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Abstract

We present two generalizations of the popular diffusion maps algorithm. The first gen-
eralization replaces the drift term in diffusion maps, which is the gradient of the sampling
density, with the gradient of an arbitrary density of interest which is known up to a normal-
ization constant. The second generalization allows for a diffusion map type approximation of
the forward and backward generators of general Itô diffusions with given drift and diffusion
coefficients. We use the local kernels introduced by Berry and Sauer, but allow for arbitrary
sampling densities. We provide numerical illustrations to demonstrate that this opens up
many new applications for diffusion maps as a tool to organize point cloud data, including
biased or corrupted samples, dimension reduction for dynamical systems, detection of almost
invariant regions in flow fields, and importance sampling.

1 Introduction

The analysis of large data sets in Euclidean space is a topic of active research, with methods such
as dimension reduction and manifold learning trying to identify intrinsic characteristics of the
data. The central goals are, in essence, to compress the data from an originally large number of
variables into a low-dimensional description involving only a few variables, and to find meaningful
structure in the data in order to gain insight and understanding of the process that generated it.

A common starting point is principal component analysis (PCA), which tries to understand
data by performing a singular value decomposition of the data matrix and then taking only
the singular vectors corresponding to the largest singular values as coordinates. This will be
successful if the data lies on a linear subspace, but nonlinear structures will not be uncovered.
Kernel PCA [18, 35] tries to understand nonlinear features in the data by mapping it to a usually
high-dimensional feature space first, this is done implicitly by constructing a symmetric positive
definite matrix K of inner products. An alternative approach assumes that the data points lie on
a manifold M and attempts to encode structure through differential operators on M. The first
step is typically the construction of a neighborhood graph with similarity weights derived from a
kernel function. Then a graph Laplacian is constructed and the dominant eigenvectors are used
to organize the data [43].

Belkin and Niyogi [2] and Coifman and Lafon [11] use radially symmetric kernels and construct
a graph Laplacian that estimates the Laplace operator on the manifold M. The connection
between graph Laplacians based on radially symmetric kernels and the Laplace operator on the
sampled manifold was further understood in [20]. Berry and Sauer [5] extended this approach
to a much larger class of anisotropic local kernels and showed a connection between the moment
expansion of the kernel and the differential operators that can be approximated. This allows the
approximation of the forward and backward Fokker–Planck operators associated with a large class
of Itô diffusions, provided a kernel with prescribed first and second moment is used.

Often the data will not sample the manifold uniformly, and care must be taken to distinguish
effects that are due to local variations in the sampling density q from intrinsic characteristics of the
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manifold. The approach in [2] and, as we show in this article, [5] produces unwanted drift terms if
the sampling is not uniform which bias the approximation of the considered differential operators.
If, as is often the case, the sampling density is unknown, then this bias cannot be controlled. A
key property of the diffusion maps construction [11] is that by a suitable modification of the kernel
the bias induced by local variations in q can be completely removed, which leads to asymptotically
unbiased estimators of the Laplacian and the heat kernel describing diffusion on M.

A second key property of diffusion maps is that with a slightly different modification of the
kernel, the diffusive terms encoded in the kernel and the bias from the sampling density q can
be combined in order to approximate the generator of a Markov process in the case of a gradient
flow [27, 9, 41, 42] where the gradient terms are determined by the gradient of q. This interesting
property allows the approximation of the generator of a dynamical process based purely on the
geometry of the data. The differential operator approximated in this case depends explicitly on q.
The data does not have to be generated by the dynamical process, but it has to be sampled from q
in a controlled fashion, which can be challenging for many densities of interest. Nevertheless this
view has led to many applications where Markov processes with a gradient flow are interesting
[27, 9, 41, 32, 29, 28].

In this article, we introduce two extensions of the diffusion maps construction. Both extensions
are asymptotically unbiased in the sense that the limiting differential operators do not depend on q.
The first extension, target measure diffusion maps, generalizes the construction in [11, 27, 9, 41, 42]
and allows to approximate the generator of a gradient flow Markov process where the gradient
terms are not slaved to the sampling density, but are derived from a target probability measure
that is chosen by the user and known up to a normalization constant. This allows us to extend
diffusion maps to cases where sampling the measure of interest is either impossible or too difficult,
and one has to work with biased samples instead. Our approach is related to [4], which uses
variable bandwidth kernels and requires knowledge of the intrinsic dimension of M.

The second extension, local kernel diffusion maps, allows to approximate the forward and
backward Fokker–Planck operators of a large class of Itô diffusions onM. We use the anisotropic
local kernels introduced in [5], but we also estimate the sampling density q by using a second,
radially symmetric kernel and are able to undo its influence. This generalizes [27, 9, 41, 42]
to non-gradient flows and anisotropic noise, and the results from [5] to non-uniform sampling
densities. We also discuss how the drift and diffusion coefficients can be estimated from data if
they are not known analytically. This extends diffusion maps to approximate the generators of a
much larger class of dynamical processes.

In Section 2 we summarize diffusion maps for radial kernels as found in [11, 27, 9, 41, 39]
and discuss the results and developments relevant for this article. In Section 4 we discuss the
anisotropic local kernels introduced in [5] and show that they lead to biased estimators in the case
of nonuniform sampling. Our main results can be found in Sections 3 and 5, where we introduce
target measure and local kernel diffusion maps and state the respective convergence results. Many
numerical examples that showcase applications are discussed in Section 6 and proofs can be found
in Section B.

2 Diffusion maps for isotropic kernels

In this article, we assume that we are given data in the form of points D(m) := {x1, x2, . . . , xm} ⊂
RN with N > 0, which lie on a compact d-dimensional differentiable submanifold M ⊂ RN and
are sampled according to a density q(x). We assume that both q and M are unknown. The
dimension d ofM is also assumed to be unknown, but we will have the case d� N in mind. The
data set D(m) is used to represent functions f as vectors [f ] = (f(x1), . . . , f(xm))T and operators
A as m × m matrices A. The ith component of a data vector is denoted by [f ]i = f(xi), and
(A[f ])i is the ith component of the matrix-vector product A[f ]. We denote the transpose of a
matrix A by AT . The constant function f(x) ≡ 1 is denoted by 1, the corresponding constant
data vector by [1].

The main idea underlying diffusion maps [11] is to uncover the geometric structure ofM from

2



the data D(m) by constructing an m ×m matrix that approximates a differential operator. This
differential operator, and in particular its dominant eigenfunctions, encodes all relevant geometric
features of M.

We briefly summarize the algorithm and most relevant results in [11, 39]. The construction
starts with an isotropic kernel kε(x, y) = h(‖x − y‖2/ε) where h is an exponentially decaying
function, ε > 0 is a scale parameter and ‖ ·‖ the Euclidean norm in RN . The most common choice
is

kε(x, y) = exp
(
−(4ε)−1‖x− y‖2

)
. (1)

Evaluation of kε on D(m) leads to a m×m kernel matrix Kε, which is normalized several times to
give a matrix Lε,α that can be interpreted as the generator of a Markov chain on the data itself.
Here, α ∈ R is a parameter that can be chosen during the construction. In the limit m→∞ and
ε→ 0, the matrix Lε,α approximates the Kolmogorov operator

Lf = ∆f + (2− 2α)∇f · ∇q
q
, (2)

where ∆ is the Laplace–Beltrami operator onM and ∇ the gradient operator. The approximation
is in the sense that for sufficiently smooth functions f and any point xk ∈ D(m), (Lε,α[f ])k →
Lf(xk) as m→∞. Moreover, if q is uniform then Lε,0[f ]k = Lf(xk)+O(ε,m−1/2ε−1/2−d/4) with
high probability [39]. Consequently, eigenfunctions of Lε,α approximate eigenfunctions of L. IfM
is bounded, then eigenfunctions of Lε,α approximate solutions to the eigenproblem of L with von
Neumann boundary conditions on ∂M. Spectral convergence of Lε,0 was shown in [44].

