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Abstract

We consider complex dynamical systems showing metastable behavior but no lo-
cal separation of fast and slow time scales. The article raises the question of whether
such systems exhibit a low-dimensional manifold supporting its effective dynamics.
For answering this question, we aim at finding nonlinear coordinates, called reaction
coordinates, such that the projection of the dynamics onto these coordinates pre-
serves the dominant time scales of the dynamics. We show that, based on a specific
reducibility property, the existence of good low-dimensional reaction coordinates
preserving the dominant time scales is guaranteed. Based on this theoretical frame-
work, we develop and test a novel numerical approach for computing good reaction
coordinates. The proposed algorithmic approach is fully local and thus not prone to
the curse of dimension with respect to the state space of the dynamics. Hence, it is
a promising method for data-based model reduction of complex dynamical systems
such as molecular dynamics.

1. Introduction

With the advancement of computing power, we are able to simulate and analyze more
and more complicated and high-dimensional models of dynamical systems, ranging from
astronomical scales for the simulation of galaxies, over planetary and continental scales
for climate and weather prediction, down to molecular and sub-atomistic scales via, e.g.,
Molecular Dynamics (MD) simulations aimed at gaining insight into complex biological
processes. Particular aspects of such processes, however, can often be described by much
simpler means than the full process, thus reducing the full dynamics to some essential
behavior or effective dynamics in terms of some essential observables of the system.
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Extracting these observables and the related effective dynamics from a dynamical system,
though, is one of the most challenging problems in computational modeling [31].

One prominent example of dynamical reduction is arguably given by a variety of mul-
tiscale systems with explicit fast-slow time scale separation, mostly singularly perturbed
systems, where either the fast component is considered in a quasi-stationary regime (i.e.
the slow components are fixed and assumed not to change for the observation period), or
the effective behavior of the fast components is injected into the slow processes, e.g. by
averaging or homogenization [60]. Much of the recent attention has been directed to the
case where the deduction of the slow (or fast) effective dynamics is not possible by purely
analytic means, due to the lack of an analytic description of the system, or because the
complexity of the system renders this task unfeasible [31, 32, 12, 21, 56, 71, 14, 79, 36].
However, all of these approaches still depend on some local form of time scale separation
between the “fast” and the “slow” components of the dynamics.

The focus of this work is on specific multiscale systems without local dynamical slow-
fast time scale separation, but for which a reduction to an effective dynamical behavior
supported on some low-dimensional manifold is still possible. The dynamical property
lying at the heart of our approach is that there is a time scale separation in the global
kinetic behavior of the process, as opposed to the aforementioned slow-fast behavior
encoded in the local dynamics. Here, global kinetic behavior means that the multiple
scales show up if we consider the Fokker–Planck equation associated with the dynamics,
say u̇ = Lu, where the Fokker–Planck operator L will have several small eigenvalues,
while the rest of its spectrum is significantly larger. Such dynamical systems exhibit
metastable behavior and the slow time scales are the time scales of statistical relaxation
between the main metastable sets, while there is no time scale gap for the local dynamics
within each of the metastable regions [6, 70].

Global time scale separation induced by metastability has been analyzed for determin-
istic [18] and stochastic dynamical systems [68, 33] for more than a decade. A typical
trajectory of a metastable dynamical system will spend most time within the metastable
sets, while rare transitions between these sets happen as sudden “jumps” roughly along
low-dimensional transition pathways that connect the metastable sets [16, 58, 26]. For
an example, see Figure 1.

The tool to describe the global kinetic behavior of a metastable system is the so-
called transfer operator (the evolution operator of the Fokker–Planck equation), which
acts on functions on the state space. The time scale separation we rely on here implies
a spectral gap for this operator. This fact has been exploited to find low-dimensional
representations of the global kinetics in form of Markov chains whose (discrete) states
represent the metastable sets while the transition probabilities between the states ap-
proximate the jump statistics between the sets on long time scales. Under the name
“Markov State Models” (MSM), this approach has led to a variety of methods [7, 70]
with broad application, e.g., in molecular dynamics, cf. [68, 59, 69, 10]. This reduction
comes with a price: Since the relaxation kinetics is described just by jumps between the
metastable sets in a (finite) discrete state space, any information about the transition
process and its dynamical features is lost. A variety of approaches have been developed
for complementing the MSM approach appropriately [53], but a continuous (in time and
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Figure 1: a) Curved double-well potential with two metastable sets (areas encircled by
light grey lines) around the global minima (−1, 0) and (1, 0). In a typical trajectory (red
line), transitions between the metastable sets are rare events and generally happen along
the transition path (white dashed line). b) The x1-component of a longer trajectory that
shows multiple rare transitions (or events).

space) low-dimensional effective description based on MSMs allowing to understand the
transition mechanism is infeasible.

In another branch of the literature, again heavily influenced by molecular dynamics ap-
plications, model reduction techniques have been developed that assume the existence of
a low-dimensional reaction coordinate or order parameter in order to construct an effec-
tive dynamics or kinetics: Examples are free energy based techniques [75, 42], trajectory-
based sampling techniques [27, 2, 54, 61], methods based on diffusive processes [4, 84, 60],
and many more that rely on the assumption that the reaction coordinates are known.
The problem of actually constructing good reaction coordinates remains an area of on-
going research [46], to which this paper contributes. Typically, reaction coordinates are
either postulated using system specific expert knowledge [8, 72], an approximation to
the dominant eigenfunctions of the transfer operator is sought [70, 10, 61], or machine
learning techniques are proposed [48]. Froyland et al. [31] show that these eigenfunc-
tions are indeed optimal — in the sense of optimally representing the slow dynamics —
but for high dimensional systems computational reaction coordinate identification still
is often infeasible. In the context of transition path theory [78], the committor function
is known to be an ideal [47] reaction coordinate. In [62], the authors construct a level
set of the committor using support vector machines, but the computation of reaction
coordinates is infeasible for high-dimensional systems. The main problem in computing
reaction coordinates for high-dimensional metastable systems results from the fact that
all of these algorithms try to solve a global problem in the entire state space that cannot
be decomposed easily into purely local computations.

In this article, we elaborate on the definition, existence and algorithmic identifica-
tion of reaction coordinates for metastable systems: We define reaction coordinates as
a small set of nonlinear coordinates on which a reduced system [45, 84] can be defined
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having the same dominant time scales (in terms of transfer operator eigenvalues) as the
original system. We then consider a low-dimensional state space on which the reduced
dynamics is a Markov process. Thus, our approach utilizes concepts and transfer op-
erator theory developed previously, but in our case the projected transfer operator is
still infinite-dimensional, in stark contrast to its reduction to a stochastic matrix in the
MSM approach.

The contribution of this paper is twofold. First, we develop a conceptual framework
that identifies good reaction coordinates as the ones that parameterize a low-dimensional
transition manifold M in the function space L1, which is the natural state space of the
Fokker–Planck equation u̇ = Lu associated with the dynamics. The property which
defines M is that, on moderate time scales tfast < t � tslow, the transition density
functions of the dynamics concentrate around M. We provide evidence that such an M
indeed exists due to metastability and the existence of transition pathways. Crucially,
the dimension of M is often lower then the number of dominant eigenfunctions.

Second, we present an algorithm to construct approximate reaction coordinates. Our
algorithm is data-driven and fully local, thus circumventing the main problem of pre-
viously proposed algorithms: In order to compute the value of the desired reaction
coordinate ξ at a location x in the state space X, only the ability to simulate short
trajectories initialized at x is needed. In particular, we assume no a priori knowledge
of metastable sets, no global equilibration, and we do not need to resolve the slow time
scales numerically. The algorithm is built on two pillars:

1. The simulation time scale t can be chosen a lot smaller than the dominant time
scales tslow of the system, such that it is feasible to simulate many short trajectories
of length t.

2. We utilize embedding techniques inspired by the seminal work of Whitney [83] and
the recent work [19] that allows one to take almost any mapping into a Euclidean
space of more than twice the dimension of the manifold M and to obtain a one-to-
one image of it.

These two pillars together with the low-dimensionality of M imply that we can represent
the image of the reaction coordinate in a space with moderate (finite) dimension. Then,
we can use established manifold learning techniques [56, 12, 71] to obtain a parametriza-
tion of the manifold in the embedding space and pull this parametrization back to the
original state space, hence obtaining a reaction coordinate.

The locality of the algorithm also implies that reaction coordinates are only com-
puted in the region of state space where sampled points are available. This is a common
issue with manifold learning algorithms; here it manifests as the transition manifold
being reliably learned only in regions we have good sampling coverage of. However,
recently several methods have appeared in the literature that allow a fast exploration
of the state space. These methods do not provide equilibrium sampling, but instead
try to rapidly cover the essential part of the state space with sampling points. This
can be achieved with enhanced sampling methods such as Umbrella Sampling [41, 76],
Metadynamics [43, 44], Blue-Moon sampling [11], Adaptive Biasing Force method [15],
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or Temperature-Accelerated Molecular Dynamics [49], as well as trajectory-based tech-
niques like Milestoning [28], Transition Interface Sampling [55], or Forward Flux Sam-
pling [3]. Alternatively, several techniques like the equation-free approach [36], the
heterogeneous multiscale method (HMM) [23] and methods based on diffusion maps [9]
have been developed to utilize short unbiased MD trajectories for extracting information
that allows much larger timesteps. This can be combined with reaction coordinate based
effective dynamics [84, 85].

In principle, the method we present in this article may be combined with any enhanced
sampling technique in order to generate sampling points that cover a large part of the
state space. For simplicity, we will use long MD trajectories to generate our sampling
points, but we do not require that the points are distributed according to an equilibrium
distribution.

The paper is organized as follows: Section 2 introduces transfer operators, which de-
scribe the global kinetics of the stochastic process. Based on these transfer operators, we
define metastability, i.e. the existence of dominant time scales. In Section 3, we describe
the model reduction techniques Markov state modeling and coordinate projection that
are designed to capture the dominant time scales of metastable systems. Furthermore,
we characterize good reaction coordinates. In the first part of Section 4, we show that
our dynamical assumption ensures the existence of good reaction coordinates, then in
the second part we describe our approach to compute them. Several numerical examples
are given in Section 5. Concluding remarks and an outlook are provided in Section 6.

2. Transfer operators and their properties

As mentioned in the introduction, global properties of dynamical systems such as meta-
stable sets or a partitioning into fast and slow subprocesses can be obtained using transfer
operators associated with the system and their eigenfunctions. In this section, we will
introduce different transfer operators needed for our considerations.

2.1. Transfer operators

In what follows, P[ · | E] denotes probabilities conditioned on the event E and E[· | E]
the expectation value. Furthermore, {Xt}t≥0 is a stochastic process defined on a state
space X ⊂ Rn.

