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Abstract. Denoising and filtering of time series signals is a problem emerging
in many areas of computational science. Here we demonstrate how the non-

parametric computational methodology called Finite Element Method of time

series analysis with H1 regularization can be extended for denoising of very
long and noisy time series signals. The main computational bottleneck is in-

duced by the cost of the inner Quadratic programming problem. Analyzing the

solvability and utilizing the problem structure, we suggest an adapted version
of the Spectral Projected Gradient method (SPG-QP) to resolve the problem.

This approach increases the granularity of parallelization, making the proposed
methodology highly suitable for Graphics Processing Unit (GPU) computing.

We demonstrate the scalability of our open-source implementation based on

PETSc for the Piz Daint supercomputer of the Swiss Supercomputing Centre
CSCS, by solving large-scaled data denoising problems and comparing their

computational scaling and performance to the performance of the standard

denoising methods.
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1. Introduction

Time series signals (i.e., data measured in intervals over a period of time) are
typical for many practical areas such as econometrics (e.g., movement of stock
prices [21]), climatology (e.g., temperature changes [42]) or molecular dynamics
(e.g., in conformational changes of the molecule [23]). The analysis of time se-
ries signals aims to extract meaningful characteristics and understand the process
which has generated those data. Such an analysis is the key ingredient in the fore-
casting the process beyond the observed and measured time. However, one of the
main difficulties in the analysis of real measurement is the presence of the mea-
surement/experimental noise. Additionally, almost exponentially growing amount
of collected data in many practical applications requires a development of better
and faster data-driven denoising, modeling and classification tools suitable for High
Performance Computing (HPC).

Suppose we observed time series signal xt ∈ Rn, t = 1, . . . , T (where n is the
data dimension and T is the length of time series) and those data are appropriately
described by the model function µ(t,Θ) with parameters Θ ∈ Rm and an additive
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noise ε, i.e.

(1) xt = µ(t,Θ) + εt, t = 1, . . . , T,

where {εt} is a family of independent and identically distributed (i.i.d.) random
variables with zero expectation. The explicit model function µ(t,Θ) is chosen a
priori based on our knowledge about the particular application. In general, the aim
of modeling process is to determine optimal parameters Θ̄ such that the observed
data xt are described by (1) in the most optimal way, for example using maximum
likelihood principle (MLE) or minimizing mean-square error. Finally, the denoised
signal can be obtain as an output of (1) with known Θ̄ and without the presence
of (eliminated) noise term εt.

In the first part of introduction, we shortly review the general classification of
time series modeling methodologies based on the choice of µ. In the second part,
we investigate methods from the point of computational cost and highlight the
importance of developing the optimization algorithms for its effective solution. The
final part of introduction presents Finite Element Method of time series analysis
with H1 regularization (FEM-H1) methodology used in the approach presented in
this paper.

1.1. General model classification. In the simple case, the form of the model
function µ is known and, for instance, it can be expressed as some priori defined
function depended on time. If the dimension of the underlying parameters Θ is
finite, then this method is called parametric.

For example, in the case of a linear regression

(2) µ(t, θ0, θ1) = θ1t+ θ0

the unknown model parameters θ0, θ1 ∈ R can be found using MLE (or minimizing
least-square error) as a solution of an appropriate optimization problem

(3) [θ̄0, θ̄1] = arg min
θ0,θ1

T∑
t=1

‖xt − µ(t, θ0, θ1)‖2.

The recovered signal is obtained as values of µ(t, θ̄0, θ̄1), t = 1, . . . , T . However, the
model used (2) is valid only if the original data was generated by a linear model -
and if no non-linear effects had a significant impact on the underlying process.

Another example of parametric methods are Hidden Markov Models (HMM).
Hereby, it is a priori assumed that there exist regimes such that data in each regime
is distributed according to some explicit parametric distribution from a known and
fixed family of parametric distibutions (e.g., Gaussian, Poisson, etc.). The aim
is then to search for an optimal regime-switching homogeneous Markov process
represented by unknown components of transition matrix and initial states [5].

In general, parametric methods are usually based on rather strong explicit as-
sumptions about the problem structure. These assumptions help to create a tractable
finite-dimensional formulation of the problem, which can be solved analytically or
efficiently numerically. In general, the more model assumptions are imposed, the
less general the model is - and the simplier is a numerical optimization problem to
be solved. On the other hand, imposing a misspecified parametric structure leads
to models that incorrectly describe the problem under consideration.

The way how to avoid the (possibly inappropriate) restrictive a priori explicit
parametric assumptions about the dynamics of the model parameters is to use
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nonparametric models. In the case of nonparametric models, the dimension of the
underlying parameters Θ is infinite and we assume that optimal parameters are
represented as functions from a priori restricted class of feasible functions. How-
ever, the larger generality and complexity of the used nonparametric models also
imposes a much higher computational cost on resulting infinite-dimensional opti-
mization problem. Therefore, the nonparametric models are much more challenging
in numerical implementation and execution.

An example of non-parametric method is a Generalized Additive Model (GAM)
[29]. In comparison to linear regression (2), (3), the model function µ in GAM
can be defined as an arbitrary, nonlinear and nonparametric smooth function from
Sobolev space on an interval [t1, tT ] = [1, T ]

(4) W 2([t1, tT ]) = {µ(.) ∈ C(2)([t1, tT ]) :

tT∫
t1

[µ′′(t̂)]2dt̂ <∞}.

The optimal (i.e. sufficiently smooth) modeling function is then given by solving
the optimization problem

(5) µ̄ = arg min

T∑
t=1

(xt − µ(t)) + λ

tT∫
t1

[
µ′′(t̂)

]2
dt̂.

Here λ > 0 represents the regularization parameter which has to be estimated [51].

1.2. Computational cost. The choice of the ”most optimal” tools in every par-
ticular application is not a trivial task and is triggered by the counter-play of many
factors [39], most of all by the the following two factors: (i) the amount of bias that
is introduced by the analysis method (for example, coming from the eventually-
wrong a priori assumptions about the linearity, Gaussianity and homogeneity of
the underlying processes) and (ii) the computational scalability of different data-
driven algorithms - as well as the possibility to deploy these algorithms in a High
Performance Computing (HPC) setting - to be able to process the data en masse.