The eigenvalues of Lε,α are real and nonpositive and can be ordered as 0 = λ0 > λ1 ≥ λ2 ≥
. . . ≥ λm. The largest eigenvalue is always λ0 = 0, and under mild assumptions it has multiplicity
one. Of particular interest are the dominant eigenvalues, i.e. the smallest in magnitude but nonzero
eigenvalues. These eigenvalues give the slowest time scales of the diffuse dynamics generated by
(2), and the corresponding eigenfunctions allow for a structure preserving embedding Ψ of D(m)

into a lower-dimensional space. This diffusion map is a way of representing the geometry of the
data.

Perhaps the two most well-known special cases of this construction are (a) α = 1, in which
case L = ∆ is the Laplace–Beltrami operator and dominant eigenfunctions are coordinates on M
and (b) α = 1/2 and q ∝ exp(−βU) is the Boltzmann density with parameter β > 0, in which
case

Lf = ∆f − β∇U · ∇f, (3)

which is β times the backward Kolmogorov operator associated with Brownian motion at tem-
perature β−1 in the potential energy landscape given by the energy function U : M → R. This
powerful property of diffusion maps allows the computation of the eigenfunctions of such a dy-
namics based purely on geometric data produced by sampling from the Boltzmann distribution.
It is well known that the dominant eigenvalues of the operator (3) correspond to the equilibration
rates of the slow processes [16, 45, 6, 37], and the associated dominant eigenfunctions allow for
dimensionality reduction while retaining the slow dominant time scales [7]. Plateaus in the range
of the dominant eigenfunctions indicate metastable subsets of phase space and can be identified
by a simple cluster analysis [12, 36] or more elaborate means [13]. These properties have led to
several applications in the Molecular Dynamics context [9, 27, 32, 29, 28]. We emphasize that
it does not matter how the samples were generated as long as they are distributed according to
q ∝ exp(−βU).

To appreciate the limitations of diffusion maps, consider an Itô stochastic differential equation
in RN of the form

dXt = b(Xt) dt+ σ(Xt) dWt (4)

with drift b : RN → RN , diffusion coefficient σ : RN → RN×M and Wt being M -dimensional
Brownian motion. It is well known that the generator L of the dynamics (4) is given by the
backward Kolmogorov operator

Lf = b · ∇f +Aij∇i∇jf (5)
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with diffusion matrix A = 1
2σσ

T . Here, ∇i is the ith component of the operator ∇ and we use
the Einstein summation convention. Dot products are taken with respect to the metric inherited
from the ambient space RN . The family of operators (2) that can be approximated by diffusion
maps corresponds to the special case A = I and b = (2− 2α)q−1∇q. Therefore, if we wish to use
diffusion maps to approximate generators of Itô processes (4), there are two key limitations:

• Isotropic noise imposed by A = I. This is a direct consequence of the use of an isotropic
kernel.

• The drift b must either be zero (which is the case L = ∆), or it must be related to the
sampling density q via b ∝ ∇ log q. This means that if we wish to ensure that b = −β∇U
with a prescribed energy function U : RN → R, then q must be the Boltzmann density
q = exp(−βU).

In what follows, we will lift these limitations: We will allow for arbitrary sampling densities,
and we will construct a variant of diffusion maps that can reconstruct the generator of an arbitrary
SDE of the form (4).

3 Target measure diffusion maps

Let dπ be a probability measure on RN whose density π is known only up to a normalization
constant, which is the case in many applications such as Markov Chain Monte Carlo. We do not
assume that π is related to the unknown sampling density q. Suppose that we wish to approximate
the differential operator

Lf = ∆f +∇(log π) · ∇f, (6)

which is the generator of the Itô diffusion

dXt = ∇(log(π(Xt)) +
√

2dWt. (7)

Under mild assumptions on π, the dynamics (7) is ergodic with invariant measure dπ [26, 31]. The
adjoint of L is given by

L∗ = ∆f −∇ · (f ∇(log π))

and satisfies L∗π = 0. Often π is a Boltzmann density of the form π = Z−1 exp(−βU), where
β > 0 is an inverse temperature parameter, U : RN → R an energy function and Z the unknown
normalization constant. In this case, Lf = ∆f − β∇U · ∇f is the operator in (3).

In general, obtaining samples directly from the target distribution π is difficult for several
reasons: First, the device that generates the data D(m) could have a bias, so that it samples not π,
but some distribution close to π. This is already the case if the dynamics (7) is discretized in time.
One may remove the bias by Metropolization [19, 31], but this renders sampling more expensive
since proposal steps might be rejected. Second, we may wish to introduce a bias intentionally, in
the sense of importance sampling. If, for example, β−1 is small compared to the energy barriers in
U , then the dynamics (7) is known to suffer from metastability issues and will therefore converge
exponentially slowly to its invariant measure dπ [23]. In order to accelerate convergence, we may
wish to sample at a higher temperature so that q ∝ exp(−β̃U) with β̃ < β. Third, it is often
only possible to generate correlated samples, i.e. by discretizing (7) in time. These correlations
can have long decay times, and it is possible that all our samples xi have strong correlations with
the initial sample x1.

Motivated by this, we generalize diffusion maps so that the requirement q = π is no longer
necessary: We introduce the target measure diffusion map (TMDmap) algorithm which constructs
a matrix Lε,π on the data that approximates the differential operator (6). We use the isotropic
kernel (1) and assume that the target density π can be evaluated on the data up to a normalization
constant.
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Construction of TMDmap

(i) Construct the m ×m kernel matrix Kε with components (Kε)ij = kε(xi, xj) and the
kernel density estimate

qε(xi) =

m∑
j=1

(Kε)ij .

(ii) Form the diagonal matrix Dε,π with components (Dε,π)ii = π1/2(xi) q
−1
ε (xi) and right-

normalize the kernel matrix with Dε,π:

Kε,π = KεDε,π.

(iii) Let D̃ε,π be the diagonal matrix of row sums of Kε,π, that is,

(D̃ε,π)ii = (Kε,π[1])i =

m∑
j=1

(Kε,π)ij .

(iv) Build the TMDmap matrix

Lε,π = ε−1
(
D̃−1ε,πKε,π − I

)
. (8)

The idea of TMDmap is to normalize the kernel twice: The right normalization of Kε with the
diagonal matrix Dε,π in step (ii) cancels unwanted drift terms produced by the sampling density
q, which is estimated via the kernel density estimator qε. It also introduces the desired drift terms
coming from π. The left normalization of Kε,π by D̃ε,π in step (iii) ensures that Lε,π conserves
probability and can thus be interpreted as the generator of a Markov process on the data.

The following theorem establishes the relation between the matrix Lε,π and the differential
operator (6). The pointwise convergence established here is completely equivalent to the analogous
diffusion map results established in [11]. The proof can be found in Appendix B.1.

Theorem 3.1 (Convergence of TMDmap). Let Lε,π be defined via (8) and let f : M → R be
smooth. Then in the limit m→∞ and ε→ 0 and for every xk ∈ D(m),

(Lε,π[f ])k → ∆f(xk) +∇(log π) · ∇f(xk).

