T | uniform refinement T2, together with the layered interface

network T (%) for K=1, 2, and 6.

TABLE 2
Algebraic error reduction factors for the layered interface network.

v K=2 K=3 K=4 K=5 K=6
1 0.303 0.377 0.376 0.392  0.423
2 0.177  0.431 0.473 0.496  0.523
3 0.329 0.316  0.418 0.492  0.542
4 0.372  0.404 0.405 0.497 0.517
5 0.247  0.409 0.501 0.503  0.525
6 0.329  0.405 0.421 0.497 0.533
7 0.366  0.362  0.458 0.488  0.539
8 0.328  0.440 0.426  0.497  0.527
PK 0.299  0.391 0.433 0.481  0.515

As in subsection 5.2.1, we consider the conjugate gradient iteration with the

multilevel preconditioner defined in (42) and initial iterate uﬁ?) =ug for K=2,...,6.

Table 2 shows the algebraic error reduction factors pgg) defined in (44), together with
their geometric average pi. The averaged reduction factors pg are slightly increasing
with increasing level K.

If nested iteration is applied, only one iteration step is needed to reach discretiza-

tion accuracy according to the stopping criterion (45) in subsection 5.2.1.

REFERENCES

G. ALLAIRE, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992),
pp. 1482-1518, https://doi.org/10.1137/0523084.

G. ALLAIRE AND M. BRIANE, Multiscale convergence and reiterated homogenisation, Proc. Roy.
Soc. Edinburgh Sect. A, 126 (1996), pp. 297-342.

S. ARMSTRONG, T. Kuusi, AND J.-C. MOURRAT, Quantitative Stochastic Homogenization and
Large-Scale Regularity, preprint, https://arxiv.org/abs/1705.05300, 2017.

S. N. ARMSTRONG AND C. K. SMART, Quantitative stochastic homogenization of elliptic equa-
tions in nondivergence form, Arch. Ration. Mech. Anal., 214 (2014), pp. 867-911.

L. BAFrico, C. GRANDMONT, Y. MADAY, AND A. OSSES, Homogenization of elastic media with
gaseous inclusions, Multiscale Model. Simul., 7 (2008), pp. 432-465, https://doi.org/10.
1137/070705714.

R. E. BANK, A. H. SHERMAN, AND A. WEISER, Some refinement algorithms and data structures
for regular local mesh refinement, in Scientific Computing. Applications of Mathematics
and Computing to the Physical Sciences, North-Holland, 1983, pp. 3-17.

Y. BEN-ZION AND C. G. Samwmis, Characterization of fault zones, Pure Appl. Geophys., 160
(2003), pp. 677-715.

J. BEY, Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of
congruence classes, Numer. Math., 85 (2000), pp. 1-29.


https://doi.org/10.1137/0523084
https://arxiv.org/abs/1705.05300
https://doi.org/10.1137/070705714
https://doi.org/10.1137/070705714

(35]

e

G.

FRACTAL HOMOGENIZATION 313

. Casas AND L. A. FERNANDEZ, A Green’s formula for quasilinear elliptic operators, J. Math.

Anal. Appl., 142 (1989), pp. 62-73.

. CAZEAUX, C. GRANDMONT, AND Y. MADAY, Homogenization of a model for the propagation

of sound in the lungs, Multiscale Model. Simul., 13 (2015), pp. 43—71, https://doi.org/10.
1137/130916576.

. CIORANESCU, A. DAMLAMIAN, P. DoNATO, G. GRISO, AND R. ZAKI1, The periodic unfolding

method in domains with holes, SIAM J. Math. Anal., 44 (2012), pp. 718-760, https://doi.
org/10.1137/100817942.

. CIORANESCU, A. DAMLAMIAN, AND J. ORLIK, Homogenization via unfolding in periodic

elasticity with contact on closed and open cracks, Asymptot. Anal., 82 (2013), pp. 201-
232.

. DONATO AND S. MONSURRO, Homogenization of two heat conductors with an interfacial

contact resistance, Anal. Appl. (Singap.), 2 (2004), pp. 247-273.

. EFENDIEV AND T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications,

Surv. Tutor. Appl. Math. Sci. 4, Springer, New York, 2009.

. C. EvANSs, Partial Differential Equations, American Mathematical Society, 1998.
. Gao AND K. WANG, Strength of stick-slip and creeping subduction megathrusts from heat

flow observations, Science, 345 (2014), pp. 1038-1041.

. GLORIA, S. NEUKAMM, AND F. OTTO, An optimal quantitative two-scale expansion in sto-

chastic homogenization of discrete elliptic equations, ESAIM Math. Model. Numer. Anal.,
48 (2014), pp. 325-346.

GRISO, Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40
(2004), pp. 269-286.

I. Gruals AND D. POLISEVSKI, Heat transfer models for two-component media with interfacial

M.

M.

U.

jump, Appl. Anal., 96 (2017), pp. 247-260.