Experience shows that the analysis algorithms that introduce the highest-potential
bias (e.g., standard linear Fourier filtering methods based on the Fast Fourier Trans-
forms (FFT) or parametric Bayesian methods like HMM with Gaussian or Poisson
outputs and a time-homogenous Markov model assumption [39, 40, 49]) demon-
strate the best HPC scaling performances whereas the nonlinear and non-Gaussian
approaches like Convolutional Neuronal Networks (CNNs) need more communica-
tion and scale worse - so only the deployment of massively-parallel GPU architec-
tures helped to reach the scale-up that was necessary to apply these methods to
large realistic problems [15, 48].

From the mathematical perspective, essentially all of the data analysis and clas-
sification methods currently available in the standard analysis packages can be
formulated as the numerical algorithms for solutions of large optimization prob-
lems.

To give some examples, the standard Fourier-, wavelet- and kernel-filtering algo-
rithms for denoising of the signals xt ∈ Rn - as well as the parameter identification
methods for Support Vector Machine (SVM) classification, linear discriminant anal-
ysis and linear autoregressive models (AR) - can be formulated and implemented as
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solution algorithms for the same type of the unconstrained quadratic minimization
problem (QP)

ȳ = arg min
y
‖x− Φy‖2,

where ‖.‖2 denotes Euclidean norm, y ∈ Rr (r is typically much less then n), and
Φ ∈ Rn×r is a known filtering matrix. Variational methods (like the regularized ker-
nel filtering, compressed sensing and regularized model inference) [12, 52, 50] can be
obtained by adding the regularizing inequality constraints to this convex problem:
for example, a very popular compressed sensing algorithm in a dual formulation can
be obtained by adding the linear inequality constraint ‖y‖1 ≤ ε (where ‖.‖1 denotes
L1 norm and ε is some a priori fixed ”sparsity” parameter) to the above uncon-
strained QP. Neuronal networks can be straightforwardly approached as parametric
non-convex optimization problems of the type

ȳ = arg min
y
‖x− Φ(y)‖2,

where Φ is some a priori fixed non-linear operator characterizing the network topol-
ogy and y are unknown network parameters.

Finally, the nonstationary and nonparametric denoising and modeling methods
based on regularized nonconvex clustering algorithms (like the FEM-H1 methodol-
ogy developed in [24]) can be implemented as the solution of minimization problem
of regularized clustering functional with equality and inequality constraints. In
following we shortly review this approach.

1.3. Nonparametric nonstationary FEM-H1 methodology. We will consider
observed data as time series xt ∈ Rn, t = 1, . . . , T . Our aim is to find coefficients
Θ(t) of some model function µ(t,Θ) such that this function in some sense fits the
data in the best way. This fitting condition (i.e., the distance between observed
data and values of the model function) is measured by a metric g, which can be for
example defined by means of the function

(6) g(xt,Θ(t)) = (xt,E[µ(t,Θ(t))])
2
.

Therefore, the most appropriate parameters Θ(t) can be obtained by solving the
variational problem

(7) Θ̄ = arg min
Θ(·)∈ΩΘ

L(Θ), L(Θ) =
T∑
t=1

g(xt,Θ(t)),

where L refers to a model distance function and ΩΘ represents the space of all
feasible parameters of parameter functions Θ(·) for the considered model. However,
this problem is ill-posed if only one sequence of data {x1, . . . , xT } is available (this
is typical situation for many practical applications, e.g., computational finance
or climatology, where only one historical sequence of data is available for each
particular time series). One option of regularizing this problem and making it well-
posed is based on the clustering of Θ(t), i.e., one can assume that there exist K
different stationary parameters Θ = [Θ1, . . . ,ΘK ] such that the fitness function (6)
can be expressed as a convex combination

g(xt,Θ(t)) =

K∑
i=1

γi(t)g(xt,Θi),
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where γk(t) ∈ {1, . . . , T} → [0, 1], k = 1, . . . ,K are so-called model indicator func-
tions, see [41] and [33]. These functions define the activeness of appropriate i-th
cluster at a given time t; if γi(t) = 1, then the data are modeled by i-th model in
time t. These properties can be written in form of constraints

(8)

K∑
i=1

γi(t) = 1,∀t, 0 ≤ γi(t) ≤ 1,∀t, i.

Hence, model indicator functions could be considered as switching functions be-
tween individual models on clusters. Additionally, one can incorporate additional
information about observed process, for example by assuming that switching be-
tween clusters is in some sense slower than the changes of the signal caused by the
presence of the modeling error or the noise in data. In our notation, this approach
means that model indicator functions γi are smooth in some appropriately-chosen
function space. For example, one can enforce the smoothness in H1-space by intro-
ducing the Tikhonov-based penalization term

(9)

[Θ̄, Γ̄] = arg min
Θ ∈ ΩΘ

Γ ∈ ΩΓ

Lε(Θ,Γ),

Lε(Θ,Γ) =
T∑
t=1

K∑
i=1

γi(t)g(xt,Θi) + ε2
K∑
i=1

T∑
t=2

(γi(t− 1)− γi(t))2
,

where ΩΓ is a feasible set defined by conditions (8) and ε2 denotes the regularization
parameter.

This methology was called FEM-H1 and it was introduced and developed in
[31, 32, 35, 33, 34, 36, 37]. For the unified and simplified derivation of the method,
as well as its relation to classical methods of unsupervised learning, please see [41].
Moreover, the method was extended for spatial regularization using the network
information in the graph-based form of the regularization matrix, see [24]. In this
case, the only difference appears in the formulation of the smoothing term.

From a numerical point of view, the problem (9) can be solved as a sequence of
split optimization problems, see Algorithm 1.

Algorithm 1. Outer optimization algorithm.