Definition 2.1 (Transition density function). Let A be any measurable set, then the
transition density function pt : X × X → R≥0 of a time-homogeneous stochastic process
{Xt}t≥0 is defined by

P[Xt ∈ A | X0 = x] =

∫

A

pt(x, y) dy.

That is, pt(x, y) is the conditional probability density of Xt = y given that X0 = x.

With the aid of the transition density function, we can now define transfer operators.
Note, however, that the transition density is in general not known explicitly and needs

5



to be estimated from simulation data. In what follows, we assume that there is a unique
equilibrium density % that is invariant under {Xt}t≥0, that is, it satisfies

%(x) =

∫

X

pt(y, x)%(y) dy,

a.e. on X. Let µ denote the associated invariant measure dµ = %dx.

Definition 2.2 (Transfer operators). Let p ∈ L1(X) be a probability density1, u = p/% ∈
L1
µ(X) be a probability density with respect to the equilibrium density %, and f ∈ L∞(X)

an observable of the system. For a given lag time t:

(a) The Perron–Frobenius operator Pt : L1(X)→ L1(X) is defined by the unique linear
extension of

Ptp(x) =

∫

X

pt(y, x) p(y) dy

to L1(X).

(b) The Perron–Frobenius operator T t : L1
µ(X)→ L1

µ(X) with respect to the equilibrium
density is defined by the unique linear extension of

T tu(x) =

∫

X

%(y)

%(x)
pt(y, x)u(y) dy

to L1
µ(X).

(c) The Koopman operator Kt : L∞(X)→ L∞(X) is defined by

Ktf(x) =

∫

X

pt(x, y) f(y) dy = E[f(Xt) | X0 = x]. (1)

All these are well-defined non-expanding operators on the respective spaces.

The equilibrium density % satisfies Pt% = %, that is, % is an eigenfunction of Pt with
associated eigenvalue λ0 = 1. The definition of T t relies on %, we have % T tu = Pt(u%).

Instead of their natural domains from Definition 2.2, all our transfer operators are
considered on the following Hilbert spaces: Pt : L2

1/µ(X) → L2
1/µ(X), T t : L2

µ(X) →
L2
µ(X), and Kt : L2

µ(X)→ L2
µ(X). They are still well-defined non-expansive operators on

these spaces [1, 67, 38].
Furthermore, we will need the notion of reversibility for our considerations. Reversibil-

ity means that the process is statistically indistinguishable from its time-reversed coun-
terpart.

1We denote by Lq the space (equivalence class) of q-integrable functions with respect to the Lebesgue
measure. Lqν denotes the same space of function, now integrable with respect to the measure ν.
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Definition 2.3 (Reversibility). A system is said to be reversible if the detailed balance
condition

%(x) pt(x, y) = %(y) pt(y, x)

is satisfied for all x, y ∈ X.

In what follows, we will assume that the system is reversible.
One prominent example for a class of SDEs satisfying uniqueness of the equilibrium

density and reversibility is given by

dXt = −∇V (Xt) dt+
√

2β−1 dWt . (2)

Here, V is called the potential, β is the non-dimensionalized inverse temperature, and Wt

is a standard Wiener process. The process generated by (2) is ergodic and thus admits a
unique positive equilibrium density, given by %(x) = exp(−βV (x))/Z, under mild growth
conditions on the potential V [50, 51]. Note that the subsequent considerations hold for
all stochastic processes that satisfy reversibility and ergodicity with respect to a unique
positive invariant measure and are not limited to the class of dynamical systems given
by (2). See [70] for a discussion of a variety of stochastic dynamical systems that have
been considered in this context.

As a result of the detailed balance condition, the Koopman operator Kt and the
Perron–Frobenius operator with respect to the equilibrium density T t become identical
and we obtain

〈
Ptf, g

〉
1/µ

=
〈
f, Ptg

〉
1/µ

and
〈
T tf, g

〉
µ

=
〈
f, T tg

〉
µ
,

i.e. all the transfer operators become self-adjoint on the respective Hilbert spaces from
above. Here 〈·, ·〉µ and 〈·, ·〉1/µ denote the natural scalar products on the weighted
spaces L2

µ and L2
1/µ, respectively.

2.2. Spectral decomposition

Due to the self-adjointness, the eigenvalues λti of Pt and T t are real-valued and the
eigenfunctions form an orthogonal basis with respect to 〈·, ·〉1/µ and 〈·, ·〉µ, respectively.

In what follows, we assume that the spectrum of T t is purely discrete given by (infinitely
many) isolated eigenvalues. This assumption is made for the sake of simplicity. It is
actually not required for the rest of our considerations; it would be sufficient to assume
that the spectral radius R of the essential spectrum of T t is strictly smaller than 1,
and some isolated eigenvalues of modulus larger than R exist. It has been shown that
this condition is satisfied for a large class of metastable dynamical systems, see [70, Sec.
5.3] for details. For example, the process generated by (2) has purely discrete spectrum
under mild growth and regularity assumptions on the potential V .

Under this condition, ergodicity implies that the dominant eigenvalue λ0 is the only
eigenvalue with absolute value 1 and we can thus order the eigenvalues so that

1 = λt0 > λt1 ≥ λt2 ≥ . . . .

7



The eigenfunction of T t corresponding to λ0 = 1 is the constant function ϕ0 = 1X. Let ϕi
be the normalized eigenfunctions of T t, i.e. 〈ϕi, ϕj〉µ = δij , then any function f ∈ L2

µ(X)

can be written in terms of the eigenfunctions as f =
∑∞

i=0 〈f, ϕi〉µ ϕi. Applying T t thus
results in

T tf =

∞∑

i=0

λti 〈f, ϕi〉µ ϕi.

For more details, we refer to [38] and references therein.

2.3. Implied time scales

For some d ∈ N, we call the d + 1 dominant eigenvalues λt0, . . . , λ
t
d of T t the dominant

spectrum of T t, i.e.
σdom(T t) := {λt0, . . . , λtd}.

Usually, d is chosen in such a way that there is a spectral gap after λtd, i.e. 1 − λtd �
λtd − λtd+1. The (implied) time scales on which the associated dominant eigenfunctions
decay are given by

ti = −t/ log(λti). (3)

If T t is a semigroup of operators, then there are κi ≤ 0 with λti = exp(κit) such that
ti = −κ−1

i holds. Assuming there is a spectral gap, the dominant time scales satisfy
t1 ≥ . . . ≥ td � td+1. These are the time scales of the slow dynamical processes, also
called rare events, which are of primary interest in applications. The other, fast processes
are regarded as fluctuations around the relative equilibria (or metastable states) between
which the relevant slow processes travel.

3. Projected transfer operators and reaction coordinates

The purpose of dimension reduction in molecular dynamics is to find a reduced dynam-
ical model that captures the dominant time scales of the system correctly while keeping
the model as simple as possible. In this section, we will introduce two different projec-
tions and the corresponding projected transfer operators. The goal is to find suitable
projections onto the slow processes.

3.1. Galerkin projections and Markov state models

One frequently used approach to obtain a reduced model is Markov state modeling. The
goal is to find a model that is as simple as possible and yet correctly reproduces the
dominant time scales. Given a fixed t > 0, most authors [58, 59] refer to a Markov state
model (MSM) as a matrix T t ∈ R(d+1)×(d+1) such that

σdom(T t) ≈ σdom(T t), (4)

and it has been studied in detail under which condition this can be achieved [20, 65].
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There are different ways of constructing an MSM, maybe the most intuitive one is
also the simplest: Let the entries of T t be the transition rates between metastable sets.
A typical molecular system with d dominant time scales will have d+ 1 metastable sets
C1, . . . ,Cd+1 (also called cores) and its dynamics is characterized by transitions between
these sets and fluctuations inside the sets (see Figure 1 for an illustration). Since the
fluctuations are on faster time scales, we neglect them by setting [68]

T tcore,ij = Pµ[Xt ∈ Cj
∣∣X0 ∈ Ci] , (5)

where Pµ denotes the probability measure conditioned to the initial condition X0 being
distributed according to µ. Thus, T tcore,ij is the probability that the process in equilibrium
jumps to the metastable set Cj in time t, given that it started in the metastable set Ci.
Note that (5) can be equivalently rewritten as

T tcore,ij =

〈
T t1Ci , 1Cj

〉
µ

〈1Ci , 1Ci〉µ
, (6)

where 1Ci is the characteristic function of the set Ci.
Equation (6) readily suggests that T tcore is a projection of the transfer operator T t,

namely its Galerkin projection onto the space spanned by the characteristic functions
1C1 , . . . ,1Cd+1

[68].

Definition 3.1 (Galerkin projection). Given a set of basis functions ψ1, . . . , ψm ∈
L2
µ(X), let V := span{ψ1, . . . , ψm} and ψ := (ψ1, . . . , ψm)ᵀ. The projection to V or,

equivalently, to ψ, ΠV = Πψ : L2
µ(X)→ V is defined as

〈Πψf − f, g〉µ = 0 ∀ f ∈ L2
µ(X), ∀ g ∈ V .

The residual projection is given by Π⊥ψ = Id−Πψ, where Id is the identity. The Galerkin

projection of T t to V is given by the linear operator T t : V→ V satisfying

〈
T tf − T tf, g

〉
µ

= 0 ∀ f, g ∈ V .

Equivalently, T t = ΠψT t. We also denote the extension of T t to the whole L2
µ(X),

given by ΠψT tΠψ, by T t. Furthermore, we denote the matrix representation of T t with
respect to the basis (ψ0, . . . , ψd) by T t as well. Either it will be clear from the context
which of the objects T t is meant or it will not matter; e.g., the dominant spectrum is
the same for all of them.

We see that Tcore is the matrix representation of the Galerkin projection with respect
to the basis functions 〈1Ci , 1Ci〉−1

µ 1Ci , i = 1, . . . , d + 1. More general MSMs can be
built by Galerkin projections of the transfer operator to spaces spanned by other — not
necessarily piecewise constant — basis functions [80, 69, 82, 37, 38, 61, 57]. However,
in some of these methods, one also often loses the interpretation of the entries of the
matrix T t as probabilities.

Ultimately, the best MSM in terms of approximation quality in (4) is given by the
Galerkin projection of T t onto the space spanned by its dominant eigenfunctions ϕ0, . . . ,
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ϕd. This space is invariant under T t since T tϕi = λtiϕi and the dominant eigenvalues
(and hence the time scales) are the same for the MSM and for T t. Due to the curse of
dimensionality, however, the computation of the eigenfunctions ϕi is in general infeasible
for high-dimensional problems.