Theorem 3.1 establishes pointwise convergence of Lε,π[f ] to the action of the differential op-
erator L in (6) on the function f , evaluated at the data points. Typically, eigenfunctions of L
are the objects of interest. As in standard diffusion maps [11], solutions of the matrix eigenvalue
problem Lε,π[ψ] = λ[ψ] can be used to approximate solutions of the eigenvalue problem

Lψ(x) = λψ(x) ∀x ∈M = supp(q). (9)

If M is bounded, then von Neumann boundary conditions are imposed in (9).
We first note that TMDmap is in fact a generalization of standard diffusion maps: In the

special case where the sampling density q is equal to π, the result in Theorem 3.1 is consistent
with standard diffusion maps with parameter α = 1/2. Unlike standard diffusion maps however,
the limiting operator L in Theorem 3.1 is independent of q. The limiting eigenvalue problem of
Lε,π is also independent of q, but it does depend on M = supp(q) in that it fixes the domain
of (9). This is to be expected; we cannot hope to approximate L in regions we will never draw
samples from. TMDmap is probably most useful in situations where supp(q) ⊇ supp(π), which
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includes the biased sampling and sampling at higher temperatures examples discussed above. If
supp(q) ⊂ supp(π), then eigenvectors of Lε,π will approximate eigenfunctions of L in the restricted
domain M.

We end the section by comparing TMDmap with an alternative approach to approximate the
operator (6) with π ∝ exp(−βU) proposed in [4]. The idea is to use the variable bandwidth kernel

KS
ε (x, y) = h

(
‖x− y‖2

ερ(x)ρ(y)

)
where h is an exponentially decaying function and ρ is a bandwidth function. A diffusion map
type construction detailed in [4] with the choice ρ(x) = exp(−βU/(d + 2)), where d = dim(M),
will also approximate (6). A limitation is that the intrinsic dimension of M has to be explicitly
known in this case, which is not necessary for TMDmap. On the other hand, variable bandwidth
kernels may show less sensitivity with respect to ε and may have more favourable convergence
properties, especially for unbounded M.

Remark 3.2. It is worth noting that

Dε,πD̃ε,πLε,π = ε−1(Dε,πKε,πDε,π −Dε,πD̃ε,π)

is a symmetric matrix. Therefore, left eigenvectors φTnLε,π = λnφ
T
n and right eigenvectors Lε,πψn =

λnψn are related via φn = Dε,πD̃ε,πψn. Moreover, the right eigenvector ψ0 corresponding to λ0 = 0
is the constant function since Lε,π has row sum zero. The left zero eigenvector φ0 is thus given by

φ0 = diag(Dε,πD̃ε,π), or

φ0 =
π1/2(xi)

qε(xi)

m∑
j=1

kε(xi, xj)
π1/2(xj)

qε(xj)
.

From here, it is easy to see that

φ0 =
π(xi)

qε(xi)
+O(ε), (10)

so the target density π is recovered as the left zero eigenvector φ0 of Lε,π times the kernel density
estimate qε. The vector φ0 contains the weights that are necessary in order to compute π-averages
with our q-distributed samples.

4 Anisotropic kernels

Suppose one wishes to extend the family of operators (3) that can be approximated with diffusion
maps to the larger family of forward and backward Kolmogorov operators corresponding to the
Itô process (4) with general—and possibly position dependent—drift b and diffusion matrix A:

Lf := b · ∇f +Aij∇i∇jf, (11a)

L∗f = −∇ · (bf) +∇i∇j(Aijf). (11b)

The restriction to isotropic diffusion A = I in standard diffusion maps is a consequence of the use
of the isotropic kernel (1). This suggests to modify the kernel. Various attempts have been made
to generalize diffusion maps to anisotropic kernels [32, 40, 41, 14]. Berry and Sauer [5] give a
definitive answer in the case that the sampling density q is uniform. In this section, we summarize
the results in [5] for our setting and explicitly include the effect of the sampling density. We then
show that unwanted drift terms appear if q is not uniform.

Let A(x) be a matrix-valued function onM such that each A(x) is a symmetric positive definite
N ×N matrix, and let b(x) be a vector-valued function. Berry and Sauer introduce the family of
local kernels

kA,bε (x, y) = exp
(
− (4ε)

−1
(x− y + εb(x))

T
A(x)−1 (x− y + εb(x))

)
, (12)
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and show that one may approximate L and L∗ with matrices Lε and L∗ε defined on the data in
the diffusion map sense, provided q is uniform. The construction of the matrices Lε and L∗ε is as
follows. Let KA,b

ε be the m ×m kernel matrix with components (KA,b
ε )ij = kA,bε (xi, xj). Let Dε

be the diagonal matrix of row sums of KA,b
ε , i.e.

(Dε)ii =

m∑
j=1

kA,bε (xi, xj).

Then the matrices Lε and L∗ε are constructed as

Lε = ε−1
(
D−1ε KA,b

ε − I
)

(13a)

L∗ε = ε−1
(
(KA,b

ε )TD−1ε − I
)
. (13b)

One confirms easily that L∗ε = LTε and that Lε has row sum zero and positive off diagonal elements,
which allows to interpret Lε and L∗ε as the backward and forward generators of a Markov chain
defined on the data. The following theorem, whose proof can be found in Appendix B.2, is a
generalization of a result by Berry and Sauer [5].

Theorem 4.1. Let A(x) be a matrix-valued function on M ⊂ RN such that each A(x) is a
symmetric positive definite N × N matrix, and let b(x) be a vector-valued function. Let Lε and
L∗ε be defined via (13a) and (13b) respectively, and let f :M→ R be smooth. Then in the limit
m→∞ and ε→ 0 and for every xk ∈ D(m), we obtain

(Lε[f ])k → Lf(xk) + 2
[
q−1Aij(∇if)(∇jq)

]
(xk),

(L∗ε[f ])k → L∗f(xk)−
[
q−1f(b · ∇q +Aij∇i∇jq)

]
(xk),

where L and L∗ are defined in (11a) and (11b), respectively.

If q is uniform, then the unwanted drift terms in Theorem 4.1 are equal to zero and we obtain
(Lε[f ])k → Lf(xk) and (L∗ε[f ])k → L∗f(xk), as desired. But for general q this is not the case, and
since we assumed no knowledge of q we have no way to control the extra terms that corrupt the
approximation of L and L∗. In Section 5 we will show how to modify the construction by Berry
and Sauer so that this unsatisfactory situation can be remedied.

We comment briefly on the origin of the extra drift terms in Theorem 4.1. As m → ∞, we
have

KA,b
ε [f ]k →

∫
M
kA,bε (xk, y)q(y)f(y)dy

in the Monte Carlo sense, with a O(m−1/2) variance term whose exact form is reported in [39].
On the other hand, Berry and Sauer [5] show the integral operator expansion

Gεf(x) ≡ ε−d/2
∫
M

kA,bε (x, y)f(y)dy

= m(x)f(x) + ε [ω(x)f(x) +m(x)Lf(x)] +O(ε3/2),

where m(x) and ω(x) are scalar functions depending on the kernel kA,bε and the induced metric
on M. Thus, up to the normalization factor ε−d/2 which is eventually cancelled out, KA,b

ε [f ]
approximates Gε(fq) and not Gεf . Details can be found in Appendix A.

5 Local kernel diffusion maps

With the same notation as in the previous section, we propose the local kernel diffusion maps
(LKDmap) algorithm which constructs two m × m matrices Lε and L∗ε on the data D(m) that
approximate the differential operators L and L∗ in (11a) and (11b). The algorithm works with
two different kernels: The local kernel kA,bε from (12) and the isotropic kernel kε from (1), which
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is equal to kA,bε with A = I and b = 0. The second kernel is used in order to construct a kernel
density estimate qε of the unknown sampling density q in order to remove the resulting unwanted
drift terms.

As in TMDmap, the idea is to normalize the kernel matrix KA,b
ε twice: The right normalization

by the diagonal matrix Dε̃ in step (ii) removes unwanted drift terms produced by local variations
in the sampling density q. This is done by means of a kernel density estimator qε̃ constructed from
the isotropic kernel kε̃. The left normalization in step (iii) ensures that probability is conserved.