Set feasible initial approximation Γ0 ∈ ΩΓ

while ‖Lε(Θk,Γk)− Lε(Θk−1,Γk−1)‖ ≥ ε

solve Θk = arg min
Θ∈ΩΘ

Lε(Θ,Γk−1) (with fixed Γk−1)

solve Γk = arg min
Γ∈ΩΓ

Lε(Θk,Γ) (with fixed Θk)

k = k + 1
endwhile

Return approximation of model parameters Θk and approximation of model indicator functions

Γk.

Please notice that the first optimization problem in Algorithm 1 is strongly
connected to the type of modeling problem and model used. However, if we are able
to solve the stationary variant of the problem, then this clustered problem includes
only one modification represented by the multiplication by constant coefficients
γi(t). Beyond that, this problem can be reduced into K completely independent
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problems; for each cluster we are solving the stationary problem. And also the size
of this problem is typically small since we suppose that the number of clusters is
reasonably small.

One of the main challenges in applying this framework to the analysis of real
time series data (e.g., in computational finance, climatology, or neuroscience) is
induced by a high computational cost of the second optimization sub-problem in
this algorithm. Due to this limitation, published applications of these methods
are confined to relatively-small data sets [31, 32, 35, 33, 34, 36, 37]. This second
optimization sub-problem is completely independent of the type of the application,
i.e., independent of the choice of fitness function (6). Nevertheless, the size of this
problem is given by KT and cannot be separated because of the conditions (8)
and the form of regularization term in (9). In optimization theory, the problem
of this form (quadratic cost function with a feasible set formed by linear equality
and inequality constraints) is called quadratic programming problem (QP), see
[44] and [18]. Therefore, if we develop the efficient solver to deal with this main
computational bottleneck of the FEM-H1 data analysis framework, then we will
be able to apply the framework to very large realistic data sets from different
application areas (finance, image processing, bioinformatics, etc.). A central goal
of this paper is to provide an algorithmic solution to this fundamental problem of
the FEM-H1 framework.

Therefore, we will subsequently concentrate on the HPC solution of the problem
of unknown model indicator functions Γ. For practical reasons, we define a column
vector with all (unknown) model indicator functions by

γ := [γ1, . . . , γK ] ∈ RKT

and problem (9) for constant Θ can be written in the form of block-structured QP
problem

(10)

γ̄ := arg min
γ∈ΩΓ

Lε(γ)

γ := [γ1, . . . , γK ] ∈ RKT ,
γi := [γi(1), . . . , γi(T )] ∈ RT

Lε(γ) := 1
T b

ᵀ
Θγ + ε2

T γ
ᵀHγ,

ΩΓ := {γ ∈ RKT : γ ≥ 0 ∧
K∑
k=1

γk(t) = 1,∀t = 1, . . . T}

where H ∈ RKT×KT is a block-diagonal matrix, whose blocks Hi ∈ RT×T are
formed by Laplace matrices and

bΘ := [g(xt,Θ1), . . . , g(xt,ΘK)] ∈ RKT

denotes the column block-structured vector of modeling errors [33]. Notice that
we scaled the cost function by positive coefficient 1/T to control the scale of the
function values for the cases with large T .

The paper is organized as follows. In Section 2, we examine the solvability
and properties of the QP problem (10). Afterwards in Section 3, we present the
modification of the spectral projected gradient method for QP problems suitable
for a HPC implementation and discuss its advantages in comparison with other
standard algorithms. In our project, we are interested in the HPC implementation
of FEM-H1 methodology to be able to deal with very long time series. From the
beginning, we consider a situation when even the input data cannot be stored
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and operated on one computational node, therefore the distributed layout of the
vectors and matrices has to be introduced and considered during the whole solution
process. In Section 4 we briefly introduce our parallel implementation approach.
Section 5 presents the performance of our algorithm on a data denoising problem,
which is constructed to mimic the main features (like the very high noise-to-signal
ratios, non-Gaussianity of the noise) that are typical for time series from practical
applications. In contrast to the analysis of the “real life” practical data (where the
underlying “true signal” is hidden in the noise and is not known a priori), analysis
of this test data that we propose allows for a direct comparison of the introduced
method to different standard denoising algorithms. It also allows the assessment
of the denoising performance of the methods for various ratios of signal-to-noise —
an assessment that can not be achieved for the “real life” data. We also present
the scalability results of our implementation on the Piz Daint supercomputer [1].
In this section, we show the efficiency of FEM-H1 methology in comparison with
other standard denoising approaches. We show that our method outperforms other
standard denoising methods in the terms of the denoising quality in the situations
when the signal-to-noise ratio of the data becomes small.

Finally, Section 6 concludes the paper and presents some ideas for our future
research.

2. Solvability of inner QP

For the simplicity of our analysis, we rewrite the problem (10) using the conve-
nient notation

(11) min
x∈Ω

f(x), f(x) :=
1

2
xᵀAx− bᵀx,

where A := ε2

T H ∈ RKT×KT is a symmetric positive semidefinite (SPS) Hessian

matrix of a quadratic cost function f : RKT → R and b := − 1
T b

ᵀ
Θ is the so-called

right hand side vector. This name came from the necessary optimality condition
for the unconstrained problem Ω = RKT , which is given by

(12) ∇f(x) = Ax− b = 0 ⇔ Ax = b,

see [44], [11], and [18].
Since Hessian matrix A of the quadratic function f is SPS, this cost function is

continuous and (not strictly) convex. Moreover, the null space (kernel) is given by

(13)
KerA = span{[1ᵀ,0, . . . ,0]ᵀ, [0,1ᵀ,0 . . . ,0]ᵀ,

. . . [0 . . . ,0,1ᵀ]ᵀ} ⊂ RKT ,

where we denote 1 := [1, . . . , 1]ᵀ ∈ RT and 0 := [0, . . . , 0]ᵀ ∈ RT .
The feasible set Ω ⊂ RKT is a (non-empty) bounded closed convex set and it

can be equivalently defined by

Ω = {γ ∈ RKT : γ ≥ 0 ∧Bγ = c},

where B := [I, . . . I] ∈ RT×KT , c := 1, and I ∈ RT×T denotes the identity matrix.
Using this notation, we can easily conclude that the optimization problem (11) is
a QP problem with the SPS Hessian matrix, linear equality constraints and bound
constraints

(14) min
1

2
xᵀAx− bᵀx subject to Bx = c, x ≥ 0.
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The existence of solution of (14) is implied by the Weierstrass extreme value
theorem: the real-valued cost function is continuous, and the non-empty feasible
set is bounded.