Remark 3.2. There are quantitative results assessing the error in (4) of the MSM in
terms of the projection errors ‖Π⊥ψϕi‖L2

µ
, i = 0, . . . , d, cf. [70, Section 5.3]. One can

obtain a weaker, but similar result from our Lemma 3.5 in the next section.

3.2. Coordinate projections and effective transfer operators

While the MSMs from above successfully reproduce the dominant time scales of the
original system, they often discard all other information about the system, such as the
transition paths between metastable sets. Minimal coordinates that describe these tran-
sitions are called reaction coordinates and reducing the dynamics onto these coordinates
yields effective dynamics [45, 84]. The goal of the previous section — namely to re-
tain the dominant time scales of the original dynamics in a reduced model — can now
be reformulated for this lower-dimensional effective dynamics or, equivalently, for its
(effective) transfer operator.

Let ξ : X→ Rk be a C1 function, where k ≤ n. Let Lz = {x ∈ X | ξ(x) = z} be the z-
level set of ξ. The so-called coarea formula [29, Section 3.2], which can be considered as
a nonlinear variant of Fubini’s theorem, splits integrals over X into consecutive integrals
over level sets of ξ and then over the range of ξ. For f ∈ L2

µ(X), we have2

∫

X
f(x) dµ(x) =

∫

ξ(X)

∫

Lz
f(x′)%(x′) det

(
∇ξ(x′)ᵀ∇ξ(x′)

)−1/2
dσz(x

′) dz , (7)

where z = ξ(x) and σz is the surface measure on Lz. The coordinate projection, defined
next, averages a given function along the level sets of a coordinate function ξ.

Definition 3.3 (Coordinate projection). For f ∈ L2
µ(X), we define

Pξf(x) =

∫

Lz
f(x′) dµz(x

′) (8)

=
1

Γ(z)

∫

Lz
f(x′)%(x′) det(∇ξ(x′)ᵀ∇ξ(x′))−1/2 dσz(x

′), (9)

where µz is a probability measure on Lz with density %
Γ(z) det(∇ξᵀ∇ξ)−1/2 with respect

to σz. Here, Γ(z) is just the normalization constant so that µz becomes a probability
measure. The residual projection is given by P⊥ξ = Id− Pξ.

To get a better feeling for the action of Pξ, note that Pξf(x) is the expectation of
f(x′) with respect to µ conditional to ξ(x′) = ξ(x), i.e.

Pξf(x) = Eµ
[
f(x′)

∣∣ ξ(x′) = ξ(x)
]
.

2The coarea formula holds for L1 functions, but L2
µ ⊂ L1

µ, since µ is a probability measure (i.e., it is
finite).
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Or, in other words, µz is the marginal of µ conditional to ξ(x) = z. Note, in particular,
that Pξf is itself a function on X, but it is constant on the level sets of ξ, and thus let

us set P̂ξf(ξ(x)) = Pξf(x) for x ∈ Lξ(x). It follows from the coarea formula (7) and (9)
that ∫

X
f(x) dµ(x) =

∫

ξ(X)
Γ(z)P̂ξf(z) dz . (10)

Next, we state some properties of the coordinate projection.

Proposition 3.4. The coordinate projection has the following properties.

(a) Pξ is a linear projection, i.e. P 2
ξ = Pξ.

(b) Pξ is self-adjoint with respect to 〈·, ·〉µ.

(c) Pξ : L2
µ(X)→ L2

µ(X) is orthogonal, hence non-expansive, i.e. ‖Pξf‖L2
µ
≤ ‖f‖L2

µ
.

Proof. See Appendix A.

We use the coordinate projection to describe the dynamics-induced propagation of
reduced distributions with respect to the variable ξ. To this end, we define the effective
transfer operator T tξ : L2

µ(X)→ L2
µ(X) by

T tξ = PξT tPξ. (11)

We immediately obtain from the self-adjointness of T t (see Section 2) and Proposi-
tion 3.4 (b) that T tξ is a self-adjoint operator on L2

µ(X). Moreover, ‖T t‖L2
µ
≤ 1 and

Proposition 3.4 (c) imply that ‖T tξ ‖L2
µ
≤ 1. Thus, the spectrum of the effective transfer

operator lies in the interval [−1, 1], too.
Returning to the purpose of these constructions, we call ξ a good reaction coordinate if

σdom(T t) ≈ σdom(T tξ ). (12)

While the previously introduced Markov state model T t obtained by the Galerkin pro-
jection was approximating the dominant spectrum of the original transfer operator by a
finite-dimensional operator (i.e. a matrix), the effective transfer operator still acts on an
infinite-dimensional space. The reduction lies in the fact that T t operates on functions
over X ⊆ Rn, but the effective transfer operator T tξ operates essentially on functions

over ξ(X) ⊂ Rk, although we embed those into X through the level sets of ξ.
As mentioned above, a Galerkin projection of the transfer operator onto its dominant

eigenfunctions is a perfect MSM. In the same vein, we ask here how we can characterize
a good reaction coordinate. We can make use of the following general result.

Lemma 3.5. Let H be a Hilbert space with scalar product 〈·, ·〉, and associated norm ‖ · ‖,
let Q : H→ H be some orthogonal projection on a linear subspace of H, with Q⊥ = Id−Q.
Let T : H → H be a self-adjoint non-expansive linear operator, and u with ‖u‖ = 1 its
eigenvector, i.e., Tu = λu for some λ ∈ R. If ‖Q⊥u‖ < ε, then TQ := QTQ has an
eigenvalue λQ ∈ R with |λ− λQ| < ε/

√
1− ε2.
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Proof. Using Q = Id−Q⊥, we have

TQQu = QT QQ︸︷︷︸
=Q

u = QTu−QTQ⊥u︸ ︷︷ ︸
=:−ζ

= λQu+ ζ,

where ‖ζ‖ ≤ ‖Q⊥u‖ < ε since Q and T are non-expanding. Thus, u′ := Qu/‖Qu‖
satisfies TQu

′ = λu′ + ζ/‖Qu‖, and the orthogonality of Q gives ‖Qu‖ >
√

1− ε2.
Now, any orthogonal projection is self-adjoint, as is shown in the proof of Proposi-
tion 3.4, hence the operator QTQ is self-adjoint, too, and thus normal. From the theory
of pseudospectra for normal operators [77, Theorems 2.1, 2.2, and §4], we know that
if ‖TQu′ − λu′‖ < ε/

√
1− ε2, then TQ has an eigenvalue λQ ∈ R in the ε/

√
1− ε2-

neighborhood of λ.

With H = L2
µ, Q = Pξ, and T = T t we immediately obtain the following result.

Corollary 3.6. As before, let λti and ϕi, i = 0, . . . , d, denote the dominant eigenvalues
and eigenfunctions of T t, respectively. For any given i, if ‖P⊥ξ ϕi‖L2

µ
< ε, then there is

an eigenvalue λ̃ti of T tξ with |λti − λ̃ti| < ε/
√

1− ε2.

Corollary 3.6 implies that if the projection error of all dominant eigenfunctions is
small, then ξ is a good reaction coordinate in the sense of (12). Very similar results
are available for approximation of the eigenvalues of the infinitesimal generator of the
Fokker–Planck equation associated with the transfer operator if the dynamical system
under consideration is continuous in time [85].

Under which conditions is the projection error small? Let us consider the case where
there are ϕ̃i : Rk → R, i = 1, . . . , d, such that ϕi(x) = ϕ̃i(ξ(x)). We then say that ϕi is
a function of ξ or that ξ parametrizes ϕi. If ξ parametrizes ϕi perfectly, the projection
error obviously vanishes. Thus, trivially, by choosing ξ = ϕ = (ϕ1, . . . , ϕd)

ᵀ, we obtain a
perfect reaction coordinate since with ϕ̃i(z) := zi with ϕi = ϕ̃i ◦ ξ. However, the eigen-
functions are global objects, i.e., their computation is prohibitive in high dimensions.
Since we are aiming at computing a reaction coordinate, we have to answer the question
of whether there is a reaction coordinate ξ that can be evaluated based on local computa-
tions only while it parametrizes the dominant eigenfunctions of T t well enough such that
it leads to a small projection error. We will see next that this question can be answered
by utilizing a common property of most metastable systems: The transitions between
the metastable sets happen along so-called reaction pathways, which imply the existence
of transition manifolds in the space of transition densities. A suitable parametrization
of this manifold results in a parametrization of the dominant eigenfunctions with a small
error.

4. Identifying good reaction coordinates

The goal is now to find a reaction coordinate ξ that is as low-dimensional as possible
and results in a good projected transfer operator in the sense of (12). As we saw in the
previous section, the condition ‖P⊥ξ ϕi‖L2

µ
≈ 0 is sufficient. Thus, the idea to numerically

12



seek ξ that parametrizes the dominant eigenfunctions of T t in the ‖ · ‖L2
µ
-norm seems

natural since this would lead to small projection error ‖P⊥ξ ϕi‖L2
µ
.

In fact, eigenfunctions of transfer operators have been used before to compute reduced
dynamics and reaction coordinates: In [31], methods to decompose multiscale systems
into fast and slow processes and to project the dynamics onto these subprocesses based
on eigenfunctions of the Koopman operator Kt are proposed. In [52], the dominant
eigenfunctions of the transfer operator T t, which due to the assumed reversibility of
the system is identical to Kt, are shown to be good reaction coordinates. Also, com-
mitor functions (introduced in Appendix B), which are closely related to the dominant
eigenfunctions, have been used as reaction coordinates in [22, 47].

However, we propose a fundamentally different path in defining and finding reaction
coordinates, as working with dominant eigenfunctions has two major disadvantages:

1. The eigenproblem is global. Thus if we wish to learn the value of an eigenfunction
ϕi at only one location x ∈ X, we need an approximation of the transfer operator Tt
that has to be accurate on all of X. The computational effort to construct such an
approximation grows exponential with dim(X), this is the curse of dimensionality.
There have been attempts to mitigate this [80, 35, 81], but we aim to circumvent
this problem entirely. Given two points x, y ∈ X, we will decide whether ξ(x) is
close to ξ(y) or not by using only local computations around x and y (i.e. samples
from the transition densities pt(x, ·) and pt(y, ·) for moderate t).

2. The number of dominant eigenfunctions (d + 1) equals the number of metastable
states, and this number can be much larger than the dimension of the transition
manifold. This fact is illustrated in Example 4.1 below.