Construction of LKDmap

(i) Construct the m × m kernel matrices KA,b
ε and Kε̃ with components (KA,b

ε )ij =
kA,bε (xi, xj) and (Kε̃)ij = kε̃(xi, xj), and the kernel density estimate

qε̃(xi) =

m∑
j=1

(Kε̃)ij .

(ii) Form the diagonal matrix Dε̃ with components (Dε̃)ii = q−1ε̃ (xi) and set

K̃A,b
ε,ε̃ = KA,b

ε Dε̃, (K̃A,b
ε,ε̃ )∗ = (KA,b

ε )TDε̃.

(iii) Let D̃ε,ε̃ be the diagonal matrix of row sums of K̃A,b
ε,ε̃ , that is,

(D̃ε,ε̃)ii = (K̃A,b
ε,ε̃ [1])i =

m∑
j=1

(K̃A,b
ε,ε̃ )ij .

(iv) Build the LKDmap matrices

Lε,ε̃ = ε−1
(
D̃−1ε,ε̃K̃

A,b
ε,ε̃ − I

)
, (14a)

L∗ε,ε̃ = ε−1
(

(K̃A,b
ε,ε̃ )∗D̃−1ε,ε̃ − I

)
. (14b)

We note that (Dε̃Lε,ε̃)
T = Dε̃L

∗
ε,ε̃, which naturally extends the relation LTε = L∗ε from section

4 to the non-uniform sampling case. Since LKDmap uses two kernels, there are also two associated
scale parameters ε and ε̃. The interpretation of the two parameters is rather different: One can
think of ε as a characteristic time scale for the dynamics (4) associated with A and b; this is
apparent in (12) as the term x + εb(x) mimics an explicit Euler step. On the other hand, ε̃ is
best thought of as the width of the convolution kernel that is used to construct the kernel density
estimate qε̃. It is therefore not always appropriate (and not necessary) to choose ε̃ = ε, and we
will keep both parameters separate in our analysis. Limiting results are obtained for ε → 0 and
ε̃→ 0.

The following theorem establishes the relation between the matrices Lε and L∗ε and the differ-
ential operators L and L∗. The proof can be found in Appendix B.3.

Theorem 5.1 (Convergence of LKDmap). Let A(x) be a matrix-valued function on M ⊂ RN
such that each A(x) is a symmetric positive definite N ×N matrix, and let b(x) be a vector-valued
function. Let Lε,ε̃ and L∗ε,ε̃ be defined via (14a) and (14b), respectively, and let f : M → R be
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smooth. Then in the limit m→∞, ε→ 0 and ε̃→ 0 and for every xk ∈ D(m), we obtain

(Lε,ε̃[f ])k → Lf(xk),

(L∗ε,ε̃[f ])k → L∗f(xk),

where L and L∗ are defined in (11a) and (11b), respectively.

The convergence in Theorem 5.1 is of the same nature as in Theorem 3.1 and standard diffusion
maps [11]. As in Theorem 3.1, solutions to the matrix eigenvalue problems Lε[ψ] = λ[ψ] or
L∗ε[ψ] = λ[ψ], respectively, can be used to approximate solutions of the corresponding eigenvalue
problems for L and L∗ on the domain M = supp(q), with von Neumann boundary conditions
imposed on ∂M if M has a boundary.

LKDmap requires the knowledge of A(xi) and b(xi) for all xi ∈ D(m). If A and b are unknown
but one has access to a blackbox integrator that produces realizations of a dynamical process Xt

with prescribed initial condition X0, then one can construct estimators of A(x) and b(x) based on
the Kramers–Moyal expansion [30]

b(x) = lim
τ→0

1

τ
E [Xτ −X0|X0 = x] (15a)

A(x) = lim
τ→0

1

2τ
Cov [Xτ −X0|X0 = x] (15b)

by e.g. many independent realizations of Xt starting at X0 = x with short integration time τ . If
the dynamical process Xt is an Itô diffusion of the form (4), then (15a) and (15b) will recover
the exact drift and diffusion coefficients of the dynamics (4). If not, then estimators based on
(15a) and (15b) will compute the drift and diffusion coefficients of the best approximation of the
unknown dynamics Xt by an Itô diffusion of the form (4) in the sense of projected dynamics [47].

Numerical estimators Â(x) and b̂(x) of A(x) and b(x) will be subject to statistical error, which
can corrupt the matrix inverse in (12). If one is working with numerical estimators, it may therefore
be necessary to regularize the inverse in the computation of kA,bε , e.g. by replacing (12) with the
regularized version

kA,bε,η (x, y) = exp

(
− (4ε)

−1
(
x− y + εb̂(x)

)T
(Â(x) + ηI)−1

(
x− y + εb̂(x)

))
. (16)

The regularization parameter η may be chosen based on estimates of the statistical error of Â(x).

Remark 5.2. If one wishes to approximate the Kolmogorov operator Lf = β−1∆f − ∇U · ∇f ,
one now has two options: The first is to use TMDmap with π ∝ exp(−βU), which requires the
evaluation of U on the data D(m). The corresponding matrix Lε,π then approximates βL due to
Theorem 3.1. The second option is to use LKDmap with A = β−1I and b = −∇U . This requires
the evaluation of ∇U on the data D(m). The corresponding matrix Lε then approximates L due to
Theorem 5.1. In our numerical examples, we do not see any significant difference in approximation
quality between TMDmap and LKDmap in this situation. If evaluating U is significantly cheaper
than evaluating ∇U , then TMDmap might be preferable.

6 Numerical examples

We discuss a range of numerical examples. Matlab code that implements TMDmap and LKDmap
is available online at https://github.com/ZofiaTr/GeneralizedDiffusionMap.

6.1 Removing large time step bias

In this section, we demonstrate that both TMDmap and LKDmap are capable of removing large
time step bias. We study the generator (6) of the SDE (7) in dimension N = 2 with π ∝ exp(−βU)
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Figure 1: Top left: The marginal of the target distribution π ∝ exp(−βU) (red) and a normalized
histogram of the sampled distribution q (blue) along the x-axis. The sampled distribution is
biased due to the large timestep. Top right: A contour plot of π (black lines) and the sampling
points colored according to qε, showing that qε effectively detects the bias. Bottom: Time scales
−λ−1n (left) and the dominant eigenfunction ψ1(x, 0) (right) of TMDmap, LKDmap, diffusion map,
and a reference discretization. Both TMDmap and LKDmap show excellent agreement with the
reference result, while standard diffusion map shows errors.

being the Boltzmann distribution with parameter β = 6.0 and the double well potential U(x, y) =
(x2− 1)2 + y2. We generate 106 samples by discretizing the SDE (7) with a forward Euler scheme
and a time step of ∆t = 0.03. This introduces a discretization bias, and as a result the sampled
density q is different from π [25]. In our case, ∆t is so large that the bias is very apparent, as can
be seen in Figure 1 (top left).

We now demonstrate that TMDmap and LKDmap are capable of removing this bias. For
the purpose of this computation we thin the data to m = 104 samples. Then we construct the
TMDmap matrix Lε,π, which approximates the operator (6). We also construct the LKDmap
matrix Lε,ε̃ with A = β−1I and b = −∇U , which approximates the same operator (6) up to a
factor of β. Finally, we build a standard diffusion maps matrix Lε,α with α = 1/2. We choose
ε = ε̃ = 0.05 in all cases.