However, the uniqueness of this solution is not so straighforward. It is given by
the relationship between the null space (kernel) of Hessian matrix A, linear term
b, and the feasible set Ω, since the differences between solutions lies in this vector
space. For instance, if A is symmetric positive definite (SPD), then the cost function
is strictly convex and the solution is unique on any non-empty closed convex feasible
set, see [18]. Unfortunately, in our case the Hessian matrix is only SPS and the
solution is not unique for an arbitrary feasible set. For example in unconstrained
case, if Ω := Rn, then the problem could be possibly non-solvable; if b /∈ ImA
then the linear system (12) has no solution. If b ∈ ImA then the system of all
solutions of the unconstrained problem is given by x̄ = A+b+ d, where A+ denotes
Moore−Penrose pseudoinverse of the singular matrix A, and vector d represents an
arbitrary vector from (in this case non-trivial) KerA. Therefore, all solutions of
the problem differ by the vector from KerA.

At first, we present the generalization of previous observation from the uncon-
strained case to solutions of a problem (14).

Lemma 1. Let x̄1, x̄2 be two solutions of problem (14). Then

x̄1 − x̄2 ∈ KerA ∩KerB.

Proof. Let us denote d := x̄2 − x̄1. Then using the definition of a quadratic cost
function f and simple manipulations, we obtain

(15) f(x̄2) = f(x̄1 + d) = f(x̄1) + dᵀ∇f(x̄1) +
1

2
dᵀAd.

We suppose that both of x̄1 and x̄2 are minimizers (both of f(x̄1) and f(x̄2) are
minimal values of f on the feasible set), therefore f(x̄1) = f(x̄2). Using this and
comparing sides of equality (15), we can write

(16)
1

2
dᵀAd = −dᵀ∇f(x̄1).

The left side of this equation is always non-negative because A is SPS. Moreover,
the right side is non-positive because x̄1 is a solution of the convex optimization
problem with differentiable f and the necessary optimality condition is given by
(see [11])

∇f(x̄1)ᵀ(y − x̄1) ≥ 0 for all y ∈ Ω.

Combining these two inequalities, we obtain

(17) dᵀAd = 0 ∧ dᵀ∇f(x̄1) = 0.

The first equality implies d ∈ KerA.
We suppose that both of the solutions belong to the feasible set, therefore they

satisfy constraint conditions. From equality conditions for x̄2 and using Bx̄1 = c,
we get

c = Bx̄2 = B(x̄1 + d) = Bx̄1 +Bd = c+Bd,

therefore Bd = 0 or equivalently d ∈ KerB. �
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In the proof of the previous Lemma, we did not yet use one important property,
which appears in (17). Using d ∈ KerA from first equality of (17) we get equivalent
condition

dᵀ∇f(x̄1) = dᵀ(Ax̄1 − b) = −dᵀb = 0.

or equivalently (using d ∈ KerA ∩KerB, see Lemma 1)

b ⊥ KerA ∩KerB.

This condition forms the sufficient condition for a possible existence of two different
solutions of the general QP problem (14).

However, these solutions could be constrained by additional inequality con-
straints and the full system of necessary conditions is more complicated. Let us
introduce Lagrange function (see [44] and [18]) corresponding to the problem (14)

(18) L(x, λE , λI) :=
1

2
xᵀAx− bᵀx+ λᵀE(Bx− c)− λᵀIx,

where λI and λE are Lagrange multipliers corresponding to the equality and in-
equality constraints. So-called Karush-Kuhn-Tucker (KKT) optimality conditions
are given by

(19)

Ax− b+BᵀλE − λI = 0,
Bx− c = 0,
x, λI ≥ 0,

[x]j [λI ]j = 0 ∀j = 1, . . . ,KT.

where we use the notation [v]j to denote the j-th component of vector v.
Additionally, we can utilize the block-diagonal structure of our specific problem

(10) given by the decomposition into clusters. Let us denote the block of matrix A

by Â ∈ RT×T and corresponding blocks of vectors xk, bk, λIk ∈ RT , k = 1, . . . ,K.
Then we can write the first KKT system in a form

Âxk − bk + λE + λIk = 0, k = 1, . . . ,K.

Now we can sum all these equations to get

Â

(
K∑
k=1

xk

)
−

K∑
k=1

(bk + λIk) +KλE = 0

and since from equality constraint we have
K∑
k=1

xk = 1 and 1 ∈ Ker Â (see (13)),

we can write

(20) λE =
1

K

K∑
k=1

(bk + λIk)

and substitute back into first KKT condition (19). Using the definition of a matrix
B, we obtain

(21) Ax−Qb−QλI = 0, Q := I − 1

K
BᵀB.

Here the orthogonal matrix Q ∈ RKT×KT represents the projector onto KerB.
Using KKT optimality conditions and the block structure of the problem, we are

able to prove the following lemma, which gives the relationship between Lagrange
multipliers corresponding to different solutions.
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Lemma 2. Let x̄1, x̄2 be two different solutions of the problem (11) and let λ̄1I , λ̄1E , λ̄2I , λ̄2E

be corresponding Lagrange multipliers in KKT system (19). Then

λ̄1I = λ̄2I and λ̄1E = λ̄2E .

Proof. We have already shown that the Lagrange multipliers corresponding to
equality constraints are uniquely given by the values of the Lagrange multipliers
corresponding to the inequality constraints (20). Therefore, in the proof we will
focus on a relationship between λ̄1I and λ̄2I .

