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Abstract. A new algebraic multilevel algorithm for computing the second eigenvector of a
column-stochastic matrix is presented. The method is based on a deflation approach in a multilevel
aggregation framework. In particular a square and stretch approach, first introduced by Treister and
Yavneh, is applied. The method is shown to yield good convergence properties for typical example
problems.
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1. Introduction. The eigenvectors of Markov chains contain information about
the important processes of a stochastic system. For the class of irreducible and ape-
riodic Markov chains, the eigenvector corresponding to the eigenvalue 1 is unique
and contains the limit information of the Markov chain called stationary distribution.
Eigenvectors corresponding to eigenvalues close to 1 encode the slow structural tran-
sitions, i.e. the essential information about the dynamics. Homogeneous, finite-state,
discrete-time Markov chains are described by a column-stochastic transition matrix
which can be analyzed by tools from linear algebra.

Let B ∈ Rn×n be a column-stochastic matrix, i.e. 1TB = 1T , Bij ≥ 0. The problem
of finding the second eigenvector can be written algebraically as

Bx = λ2x,(1.1)

where we assume that the eigenvalues of B fulfill

1 = λ1 > λ2 > |λk|(1.2)

for all k ≥ 3 and λ2 ∈ R. Note that λ2 is not known a priori. In particular we can not
simply solve a linear system of equations but must exploit the eigenvalue structure of
B to compute the second eigenvector.

In relevant applications, Markov chains typically have a large number of variables
which makes direct solvers to obtain the eigenvectors inapplicable. Instead one uses
iterative solvers which tend to converge rather slowly. For many years, it is well known
that algebraic multilevel methods can be used to drastically improve the convergence
of iterative solvers [3]. However the classical theory of algebraic multilevel methods is
applicable only to a certain type of matrices, e.g. symmetric positive-definite matrices
[13]. For Markov matrices, classical multilevel aggregation methods to compute the
invariant measure converge rather slowly in numerical experiments. In [5] and [21]
more sophisticated approaches that can drastically speed-up the convergence of the
multilevel aggregation method for the first eigenvector are proposed. Based on these
ideas we present a new algorithm to compute the second eigenvector of a Markov
matrix using a multilevel approach combined with a Wielandt deflation.

∗This work was supported by Deutsche Forschungsgemeinschaft (DFG) through the Collaborative
Research Center CRC 1114 “Scaling Cascades in Complex Systems”, Project (B03) “Multilevel coarse
graining of multiscale problems”. I would like to thank my supervisor Prof. Kornhuber for his helpful
advice and academic encouragement.
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2 ALGEBRAIC MULTILEVEL METHODS FOR MARKOV CHAINS

2. Aggregation Multilevel for the Invariant Measure. In this section we
recall aggregation multilevel methods for Markov chains to compute the invariant
measure. These methods have been used in the literature [7, 9, 21].
The problem of finding the invariant measure, can be written as

Bx = x

with x 6= 0. For A := I −B we may equivalently solve

Ax = 0(2.1)

with |x| = 1. In fact we are looking for a non-trivial vector in the kernel of A. Here
A is an irreducible, singular M-matrix that has a strictly positive solution to (2.1)
that is unique up to scaling. This property is important for the well-posedness of the
multilevel framework.

2.1. Relaxation Methods. Two common relaxation methods for (2.1) are Ja-
cobi and power iteration. Assume that B has eigenvalues λi with right eigenvectors
v(i) that are ordered as in (1.2). In the following we analyze how the eigenvectors
govern the efficiency of power and Jacobi iteration. The former is given by the itera-
tion

x(k+1) = Bx(k).(2.2)

Suppose the initial probability vector x(0) is spanned by the eigenvectors v(i) ∈ Rn of
B for some coefficients αi.

x(0) =

n∑
i=1

αiv
(i)

Then the k-th iterate of power iteration can be expressed by

x(k) = Bkx(0) =

n∑
i=1

αiB
kv(i) =

n∑
i=1

αiλ
k
i v

(i) =

[
α1v1 +

n∑
i=2

αiλ
k
i v

(i)

]
.(2.3)

If the initial iterate x(0) was chosen such that α1 6= 0, the power method will converge
as |λi| < 1 for i = 2, · · · , n.

Conversely, Jacobi iteration aims at solving the linear system Aπ = 0 rather than
Bπ = π. We consider a splitting of the coefficient matrix

A = D − (L+ U)

into diagonal part D and lower respectively upper triangular part L,U . In particular
D,L,U are non-negative matrices and we assume that D is non-singular.
Then, up to rescaling, Jacobi iteration with damping parameter ω ∈ (0, 1] is given by

x(k+1) = x(k) − ωD−1Ax(k),(2.4)

with iteration matrix GdJac = I − ωD−1A. It is the eigenvalues of GdJac that de-
termine the rate of convergence of the method. In particular we can think of Jacobi
iteration as a power iteration with iteration matrix GdJac.
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Fig. 2.1: Illustration of the smoothing property of Jacobi and power iteration on the
uniform chain matrix (section 5.1). For each eigenvalue λi, i = 1, · · · , n, we take the
initial iterate x(0) = v(1) + 1

100v
(i) consisting of the equilibrium distribution slightly

perturbed in the direction of the i-th eigenvector. Then we plot the error ‖x(5)−v(1)‖l1
to the equilibrium distribution after five relaxation steps.