Example 4.1. Let us consider a diffusion process of the form (2) with the circular
multi-well potential shown in Figure 2. Choosing a temperature that is not high enough
for the central potential barrier to be overcome easily, transitions between the wells
typically happen in the vicinity of a one-dimensional reaction pathway, the unit circle.
The number of dominant eigenfunctions, however, corresponds to the number of wells.
Nevertheless, projecting the system onto the unit circle would retain the dominant time
scales of the system, cf. Section 5. 4

4.1. Parametrization of dominant eigenfunctions

If the (d + 1) dominant eigenfunctions do not depend fully on the phase space X, a
lower-dimensional and ultimately easier to find reaction coordinate suffices for keeping
the eigenvalue approximation error (12) small. It is easy to see that if there exists a
function ξ : X → Rk for some k so that the eigenfunctions ϕ are constant on the level
sets of ξ, i.e., there exist functions ϕ̃i : Rk → R, i = 1, . . . , d such that ϕi = ϕ̃i ◦ ξ,
then the projection error ‖P⊥ξ ϕi‖L2

µ
is zero. A quantitative generalization of this is the

statement that if the eigenfunctions ϕi are almost constant on level sets of a ξ, then the
projection error is small.

13



a) b)

Figure 2: a) Potential with seven wells and thus seven dominant eigenvalues, but only
a one-dimensional reaction coordinate. The reaction pathway is marked by a dashed
white line. b) Dominant eigenvalues of T t for t = 0.1 and β = 0.5. The spectral gap is
clearly visible.

Lemma 4.2. Assume that there exists a function ξ : X→ Rk for some k and functions
ϕ̃i : Rk → R, i = 1, . . . , d, with

|ϕi(x)− ϕ̃i(ξ(x))| ≤ ε ∀ x ∈ X. (13)

Then ‖P⊥ξ ϕi‖L2
µ
≤ 2ε.

Proof. Assuming (13) holds, there exists a function ci : R→ R with ci(x) ≤ 1 ∀x ∈ X so
that

ϕi(x) = ϕ̃i(ξ(x)) + ci(x)ε .

Thus, we have

Pξϕi(x) =

∫

Lξ(x)

(
ϕ̃i
(
ξ(x′)

)
+ ci(x

′)ε
)
dµξ(x)(x

′)

= ϕ̃i
(
ξ(x)

)
+ ε

∫

Lξ(x)
ci(x

′)dµξ(x)(x
′).

For the projection error, we then obtain

‖Pξϕi − ϕi‖L2
µ
≤ ‖Pξϕi − ϕ̃i ◦ ξ‖L2

µ
+ ‖ϕ̃i ◦ ξ − ϕi‖L2

µ

≤ 2ε.

Remark 4.3. From the proof we see that the pointwise condition (13) can be replaced
by the much weaker condition

∫

Lz

∣∣ϕi(x′)− ϕ̃i(ξ(x′))
∣∣ dµz(x′) ≤ ε,

for all level sets Lz of ξ.
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From here on, we address the following two central questions:

(Q1) In which dynamical situations can we expect to find low-dimensional reaction co-
ordinates?

(Q2) How can we computationally exploit the properties of the dynamics to obtain reac-
tion coordinates?

Let us start with the first question. We will address the second question in Section 4.2
and Section 4.3. Experience shows [24, 63, 25, 70] that transitions between metastable
states tend to happen along so-called reaction pathways, which is the low-dimensional
dynamical backbone in the high-dimensional state space, connecting the metastable
states via saddle points of the potential V [30].

From now on, we observe the system at an intermediate time scale tslow � t � tfast

(where tslow and tfast are the implied time scales td, td+1 from Section 2.3) and thus
assume that the process Xt has already left the transition region (if it started there),
equilibrated to a quasi-stationary distribution inside some metastable wells, but has not
had enough time to equilibrate globally. At this time scale, starting in some x ∈ X,
the transition density pt(x, ·) is observed to approximately depend only on progress
along these reaction paths; see Figure 3 for an illustration. This means that the density
pt(x, ·) on the fiber perpendicular to the transition pathway is approximately the same
as pt(x∗, ·) for some x∗ on the transition pathway. As this pathway is low-dimensional,
this means that the image Q(X) of the map

Q(x) := pt(x, ·)

is almost a low-dimensional manifold in L1(X).
The existence of this low-dimensional structure in the space of probability densities

is exactly the assumption we need to ensure that the dominant eigenfunctions are low-
dimensionally parametrizable, and thus that a low-dimensional reaction coordinate ξ
exists. This assumption is made precise in Definition 4.4. To summarize, we will see
that ξ is a good reaction coordinate if pt(x, ·) ≈ pt(y, ·) for ξ(x) = ξ(y).

Definition 4.4. [(ε, r)-reducibility and transition manifold] We call the process Xt (ε, r)-
reducible, if there exists a smooth closed r-dimensional manifold M ⊂ L2

1/µ ⊂ L1(X) such
that for tfast � t� tslow and all x ∈ X

min
f∈M
‖f − pt(x, ·)‖L2

1/µ
≤ ε (14)

holds. We call M the transition manifold and the map Q : X→M,

Q(x) := arg min
f∈M
‖pt(x, ·)− f‖L2

1/µ
(15)

the mapping onto the transition manifold. We can set M = cl(Q(X)), where cl(Y)
denotes the closure of the set Y.3

3If it is necessary to break ties in (15), we can do so by taking any of the minimizers. The mapping x 7→
pt(x, ·) can be shown to be smooth [5, Theorem C.1], hence Q(X) is a smooth manifold satisfying (14).
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Figure 3: a) and b) The transition densities Q(x1) and Q(x2) are “similar” to Q(x∗) for
some x∗ on the transition path (dashed line) that connects the metastable sets A and B.
c) The mapping Q can be thought of as mapping all points that are “similar” under Q to
the same point in L1(X). The image of Q thus forms a r-dimensional manifold in L1(X).

Remark 4.5. While it is natural to motivate (ε, r)-reducibility by the existence of
reaction pathways in phase space, it is not strictly necessary. There exist stochastic
systems without low-dimensional reaction pathways whose densities still quickly converge
to a transition manifold in L1. Future work includes the identification of necessary and
sufficient conditions for the existence of transition manifolds (see the first point in the
conclusions). We also further elaborate on the connection between reaction pathways
and transition manifolds in Appendix B.

Remark 4.6. We recall from Section 2 that the Perron–Frobenius operator Pt is also
naturally defined on the space L2

1/µ [67]. Further, with the Dirac distribution centered

in x ∈ X, denoted by δx, we formally have pt(x, ·) = Ptδx. Hence, the choice of norm in
Definition 4.4 is natural. It should also be noted that since µ is a probability measure,
the Hölder inequality yields ‖f‖L1

µ
≤ ‖f‖L2

µ
. Using this we have

‖f‖L1 = ‖f/%‖L1
µ
≤ ‖f/%‖L2

µ
= ‖f‖L2

1/µ
,

which shows that if pt(x, ·) and pt(y, ·) are close in the L2
1/µ norm, they are also close in

the L1 norm. We require the closeness of the respective pt(x, ·) in the L2
1/µ norm for our

theoretical considerations below, but otherwise we will think of them as functions in L1.

Note that we only need to evolve the system at hand for a moderate time t � tslow,
which has to be merely sufficiently large to damp out the fast fluctuations in the
metastable states. This will be an important point later, allowing for numerical tractabil-
ity.

Next, we show that (ε, r)-reducibility implies that dominant eigenfunctions are almost
constant on the level sets of Q.
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Lemma 4.7. If Xt is (ε, r)-reducible, then for an eigenfunction ϕi of T t with ‖ϕi‖L2
µ

= 1

and points x, y ∈ X with Q(x) = Q(y) we have

|ϕi(x)− ϕi(y)| ≤ 2ε

|λi|
.

Proof. First note that for the transition densities pt(x, ·), pt(y, ·) it holds that

‖pt(x, ·)− pt(y, ·)‖L2
1/µ
≤ ‖pt(x, ·)−Q(x)‖L2

1/µ
+ ‖Q(x)− pt(y, ·)‖L2

1/µ

= ‖pt(x, ·)−Q(x)‖L2
1/µ

+ ‖Q(y)− pt(y, ·)‖L2
1/µ
≤ 2ε .

(16)

With this we can show the assertion:

λiϕi(x) = T tϕi(x) = Ktϕi(x) =

∫

X
ϕi(x

′)pt(x, x′) dx′.

Applying (16), for some function e ∈ L2
1/µ(X) with ‖e‖L2

1/µ
≤ 2ε, we get

λiϕi(x) =

∫

X
ϕi(x

′)
(
pt(y, x′) + e(x′)

)
dx′

=

∫

X
ϕi(x

′)pt(y, x′)dx′ +

∫

X
ϕi(x

′)
e(x′)

%(x′)
dµ(x′)

= λiϕi(y) +

∫

X
ϕi(x

′)
e(x′)

%(x′)
dµ(x′),

where in the last equation, we again used that due to reversibility Kt = T t and that ϕi
is an eigenfunction. Thus for the difference, we have

|ϕ(x)− ϕ(y)| = 1

|λi|
∣∣∣
∫

X
ϕi(x

′)
e(x′)

%(x′)
dµ(x′)

∣∣∣

≤ 1

|λi|
‖ϕi‖L2

µ︸ ︷︷ ︸
=1

‖e/%‖L2
µ︸ ︷︷ ︸

=‖e‖
L2
1/µ

≤ 2ε

|λi|
.

Assuming that the eigenfunctions are normalized (which we do from now on), i.e.,
‖ϕi‖L2

µ
= 1, and that ε is sufficiently small, Lemma 4.7 implies that the dominant

eigenfunctions (i.e., |λi| ≈ 1) are almost constant on the level sets of Q. This can now
be used to show that the ϕi are not fully dependent on X, but only on the level sets of Q
(up to a small error), in a sense similar to Lemma 4.2.

Corollary 4.8. Let Xt be (ε, r)-reducible. Then there exists a function ϕ̃i : M→ R such
that ∣∣ϕi(x)− ϕ̃i

(
Q(x)

)∣∣ ≤ ε

|λi|
.
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Proof. Fix x ∈ X, and let z = Q(x). Define the function ϕ̃i by

ϕ̃i(Q(x)) :=
1

2

(
inf
Q(y)=z

ϕi(y) + sup
Q(y)=z

ϕi(y)

)
.

Since by Lemma 4.7 it holds that |ϕi(x)− ϕi(y)| ≤ 2ε
|λi| if Q(x) = Q(y), we have that

∣∣∣∣∣ sup
Q(y)=z

ϕi(y)− inf
Q(y)=z

ϕi(y)

∣∣∣∣∣ ≤
2ε

|λi|
,

thus our choice of ϕ̃i gives

|ϕi(x)− ϕ̃i(Q(x))| ≤ ε

|λi|
.