Let us consider two different solutions x̄1 and x̄2. These solutions satisfy all
KKT conditions (19), (21)

Ax̄1 −Qb−Qλ̄1I = 0,
x̄1, λ̄1I ≥ 0,

[x̄1]j
[
λ̄1I

]
j

= 0,

Ax̄2 −Qb−Qλ̄2I = 0,
x̄2, λ̄2I ≥ 0,

[x̄2]j
[
λ̄2I

]
j

= 0.

Let us denote

(22) x̄2 − x̄1 =: d, λ̄2I − λ̄1I =: p

and substitute this into the first KKT condition for (x̄2, λ̄2I)

(23) A(x̄1 + d)−Qb−Q(λ̄1I + p) = 0.

Since d ∈ KerA (see Lemma 1) and using the first KKT condition for (x̄1, λ̄1I) we
can write (23) in form

Qp = 0 ⇒ p ∈ ImBᵀ.

Now we focus on the inequality conditions. We use our notation (22) and substitute
into KKT conditions (∀j = 1, . . . ,KT )

[x̄2]j − [d]j ≥ 0,[
λ̄2I

]
j
− [p]j ≥ 0,

[x̄1]j + [d]j ≥ 0,[
λ̄1I

]
j

+ [p]j ≥ 0.

We multiply these inequalities by non-negative numbers
[
λ̄2I

]
j
,
[
λ̄1I

]
j
, [x̄2]j , [x̄1]j

and use complementarity KKT conditions. We get

[d]j
[
λ̄2I

]
j
≤ 0,

[p]j [x̄2]j ≤ 0,

[d]j
[
λ̄1I

]
j
≥ 0,

[p]j [x̄1]j ≥ 0.

Adding complementarity conditions with substitution (22) and using original com-
plementarity conditions

− [d]j
[
λ̄2I

]
j
− [p]j [x̄2]j + [d]j [p]j = 0

[d]j
[
λ̄1I

]
j

+ [p]j [x̄1]j + [d]j [p]j = 0

we end up with

(24) ∀j = 1, . . . ,KT : [d]j [p]j = 0.

Let us remark that this condition is much stronger than dᵀp = 0 which could be
obtained directly from

d ∈ KerA ∩KerB,
p ∈ ImBᵀ,

using KerB ⊥ ImBT (see [38]).
Now we are ready to prove that p = 0. Since p ∈ ImBᵀ, there exists α ∈ RT

such that
∀k = 1, . . . ,K : pk = α.
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ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 11

Suppose by contradiction that there exists an index i ∈ {1, . . . , T} such that [α]i 6=
0. Since (24) corresponding components of d have to be zero i.e.,

(25) [d]i = [d]i+T = · · · = [d]i+(K−1)T = 0.

However, if we suppose that d 6= 0 (solutions x̄1 and x̄2 are different), then the
vector d with property (25) is not from KerA (see (13)), which is a contradiction.
Therefore p = 0. �

In general case, we still cannot prove the uniqueness conditions. The following
lemma presents the situation when our problem (11) has an infinite number of
solutions.

Lemma 3. Let us consider the problem (11) with

b ∈ ImBᵀ

and K ≥ 2. Then this problem has an infinite number of solutions. Moreover, one
of these solutions is given by

(26) x̄ =
1

K
1.

Proof. At first, we prove that (26) is a solution. This point is not on the boundary
of a feasible set, therefore we can ignore the inequality constraints — all of them
are satisfied and corresponding λ̄I = 0. The first KKT condition (21) is given by

Ax = Qb.

Since Q is orthogonal projector onto KerB, and we suppose b ⊥ KerB, the right
hand-side of this equation is equal to 0. Notice that x̄ ∈ KerA, therefore also the
left hand-side is equal to zero and the first KKT condition is satisfied. Moreover,
the equality constraint could be also easily checked, therefore x̄ is solution.

Now it remains to show that there exists at least one additional solution, i.e.,
that there exists a non-zero vector d ∈ KerA ∩KerB such that

x̄+ d ∈ Ω.

Since we suppose K ≥ 2, the vector space KerA ∩ KerB is nontrivial and it is
possible to choose a non-zero vector from this space. Additionally, x̄ does not belong
to the boundary of Ω, therefore there exists a nonzero vector in any direction. �

3. Spectral projected gradient
method for QP problems

There exist several types of algorithms for solving a general QP problem (14).
Since the manipulation with both constraint types is usually difficult, these algo-
rithms are based on elimination of one type of constraints in the outer loop, and
then they solve the sequence of inner problems with the remaining type of con-
straints.

To be more specific, one can use popular Interior-Point (IP) methods, see [44]
and [53]. These methods enforce the inequality constraints using a barrier function

min
Bx=c,x≥0

f(x) ≈ min
Bx=c

f(x) + µ

T∑
i=1

log xi.
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12 L. POSPÍŠIL, P. GAGLIARDINI, W. SAWYER, AND I. HORENKO

Here µ > 0 represents the barrier parameter. Using this approach, the algorithm
transforms the original KKT system with inequalities (19) to the system of non-
linear equations with so-called duality gap µ. The new problem is not equivalent to
the original, but as the duality gap approaches zero, it becomes a better and better
approximation. The barrier function increases all function values near the boundary
of the feasible set to create a nonpenetrable barrier for a step-based algorithm which
solves the inner problem with the remaining equality constraints. Usually µ is not
implemented as a constant, but is a sequence µk → 0, and the solution of a previous
inner problem is used as an initial approximation of the inner algorithm for a new
µk+1. Since the non-quadratic term (logarithm) is added to the original quadratic
function f , the corresponding KKT system of this inner problem is non-linear. To
solve this system, one can use Newton-type methods with step-size control to be
sure that new step will not jump through the barrier. Newton-type methods for
solving non-linear systems introduce the sequence of linear equations which have
to be solved. For more details see [44] and [53].

Another approach is to deal with equality constraints first. This can be per-
formed using Augumented Lagrangian methods, see [44] and [18]. The algorithm
enforces the equality constraints using a penalty term

min
Bx=c,x≥0

f(x) ≈ min
x≥0

f(x) + ρ‖Bx− c‖2.