Figure 1 compares the largest time scales tn = −λ−1n associated with the smallest (in magni-
tude) eigenvalues λn of all the matrices constructed. A reference obtained with a high resolution
finite element discretization [22] is also shown. We observe that both TMDmap and LKDmap
estimate the first nine time scales very well. Of particular interest is the largest time scale t1
which is the characteristic jumping time between the two minima (±1, 0) of U . Standard diffusion
maps on the other hand underestimates t1 by one order of magnitude and overestimates the other
time scales significantly. This is a direct consequence of the bias in q. The dominant eigenfunction
ψ1 associated with λ1 is also shown in Figure 1 for all three methods. Again the FEM reference,
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TMDmap and LKDmap all agree very well, while diffusion maps produces significant errors while
still reproducing the correct qualitative behavior.

The reason why TMDmap and LKDmap are able to remove the bias in the sampling density
q is that it is detectable through the kernel density estimate qε. To illustrate this, the data points
colored with qε overlaid with a contour plot of π is shown in Figure 1 in the top right. It is evident
that qε approximates q well and thus effectively detects the bias introduced by q. An alternative
approach based on a least squares approximation of the evolution operator associated with the
dynamics was considered in [46, 21].

6.2 Temperature switch

Figure 2: The potential U from (17) and m = 5, 000 sampling points sampled from a realization
of the dynamics (4) with b = −∇U , σ2 = 2β−1s with βs = 1.0 and initial condition X0 = (−1,−1).

We demonstrate that TMDmap and LKDmap are capable of effectively approximating the
generator (6) with π ∝ exp(−βU) even in cases where samples are generated using a different
temperature βs 6= β, and are not converged. We study the potential

U(x, y) = hx(x2 − 1)2 + (hy + a(x, δ))(y2 − 1)2 (17)

in N = 2 dimensions with

a(x, δ) =
1

5

(
1 + 5 exp(−(x− x0)2/δ)

)2
and the parameters hx = 0.5, hy = 1.0, x0 = 0, and δ = 1/20. The potential is shown in Figure 2
along with m = 5, 000 sampled points from a realization of the dynamics (4) with b = −∇U ,

σ =
√

2β−1s , time step ∆t = 0.02, and initial condition X0 = (−1,−1). This dynamics samples
the density q ∝ exp(−βsU) at the high temperature β−1s = 1.0. Figure 2 shows that the samples
have explored most of the state space, but are clearly not equilibrated. Figure 3 on the right
shows the kernel density estimate qε, which is highest in the bottom left minimum where the
initial condition is located.

Additionally, the function U is designed so that the dynamics (4) with b = −∇U and σ =√
2β−1 shows qualitatively different behavior for different values of β. U has four minima at

(±1,±1). The energy barrier in the y direction is higher then in the x direction, but the additional
coupling term a(x, δ) creates an entropic barrier in the x direction. For small β, the entropic
barrier in x direction is harder to cross then the energy barrier in the y direction, and we expect
the dominant eigenfunction ψ1 of L to parameterize the slow x variable. For large β, the energy
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barrier is harder to cross, and we expect ψ1 to parameterize the y coordinate. Thus, β acts as a
switch which completely changes the behavior of the dominant eigenfunctions.

We construct the TMDmap matrix Lε,π for ε = 0.2 and compute the left zero eigenvector φ0.
The left of Figure 3 shows the estimate of the target distribution π = exp(−βU) according to (10)
for β = 2.0. The truth is shown as contour lines. The approximation seems reasonable.

invariant distribution
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Figure 3: Left: The left zero eigenvector φ0 of the TMDmap matrix Lε,π times the kernel density
estimate qε (colored points) is a good estimator of the invariant density π for β = 2.0 (contour
lines). The relative error in l1 norm is 7.2%. Right: The same points colored according to qε show
that the data is not equilibrated and sampled from the higher temperature βs = 1.0. The relative
error in l1 norm between qe and π is 43%.

The dominant eigenvector ψ1 of Lε,π is shown in Figure 4 for β = βs = 1.0 and a lower
temperature β = 2.0. A reference was also computed with a FEM method [22] on the domain
[−2, 2] × [−2, 2] with von Neumann boundary conditions. Figure 4 shows that as expected, for
the high temperature the x coordinate is the slow coordinate, and for the low temperature the y
coordinate is the slow coordinate. TMDmap captures this in both cases even though only samples
at βs = 1.0 have been used. Figure 5 compares the embeddings Ψ(x) = (eλ1ψ1(x), eλ2ψ2(x))
produced by the first two eigenfunctions of TMDmap and standard diffusion maps for β = 2.0.
Data points are colored according to their location on the y axis from negative (blue) to positive
(yellow); note that the y coordinate is the slow variable in this case. Both embeddings reproduce
the circular topology of the data with the four minima of U in the corners connected by narrow
pathways. However, while TMDmap does recognize the y coordinate as the slow coordinate (y
and ψ1 are aligned in Figure 5 on the left), diffusion maps does not. Diffusion maps also produces
a more distorted embedding due to fact that the four minima of U are not evenly sampled. The
same computations for LKDmap with ε = ε̃ = 0.2 give identical results (not shown).

6.3 Effective dynamics for the butane molecule

We now consider a more complex problem, namely the n-butane molecule in explicit solvent
thermostatted to 300 K. This molecule consists of 14 atoms and thus has a 42 dimensional con-
figuration space. The dimension of the full system, including the solvent, is much higher. Our
data D(m) consists of m = 10, 000 data points subsampled from a 100 ns trajectory computed with
Amber [8]. In order to remove the influence of translations and rotations of the butane molecule,
we align the atoms by minimizing the root-mean-square deviation (RMSD) of the four carbon
atoms.
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Figure 4: Left: The dominant eigenvector of the TMDmap matrix Lε,π for β = 1.0. The contour
lines represent the FEM solution. Right: The dominant eigenvector of Lε,π for β = 2.0. The
relative error in l2 norm, computed by cubic interpolation of the FEM solution, is 4.8% and 5.5%
respectively.
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Figure 5: Different embeddings for the temperature switch example (17). Left: TMDmap embed-
ding with β = 2.0. Right: Diffusion map embedding. Data points are colored according to their
location on the y axis.

We consider the projection onto the 12-dimensional subspace X of the positions of the four
carbon atoms. In this subspace, the dynamics is not an Itô diffusion of the form (4). However, it
is known that the slow dynamics of butane is parameterized by the dihedral angle ϑ, which is a
nonlinear function of the coordinates of the four carbon atoms. Thus, the slow dynamics can be
parametrized by a nonlinear coordinate function on X. It was shown in [47] that in this situation,
an effective Itô diffusion on the slow coordinate space can be a good approximation of the slow
dynamics. Let Zt be the projection of the full 42-dimensional state vector Xt onto X. The effective
Itô diffusion is of the form

dZt = b(Zt)dt+ σ(Zt)dWt (18)

with effective drift and diffusion given by analogs of the Kramers–Moyal expansion (15a) and (15b)

b(z) = lim
τ→0

1

τ
E[Zτ − Z0|Z0 = z],

A(z) = lim
τ→0

1

2τ
Cov[Zτ − Z0|Z0 = z],

where the conditional mean and covariance are taken with respect to the marginal equilibrium
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density of the dynamics for a fixed value z of the 12-dimensional position vector of the 4 carbon
atoms. We want to approximate the generator of the SDE (18) with LKDmap. The (position
dependent) effective drift and diffusion are not known and have to be estimated at the query
points. This may be done by launching very short MD simulations from each query point. For
simplicity, we just use the long trajectory by considering all the points that are within a radius
of r = 0.01 nm of each query point and following where these points get mapped to after a time
τ = 0.05 ps (we cannot consider the limit τ → 0 in practice). This allows us to use ≈ 104 points
to compute b(zi) and A(zi) for each query point zi.