2.2. Smoothing Property. Particularly enlightening is the effect of the two
iterative methods to the eigenvectors of the coefficient matrix. In equation (2.3) we
see how the eigenvalues define to which extend the iterative method is effective in
reducing a particular error.
This is also what we observe in the numerical experiments: In the left plot of figure
2.1 we see that damped Jacobi iteration is very effective in reducing errors which
correspond to eigenvalues of B close to −1. On the other hand, errors corresponding
to eigenvalues of B close to 1 are hardly affected by the relaxation. In the right plot of
figure 2.1 we see that power iteration is very effective in reducing errors corresponding
to eigenvalues of B with small absolute value. The eigenmodes corresponding to
eigenvalues of B with large absolute value are hardly affected by power iteration.
Altogether the iterative methods do not reduce all error modes equally effective. That
is why we speak of smoothing or relaxation methods in the sense that they “smooth”
out some errors while leaving others largely unchanged.
For symmetric, positive definite matrices, this effect called smoothing property can be
defined more precisely [20, chapter 3].
The basic idea of multilevel methods is to reduce the smooth error components on a
smaller linear system.

2.3. Aggregation Multilevel Methods. As the exact solution x to (2.1) has
strictly positive components, it is reasonable to assume strict positivity of an approx-
imation x(i) as well. Then the multiplicative error of x(i) to x is defined by

e(i) :=
(

diag(x(i))
)−1

x.

Then a multiplicative error formulation of (2.1) has the form

A diag(x(i))e(i) = 0,(2.5)

where we have e(i) = 1 ∈ Rn at convergence.

From the theory on algebraic multilevel methods for positive definite matrices and
the general experience with multilevel methods it turns out (see [13]) that smooth
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errors e have small variation along strong algebraic couplings. That means ei ≈ ej if
|Aij |/Aii is large.
Let nc < n and assume there is a partition of {1, · · · , n} into nc aggregates ϕj .
These aggregates shall be chosen by some aggregation algorithm that aims at aggre-
gating strongly connected elements. Then, at least approximately, smooth errors are
piecewise constant along the aggregates. In [21] a bottom-up aggregation approach
is proposed, which seems to be a reasonable choice for the numerical example prob-
lems and will be used throughout this paper. The choice of a particular aggregation
method is typically motivated by heuristics and is not subject of this paper. In fact
the choice of aggregates may depend on the current iterate.
Once reasonable aggregates have been determined, the aggregation matrixQ ∈ {0, 1}n×nc

defined by

Qij =

{
1 if i ∈ ϕj
0 if i 6∈ ϕj .

contains the information which fine level variables belong to which aggregate.
In particular Q has full rank and up to reordering it has the following form.

Q =



1 0 · · ·
...

... · · ·
1 0 · · ·
0 1 · · ·
...

... · · ·
0 1 · · ·
...

...
. . .


On the coarser level we then solve for the error-components that are piecewise constant
on each aggregate ϕi. If we replace e(i) by Qec and multiply equation (2.5) from the
left by QT we obtain the multiplicative error formulation on the coarse level

QTA diag(x(i))Qec = 0.(2.6)

ec is a coarse level approximation of the (unknown) fine level multiplicative error e(i).
I.e. ec is the multiplicative error of the restriction QTx(i) of the fine level iterate to
the (unknown) exact coarse level solution xc.

xc = diag(QTx(i))ec

Together this gives the coarse level probability equation

QTA diag(x(i))Q
(

diag(QTx(i))
)−1

xc = 0(2.7)

with exact solution xc.

For simplicity of notation we define the prolongation and restriction operators by

R := QT ∈ Rnc×n

P := diag(x(i))Q ∈ Rn×nc .



LUKAS POLTHIER 5

In particular the current iterate x(i) is in the image of P .
In terms of grid-transfer operators R,P we define the coarse level operator

Ac := RAP(2.8)

and coarse level stochastic matrix

Bc := RBP
(

diag(Rx(i))
)−1

.(2.9)

Now the coarse level multiplicative error equation (2.6) can be formulated by

Acec = 0,(2.10)

and the coarse level probability equation (2.7) has the form

Ac

(
diag(Rx(i))

)−1

xc = 0.(2.11)

Theorem 2.1. [5, theorem 3.1] The coarse level matrix Ac is again an irreducible,
singular M-matrix. In particular (2.10) has a unique solution.
We also get

Ac

(
diag(Rx(i))

)−1

= (RIP −RBP )
(

diag(Rx(i))
)−1

= Ic −Bc
(2.12)

where Ic ∈ Rnc×nc denotes the identity matrix on the coarse level.
Hence by going from the fine level to the coarse level each aggregate ϕj gets assigned
the sum of its fine level weights, while going from coarse to fine level we weight the
fine level variables of an aggregate according to the relative proportion of the approx-
imated weights x(i).