Again, the new problem is not equivalent to the original one, although if ρ → ∞
then ‖Bx − c‖ → 0. Therefore, the penalty parameter ρ is usually implemented
as the increasing sequence. The main advantage of this approach is the structure
of inner problem with inequalities - this new problem is again a QP. However, the
Hessian matrix of the new problem is given by

∇2
(
f(x) + ρ‖Bx− c‖2

)
= A+ ρBᵀB,

therefore, since the condition number depends on the value ρ and while ρ→∞, the
problem becomes harder and harder to solve. Similar to the interior-point methods,
there exists extensive theory about the connection between the stopping criteria
for solving ill-conditioned inner problems and the value of a penalty parameter;
see Semimonotonic Augumented Lagrangian algorithm [18] or [19]. The inner QP
problem can be solved using the interior-point method, active-set algorithms or
projected gradient methods. In the case of bound constraints, the projection onto a
feasible set is trivial. Therefore, in the case of the active-set algorithm and projected
gradient methods, the inequality constraints are satisfied accurately, which is not
the case for the interior-point methods. The barrier function makes it impossible
to find the solution on the boundary of a feasible set, because in that case the value
of a barrier term is equal to infinity.

This property brings us to the main disadvantage of both approaches. In the
case of interior-point methods, it is impossible to satisfy inequality constraints
accurately. In the case of penalization technique, it is impossible to satisfy equality
constraints exactly.

Fortunately, our QP problem (10) is not a general QP (14). To be more specific,
the feasible set in our case is a separable set composed from T simplexes of size K.
There exists an efficient algorithm for computing the projection of a general point
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ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 13

onto simplex

PΩt(y) := arg min
x∈Ωt

‖y − x‖,

Ωt := {γt ∈ RK : γt ≥ 0 ∧
K∑
k=1

[γt]k = 1}, t = 1, . . . T,

γt := [γ1(t), . . . , γK(t)]ᵀ.

The algorithm was presented in [14] and it computes the projection onto simplex
of dimension K in at most K steps, see Algorithm 2.

Algorithm 2. Projection onto simplex [14].

Given arbitrary y ∈ RK

if K = 1 then set P (y) := 1 and stop.

sort y in ascending order and set k := K − 1

while k > 0

α :=

(
K∑

j=k+1

[y]j − 1

)
/(K − k)

if α > [y]k then α̂ := α and k := −1

else k := k − 1

endwhile

if k = 0 then α̂ :=

(
K∑

j=1
[y]j − 1

)
/K

set [P (y)]k := max{[y]k − α̂, 0} for all k = 1, . . . , K

Return P (y).

If we use these projections in our algorithm, all constraint conditions will be
satisfied accurately. Moreover, computation of the projection can be performed as
T independent processes and since T is the largest parameter of problem dimension,
this approach increases the granularity of the overall solution process - making it is
suitable for GPU computation. We can also use the value of original cost function
to stop our algorithm with respect to sufficient decrease given by demands from
outer Algorithm 1.

Therefore, we are mainly interested in the projected gradient descent methods,
i.e. in the algorithms which use x0 ∈ Ω as an initial approximation and suitable
step-lengths αk > 0 to generate the approximations of the solution by

(27) xk+1 = PΩ(xk − αk∇f(xk)), k = 0, 1, . . . .

In this case, the feasibility of generated approximations is enforced by using the
projections, and the descent of object function is induced by using −∇f(x), which
is generally the best local decrease direction. One of the most efficient projection
gradient methods is a spectral projected gradient method (SPG) [9]. The first part
of a one SPG iteration is based on generating the point using (27) with step-size
defined by Barzilai-Borwein algorithm (BB), [7]. However, the projected variant of
BB is not convergent in general and the original proof of convergence cannot be
applied, see [17]) and additional line-search technique has to be implemented.

In this Section, we shortly review both of components of SPG method, i.e. pro-
jected BB method and additional generalized Armijo condition. The method was
developed to solve general optimization problems and in this paper, we add our
own modification for solving QP problems using the properities of the quadratic
objective function.
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14 L. POSPÍŠIL, P. GAGLIARDINI, W. SAWYER, AND I. HORENKO

Let us follow [47]. BB is the non-monotone gradient descent method for solv-
ing unconstrained convex optimization problems. These methods are based on a
construction of a sequence of solution approximations using the recursive formula

(28) xk+1 = xk − αkgk, k = 0, 1, . . .

with a step size αk ∈ R+ and a vector of the steepest descent −gk := −∇f(xk).
The most popular gradient descent method is the Steepest Descent method (SD,
firstly presented by Cauchy [13]). This method uses the step-length, which mini-
mizes the function f(xk+1) using locally optimal step-size

(29) αk = arg min
α∈R

f(xk − α∇f(xk)) =
〈gk, gk〉
〈Agk, gk〉

,

which leads to the monotone descent of the objective function.
However, the step-size of BB method is based on the different idea. To briefly

review the relation of the BB method for the solution of unconstrained problems
to the Newton’s method for solving a scalar non-linear equation

g(x) = 0, g : R→ R,

let us replace the derivative g′(xk) in the Newton’s method by its secant approxi-
mation to get

(30) xk+1 = xk − 1

g′(xk)
g(xk) ≈ xk − xk − xk−1

g(xk)− g(xk−1)
g(xk).

Denoting gk = g(xk) = f ′(xk) = ∇f(xk) and

(31) αk =
xk − xk−1

gk − gk−1
,

we can see that the secant method (30) can be considered as a gradient descent
method (28). If g(x) : Rn → Rn, then we cannot evaluate αk by (31), but we can
assemble the secant equation

(32)
1

αk
(xk − xk−1) = gk − gk−1.

After denoting

sk = xk − xk−1, gk − gk−1 = Ask,

and solving (32) in the least-squares sense

αk = 1/ arg min
β∈R

(
〈sk, sk〉β2 − 2〈Ask, sk〉β + 〈Ask, Ask〉

)
and some simplifications, we get

(33) αk =
〈sk, sk〉
〈Ask, sk〉

.