The presence of statistical errors in the estimation of A(zi) make it necessary to regularize the
matrix inverse, thus we replace (12) by (16). As regularization parameter we choose η = 10−2,
which is of the same magnitude as the expected statistical errors in estimating A(zi). We choose
ε = 0.05 ps, which is consistent with the choice of τ , and ε̃ = 0.01 nm2 (note that ε naturally has
units of time, while ε̃ has units of position squared).
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Figure 6: Eigenfunctions ψ1 and ψ2 of the LKDmap matrix Lε,ε̃ associated with the butane
molecule. The data points xi were extracted from one long trajectory. The eigenfunctions are
plotted as a function of the dihedral angle ϑ, which is the known slow variable.

The eigenfunctions ψ1 and ψ2 of the LKDmap matrix Lε,ε̃ are shown in Figure 6. We plot
the values of the two eigenfunctions evaluated at all data points xi as a function of the dihedral
angle ϑ in order to test if LKDmap is able to discover the slow variable ϑ which is hidden in the
data. We observe that the eigenfunctions ψ1 and ψ2 are parametrized by ϑ (cf. [7] for why this
is the case), and plateaus in ψ1 and ψ2 clearly show the expected three metastable sets around
ϑ = 60◦, ϑ = 180◦, and ϑ ≈ 300◦, corresponding to the anti and Gauche conformations. The
configurations in full space corresponding to the identified metastable sets are shown in Figure 7.
Thus LKDmap is able to uncover the hidden slow variable ϑ, which is nonlinear function of the
given time series Zt.

These results agree with an analysis based on Extended Dynamic Mode Decomposition [21].
There is a clear spectral gap between λ2 and λ3. With a Markov State Model analysis with the
pyemma software package [34], we find the implied time scales t̃1 = 47 ps and t̃2 = 37 ps while the
computed eigenvalues λ1 and λ2 suggest t1 = 74 ps and t2 = 36 ps. We note that λ1/2 are more
sensitive to changes in the parameters ε, ε̃ and η then ψ1/2. Moreover, [47] does not guarantee
that the λi are well approximated by the effective dynamics (18) even if the ψi are, this is due to
the unboundedness of the generator L.
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Figure 7: The configurations of the Butane Molecule associated with the three metastable states
around ϑ = 60◦, ϑ = 180◦, and ϑ ≈ 300◦.

6.4 Flow structures in the wake of a vehicle

Suppose we are given positions xi and velocities v(xi) of a number of particles. LKDmap with
b(xi) = v(xi) and A = β−1I approximates the generator (11a) which becomes

L = v · ∇+ β−1∆.

In the limit β−1 → 0, L becomes the generator of the ODE corresponding to the velocity field v.
For finite β−1, L is the generator of the corresponding SDE with added isotropic noise. If the noise
is small, then the dynamics given by L will move along flow lines of the velocity field much faster
then orthogonal to flow lines. This enables us to find almost invariant structures by studying
dominant eigenfunctions of L, without requiring expensive trajectory integration [16]. Alternative
methods can be found in [3, 17].

We consider a data set obtained in a wind tunnel experiment focused on a flow around the rear
end of a simplified vehicle model, the so-called modified Ahmed body, in [33]. The data set consists
of 65 025 points in the xy plane with x being the wind direction and y the direction orthogonal to
the surface. The corresponding velocities are obtained from PIV1 measurements. We construct
the LKDmap matrix Lε,ε̃ with b(xi) = v(xi) and A = β−1I. We choose the parameter values
β−1 = 0.02 m2s−1, ε = 0.2 ms, and ε̃ = 0.01 mm2. Figure 8a shows the eigenvectors ψ1, ψ4, ψ6,
and ψ10 of Lε,ε̃ together with a visualization of the flow lines. The rear of the Ahmed body is
shown in grey. Two counterrotating vortices form directly behind it. There is a clear separation
between the recirculation zone containing the vortices and free flow at the top and bottom. The
location of this boundary, which is of interest in applications, is clearly identified by ψ4. The
other shown eigenfunctions highlight other important aspects of the flow field. The eigenfunctions
not shown further stratify the free stream region into thinner layers which are hard to cross in
the finite time it takes for particles to travel the open measurement domain. We also note that
velocity measurements at the Ahmed body are very noisy and not accessible by the measurement
technique below the model, hence randomly assigned in the data postprocessing2.

Figure 8b shows a clustering of the domain into 5 clusters using the popular k-means method on
the eigenfunctions ψ1, ψ4, ψ6, and ψ10, which is equivalent to spectral clustering [38]. In Figure 8b,
the clustering allows to find the most important structures in the flow: the two main vortices (dark
and azure blue) with the surrounding recirculation zone (orange), the free flow (yellow) and the
mixing layer (green).

We note that the velocity field is treated here as being stationary. Time dependent velocity
fields require an analysis based on coherent rather then almost invariant structures [1], but they
also can be based on generators of certain space-time processes [15].

1Particle image velocimetry (PIV) is an optical method which produces two or three-dimensional vector fields
of the flow. Temporal dependence of the velocity field is averaged out.

2Usually, this part is cut out because only the flow around the car model is relevant. In our analysis, we do not
remove this part of the data.

15



(a) Data colored w.r.t indicated eigenvectors of
LKDmap. Ahmed body is grey. White lines indi-
cate the contours [−0.9, 0, 0.9].

(b) 5 clusters produced with k-means clustering
w.r.t to the eigenvectors from Figure 8a.

Figure 8: LKDmap analysis of Ahmed body.

7 Conclusion

In this article, we have extended the original diffusion maps construction to a much larger class of
differential operators that can be approximated. The differential operators that we approximate
are the generators of certain dynamical Itô diffusion processes that live on the data manifold M.
Our approximations are geometric; it is not necessary that the data was generated by the dynamical
process considered, it only has to sampleM. We stressed the importance of differentiating between
geometry and sampling, and all our approximations are asymptotically unbiased in the sense that
they do not depend on the sampling density q in the limit where the scale parameter ε tends to
zero.

Our first extension, TMDmap, allows users to apply the popular diffusion map construction
with the α = 1/2 normalization [27, 9, 41, 42] in cases where sampling from the density of interest
is too difficult. This is the case in many applications where the density of interest is multimodal,
and TMDmap allows the full toolbox of importance sampling and enhanced sampling strategies
to be incorporated into diffusion maps. Sampling strategies often have a bias-variance trade off,
and with TMDmap one may leverage a low variance and high bias sampler by removing the bias
at the stage of the diffusion map construction. We leave further exploration of this idea for future
work.

Our second extension, LKDmap, generalizes TMDmap further and allows the approximation of
the forward and backward Fokker–Planck operators corresponding to a large class of Itô diffusions,
including non-gradient flow and anisotropic noise. We draw from the local kernels theory developed
in [5], and the class of Itô diffusions that can be approximated with LKDmap is equal to the class
corresponding to the prototypical local kernels in [5]. We cannot handle degenerate noise, which
would render the diffusion matrix non positive definite. Two application areas come to mind for
LKDmap. First, if the data points are given in conjunction with velocity vectors, then LKDmap
can approximate the generator of the flow corresponding to the velocity field with added diffusive
noise. We showed in Section 6.4 that this leads to the identification of almost invariant structures
in the flow. Similarly, having sampled the significant part of the state space of a process, one
may wish to analyze how the global dynamical properties—connected to dominant eigenmodes
of the generator—change under slight variations of the dynamics. Molecular dynamics comes to
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mind as an immediate application field; biasing the molecular potential to influence the statistical
weights of certain conformations and varying dominant implied time scales. Second, one may
wish to approximate high-dimensional dynamics by an Itô diffusion in a reduced space. In Section
6.3, we showed that LKDmap together with estimators for the drift and diffusion coefficients can
approximate the generator of such an effective dynamics and is able to uncover a hidden slow
variable that is a nonlinear function of the data.