By applying this approach in a recursive manner, we obtain the multilevel V-cycle
described in algorithm AM (algebraic aggregation for Markov chains).

Algorithm 1: AM(A, x)

if not on coarsest level then
x← Relax(A, x) (pre-relaxation: κ smoothing-steps to reduce rough
errors)

Build aggregates ϕj and aggregation matrix Q
R = QT and P = diag(x)Q
Ac = RAP
xc ← AM(Ac(diag(Rx))−1, Rx) (solve recursively on coarse level)
x← P (diag(Rx))−1xc (correct fine level iterate by coarse level
approximation)
x← Relax(A, x) (post-relaxation: κ smoothing-steps to reduce rough
errors)

else
x← Solve(A, x) (solve Ax = 0 directly with an exact solver)

end

Theorem 2.2 (Fixed point property). [5, theorem 3.2] The exact solution x is a
fixed point of the multilevel V-cycle, i.e. AM(A, x) = x.
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3. Deflated Square and Stretch Aggregation Multilevel for the Second
Eigenvector. In this chapter we introduce the new method to compute the second
eigenvector of a stochastic matrix using a multilevel aggregation approach. I.e. we
want to solve (1.1) where we assume that the eigenvalues fulfill (1.2). Recall that λ2

is not known a priori.

3.1. Wieland Deflation. Consider the deflated matrix

B1 := B − µv(1)uT ,(3.1)

where u ∈ Rn is some (for now arbitrary) deflation vector with (v(1), u)Rn = 1 and
µ ∈ R is some (for now arbitrary) shift. Then the eigenvalues of B1 are the same as
those of B, except for the eigenvalue λ1 that gets shifted by µ.
Lemma 3.1 (Wielandt deflation). [16, theorem 4.2] Let {v(1) = π, v(2), · · · , v(n)}
denote the right eigenvectors corresponding to the eigenvalues {λ1, λ2, · · · , λn} of a
column-stochastic matrix B. Then the deflated matrix B1 has the spectrum

σ(B1) = {λ1 − µ, λ2, · · · , λn}.

Moreover B1 has the same left eigenvectors u(i) for i = 2, · · · , n as B and right
eigenvectors of the form

ṽ(i) = v(i) − γiv(1)

for i = 2, · · · , n with γi = γi(u) := uT v(i)

1−(λ1−λi)/µ
depending on the deflation vector u.

Note that v(1)uT ∈ Rn×n is in general a non-sparse matrix. But we can still employ
matrix-vector multiplication by B1x = Bx−v(1)(uTx) using one sparse matrix-vector
multiplication and one inner product evaluation. For the special choice of a constant
vector u, the right eigenvectors v(2), · · · , v(n) are also preserved by the deflation. This
particular choice u ‖ 1 for the deflation vector is also called Hotelling’s deflation.

Inspired by the deflation idea we can adapt the Jacobi iteration as follows. First
assume λ > 0 such that the diagonal D1 = diag(E) of E := λI − B1 is non-singular.
Then Jacobi iteration with E has the form

x(k+1) := x(k) − ωD−1
1 (Ex(k))

= x(k) − ωD−1
1

(
λx(k) −Bx(k) + v(1)(u, x(k))Rn

)(3.2)

In a similar fashion we can combine power iteration with Hotelling’s deflation:

x(k+1) := B1x
(k) = Bx(k) − v(1)(uTx(k))(3.3)

For both methods we need to normalize after each iteration.
Theorem 3.2. For Hotelling’s deflation with deflation vector u ‖ 1 and µ = λ1,
the iteration (3.3) converges to the largest eigenvector of B1 for any initial vector

x(0) =
∑n
i=1 αiv

(i) with α2 6= 0. The speed of convergence depends on |λ3|
λ2

.
Proof. By lemma 3.1, Hotelling’s deflation preserves the right eigenvectors and eigen-
values λ2, · · · , λn. Then the convergence follows by a decomposition of the iterate
into eigenvectors similar to the elaboration on classical power iteration in chapter 2.1.
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In particular, as Hotelling’s deflation preserves the eigenvalues λ2, · · · , λn, the smooth-
ing heuristic of deflated power iteration and deflated Jacobi iteration coincides with
the heuristic for classical power and Jacobi iteration respectively. Hence we can use
the same multilevel heuristics as for the invariant measure.