This is the step-size of the BB method. The proof of convergence with estimates
for solving the unconstrained QP problem (i.e., (14) with Ω = Rn) was presented
in [16].

However, the projected variant of BB (i.e., (27) with (33)) is not convergent in
general and the original proof of convergence cannot be applied, see [17].
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ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 15

Figure 1. Projected gradient descent method with the additional
line-search in two steps, 1.) computation of projected gradient and
2.) an additional line-search.

One option how to enforce the convergence of the method is to use an additional
line-search. Let us denote the difference

(34) gPαk
(xk) = PΩ(xk − αk∇f(xk))− xk

as a projected gradient in point xk ∈ Ω with the step-length αk > 0. To enforce the
convergence, the SPG algorithm uses an additional line-search step

(35) xk+1 = xk + βkdk

with dk := gPαk
(xk) and an appropriate choice of the step-size βk ∈ (0, 1]. The

method with these two steps (computation of the projected gradient and an addi-
tional line-search) is demonstrated in Fig. 1.

The next Lemma demostrates the reason for using the projected gradient as a
search direction in (35): it is a descent direction.

Lemma 4. Let x ∈ Ω, α > 0 and gPα (x) = PΩ(x− α∇f(x))− x 6= 0. Then

(36) 〈gPα (x),∇f(x)〉 < 0.

Proof. We suppose Ω ⊂ Rn is a closed convex set, therefore (see [8])

∀y, z ∈ Rn : 〈PΩ(y)− PΩ(z), y − z〉 ≥ ‖PΩ(y)− PΩ(z)‖2.
If we choose y = x− α∇f(x) and z = x = PΩ(x), then we can estimate

−α〈gPα (x),∇f(x)〉 = 〈gPα (x), (x− α∇f(x))− x〉
≥ ‖gPα (x)‖2 > 0.

�

The SPG algorithm uses Grippo, Lampariello, and Lucidi method (GLL) [25]
to find appropriate step-size βk. This algorithm is based on a bisection method to
satisfy the so-called generalized Armijo condition

(37) f(xk + βkd
k) < fmax + τβk〈∇f(xk), dk〉.

Here τ ∈ (0, 1) represents a safeguarding parameter and

fmax := max{f(xk−j) : 0 ≤ j ≤ min{k,m− 1}}.
The main difference between this generalized version and the original Armijo con-
ditions [44] is in the utilization of function values in m previous approximations in-
stead of using only the previous f(xk−1). This approach supplies the non-monotonic
behavior of the BB method and at the same time controls the descent. The proof
of convergence of SPG is based on satisfying the generalized Armijo condition in
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16 L. POSPÍŠIL, P. GAGLIARDINI, W. SAWYER, AND I. HORENKO

every step, see [9]. We present the SPG method by Algorithm 3 and GLL method
by Algorithm (4).

Algorithm 3. the original SPG method [10].

Given cost function f : Rn → R, initial approximation x0 ∈ Ω, projection onto feasible set
PΩ(x), safeguarding parameters 0 < αmin � αmax, precision ε > 0, and initial step-size α0 > 0.

k := 0

while ‖PΩ(xk −∇f(xk))− xk‖ > ε

dk := PΩ(xk − αk∇f(xk))− xk

compute step-size βk using GLL

xk+1 := xk + βkd
k

sk := xk+1 − xk

yk := ∇f(xk+1)−∇f(xk)

if 〈sk, yk〉 ≤ 0
αk+1 := αmax

else

αk+1 := min{αmax,max{αmin, 〈sk, sk〉/〈sk, yk〉}}
endif
k := k + 1

endwhile

Return approximation of solution xk+1.

Algorithm 4. GLL line-search [25].

Given cost function f : Rn → R, parameter m ∈ N, approximation and direction xk, dk ∈ Rn,
parameter τ ∈ (0, 1), safeguarding parameters σ1, σ2 ∈ R : 0 < σ1 < σ2 < 1.

fmax := max{f(xk−j) : 0 ≤ j ≤ min{k,m− 1}}
xtemp := xk + dk

δ := 〈∇f(xk), dk〉
β := 1
while f(xtemp) > fmax + δβδ

βtemp := − 1
2β

2δ/(f(xtemp)− f(xk)− βδ)
if βtemp ∈ 〈σ1, σ2β〉

β := βtemp

else

β := β/2
endif

xtemp := xk + βdk

endwhile

Return step-size β.

The main bottleneck of the GLL method is the computational complexity, which
cannot be estimated in general. To be more specific, it is hard to say when the
bisection will be finished.

The SPG was developed to solve more general optimization problems on convex
sets. In our problems, the cost function is a quadratic function. We can use its
particular form and its properties to simplify the GLL algorithm, obtaining an
algorithm with fewer cost function evaluations, i.e., with a smaller number of the
most time-consuming operations - multiplications by the Hessian matrix A. The
motivation came from the other well-known algorithms for solving QP, like steepest
descent method and the conjugate gradient method, see [30].

This modification was initially presented in [45] and it reduces the bisection in
GLL to simple formula.
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ON A SCALABLE NONPARAMETRIC DENOISING OF TIME SERIES SIGNALS 17

At first, let us present the basic equality in QP, see [18] (∀x, d ∈ Rn,∀b ∈ R)

(38) f(x+ βd) = f(x) + β〈Ax− b, d〉+
1

2
β2〈Ad, d〉.

We start the simplification of SPG for solving QP problems with the most obvious
simplifications. Notice that in the Algorithm 3 we can write

yk = ∇f(xk+1)−∇f(xk) = (Axk+1 − b)− (Axk − b)
= A(xk+1 − xk) = Ask.