4.2. Embedding the transition manifold

In light of Corollary 4.8, one could say that Q is an “M-valued reaction coordinate”.
However, as we have no access to M so far, and a Rk-valued reaction coordinate is
more intuitive, we aim to obtain a more useful representation of the transition manifold
through embedding it into a finite, possibly low-dimensional Euclidean space.

We will see that we are very free in the choice of the embedding mapping, even
though the manifold M is not known explicitly (we only assumed that it exists). To
achieve this, we will use an infinite-dimensional variant of the weak Whitney embedding
theorem [66, 83], which, roughly speaking, states that “almost every bounded linear map
from L1(X) to R2r+1 will be one-to-one on M and its image”. We first specify what we
mean by “almost every” in the context of bounded linear maps, following the notions of
Sauer et al. [66].

Definition 4.9 (Prevalence). A Borel subset S of a normed linear space V is called
prevalent if there is a finite-dimensional subspace E of V such that for each v ∈ V, v+ e
belongs to S for (Lebesgue) almost every e in E.

As the infinite-dimensional embedding theorem from Hunt et al. [34] is applicable
not only to smooth manifolds, but to arbitrary subsets A ⊂ V of fractal dimension, it
uses the concepts of box covering dimension dimB(A) and thickness exponent τ(A) from
fractal geometry. Intuitively, dimB(A) describes the exponent of the growth rate in the
number of boxes of decreasing side length that are needed to cover A, and τ(A) describes
how well A can be approximated using only finite-dimensional linear subspaces of V. As
these concepts coincide with the traditional measure of dimensionality in our setting, we
will not go into detail here and point to [34] for a precise definition.

The general infinite-dimensional embedding theorem reads:
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Theorem 4.10 ([34, Theorem 3.9]). Let V be a Banach space and A ⊂ V be a compact
set with box-counting dimension d and thickness exponent τ . Let k > 2d be an integer,
and let α be a real number with

0 < α <
k − 2d

k(1 + τ)
.

Then for almost every (in the sense of prevalence) bounded linear function E : V → Rk
there exists C > 0 such that for all x, y ∈ A,

C‖E(x)− E(y)‖α2 ≥ ‖x− y‖2 , (17)

where ‖ · ‖2 denotes the Euclidean 2-norm.

Note that (17) implies Hölder continuity of E−1 on E(A) and in particular that E is
one-to-one on A and its image. Using that the box counting dimension of a smooth
r-dimensional manifold K is simply r and that the thickness exponent is bounded from
above by the box-counting dimension, thus 0 ≤ τ(K) ≤ r, see [34], we get the following
infinite-dimensional embedding theorem for smooth manifolds.

Corollary 4.11. Let V be a Banach space, let K ⊂ V be a smooth manifold of dimen-
sion r and let k > 2r. Then almost every (in the sense of prevalence) bounded linear
function E : V→ Rk is one-to-one on K and its image in Rk.

Thus, since the transition manifold M is assumed to be a smooth r-dimensional man-
ifold in L1(X), an arbitrarily chosen bounded linear map E : L1(X) → R2r+1 can be
assumed to be one-to-one on M and its image. In particular, E(M) is again an r-
dimensional manifold (although not necessarily smooth). With this insight, we can now
construct a reaction coordinate in Euclidean space:

Corollary 4.12. Let Xt be (ε, r)-reducible and let E : L1(X)→ R2r+1 be one-to-one on
M and its image. Define ξ : Rn → R2r+1 by

ξ(x) := E
(
Q(x)

)
. (18)

Then there exists a function ϕ̂i : R2r+1 → R so that

|ϕi(x)− ϕ̂i(ξ(x))| ≤ ε

|λi|
. (19)

Proof. As E is one-to-one on M and its image, it is invertible on E(M). With ϕ̃i chosen
as in the proof of Corollary 4.8, define ϕ̂i : E(M)→ R by

ϕ̂i(ẑ) := ϕ̃i
(
E−1(ẑ)

)
. (20)

Then

|ϕi(x)− ϕ̂i(ξ(x))| = |ϕi(x)− ϕ̃i(Q(x))|
Cor. 4.8
≤ ε

|λi|
.
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Since M̂ := E(M) is an r-dimensional manifold, ξ is effectively an r-dimensional re-
action coordinate. Thus, if the right-hand side of (19) is small, the ϕi are “almost
parametrizable” by the r-dimensional reaction coordinate ξ. Using Lemma 4.2, we imme-
diately see that this results in a small projection error ‖P⊥ξ ϕi‖, and due to Corollary 3.6
in a good transfer operator approximation; hence ξ is a good reaction coordinate.

The reaction coordinate ξ remains an “ideal” case, because we have no access to the
map Q and hence to M, only to Q(x) = pt(x, ·) ≈ Q(x). We summarize the construction
of the ideal reaction coordinate ξ in Figure 4.

X ⊂ Rn
L1 R2r+1

b x

Lz = Q−1(z)

dim(Lz) = n− r dim(M) = r

b Q(x) = z
b ẑ = E(z)

M = Q(X) M̂ = E(M)

dim(M̂) = r

ϕ̃i : M → R
ϕi

∣∣
Lz

≈ const.

ϕi : X → R ϕ̂i : M̂ → R
ϕi ≈ ϕ̃i ◦ Q ϕ̂i = ϕ̃i ◦ E−1

Q E

ξ = E ◦ Q

Figure 4: Summary of the construction of the ideal reaction coordinate ξ.

Remark 4.13. The recent work of Dellnitz et al. [19] uses similar embedding tech-
niques to identify finite-dimensional objects in the state space of infinite-dimensional
dynamical systems. They utilize the infinite-dimensional delay-embedding theorem of
Robinson [64], a generalization of the well-known Takens embedding theorem [73], to
compute finite-dimensional attractors of delay differential equations by established sub-
division techniques [17].

4.3. Numerical approximation of the reaction coordinate

Approximate embedding of the transition manifold. We now elaborate how to con-
struct a good reaction coordinate ξ numerically. To use the central definition (18) in
practice, two points have to be addressed:

1. How to choose the embedding E?

2. How to deal with the fact that we do not know Q?
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For the choice of E , we restrict ourselves to linear maps of the form

E(f) :=



〈f, η1〉

...
〈f, η2r+1〉


 , (21)

with arbitrarily chosen linearly independent functions ηi ∈ L∞(X), where 〈f, ηi〉 =
∫
fηi.

In practice, we will choose the ηi : X→ R as linear functions themselves, i.e. ηi(x) = aᵀi x
for some, usually randomly drawn, ai ∈ Rn. Note that then ηi /∈ L∞, but this is not
a problem because we will embed the functions f = pt(x, ·), and pt(x, y) can be shown
to decay exponentially as ‖y‖2 → ∞, cf. [5, Theorem C.1]. Thus, 〈f, ηi〉 will exist.
For linearly independent ηi, these maps are still generic in the sense of the Whitney
embedding theorem, and thus still embed the transition manifold M.

A natural choice for the approximation of the unknown map Q is the mapping to the
transition probability density,

Q : x 7→ pt(x, ·) , (22)

as ‖Q(x)− pt(x, ·)‖L2
1/µ
≤ ε. With this, we consider

E
(
Q(x)

)
= E

(
pt(x, ·)

)
=




〈
pt(x, ·), η1

〉
...〈

pt(x, ·), η2r+1

〉


 (1)

=



Ktη1(x)

...
Ktη2r+1(x)


 . (23)

The values on the right-hand side can in turn be approximated by a Monte Carlo quadra-
ture, using only short-time trajectories of the original dynamics:

Ktηi(x) = E
[
ηi(Xt) | X0 = x

]
≈ 1

M

M∑

m=1

ηi
(
Φ

(m)
t (x)

)
, (24)

where the Φ
(m)
t (x) are independent realizations of Xt with starting point X0 = x, in

practice realized by a stochastic integrator (e.g. Euler–Maruyama).

The computationally infeasible reaction coordinate ξ. Note that E ◦ Q is not yet
an r-dimensional reaction coordinate, since Q(X) is only approximately an r-dimensional
manifold; more precisely, it lies in the ε-neighborhood of an r-dimensional submanifold M
of L1. Hence, also E(Q(X)) is only approximately an r-dimensional manifold; see the
magenta regions in Figure 5.

The question now is how we can reduce E ◦ Q to an r-dimensional good reaction
coordinate. Since we know from above that ξ = E ◦ Q is a good reaction coordinate, let
us see what would be needed to construct it.

The property of ξ that we want is that it is constant along level sets Lz of Q, i.e.,
ξ|Lz = const (because this implies that it is a good reaction coordinate, cf. Corol-
lary 4.12). Hence, if we could identify M̂ as an r-dimensional manifold in R2r+1, we
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X ⊂ Rn L1 R2r+1

b x

Lz = Q−1(z)

Q(x) = z
ẑ = ξ(x)

M M̂

Q E

Q(X)

b
Q(Lz) b

E(Q(X))

E(Q(Lz))

Figure 5: How to make a good r-dimensional reaction coordinate out of E ◦ Q? Given
the analysis from the previous section, we would like to make the level sets Lz of Q also
the level sets of ξ (red line segment). Unfortunately, we have no access to these.

would project E(Q(x)) along E(Q(Lz)) onto M̂ — assuming that M̂ and E(Q(Lz)) in-
tersect in R2r+1 — to obtain ξ(x) as the resulting point (see Figure 5, where we would
project along the red line on the right). Unfortunately, we have no access to Q (not to
mention that M̂ and E(Q(Lz)) need not intersect in R2r+1) and hence to its level sets
Lz. Thus, this strategy seems infeasible.

A computationally feasible reaction coordinate. What helps us at this point is that
there is a certain amount of arbitrariness in the definition of Q. Recalling Definition 4.4,
what we are given is Q, and we construct Q(x) as a projection of Q(x) onto the r-
dimensional manifold M by the closest-point projection Q′; i.e., Q = Q′ ◦Q. This choice
of Q′ is convenient, because we can show

‖Q(x)−Q(y)‖L2
1/µ
≤ 2ε for every Q(x) = Q(y) (i.e., on level sets of Q′), (25)

which is used in Lemma 4.7. Other choices of Q′ could, however, yield a similarly
practicable O(ε)-bound in (25). Our strategy will be to choose a specific r-dimensional
reaction coordinate ξ and to show that in general it can be expected to be a good reaction
coordinate.