For the invariant measure, the corresponding eigenvalue was known a priori, namely
λ1 = 1. For the second eigenvector, the fine level problem has the form

B1x = λ2x.(3.4)

However λ2 is not known a priori and we can not simply solve a linear system but
instead we have to exploit that λ2 is the largest eigenvalue of B1. That means we are
seeking the eigenvector of B1 corresponding to the eigenvalue with largest absolute
value.

Also, the deflated matrix B1 is not stochastic and even a full (i.e. non-sparse) matrix
in general. We circumvent these difficulties by using the stochastic matrix B for the
multilevel setting and then solve for the second largest eigenvector of B with deflated
power iteration (3.3).

The second eigenvector contains both positive and negative entries. This might cause
a cancellation depending on the choice of aggregates: If positive and negative nodes

in an aggregate sum to 0,
(
diag(QTx(i))

)−1
would not be well-defined. Hence it is

essential that we only aggregate elements that have the same sign in the approximation
x(i) to the second eigenvector. Then the matrix

diag(x(i))Q
(

diag(QTx(i))
)−1

used to prolongate the coarse level approximation to the improved fine level iterate is
non-negative. In particular the coarse level probability matrix

Bc := QTB diag(x(i))Q
(

diag(QTx(i))
)−1

.(3.5)

remains a non-negative stochastic matrix even though the prolongation operator

P = diag(x(i))Q

itself has both positive and negative entries. From an intuitive viewpoint and for the
exact solution, the coarse level problem should then preserve the second eigenvector as
only nodes with the same sign in the second eigenvector are aggregated and weighted
according to ratio in the second eigenvector. Hence the aggregation respects the
slowest process of the Markov chain and does not distort it. Our intuition is indeed
consistent with the following theorem.

Theorem 3.3. Let x be an eigenvector of the stochastic fine-level matrix B with
the eigenvalue λ2. Moreover let the aggregates ϕp be chosen such that xkxl > 0 for
all k, l ∈ ϕp for all aggregates ϕp. Then, for the exact solution x(i) = x, the coarse
level matrix Bc defined in (3.5) is a stochastic matrix with right eigenvector QTx
corresponding to the eigenvalue λ2.

Proof. By the preceding remarks, the assumption on the aggregates ensures that Bc
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is indeed a non-negative matrix. Moreover

1Tc Bc = 1Tc Q
TB diag(x)Q

(
diag(QTx)

)−1

= 1T diag(x)Q
(
diag(QTx)

)−1

= xTQ
(
diag(QTx)

)−1

= (Qx)T
(
diag(QTx)

)−1
= 1c.

Now simple calculations show that QTx is indeed an eigenvector.

Bc(Q
Tx) = QTB diag(x)Q

(
diag(QTx)

)−1
(QTx)

= QTB diag(x)Q1c

= QTB diag(x)1 = QTBx = λ2(QTx)

The resulting multilevel DAM (Wieland deflation with algebraic aggregation for Markov
chains) V-cycle is described in algorithm 2. First we compute the invariant measure
using a separate multilevel square and stretch algorithm from [21] which is a modi-
fication of the algorithm described in section 2. Then the invariant measure is used
in the relaxation method for a Hotelling’s deflation for the modified power iteration
(3.3). This step is denoted by RelaxWieland(B, x, v).
The deflation happens only in the pre- and post-relaxation, while the coarse level
probability matrix is still defined based on B. On the coarsest level, we apply de-
flated power iteration until the residual is close to machine precision. This step is
denoted by Solve(B, x, v).

Algorithm 2: DAM(B, x)

if not on coarsest level then
v ← S&SM(B) (solve for the first eigenvector with the algorithm
described in [21])
x← RelaxWielandt(B, x, v) (pre-relaxation)
Build aggregation matrix Q (aggregate only nodes with same sign)
R = QT and P = diag(x)Q
Bc = RBP (diag(Rx))−1

xc ← DAM(Bc, Rx) (solve recursively on coarse level)
x← P (diag(Rx))−1xc (correct fine level iterate by coarse level
approximation)
x← RelaxWielandt(B, x, v) (post-relaxation)

else
x← Solve(B, x, v) (Solve Bx = λ2x with plain relaxation)

end

Theorem 3.3 tells us that, for the exact solution, the second eigenvector x on the
fine level is preserved on the coarse level. However for a fixed point property of the
multilevel algorithm we additionally require that (QTx) is also the second largest
eigenvector on the coarse level. This would be fulfilled if coarsening does not generate
a new eigenvalue λ2 < λ̃ < 1 of Bc that dominates λ2.
From an intuitive viewpoint this is what we expect as aggregating some nodes should
preserve the dynamics of the remaining nodes, in particular if the nodes are aggregated
based on the strength of connection and the ratio in x.
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Assumption on slow process. If x is the second eigenvector of B, assume that
(Rx) is the second eigenvector of Bc.