Both TMDmap and LKDmap have scale parameters that need to be selected, which can be
difficult in practice. The single scale parameter ε in TMDmap plays the same role as ε in the
original diffusion maps construction [11], and similar considerations for selecting it apply. The
optimal choice of ε in diffusion maps has been discussed in [39], but it involves prefactors that
depend on the manifold M and are unknown in practice. The connectivity of the neighbourhood
graph and the sparsity of the kernel matrix might offer good practical indicators for choosing ε. A
multiscale analysis such as in [24] may give more insight at a higher computational cost. LKDmap
has two scale parameters ε and ε̃ with different interpretations. The parameter ε̃, which is used
to construct the kernel density estimate of q and should be thought of as a length scale, may be
selected purely based on geometric considerations. The second scale ε, which should rather be
thought of as a time scale, may be selected based on typical time scales of the dynamics which is
to be approximated.

A central aspect of this work is the usage of a kernel density estimator for unbiasing. We
only use the most simple kernel density estimators based on radially symmetric kernels with
fixed bandwidth, but in principle one could use more sophisticated ones based on e.g. variable
bandwidth. This may reduce the sensitivity of the algorithms with respect to ε and it may lead
to improved convergence properties. Diffusion maps with variable bandwidth kernels have been
considered in [4]. We leave further considerations for future work.

Another direction for future work is time dependent data, either in the form of time ordered
position measurements of a realization of the dynamics, or in the form of time dependent velocity
fields. Diffusion maps for changing data has been considered in [10] and [1].
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Appendix A Preliminaries

Following the lines of [5], we introduce zeroth, first and second order moments of the local kernel
kA,bε :

m(x) = lim
ε→0

∫
TxM

kA,bε

(
x, x+

√
εẑ
)
dz (A.1)

µi(x) = lim
ε→0

1√
ε

∫
TxM

zik
A,b
ε

(
x, x+

√
εẑ
)
dz (A.2)

Cij(x) = lim
ε→0

∫
TxM

zizjk
A,b
ε

(
x, x+

√
εẑ
)
dz (A.3)

where ẑ is z projected onto the tangent space TxM ofM at x ∈M. It was shown in [5] that with
kA,bε defined via (12), we have µ(x) = m(x)b(x) and C(x) = m(x)A(x). The following result was
shown in [5] by combining Lemmas 3.9 and 3.11 therein. The additional factor of m(x) is due to
the fact that the operators L and L∗ are defined via µ and C in [5]; we prefer to define L and L∗
with b = m−1µ and A = m−1C instead.
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Lemma A.1. Let A(x) be a matrix-valued function on M ⊂ RN such that each A(x) is a sym-
metric positive definite N ×N matrix, and let b(x) be a vector-valued function. Let kA,bε be defined
via (12) and let f :M→ R be smooth. We define the integral operators

Gεf(x) = ε−d/2
∫
M
kA,bε (x, y)f(y)dy (A.4a)

G∗εf(x) = ε−d/2
∫
M
kA,bε (y, x)f(y)dy. (A.4b)

Then the expansions

Gεf(x) = m(x)f(x) + ε [ω(x)f(x) +m(x)Lf(x)] +O(ε3/2), (A.5a)

G∗εf(x) = m(x)f(x) + ε [(ω(x)f(x) + L∗(mf)(x)] +O(ε3/2) (A.5b)

hold, where ω(x) depends on the kernel and induced metric g, and m(x) is the zeroth moment of
kA,bε defined in (A.1).

Since the data points xi ∈ D(m) are sampled according to the density q, the action of matrices
on vectors defined on the data converges to integrals with respect to q in the Monte Carlo sense.
For example,

lim
m→∞

1

m
(KA,b

ε [f ])k =

∫
M
kA,bε (xk, y)q(y)f(y)dy = εd/2Gε(qf)(xk).

For a finite value ofm, the relative error in this expression is expected to be of orderO(m−1/2ε−d/4)
[11]. It turns out that one can use cancellations in order to improve the ε-order in the final variance
terms for the matrices of interest [39].

Let kε again be the isotropic kernel defined in (1). For the purposes of this section, it will be
convenient to distinguish between the kernel density estimate, which we rename here to

q̂ε(xi) =

m∑
j=1

kε(xi, xj),

and the (properly normalized) convolution of q with the kernel kε

qε(x) = ε−d/2
∫
M
kε(x, y)q(y)dy. (A.6)

Then limm→∞m−1q̂ε(xi) = εd/2qε(xi). The following result was shown in [11]. It can also be
deduced from Lemma A.1 by noting that the kernel kε is equal to kA,bε with A = I and b = 0, and
the zeroth moment of kε is m(x) = εd/2.

Lemma A.2. The function qε defined in (A.6) has an expansion of the form

qε = q + ε(ωq −∆q) +O(ε3/2)

uniformly onM. Sufficiently far away from ∂M, the order of the error term is improved to O(ε2).

Appendix B Proofs

B.1 Proof of Theorem 3.1

We first consider the matrix Kε,π = KεDε,π with (Dε,π)ii = π1/2(xi)q̂
−1
ε (xi). Note that

lim
m→∞

1

m
(Kε,π[f ])k = lim

m→∞

1

m

m∑
j=1

kε(xk, xj)

q̂ε(xj)
π1/2(xj)f(xj).
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With the notation in (A.6) and Lemma A.1, we thus have, with q̃ε = π1/2qq−1ε ,

lim
m→∞

1

m
(Kε,π[f ])k = ε−d/2

∫
kε(xk, y)f(y)

π1/2(y)q(y)

qε(y)
dy = Gε(q̃εf)(xk).

The operator L In the corresponding expansion (A.5a) of Gε is given by L = ∆. The limiting
expression for Lε,π as m→∞ reads

lim
m→∞

(Lε,π[f ])k = lim
m→∞

ε−1
(

(Kε,π[f ])k
(Kε,π[1])k

− f(xk)

)
= ε−1

(
Gε(q̃εf)(xk)

Gε(q̃ε)(xk)
− f(xk)

)
. (B.1)

Lemma A.2 with the shorthand q(1) = ω− q−1∆q implies q̃ε = π1/2(1− εq(1)) +O(ε3/2) uniformly
on M. We invoke (A.5a) from Lemma A.1 to obtain

Gε(q̃εf) = mfq̃ε + ε [ωq̃εf +m∆(q̃εf)] +O(ε3/2)

= mπ1/2f + επ1/2
[
ωf − q(1)mf +mπ−1/2∆(π1/2f)

]
+O(ε3/2)

where m(x) is the zeroth moment of the kernel kε, defined in (A.1). Consequently,

Gεq̃ε = mπ1/2 + επ1/2
[
ω − q(1)m+mπ−1/2∆(π1/2)

]
+O(ε3/2).

Dividing the two equations gives, with the shorthand π̃ = π1/2,

(Gεq̃ε)−1 Gε(q̃εf) = f + ε
[
m−1ωf − q(1)f + π̃−1∆(π̃f)

]
− ε

[
m−1ωf − q(1)f + fπ̃−1∆π̃

]
+O(ε3/2)

= f + ε
[
π̃−1∆(π̃f)− fπ̃−1∆π̃

]
+O(ε3/2)

= f + εLf +O(ε3/2), (B.2)

where the last line follows from

π̃−1∆(π̃f)− fπ̃−1∆π̃ = ∆f + 2π̃−1∇π̃ · ∇f = ∆f + 2∇(log π̃) · ∇f = ∆f +∇(log π) · ∇f = Lf.

Theorem 3.1 now follows from (B.1) and (B.2). Sufficiently far away from ∂M the order of the
error term improves to O(ε2).