Let us recall that, by assumption, the set Q(X) is contained in the ε-neighborhood
of an unknown smooth r-dimensional manifold M ⊂ L1(X). Thus, a generic smooth
map E : L1(X) → R2r+1 will embed M into R2r+1, forming a diffeomorphism from M
to M̂. Thus, E is going to map Q(X) to an O(ε)-neighborhood of M̂. This means, the r-
dimensional manifold structure of M̂ should still be detectable and can be identified with
standard manifold learning tools. We use the diffusion maps algorithm (see Section 4.4
below), which gives us a map Ψ : R2r+1 → Rr (the diffusion map). Then we define ξ as

ξ := Ψ ◦ E ◦ Q. (26)

This is depicted on the right-hand side of Figure 6, where the red dashed line shows the
level set L̂ẑ = {z ∈ R2r+1 : Ψ(z) = Ψ(ẑ)}.
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X ⊂ Rn L1 R2r+1

b x

Q(x) = const.

Q(x)

ẑ = E(Q(x))M M̂

Q E

Q(X)

b

L̃ẑ

b

E(Q(X))
L̂ẑ = Ψ−1(ξ(x))

Figure 6: The realized reaction coordinate ξ.

Next, we consider the set L̃ẑ := E−1(L̂ẑ)∩Q(X). It holds that L̃ẑ =
{
Q(x)

∣∣ ξ(x) = Ψ(ẑ)
}

.

Recall that E : M → M̂ is one-to-one, thus L̃ẑ intersects M in exactly one point. We
define this one point as Q(x), and thus Q′ is the projection onto M along L̃ẑ. We see
that Q is well-defined and that Q(x) = Q(y)⇔ ξ(x) = ξ(y).

At this point we assume that E−1 is sufficiently well-behaved in a neighborhood of M̂,
it does not “distort transversality” of intersections, such that the diameter of L̃ẑ is O(ε)
with a moderate constant in O(·). We will investigate a formal justification of this fact in
a future work, here we assume it holds true, and we will see in the numerical experiments
that the assumption is justified. This assumption implies that ‖Q(x)−Q(y)‖L2

1/µ
= O(ε)

for Q(x) = Q(y), i.e. for ξ(x) = ξ(y). Now, however, Lemma 4.7 implies that ϕi is
almost constant (up to an error O(ε)) on level sets of ξ, which, in turn, by Lemma 4.2
and Corollary 3.6 shows that ξ is a good reaction coordinate.

4.4. Identification of M̂ through Manifold Learning

In this section, we describe how to identify M̂ numerically. The task is as follows: Given
that we have computed E(Q(xi)) = ẑi ∈ R2r+1 for a number of sample points {xi}`i=1 ⊂
X, we would like to identify the r-dimensional manifold M̂, noting the points E(Q(xi))
are in a O(ε)-neighborhood of M̂ (see Section 4.3). Additionally, we would like an r-
dimensional coordinate function Ψ : R2r+1 → Rr that parameterizes M̂ (so that the level
sets of Ψ are transversal to M̂).

This is a default setting for which manifold learning algorithms can be applied. Many
standard methods exist; we name multidimensional scaling [40, 39], Isomap [74], and
diffusion maps [13] as a few of the most prominent examples. Because of its favorable
properties, we choose the diffusion maps algorithm here and summarize it briefly for our
setting in what follows. For details, the reader is referred to [13, 56, 12, 71].

Given sample points {ẑi}`i=1 ⊂ R2r+1, diffusion maps proceeds by constructing a
similarity matrix W ∈ R`×` with

Wij = h

(‖ẑi − ẑj‖22
σ

)
,
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where ‖ · ‖2 is the Euclidean norm in R2r+1, σ > 0 is a scale factor, and h : R → R+

is a kernel function which is most commonly chosen as h(x) = exp(−x)1x≤R with a
suitably chosen cutoff R that sparsifies W and ensures that only local distances enter
the construction. With D being the diagonal matrix containing the row sums of W , the
similarity matrix is then normalized to give W̃ = D−1WD−1. Finally, the stochastic ma-
trix P = D̃−1W̃ is constructed, where D̃ is the diagonal matrix containing the row sums
of W̃ . P is similar to the symmetric matrix D̃−1/2W̃ D̃−1/2, thus it has an orthonormal
basis of eigenvectors {ψi}`−1

i=0 with real eigenvalues γi. Since P is also stochastic, |γi| ≤ 1.
The diffusion map is then given by

Ψ : R2r+1 → Rr, Ψ(ẑ) = (γ1ψ1(ẑ), . . . , γrψr(ẑ))
ᵀ . (27)

Using properties of the Laplacian eigenproblem on M̂, one can show that Ψ indeed
parameterizes the r-dimensional manifold M̂ for suitably chosen σ [13].

Remark 4.14. The diffusion maps algorithm will only reliably identify M̂ based on the
neighborhood relations between the embedded sample points zi, if the points cover all
parts of M̂ sufficiently well. In particular, as pt(x, ·) and thus

(
E ◦ Q

)
(x) vary strongly

with x traversing the transition regions, a good coverage of those regions is required.
For the various low-dimensional academical examples Section 5, this is ensured by

choosing the xi to be a dense grid of points in X. For the high-dimensional example
in Section 5.2, the evaluation points are generated as a subsample from a long equili-
brated trajectory, essentially sampling µ. Both of these ad-hoc methods are likely to
be unapplicable in realistic high-dimensional systems with very long equilibration times.
However, as we mentioned in the introduction, there exist multiple statistical and dy-
namical approaches to this common problem of quickly sampling the relevant parts of
phase space, including the transition regions. Each of these sampling methods can be
easily integrated into our proposed algorithm as a pre-processing step.

Fundamentally though, the central idea of our method does not depend crucially on
the applicability of diffusion maps. Rather, the latter can be considered an optional
post-processing step. Using the 2r + 1-dimensional reaction coordinate

ξ := E ◦ Q ,

i.e. (26) without the manifold learning step, may in practice already represent a sufficient
dimensionality reduction.

In addition, situations may occur where the a priori generation of evaluation points
is not possible or desired. One of the final goals and currently work in progress is the
construction of an accelerated integration scheme that generates significant evaluation
points and their reaction coordinate value “on the fly”. This is related to the effective
dynamics mentioned in fifth point of the conclusion. However, this also requires us to be
able to evaluate the reaction coordinate at isolated points, independent of each other,

and thus also necessitates the use of the above ξ instead of ξ.
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5. Numerical Examples

Based on the results from the previous sections, we propose the following algorithm to
compute reaction coordinates numerically:

1. Let xi, i = 1, . . . , `, be the points for which we would like to evaluate ξ. Here, we
assume the points satisfy the requirements addressed in Remark 4.14.

2. Choose linearly independent functions ηj ∈ L∞(X), j = 1, . . . , 2r+1. The essential
boundedness of the ηj is not necessary, but |ηj(x)| should not grow faster than a
polynomial as ‖x‖2 →∞.

3. In each point xi, start M simulations of length t and estimate Ej
(
Q(xi)

)
using (23)

and (24), to obtain the point ẑi ∈ R2r+1. We discuss the appropriate choice of M
and t in Section 5.1.

4. Apply the diffusion maps technique from Section 4.4 for the point cloud {ẑi}`i=1,
and obtain Ψ : R2r+1 → Rr, a parametrization of the point in its r essential
directions of variation.

5. By (27), we define the reaction coordinate as

ξ : xi 7→ Ψ(ẑi) . (28)

The numerical effort of this algorithm depends strongly on the third step. Given `
evaluation points, and a choice of M trajectories per point, the cost is mainly given by
M · ` · c(t), where c(t) is the effort of a single numerical realization of the dynamics up
to time t. The high-dimensional phase space only enters the algorithm as the domain of
the observables ηj . The cost of evaluating those typically very simple functions4 at the
M ·` end points of the trajectory is negligible. The cost of the method is thus essentially
independent of n.

In order to demonstrate the efficacy of our method, we compute the reaction coordi-
nates for three representative problems, namely a simple curved double-well potential,
a multi-well potential defined on a circle, both in low and high dimensions, and two
slightly different quadruple-well potentials stressing the difference between a one- and a
two-dimensional reaction coordinate.

5.1. Curved double-well potential

As a first verification, we consider a system with an analytically known reaction coor-
dinate that is then used for comparison. Consider the two-dimensional drift-diffusion
process (2) with potential

V (x1, x2) = (x2
1 − 1)2 + 2(x2

1 + x2 − 1)2

4In our examples, we used linear functions with great success.
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and inverse temperature β = 0.5. This potential already served as a motivational exam-
ple for the nature of reaction coordinates in the introduction and is shown in Figure 1.
The system possesses two metastable sets around the minima (−1, 0)ᵀ and (1, 0)ᵀ, which
are connected by the transition path {x ∈ R2 | x2 = 1−x2

1}. The implied time scales, de-
fined in (3), can be computed from the eigenvalues using a standard Ulam-type Galerkin
discretization [37, 38] of the transfer operator T t and are shown in Figure 7a5. We
observe a significant gap between t1 and t2 and thus identify t1 as the last slow and t2
as the first fast time scale. Choosing the lag time t = 2 then satisfies tslow > t > tfast. A
visual inspection of a typical trajectory of length t starting in one of the two metastable
sets as shown in Figure 7b confirms that the respective set is sampled, yet a transition
to the other set is a rare event.

a)

t0 ∞
t1 6.1823
t2 0.9066
t3 0.6098
t4 0.3976

b)

Figure 7: a) Implied time scales of the double-well system. b) Trajectory of length t = 1.

The low dimension of the system allows us to compute the reaction coordinate on a
full regular grid over the phase space. We choose a 40×30 grid in the rectangular region
[−2, 2] × [−1, 2] and denote the set of grid points by X. For this system, we expect a
one-dimensional transition path and thus a one-dimensional reaction coordinate ξ. That
is, r = 1 and 2r + 1 = 3. Thus, we choose three linear observables in our embedding
function (21), e.g.,

η1(x1, x2) = −0.2630x1 − 0.3186x2,

η2(x1, x2) = −0.2246x1 + 0.0969x2,

η3(x1, x2) = 0.1564x1 + 0.0783x2,

(29)

whose coefficients were drawn uniformly from [−1, 1]. The expectation value in (23)
is approximated by a Monte Carlo quadrature using M = 105 sample trajectories for
each grid point, cf. (24). The parameter M was chosen such that the error in (24),
commonly defined as the variance of the Monte Carlo sum, is sufficiently low. The

5In realistic, high-dimensional systems, the computation of the dominant eigenvalues using grid-based
methods is likely infeasible. In these situations, the implied time scales have to be estimated, for
example using standard Markov State Model techniques [7].
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resulting embedding of the grid points x into R3 is shown in Figure 8. The transition
path seems to be already parametrized well by the individual components of E ◦Q.(

E1 ◦ Q
)
(x)

(
E2 ◦ Q

)
(x)

(
E3 ◦ Q

)
(x)

Figure 8: The individual components of the embedding E ◦Q on the grid points x ∈ X.