In the numerical results we observe that the assumption holds for all test problems
and aggregates chosen by the bottom-up approach. However, for arbitrary stochastic
matrices and arbitrary aggregates, the assumption on slow processes does not hold
in general. There are even counterexamples for small matrices (n = 5) where the
coarse level matrix has another eigenvalue that is larger than the second eigenvalue
of the fine matrix. It appears that this assumption is a property of the aggregation
algorithm used in the multilevel framework.
Theorem 3.4. Assume the assumption on slow processes holds. Then the second
eigenvector x of B is a fixed point of DAM.
Proof. This follows by the previous reasoning.
For the multilevel V-cycle it remains to construct aggregates that satisfy the assump-
tion xkxl > 0 for all k, l ∈ ϕp. To this end we use the same bottom-up approach
as for the classical method in [21] where the strength of connection is defined by
B diag((x(k))+). But when constructing the connectivity matrix S, we set those en-
tries at (k, l) to zero, where xkxl ≤ 0.

Some tricks to improve convergence. For the relaxation method, we additionally
use Chebyshev iteration to influence the smoothing effect of the deflated power iter-
ation. For a polynomial p ∈ R[x], Chebyshev iteration computes a vector of the form
x(k+1) = p(B1)x(k). Here the polynomial p should be chosen such that the desired
eigenmodes are amplified, while others are damped. Consider a splitting of the initial
vector x(k) =

∑n
i=1 αiv

(i) into eigenvectors of B1. Then it holds

p(B1)x(k) =

n∑
i=1

αip(B1)v(i) =

n∑
i=1

αip(λi)v
(i).

To this end, we seek a polynomial which is large at λ2 and small on the set {λ3, · · · , λn}.
Without the knowledge of the eigenvalues such a polynomial is not possible to com-
pute. In practice however we can use e.g. third order polynomials with two zeros in
[−1, 0] that hence strongly damp the rough eigenmodes. Then coarse level correction
reduces the smooth eigenmodes more effectively.

To speed up the convergence in the first V-cycle iteration (only in the first!) it turns
out to be more efficient if we use the matrix B diag(v(1)) to define the strength of
connection and the prolongation operator

diag(v(1))Q
(

diag(QT v(1))
)−1

to compute the fine level approximation from the coarse level iterate. The reason
behind this is that in the first iteration the (known) first eigenvector provides a good
classification of the smooth errors, while the initial approximation x(1) to the second
eigenvector still has a large error.
Once the iterate x(k) becomes sufficiently accurate, the strength of connection and
the definition of the prolongation operator is based on the iterate x(k) as described in
algorithm DAM.

In figure 3.1 we see how the multilevel approach speeds up the convergence of plain
vector iteration. In the first V-cycle there is a drastic improvement of the residual
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Fig. 3.1: Illustration of multilevel improvement of DAM on the uniform chain matrix
for n = 1024 with 100 pre- and post-relaxation steps. The blue dots denote the
residual in the one norm on the fine level after each relaxation step. After 100 pre-
relaxation steps the coarse level correction is performed, then there are 100 post-
relaxation steps. The red dots denote the residual on the second finest level in the
V-cycle. (In total there are 6 levels in the V-cycle.)

due to the coarse grid correction. As explained in the previous paragraph, this is due
to the knowledge of the first eigenvector up to machine precision.
In the subsequent iterations, the coarse level correction introduces new errors that
are then effectively reduced by the first post-relaxations. This implies the coarse level
correction improves the smooth error components, but introduces new rough error
modes which then require damping by the post-relaxation steps. All in all the residual
is significantly reduced due to the coarse level correction. For larger matrices however,
the method becomes less efficient as the convergence rated increases for larger n. This
was also a property of the classical AM-algorithm for the first eigenvector.

4. Square and Stretch. In [21, 5] it was observed that the simple grid-transfer
operators lead to slow convergence of AM for the invariant measure. This was ex-
plained by the observation that rough errors are generated by P and not damped
properly by R. In [5] De Sterck et al propose smoothing the prolongation and restric-
tion operator to improve the convergence. A square and stretch approach where we
can still use the same grid-transfer operators but reduce the rough eigenmodes on the
coarse level has been proposed in [21] by Treister and Yavneh. In this section we will
apply the square and stretch approach in a similar fashion to improve the convergence
of DAM.

Regarding the first eigenvector, a matrix of the form B̂ = 1
1−dB−

d
1−dI was considered

where d ∈ (0, 1) is a stretching parameter. This changes the spectrum of the matrix
in an advantageous way (see [21]).