B.2 Proof of Theorem 4.1

With the notation in (A.6) and Lemma A.1, we have

lim
m→∞

1

m
KA,b
ε [f ]k =

∫
M
kA,bε (xk, y)q(y)f(y)dy = εd/2Gε(qf)(xk). (B.3)

The limiting expression for Lε, defined in (13a), as m→∞ then reads

lim
m→∞

(Lε[f ])k = lim
m→∞

ε−1

(
(KA,b

ε [f ])k

(KA,b
ε [1])k

− f(xk)

)
= ε−1

(
Gε(qf)(xk)

Gε(q)(xk)
− f(xk)

)
.

We invoke (A.5a) from Lemma A.1 to obtain

Gε(qf) = mfq + ε [ωqf +mL(qf)] +O(ε3/2)

where, with abuse of notation, m = m(x) denotes the zeroth moment of the kernel kA,bε , defined
in (A.1). Consequently

(Gεq)−1 Gε(qf) = f + ε
[
q−1L(qf)− q−1fLq

]
+O(ε3/2). (B.4)
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The first equation in Theorem 4.1 now follows from (11a) and

q−1L(qf)− q−1fLq = q−1 [b · ∇(qf) +Aij∇i∇j(qf)]− q−1f [b · ∇q +∇i∇jq]
= Lf + 2q−1Aij(∇if)(∇jq).

For the dual result, we note that, from (B.3) and (13b),

lim
m→∞

(L∗ε[f ])k = ε−1
(
G∗ε
(
(Gεq)−1qf

)
(xk)− f(xk)

)
. (B.5)

We invoke (A.5b) from Lemma A.1 to obtain

G∗ε (qf) = mfq + ε [ωqf + L∗(mqf)] +O(ε3/2).

Consequently
G∗ε
(
(Gεq)−1qf

)
= f + ε

[
L∗f − q−1fLq

]
+O(ε3/2).

The second equation in Theorem 4.1 now follows from (11b).

B.3 Proof of Theorem 5.1

We first consider the matrix K̃A,b
ε,ε̃ = KA,b

ε Dε̃ with (Dε̃)ii = q̂ε̃(xi)
−1. Note that

lim
m→∞

1

m
(K̃A,b

ε,ε̃ [f ])k = lim
m→∞

1

m

m∑
j=1

kA,bε (xk, xj)

q̂ε̃(xj)
f(xj).

With the notation in (A.6) and Lemma A.1, we thus have, with q̃ε̃ = qq−1ε̃ ,

lim
m→∞

1

m
(K̃A,b

ε,ε̃ [f ])k = (ε̃/ε)−d/2
∫
kA,bε (xk, y)

q(y)

qε̃(y)
f(y)dy = (ε̃/ε)−d/2Gε(q̃ε̃f)(xk).

The limiting expression for Lε,ε̃ as m→∞ reads

lim
m→∞

(Lε,ε̃[f ])k = lim
m→∞

ε−1

(
(K̃A,b

ε,ε̃ [f ])k

(K̃A,b
ε,ε̃ [1])k

− f(xk)

)
= ε−1

(
Gε(q̃εf)(xk)

Gε(q̃ε)(xk)
− f(xk)

)
. (B.6)

Lemma A.2 with the shorthand q(1) = ω − q−1∆q implies q̃ε̃ = 1 − ε̃q(1) +O(ε̃3/2) uniformly on
M. We invoke (A.5a) from Lemma A.1 to obtain

Gε(q̃ε̃f) = mfq̃ε̃ + ε [ωq̃ε̃f +mL(q̃ε̃f)] +O(ε3/2)

= mf + ε [ωf +mLf ]− ε̃q(1)mf +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2)

where, with abuse of notation, m = m(x) denotes the zeroth moment of the kernel kA,bε , defined
in (A.1). Consequently,

Gε(q̃ε̃) = m+ εω − ε̃q(1)m+O(ε, ε̃) +O(ε3/2) +O(ε̃3/2). (B.7)

Dividing the two equations gives

(Gεq̃ε̃)−1 Gε(q̃ε̃f) = f + ε
[
m−1ωf + Lf

]
− ε̃q(1)f

− εm−1ωf + ε̃q(1)f +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2)

= f + εLf +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2). (B.8)

The first equation in Theorem 5.1 now follows from combining (B.6) and (B.8). Sufficiently far
away from ∂M the order of the last two error terms improves to O(ε2) and O(ε̃2) respectively.
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For the dual result, note that

lim
m→∞

(L∗ε,ε̃[f ])k = lim
m→∞

m∑
j=1

kA,bε (xj , xk)

q̂ε̃(xj)
(D̃ε,ε̃)

−1
jj f(xj).

On the other hand, by the definition of D̃ε,ε̃ and with q̃ε̃ = qq−1ε̃ as above,

lim
m→∞

1

m
(D̃ε,ε̃)jj = lim

m→∞
K̃A,b
ε,ε̃ [1])j = Gεq̃ε̃(xj).

Combining the two equations gives the limiting expression for L∗ε,ε̃ as m→∞ as

lim
m→∞

(L∗ε,ε̃[f ])k = ε−1
(
G∗ε
(
(Gεq̃ε̃)−1q̃ε̃f

)
(xk)− f(xk)

)
.

Let g = (Gεq̃ε̃)−1f . Using (A.5b) and q̃ε̃ = 1− ε̃q(1) +O(ε̃3/2) gives (again with m = m(x) being
the zeroth moment (A.1))

G∗ε (q̃ε̃g) = mq̃ε̃g + ε (ωq̃ε̃g + L∗(mq̃ε̃g)) +O(ε3/2)

= mg + ε (ωg + L∗(mg))− ε̃mq(1)g +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2).

On the other hand, using (B.7) gives

g = (Gεq̃ε̃)−1f = m−1f − εm−1ωf + ε̃q(1)f +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2).

Combining the two last equations:

G∗ε
(
(Gεq̃ε̃)−1q̃ε̃f

)
= f + ε

[
m−1ωf + L∗f

]
− ε̃q(1)f

− εm−1ωf − ε̃q(1)f +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2)

= f + εL∗f +O(ε, ε̃) +O(ε3/2) +O(ε̃3/2).

The second equation in Theorem 5.1 now follows. Sufficiently far away from ∂M the order of the
last two error terms improves to O(ε2) and O(ε̃2) respectively.
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preserving numerical discretization of reversible diffusions. Commun. Math. Sci, 9(4):1051–
1072, 2011.

22



[23] Tony Lelievre, Mathias Rousset, and Gabriel Stoltz. Free energy computations: A mathemat-
ical perspective. Imperial College Press, 2010.

[24] A. V. Little, J. Lee, Y. M. Jung, and M. Maggioni. Estimation of intrinsic dimensionality of
samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD. In
2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pages 85–88, Aug 2009.

[25] Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity for SDEs and
approximations: locally lipschitz vector fields and degenerate noise. Stochastic processes and
their applications, 101(2):185–232, 2002.

[26] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science
& Business Media, 2012.
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[28] Frank Noé, Ralf Banisch, and Cecilia Clementi. Commute maps: Separating slowly mixing
molecular configurations for kinetic modeling. Journal of Chemical Theory and Computation,
12(11):5620–5630, 2016. PMID: 27696838.
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coordinates, and reaction rate theory. Faraday discussions, 195:365–394, 2017.

24


	1 Introduction
	2 Diffusion maps for isotropic kernels
	3 Target measure diffusion maps
	4 Anisotropic kernels
	5 Local kernel diffusion maps
	6 Numerical examples
	6.1 Removing large time step bias
	6.2 Temperature switch
	6.3 Effective dynamics for the butane molecule
	6.4 Flow structures in the wake of a vehicle

	7 Conclusion
	A Preliminaries
	B Proofs
	B.1 Proof of Theorem ??
	B.2 Proof of Theorem ??
	B.3 Proof of Theorem ??