For this example, the image of X under E ◦Q should form a compact neighborhood of
the one-dimensional manifold E(M), as described in Section 4.3. The one-dimensional
structure in E

(
Q(X)

)
is clearly visible, see Figure 9a. To identify the one-dimensional

coordinate along this set the diffusion map algorithm is used. Let Ψ1 :
(
E ◦ Q)(X)→ R

denote the first diffusion map coordinate on the embedded grid points, also visualized
in Figure 9a. The final reaction coordinate, shown in Figure 9b, is then given by

ξ(x) := Ψ1

((
E ◦ Q

)
(x)
)
, x ∈ X.

a)

b)

Figure 9: a) The embedded grid points colored according to the first diffusion map
coordinate. b) The final reaction coordinate ξ.

Legoll and Lelièvre [45] show that the effective dynamics based on the reaction coor-
dinate

ξ∗(x) = x1 exp(−2x2)
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accurately reproduces the long-time dynamics of the full process — although they do
not use dominant eigenvalues of the transfer operator in their argumentation. It is easy
to verify that the level sets of ξ∗ traverse the transition path orthogonally. Figure 10
compares the level sets of ξ and ξ∗. While the two reaction coordinates have different
absolute values, their contour lines coincide well. As the projection operator Pξ only
depends on the level sets of ξ, the projected transfer operators T t

ξ
and T tξ∗ should be

similar as well.

ξ ξ∗

Figure 10: Selected contour lines (black) of the newly identified reaction coordinate ξ
and the reference reaction coordinate ξ∗.

Projected eigenvalue error. To conclude this example, we compute the dominant spec-
trum of the projected transfer operator and compare it to the spectrum of the full transfer
operator. To discretize T t

ξ
, we use a simple Ulam-type discretization scheme based on

a long equilibrated trajectory of the full dynamics. Recall from Section 3.2 that, al-
though T tξ formally acts as an operator on functions over X, it is constant along level

sets of ξ, and thus can be treated as an operator on functions over Rr. For completeness,
we state the rough outline of an algorithm that we used to approximate T t

ξ
. An intro-

duction to Ulam- and other Galerkin-type discretization schemes for transfer operators
can be found, e.g., in [37].

1. Compute points X := {Φ(kτ)x0 | k = 1, . . . , N}, a discrete trajectory with step size
τ of the full phase space dynamics that adequately samples the invariant density %.

2. Compute the reaction coordinate ξ on the points X.

3. Divide the neighborhood of ξ(X) into boxes or other suitable discretization ele-
ments {A1, . . . ,AN} and sample the boxes from the trajectory, i.e. compute

Xi := {x ∈ X | ξ̄(x) ∈ Ai} .
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4. Count the time-t-transitions within X between the boxes (where t is a multiple of
τ), i.e. compute the matrix

(
T t
ξ

)
ij

:= #
{
x ∈ Xi | Φtx ∈ Xj

}
.

5. After row-normalization, the eigenvalues of T t
ξ

approximate the point spectrum

of T t
ξ

.

Remark 5.1. Note that the equilibrated trajectory X is typically unavailable for more
complex systems. In practice, one would replace steps 1 and 2 by directly computing
a reduced trajectory Z = {z1, . . . , zN} ⊂ Rr whose statistics approximate that of ξ

(
X
)
.

The formulation of a reduced numerical integration scheme to realize this is currently
work in progress (see the fifth point in the conclusions).

For our example system, we compute X as a N = 106 step trajectory with step size
τ = 10−2 using the Euler-Maruyama scheme. However, to reduce the numerical effort, ξ
is computed only on a subsample of X (104 points) and extended to X by nearest-neighbor
interpolation. On X, the image of the ξ is contained in the interval [−0.04, 0.04], which
we discretize into M = 40 subintervals of equal length. The spectrum of the full transfer
operator T t was computed using the standard Ulam method over a 40× 30 uniform box
discretization of the domain [−2, 2]× [−1, 2]. With the choice t = 1 for the lag time, the
spectral gap is clearly visible.

We observe in Figure 11 that the eigenvalues of T t
ξ

and T t are in excellent agreement.

Not only the dominant eigenvalues λ0, λ1 are approximated well (as predicted by Lemma
3.5), but also the further subdominant eigenvalues that are not covered by our theory.
In particular, the reaction coordinate ξ provides a better approximation to the spec-
trum of T t than other, manually chosen reaction coordinates: Figure 11 also shows the
eigenvalues of the projected transfer operator associated with the reaction coordinates

ζ1(x) := x1 and ζ2(x) := x1 + x2.

We see that these are consistently outperformed by the computed reaction coordinate ξ
(although it appears that ζ1 already is quite a good reaction coordinate).

5.2. Circular potential

Let us now compute the reaction coordinates for the multi-well diffusion process de-
scribed in Example 4.1. The corresponding k-well potential is defined as

V (x) = cos (k arctan(x2, x1)) + 10

(√
x2

1 + x2
2 − 1

)2

.

We use k = 7, for which the potential is shown in Figure 2a. The potential as well
as the dominant eigenvalues of the corresponding transfer operator clearly indicate the
existence of seven metastable sets, yet a typical longtime trajectory, shown in Figure 12a,
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a)

b)

λ1

T t 0.8503

T t
ξ

0.8461

T tζ1 0.8377

T tζ2 0.7252

Figure 11: a) Comparison of the two dominant and first four non-dominant eigenvalues
of the full transfer operator T t and the projected transfer operators T t

ξ
, T tζ1 , T tζ2 . b)

Detailed comparison of the second eigenvalue of the various transfer operators.

a) b)

Figure 12: a) Longtime trajectory of the diffusion process with the circular seven-well
potential. b) The contour lines of ξ1 (black) and ξ2 (red) show that ξ is almost constant
on the metastable sets, but resolves the transition regions well.
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suggests a one-dimensional transition path, the unit circle B1. We demonstrate that with
our method, a reaction coordinate of minimal dimension can be computed.

We again choose the inverse temperature β = 0.5 and perform the same analysis as
in the previous subsection. For this system, a time scale gap between t6 ≈ 1.53 and
t7 ≈ 0.05 can be found. We thus choose the intermediate time scale t = 0.1. Since we
again expect a one-dimensional transition path, the three observables (29) are used for
the embedding of M. We use the grid points of a 40× 40 grid, denoted again by X, over
the region [−2, 2]× [−2, 2] as our test points.

The individual components of the embedding E ◦ Q are shown in Figure 13. The
embedded grid points, seen as the individual points in Figure 14a, seem to concentrate
around a one-dimensional circular manifold and thus reveal the one-dimensional nature of
the reaction coordinate. Although slightly unintuitive, the diffusion maps algorithm now
identifies two significant diffusion map components, as shown in Figure 14a. The reason
is that the circular manifold cannot be embedded into R1, so that a two-component
coordinate is necessary to parametrize it. Figure 12b shows some contour lines (of
equidistant values) of the two components of ξ. We see that ξ is almost constant on the
seven metastable sets, but resolves the transition regions well.

(
E1 ◦ Q

)
(x)

(
E2 ◦ Q

)
(x)

(
E3 ◦ Q

)
(x)

Figure 13: The individual components of the embedding E ◦Q on the grid points x ∈ X.

Parametrization of the dominant eigenfunctions. Next, we experimentally investigate
how well the dominant eigenfunctions ϕi of T t can be parametrized by the numerically
computed reaction coordinate ξ. If the eigenfunctions are almost functions of ξ, then
by Lemma 4.2 and Corollary 3.6 the reaction coordinate is suitable to reproduce all
the dominant time scales. To this end, we compute the dominant eigenfunctions ϕj ,
j = 0, . . . , d by the Ulam-type Galerkin method (as in the previous example), and
plot ϕj(xi) against ξ(xi). Note that due to the reasons discussed above, the range
of ξ is a one-dimensional manifold in R2. If ϕj can be parametrized by ξ̄, we expect
that ϕj(xi1) ≈ ϕj(xi2), whenever ξ̄(xi1) ≈ ξ̄(xi2). The result is shown in Figure 15. We
clearly see the functional dependency of the first seven (i.e., the dominant) eigenfunctions
on the reaction coordinate.
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a)
b)

c)
d)

Figure 14: Left column: The embedded grid points E(Q(X)). The coloring shows the
a) first and c) second significant diffusion map on the points. Right column: The b) first
and d) second components of the final reaction coordinate ξ.

Circular potential in higher dimensions. The identification of reaction coordinates
is not limited to two dimensions. To show that our method can effectively find the
reaction coordinates in high-dimensional systems, we extend the 7-well potential to ten
dimensions by adding a quadratic term in x3, . . . , x10:

V (x) = cos (7 arctan(x2, x1)) + 10

(√
x2

1 + x2
2 − 1

)2

+ 10
10∑

j=3

x2
j .

We expect the one-dimensional circle {x ∈ R10 | x2
1 + x2

2 = 1, xj = 0, j = 3, . . . , 10}
to be the transition path and accordingly choose a three-dimensional linear observable
η(x) = A · x, A ∈ R3×10, where the coefficients Aij were again drawn uniformly from
[−1, 1].

In ten dimensions, the computation of the reaction coordinate on all points of a regular
grid is no longer possible due to the curse of dimensionality, and neither is the visual-
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ϕ0 vs. ξ̄ ϕ1 vs. ξ̄ ϕ2 vs. ξ̄

ϕ3 vs. ξ̄ ϕ4 vs. ξ̄ ϕ5 vs. ξ̄

ϕ6 vs. ξ̄ ϕ7 vs. ξ̄ ϕ8 vs. ξ̄

Figure 15: Black dots: The values of the first nine eigenfunctions of T t plotted
against ξ(xi), xi ∈ X. The blue markers indicate the ξ(xi) in the bottom plane. The
seven dominant eigenfunctions (ϕ0 to ϕ6) seem to have a smooth dependency on ξ. In
contrast, the values of the non-dominant ϕ7 and ϕ8 vary substantially over individual
level sets of ξ.
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ization of this grid. Instead, we compute ξ on 105 points sampled from the invariant
measure and plot only the first three coordinates. Let this point cloud be called X.

Performing the standard procedure, i.e. embedding X into R3 and identifying the one-
dimensional core using diffusion maps, a two-component reaction coordinate is identified.
Coloring the first three dimensions of X by ξ (Figure 16a,b), we see that the expected
reaction pathway is indeed parametrized. This pathway as well as the seven metastable
states can also be recognized in a plot of the components of ξ(X) plotted against each
other, indicating that the information about the dominant eigenfunctions, thus the long-
time jump process, is indeed retained by ξ.

a) b) c)

Figure 16: a) & b) The two components ξ1 and ξ2 on the sampling points X. The picture
shows the first three dimensions of x, but is qualitatively the same when replacing x3

by xj , j = 4, . . . , 10. c) The values of ξ1 and ξ2 on X plotted against each other.