Here however, the eigenvalue λ2 of interest is smaller than 1. Thus if there is an
eigenvalue λk close to 0 we may observe∣∣∣∣ λ2

k

(1− d)
− d

(1− d)

∣∣∣∣ > ∣∣∣∣ λ2
2

(1− d)
− d

(1− d)

∣∣∣∣ .
Hence after the square and stretch transformation, there would be a different eigen-
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vector whose eigenvalue has largest absolute value. This would distort the method.
There are two remedies: The first approach is to use pre- and post-relaxations such
that the eigenvalues close to 0 are eliminated up to machine precision. Then they do
not distort the convergence.
The second approach is to use a shifting parameter p ≥ 1−λ2 that shifts the spectrum
before squaring. The spectrum of the resulting matrix

B̂ :=
1

1− d

(
1

(1 + p)2
(B + pI)2

)
− d

1− d
I

is still contained in the interval [−1, 1] but now λ2 remains the dominant second
eigenvalue in terms of largest absolute value. Of course the shifting parameter p is
not known in advance. Numerically we may use the approximation of the iterate to
1− λ2 with some multiplicative error correction.
Algorithm DS&SM (Wieland deflation with square and stretch for Markov chains)
describes the resulting multilevel V-cycle. In figure 4.1 we see that the square and
stretch transformation drastically improves the convergence compared to the simple
aggregation procedure depicted in figure 3.1. On the other hand we observe that
the coarse level correction now significantly introduces new errors. Hence we require
more relaxation steps to damp the new errors. The steep descent of the residual in
the first post-relaxation steps indicates that coarse level correction is quite effective
in reducing the smooth error components and that the new errors generated by the
coarse level are only rough modes.

Algorithm 3: DS&SM(B, x)

if not on coarsest level then
v ← S&SM(B) (solve for the first eigenvector with the algorithm
described in [21])
x← RelaxWielandt(B, x, v) (pre-relaxation)
Build aggregates ϕj and aggregation matrix Q
R = QT and P = diag(x)Q
Determine shifting parameter p
Determine stretching parameter d

B̂c = R
(

1
1−d

1
(1+p)2 (B + pI)2 − d

1−dI
)
P (diag(Rx))−1

xc ← DS&SM(B̂c, Rx) (solve recursively on coarse level)
x← P (diag(Rx))−1xc (correct fine level iterate by coarse level
approximation)
x← RelaxWielandt(B, x, v) (post-relaxation)

else
x← Solve(B, x, v) (Solve Bx = λ2x directly)

end

This algorithm has the same fixed point property as DAM.

5. Numerical Results. The choice of test problems was motivated by the ex-
amples used in [5, 21]. Also the numerical parameters are chosen alike. γ denotes the
convergence rate of a V-cycle. it denotes the number of steps to reduce the residual
by factor of 10−10. Cop denotes the operator complexity, i.e. the number of nonzero
elements on all levels divided by the number of non-zero elements on the fine level.

γeff =
(
(10−10)1/it

)1/Cop
denotes the effective convergence factor to measure the over-

all effectiveness of the method. lev denotes the number of levels of a V-cycle. The
parameter θ is used in the bottom-up aggregation scheme described in [21].
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Fig. 4.1: Illustration of the multilevel improvement of DS&SM on the uniform chain
matrix for n = 1024 with 100 pre- and post-relaxation steps. The blue dots denote
the residual in the one norm on the fine level after each relaxation step. After 100 pre-
relaxations the coarse level correction is performed, then there are 100 post-relaxation
steps. The red dots denote the residual on the second finest level in the V-cycle.

5.1. Uniform Chain. The simplest test matrix we consider is the uniform chain
matrix. Figure 5.1 illustrates the graph of the 1D chain with uniform weights. The
connectivity matrix is symmetric with non-zero entries just above and below the main
diagonal. The resulting transition matrix has eigenvalues that are almost uniformly
distributed in the interval [0, 1].
Aggregates of size s = 2 with aggregation parameter θ = 0.1 are chosen. For DS&SM
using d = min(diag(A)) or d = 0.5 gives the same results, as the diagonal elements
are approximately 0.5. DS&SM and DAM require a larger number of smoothing steps
compared to AM in order to damp the rough error modes generated by the coarse
level correction. We use 100 pre- and post-relaxations where each relaxation consists
of 3 matrix-vector multiplications.
In table 5.1 we see that DS&SM performs extremely well with bounded operator
complexity and low convergence factors. Just as for the invariant measure, the square
and stretch transformation significantly increases the performance.
In fact, despite the high number of relaxation steps, the good convergence factor
of DS&SM is the result of coarse level improvement together with relaxations. If we
consider only relaxation steps without the multilevel correction, the residual is merely
reduced with a convergence factor of 0.999 for 200 relaxation steps on a 16384x16384
uniform chain matrix.