HEIDA, An extension of the stochastic two-scale convergence method and application,
Asymptot. Anal., 72 (2011), pp. 1-30.

HEIDA, Stochastic homogenization of heat transfer in polycrystals with nonlinear contact
conductivities, Appl. Anal., 91 (2012), pp. 1243-1264.

HORNUNG, ED., Homogenization and Porous Media, Interdiscip. Appl. Math. 6, Springer
Science & Business Media, 2012.

H.-K. HUMMEL, Homogenization of Periodic and Random Multidimensional Microstructures,

o = o »

A.

C.

D.

Ph.D. thesis, Technische Universitat Bergakademie Freiberg, Freiberg, Germany, 1999.

. V. Jikov, S. M. KozrLov, aND O. A. OLEINIK, Homogenization of Differential Oper-

ators and Integral Functionals, Springer-Verlag, Berlin, 1994, https://doi.org/10.1007/
978-3-642-84659-5.

. KORNHUBER, D. PETERSEIM, AND H. YSERENTANT, An analysis of a class of variational

multiscale methods based on subspace decomposition, Math. Comp., 87 (2018), pp. 2765—
2774.

. KORNHUBER, J. PODLESNY, AND H. YSERENTANT, Direct and iterative methods for numerical

homogenization, in Domain Decomposition Methods in Science and Engineering XXIII, C.-
0. Lee, X.-C. Cai, D. E. Keyes, H. H. Kim, A. Klawonn, E.-J. Park, and O. B. Widlund,
eds., Springer International, Cham, 2017, pp. 217-225.

.. KORNHUBER AND H. YSERENTANT, Numerical homogenization of elliptic multiscale problems

by subspace decomposition, Multiscale Model. Simul., 14 (2016), pp. 1017-1036, https:
//doi.org/10.1137/15M1028510.

. MALQVIST AND D. PETERSEIM, Localization of elliptic multiscale problems, Math. Comp.,

83 (2014), pp. 2583-2603.

. Mosco AND M. A. VivaLpl, Thin fractal fibers, Math. Methods Appl. Sci., 36 (2013),

pp. 2048-2068.

. NacanaMmA AND K. YosHII, Scaling laws of fragmentation, in Fractals and Dynamic Systems

in Geoscience, Springer, 1994, pp. 25-36.

. ONCKEN, D. BOUTELIER, G. DRESEN, AND K. SCHEMMANN, Strain accumulation controls

failure of a plate boundary zone: Linking deformation of the Central Andes and lithosphere
mechanics, Geochem. Geophys. Geosyst., 13 (2012), Q12007.
QUARTERONI AND A. VALLI, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford University Press, 1999.

G. Sammis, R. H. OSBORNE, J. L. ANDERSON, M. BANERDT, AND P. WHITE, Self-similar
cataclasis in the formation of fault gouge, Pure Appl. Geophys., 124 (1986), pp. 53—78.
L. TURCOTTE, Crustal deformation and fractals, a review, in Fractals and Dynamic Systems

in Geoscience, J. H. Kruhl, ed., Springer, 1994, pp. 7-23.

J. Xu, Iterative methods by space decomposition and subspace correction, STAM Rev., 34 (1992),

pp. 581-613, https://doi.org/10.1137/1034116.


https://doi.org/10.1137/130916576
https://doi.org/10.1137/130916576
https://doi.org/10.1137/100817942
https://doi.org/10.1137/100817942
https://doi.org/10.1007/978-3-642-84659-5
https://doi.org/10.1007/978-3-642-84659-5
https://doi.org/10.1137/15M1028510
https://doi.org/10.1137/15M1028510
https://doi.org/10.1137/1034116

314 MARTIN HEIDA, RALF KORNHUBER, AND JOSCHA PODLESNY

[36] H. YSERENTANT, Old and new convergence proofs for multigrid methods, Acta Numer., 2 (1993),
pp. 285-326.

[37] V. V. Zuikov AND A. L. PYATNITSKII, Homogenization of random singular structures

and random measures, Izv. Ross. Akad. Nauk. Ser. Mat., 70 (2006), pp. 23-74 (in

Russian); Izv. Math., 70 (2006), pp. 19-67 (in English), https://doi.org/10.1070/
IM2006v070n01ABEH002302.


https://doi.org/10.1070/IM2006v070n01ABEH002302
https://doi.org/10.1070/IM2006v070n01ABEH002302

	Introduction
	Multiscale interface problems
	Multiscale interface networks
	A multiscale hierarchy of Hilbert spaces
	Level-K interface problems

	Fractal homogenization
	Fractal function spaces
	Sobolev embeddings
	Weak gradients and generalized jumps
	Fractal interface problems

	Exponential error estimates
	Numerical computations
	Exponential convergence of multiscale interface problems
	Fractal numerical homogenization
	Cantor interface network
	Layered interfaces


	References