5.3. Two quadruple well potentials

Our theory is based on the existence of an r-dimensional transition manifold M in L1(X)
around which the transition probability functions concentrate. In Appendix B, we argued
that the existence of an r-dimensional transition path suffices to ensure the existence
of M. Here we illustrate how the existence of the transition path is reflected in the
embedding procedure.

For this we consider the “hilly” and “flat” quadruple well potentials

V1(x) = (x2
1 − 1)2 + (x2

2 − 1)2 + 5 exp(−5
(
x2

1 + x2
2)
)

and

V2(x) = 1− exp
(
− 10

(
(x1 − 1)2 + (x2 − 1)2

)2)− exp
(
− 10

(
(x1 − 1)2 + (x2 + 1)2

)2)

− exp
(
− 10

(
(x1 + 1)2 + (x2 + 1)2

)2)− exp
(
− 10

(
(x1 + 1)2 + (x2 − 1)2

)2)
.

Both systems possess metastable sets around the four minima (±1,±1), but V1 con-
fines its dynamics outside of the metastable sets onto a one-dimensional transition path,
whereas V2 does not impose such restrictions on the dynamics (see Figure 17). For
both potentials the time t = 1 lies inside the slow-fast time scale gap. Assuming a
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V1 V2

Figure 17: The two quad-well potentials V1 and V2 possess qualitatively different tran-
sition regions.

one-dimensional transition manifold (wrongfully for V2), we use the three linear ob-
servables (29). A 40 × 40 grid on [−2, 2] × [−2, 2] is used as evaluation points for ξ.
The embedding of these points by E ◦ Q can be seen in Figure 18. We observe a one-
dimensional structure in the case of the “hilly” potential V1, whereas the embedding
points of the “flat” potential V2 lie on a seemingly two-dimensional manifold. As these
embeddings are approximately one-to-one with the respective transition manifolds M,
we conclude that in the case of V1 the manifold M must be one-dimensional, whereas for
V2 it is two-dimensional.

6. Conclusion

Our main contributions in this paper are:

(a) We developed a mathematical framework to characterize good reaction coordinates
for stochastic dynamical systems showing metastable behavior but no local separa-
tion of fast and slow time scales.

(b) We showed the existence of good low-dimensional reaction coordinates under certain
dynamical assumptions on the system.

(c) We proposed an algorithmic approach to numerically identify good reaction coordi-
nates and the associated low-dimension transition manifold based on local evaluation
of short trajectories of the system only.

Our numerical examples show how the procedure works, that it can be used in higher
dimensions, and the examples give further evidence that the dynamical assumptions
from (b) are valid in many realistic cases. The application of our approach to relevant
biomolecular problems, e.g. in protein folding, is ongoing work.
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a) b)

Figure 18: Embedding of the grid points for the a) “hilly” and b) “flat” four well
potential. A one-dimensional structure is only visible in a), i.e. in the presence of a
one-dimensional transition path.

Apart from the application to actual molecular systems, there are several open ques-
tions and challenges, which we will address in the future:

• A rigorous mathematical justification for the dynamical assumption in Definition 4.4
in terms of the potential V and the noise intensity β−1 in (2) would be desirable.
This seems to be a demanding task, as the interplay between potential landscape
and the thermal forcing is nontrivial. For β−1 → 0 the problem can be handled by
large deviation approaches; however, understanding increasing β−1 is challenging: the
strength of noise increases, and additional transitions between metastable sets become
more probable, as the barriers in the potential landscape become less significant, and
thus the reaction coordinate may increase in dimension.

• Also related to the previous point, the choice of the correct lag time t is crucial.
Choosing the time too small, the concentration of the transition densities near a low-
dimensional manifold in L1 may not have happened yet, but a too large lag time has
severe consequences for the numerical expenses. If no expert knowledge of a proper
lag time t is available, it has to be identified in a pre-processing step, for example
using Markov State Model techniques [7].

• As discussed in the last part of Section 4.3 and in Figure 6, we need the embedding E
not to distort transversality close to the transition manifold M too much, such that
the realized reaction coordinate ξ is indeed a good one. Theoretical bounds shall be
developed. This problem seems to be coupled with the problem of how to control the
condition number of the embedding and its numerical realization.

• The dimension r of the reaction coordinate may not be known in advance, hence we
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need an algorithmic strategy to identify this on the fly. Fortunately, once the sampling
has been made, the evaluation of the embedding mapping E , and finding intrinsic
coordinates on the set of data points embedded in Rk has a negligible numerical
effort, hence different embedding dimensions k can be probed via (21). Theorem 4.10
suggests that if the identified dimension of the reaction coordinate is smaller than k/2,
then a reaction coordinate of sufficient dimension has been found.

• To benefit from the dimensionality reduction of the reaction coordinate ξ, the dynamics
that generates the reduced transfer operator T tξ has to be described in closed form.
We are planing to employ techniques based on the Kramers–Moyal extension [84] to
again receive an SDE for a stochastic process on Rr.

• The embedding mapping E is evaluated by Monte Carlo quadrature (24). Although
Monte Carlo quadrature is known to have a convergence rate independent of the
underlying dimension n of X, there is still an impact of the dimension on the practical
accuracy. This we shall investigate as well.
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[10] J. D. Chodera and F. Noé. Markov state models of biomolecular conformational
dynamics. Current Opinion in Structural Biology, 25:135 – 144, 2014.

[11] G. Ciccotti, R. Kapral, and E. Vanden-Eijnden. Blue moon sampling, vectorial reac-
tion coordinates, and unbiased constrained dynamics. ChemPhysChem, 6(9):1809–
1814, 2005.

[12] R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler. Diffu-
sion maps, reduction coordinates, and low dimensional representation of stochastic
systems. Multiscale Modeling & Simulation, 7(2):842–864, 2008.

[13] R. R. Coifman and S. Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

[14] M. Crosskey and M. Maggioni. ATLAS: A geometric approach to learning high-
dimensional stochastic systems near manifolds. Multiscale Modeling & Simulation,
15(1):110–156, 2017.
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A. Properties of Pξ

Proof of Proposition 3.4. (a) This property has been shown by Zhang [84] as well, we
include the short reasoning for completeness. The linearity of Pξ is obvious. The prop-
erty P 2

ξ = Pξ follows from (8) by noting that Pξf is constant on Lz and that µz is a
probability measure for every z.

(b) From (10) we have for f, g ∈ L2
µ(X) that

〈Pξf, g〉µ =

∫

X
Pξf(x)g(x) dµ(x)

(10)
=

∫

ξ(X)
Γ(z) ̂Pξ(gPξf)(z) dz

(∗)
=

∫

ξ(X)
Γ(z)P̂ξf(z)P̂ξg(z) dz , (30)

where (∗) follows from the linearity of Pξ, and the fact that Pξf |Lξ(x) = const, thus

̂Pξ(gPξf)(z) = P̂ξf(z)P̂ξg(z). Expression (30) is symmetric in f and g, hence it follows
that 〈Pξf, g〉µ = 〈f, Pξg〉µ.

(c) We first prove that Pξ is an orthogonal projection:

〈Pξf, f − Pξf〉µ
(b)
= 〈f, Pξf − P 2

ξ f〉µ
(a)
= 〈f, Pξf − Pξf〉µ = 0 .

Thus,
‖f‖2L2

µ
= ‖f − Pξf‖2L2

µ
+ ‖Pξf‖2L2

µ
≥ ‖Pξf‖2L2

µ
,

and the claim follows.
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B. On the existence of reaction coordinates

To motivate the existence of low-dimensional reaction coordinates, let us assume that the
dynamics of consideration has d+ 1 metastable regions C0, . . . ,Cd ⊂ X. Let C =

⋃
iCi.

For a selected lag time t > 0 we make the following two assumptions:

1) Fast local equilibration: If x is in (or close to) Ci then we have

Ptδx ≈ %qsi

where %qsi is the quasi-stationary density of the metastable core Ci:

lim
s→∞

P
[
Xs = y

∣∣ τCi > s
]

= %qsi (y)dy

with τCi being the (random) exit time from the set Ci.

2) Slow transitions: The typical transition time to reach C \ Ci when starting in Ci is
larger than t. In other words, t is such, that if the process Xs transitions from x to
some Ci, it did not transition through some other Cj with high probability.

These two assumptions essentially say that t is much larger than the fast time scales of
the system, but smaller than the dominant time scales. It follows that, for any x ∈ X,

Ptδx ≈
d∑

i=0

qi(x)%qsi ,
d∑

i=0

qi(x) = 1 ,

where by assumption 2) the coefficients qi(x) are given by the committor functions

qi(x) = P
[
Xt reaches Ci before C \ Ci

∣∣X0 = x
]
.

We say that Ptδx is an r-dimensional structure in L1(X) if there is a function ξ : X→ Rr
that jointly parametrizes all the committor functions, i.e., qi = q̃i ◦ ξ with q̃i : Rr → R.
If this is the case, then

Q(x) = Ptδx ≈
d∑

i=0

q̃i(ξ(x))%qsi =: Q(x)

and clearly dim(Q(X)) ≤ r since dim(ξ(X)) = r. Moreover, r ≤ d since we can explicitly
construct ξ : X→ Rd as ξ = (q1, . . . , qd). This obviously parameterizes q1, . . . , qd, and it
also parameterizes q0 since q0 = 1−∑d

i=1 qi.
However, r may also be smaller than d. As an example, consider the potential with

4 minima shown in Figure 19 on the left. At low temperatures, the “hilly” potential
energy landscape confines all transitions between the minima C0, . . . ,C3 to a narrow
region close to the red square connecting the four minima. Figure 19 shows the level
sets of q0, the level sets of the other committors are given by the rotational symmetry
of the problem. All four committors can be jointly parameterized by a single coordinate
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ξ which describes clockwise movement along the red square and is constant orthogonal
to it. Therefore, r = 1. Figure 19 on the right shows the situation with a “flat”
energy landscape. Transition paths between the minima are no longer confined to a
one-dimensional structure, and the committor level sets are more complicated. We can
no longer parameterize all four committors with a single coordinate ξ, so r > 1. On the
other hand, dim(X) = 2 so r = 2.
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Figure 19: A potential energy landscape with four minima (black contours) and level
sets of q1 (colored contours). Left: The “hilly” landscape structure confines transition
pathways to a narrow region close to the red square connecting the four minima. As
a result, all committor level sets are orthogonal to this main transition path. Right:
“Flat” landscape structure with more complicated level sets of the committors.

This structural difference of the potentials can also be seen when applying our algo-
rithm to construct the reaction coordinate ξ, see Figure 18 and Section 5.3.
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