Table 5.1: Uniform chain, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

1024 0.06 1.5e-3 4 1.99 7 0.5 0.96 > 50 1.99 7

4096 0.02 4.3e-4 3 2.00 9 0.5 0.99 > 50 1.99 8

16384 0.02 6.1e-3 3 2.00 11 0.5 0.99 > 50 2.00 10

32768 0.10 0.09 5 2.00 11 0.5 0.99 > 50 2.00 11

65536 0.06 0.06 4 2.00 12 0.5 0.99 > 50 2.00 12

262144 0.06 0.03 4 2.00 14 0.5 0.99 > 50 2.00 14
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Fig. 5.1: Left: Graph representation of the uniform chain. Right: Distribution of the
eigenvalues for n = 1000.
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Fig. 5.2: Left: Graph representation of the uniform chain with one weak link. Right:
Distribution of the eigenvalues for n = 1000.

5.2. Uniform Chain with Weak Link. This test problem is a 1D chain with
one weak link in the middle of the chain with weight ε = 0.001 and uniform weights
ω = 1 on the other edges. Figure 5.2 shows a graph representation and the distribution
of eigenvalues. We can use the same parameters as for the uniform chain.
As for the standard uniform chain without a weak link, DS&SM performs well and
has very good convergence properties. It by far outperforms DAM.

Table 5.2: Uniform chain with one weak link, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

1024 0.02 2.6e-3 3 1.98 6 0.5 0.93 > 50 1.98 6

4096 0.02 0.01 3 1.99 8 0.5 0.99 > 50 1.99 8

16384 0.02 0.02 3 2.00 10 0.5 0.99 > 50 1.99 10

32768 0.02 0.06 3 2.00 11 0.5 0.99 > 50 1.99 11

65536 0.10 3.8e-3 5 2.00 12 0.5 0.99 > 50 1.99 12

262144 0.02 1.3e-3 3 2.00 14 0.5 0.99 > 50 1.99 14
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Fig. 5.3: Left: Graph of uniform 3x5 lattice. Right: Distribution of the eigenvalues
for a 32x32 lattice.

5.3. 2D Lattice. The 2D-lattice is another simple structured problem. In figure
5.3 we see the graph representation and distribution of eigenvalues. For the numerical
tests we consider quadratic lattices. (Only for n = 32768 we have a 128x256 lattice.)
We use aggregates of size s = 4 and chose the other parameters as for the uniform
chain. Regarding the second eigenvector we observe that the method DS&SM has
reasonable convergence rates that increase as n grows. Cop seems to be bounded.
The square and stretch approach significantly accelerates the convergence compared
to DAM.

Table 5.3: 2D-lattice, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

1024 0.14 0.09 7 1.67 4 0.5 0.15 8 1.39 4

4096 0.37 0.33 13 1.76 5 0.5 0.48 15 1.37 5

16384 0.36 0.40 14 1.63 6 0.5 0.77 45 1.37 6

32768 0.45 0.56 18 1.59 6 0.5 0.83 > 50 1.33 6

65536 0.50 0.55 20 1.64 7 0.5 0.90 > 50 1.36 7

5.4. Random Delaunay Triangulation. The problems we considered so
far had a simple geometric structure which implicitly prescribed the algebraically
generated aggregates. The (undirected) graph for this example problem is a Delaunay
triangulation for n randomly chosen points in the [0, 1]2 unit square with uniform
weights. Figure 5.4 shows an example of such a graph and the spectrum of the
corresponding Markov chain.

For n = 262144 we used the aggregation parameter θ = 0.1 instead of 0.25. We use
aggregates of size 4 and besides that the standard parameters. For D&SM we use a
higher number of 300 relaxation steps.

Regarding the second eigenvector we observe that the convergence factors approach
1 and the method becomes less effective for large n. Moreover DS&SM does not
significantly outperform standard DAM. But still the method is superior to plain re-
laxation. The inferior results can be explained by the observation that for this problem
the coarse level correction introduces new errors which need to be reduced by addi-
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tional relaxation steps. The random grid makes the choice of good aggregates more
difficult. If the aggregation algorithm is not optimal, this leads to slower convergence.
Note here, that the convergence is not caused by the large number of relaxation steps,
but by relaxation combined with coarse level correction. Plain relaxation alone does
not significantly change the residual at all for large matrices.
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Fig. 5.4: Left: Example of a Delaunay triangulation for n = 100. Right: Distribution
of the eigenvalues for n = 1000.

Table 5.4: Random Walk, second eigenvector

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

1024 0.48 0.47 18 1.76 4 0.5 0.56 28 1.38 4

4096 0.67 0.71 31 1.84 5 0.5 0.92 > 50 1.38 5

16384 0.66 0.75 30 1.87 6 0.5 0.98 > 50 1.38 6

32768 - 0.91 > 50 1.89 6 0.5 0.98 > 50 1.38 7

5.5. 1D Multi-Well Potential. The double-well potential is a simplified aca-
demic example problem. For instance, it is used to illustrate the reaction pathway of
a protein folding process. It is based on an energy potential with two wells (figure 5.6)
on which a particle is moving around driven by both diffusion and drift induced by the
energy potential. We discretize by dividing the domain [0, 1] into equidistant intervals
and use a Monte Carlo method to estimate the transition probabilities between the
boxes.
Note that for this test problem the number of non-zero entries in the transition
matrix grows quadratically with n, whereas for all other test problems the number
of non-zero entries is proportional to the matrix size. for n = 4096 the matrix has
about 2.3e+6 non-zero entries and for n = 16384 the matrix has more than 3.7e+7
non-zero entries.

We use aggregates of size 2 and take the average of the diagonal elements as the
stretching parameter.
Note that there is a spectral gap after the second eigenvalue. Hence the second
eigenvector is easier to compute. We use only 3x pre- and post-relaxation steps to
emphasize the convergence effect of the coarse level improvement. Also square and
stretch does not significantly improve the convergence.
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Fig. 5.5: Left: Double-well potential. Right: Eigenspectrum of the discretized transi-
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Fig. 5.6: Left: Stationary distribution of the double-well potential. Right: Second
eigenvector corresponding to the characteristic slowest dynamic of the process.

The method can also be successfully applied to a four-wells potential constructed
similarly as the double-well potential. The four-well potential however has more than
one eigenvalue close to 1, hence the computation of the second eigenvalue is harder.
For the multilevel V-cycle we use aggregates of size 3 and 9 pre- and post-relaxation
steps. In table 5.6 we can observe that the convergence factor is independent of n
and Cop grows slightly with n.

Table 5.5: Double-well potential, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

512 0.10 0.03 7 1.45 4 0.45 0.04 6 1.23 4

1024 0.15 0.10 8 1.54 4 0.45 0.11 7 1.29 5

2048 0.17 0.10 8 1.60 5 0.44 0.12 8 1.34 6

4096 0.10 0.08 6 1.66 6 0.43 0.10 7 1.34 6
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Fig. 5.7: Left: Four-well potential. Right: Eigenspectrum of the discretized transition
matrix. The two dots close to 1 are in fact four (overlapping) dots.

Table 5.6: Four-well potential, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

512 0.17 0.23 9 1.46 4 0.45 0.36 15 1.24 4

1024 0.11 0.11 7 1.49 4 0.45 0.27 13 1.26 4

2048 0.15 0.17 8 1.52 5 0.44 0.31 14 1.27 5

4096 0.19 0.19 9 1.55 6 0.43 0.32 15 1.27 6

5.6. Complex Uniform Chain. This example is a modified uniform chain with
additional transitions along the chain as depicted in figure 5.8. The non-symmetry
of the sparsity pattern of the transition matrix causes complex eigenvalues. We see
that the eigenvalues with large imaginary part are contained in a ball of radius ≈ 0.5
around zero. The eigenvalues close to 1 remain real-valued.
We choose aggregates of size 3. The stretching parameter d has to be smaller than 0.5
due to the imaginary spectrum. Regarding the second eigenvector we observe that
DS&SM outperforms DAM and has a bounded operator complexity. However the
convergence factor increases as n grows.
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Fig. 5.8: Left: Directed graph of complex uniform chain. Right: Complex spectrum
for n = 1000.
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Table 5.7: Complex uniform chain, second eigenvector.

DS&SM DAM

n γeff γ it Cop lev d γ it Cop lev

1024 0.23 0.41 12 1.32 5 0.46 0.86 > 50 1.18 5

4096 0.44 0.69 21 1.32 7 0.46 0.98 > 50 1.19 7

16384 0.38 0.76 18 1.32 9 0.46 0.99 > 50 1.19 9

32768 0.55 0.89 29 1.32 10 0.45 0.99 > 50 1.19 10

6. Conclusions. The new method DS&SM to compute the second eigenvector
has superior convergence properties for matrices with few connections like the uniform
chain, the uniform chain with a weak link and the complex uniform chain. Also for
structured problems like the 2D-lattice the methods is applicable. For the multi-well
potential it appears that the method is very scalable and has good convergence
results. However the method is limited by its relatively poor convergence for the
unstructured Delaunay triangulation with large n. A reason for this behavior might
be that the aggregation method is not optimal for this type of grid. But the method
is still far more effective than ordinary relaxation and improves the convergence.
Also it is possible that a different aggregation method could significantly improve the
convergence.

Regarding the analysis, it would be interesting if the assumption on slow processes
can be proven for certain classes of stochastic matrices and aggregation methods.
So far the theory for smooth errors has been developed largely for symmetric positive-
definite matrices. I think it would be good if one could extend the theory to arbitrary
relaxation methods with a thorough framework.
Finally one could extend the method to compute the first k dominant eigenvectors with
a multilevel approach. At least for problems with few connections like the uniform
chain, this approach appears to be very promising.
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