Since matrix A is SPS, we can write for any sk ∈ Rn \KerA

〈sk, yk〉 = 〈sk, Ask〉 > 0,

and the condition in SPG Algorithm 3 is always satisfied.
Moreover, the BB step-length (33) is the inverse Rayleigh quotient (with sk /∈

KerA) and it can be bounded by

1

λmax
≤ αk+1 ≤

1

λ̂min

,

where λ̂min is the smallest non-zero eigenvalue and λmax is the largest eigenvalue of
the matrix A (please notice that in our case, the Hessian matrix is SPS (9), (13)).
Therefore, we can omit safeguarding parameters αmin and αmax in the Algorithm 3.

Let us take a better look into GLL line-search Algorithm 4. The computation
of βtemp can be simplified using (38). We obtain

βtemp := − β2δ

2(f(xk + βdk)− f(xk)− βδ)

= − β2δ

2βδ + β2〈Adk, dk〉 − 2βδ

= −〈∇f(xk), dk〉
〈Adk, dk〉

:= β̄.

This is a simple Cauchy step-size (29). Since the vector dk is the descent direction
(36) and A is SPS, our optimal β̄ is positive.
Obviously, the computation of a new βtemp is independent of the previous value
and the original GLL method performs solely the bisection method, i.e., it tries to
halve the coefficient β and to verify the generalized Armijo condition. Furthermore,
the value of a step-size β has to be from the interval [σ1, σ2] ⊆ [0, 1], because the
smaller or larger value may cause a departure from the feasible set.
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Figure 2. Possible situations in a GLL condition for QP.

The division of step-size β by two now modifies only the generalized Armijo
condition. This condition can be also simplified

0 > f(xk + βdk)− fmax − τβδ
= f(xk) + β〈∇f(xk), dk〉+ 1

2β
2〈Adk, dk〉

−fmax − τβ〈∇f(xk), dk〉

= 1
2β

2〈Adk, dk〉+ (1− τ)β〈∇f(xk), dk〉
+f(xk)− fmax

0 > 1
2β

2 + (1− τ)β 〈∇f(xk),dk〉
〈Adk,dk〉

+ 1
〈Adk,dk〉 (f(xk)− fmax).

Afterwards, we denote the function on the right hand-side and the constant term
by

Φ(β) :=
1

2
β2 − (1− τ)β̄β − ξ, ξ :=

1

〈Adk, dk〉
(fmax − f(xk)).

We are interested in β such that the generalized Armijo condition in a form

(39) Φ(β) < 0

is satisfied. The positive root of Φ(β) is given by

β̂ := (1− τ)β̄ +
√

(1− τ)2β̄2 + 2ξ.

There exist only two possible situations, see Fig. 2. Therefore, we can conclude
that the feasible step-size in the second step of SPG could be defined as

βk ∈
[
σ1,min{σ2, β̂}

]
.

This simple interval can replace GLL, i.e., any βk from this interval satisfies the
generalized Armijo condition.

The computation of the function values can be also simplified using (38)

f(xk+1) = f(xk) + βk〈gk, dk〉+
1

2
β2
k〈Adk, dk〉.

Finally, we can simplify the computation of the BB step-length using (35)

αk+1 =
〈sk, sk〉
〈sk, yk〉

=
〈sk, sk〉
〈sk, Ask〉

=
〈βkdk, βkdk〉
〈βkdk, βkAdk〉

=
〈dk, dk〉
〈dk, Adk〉

and the recursive formula for the computation of a new gradient

gk+1 := Axk+1 − b = A(xk + βkd
k)− b = gk + βkAd

k.

We use all these simplifications to form the Algorithm 5. For the sake of simplicity,
we relabel the coefficient τ := 1− τ ∈ (0, 1).

Notice that the most time-consuming operation - multiplication by Hessian ma-
trix A - is performed only once per iteration. Moreover, all scalar products in every
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Algorithm 5. SPG for QP problems (SPG-QP).

Given cost function f : Rn → R, initial approximation x0 ∈ Ω, projection onto feasible set
PΩ(x), parameters m ∈ N, τ ∈ (0, 1), safeguarding parameters σ1, σ2 ∈ R : 0 < σ1 < σ2 < 1,
precision ε > 0, and initial step-size α0 > 0.

k := 0
g0 := Ax0 − b
f0 := 1/2〈g0 − b, x0〉

for k = 0, 1, . . .

dk := PΩ(xk − αkg
k)− xk

compute matrix-vector multiplication Adk

compute multiple dot-product 〈dk, {dk, Adk, gk}〉

if
√
〈dk, dk〉 ≤ ε then stop.

fmax := max{f(xk−j) : 0 ≤ j ≤ min{k,m− 1}}
ξ := (fmax − fk)/〈dk, Adk〉
β̄ := −〈gk, dk〉/〈dk, Adk〉
β̂ := τβ̄ +

√
τ2β̄2 + 2ξ

choose βk ∈ 〈σ1,min{σ2, β̂}〉

xk+1 := xk + βkd
k

gk+1 := gk + βkAd
k

fk+1 := fk + βk〈dk, gk〉+ 1
2β

2
k〈d

k, Adk〉

αk+1 := 〈dk, dk〉/〈dk, Adk〉

k := k + 1
endwhile

Return approximation of solution xk.

iteration can be performed as a single operation. This feature decreases the amount
of global communication during the solution process.

4. HPC implementation

We are developing and maintaining a new HPC library [46] for nonstationary
time series analysis in C++ using PETSc [6]. This library supports the manip-
ulation of vectors distributed on multiple nodes. These data can be used during
computation on CPU or GPU. Therefore, the user of our library can decide which
architecture will be used for computation.

The solution of our problem consists of two different types of parallelization. The
first type is straightforward: the problem (9) has to be solved for several values of
regularization parameters ε2 and various numbers of clusters K. Moreover, the
solution obtained by iterative process depends on an initial approximation. Each
combination of these parameters can be used to run a completely independent
instance of the Algorithm 1. The parallelization in this case is embarrassingly-
parallel.

A more complicated parallelization scheme has to be used in a case where one
instance of the Algorithm 1 cannot be run on a single node, because of the size of
the input data and/or the size of the unknowns, especially a size of the vector γ.
To deal with this problem, we naturally distribute the given long time series data
X ∈ RT×n into nodes as successive disjoint time subintervals with approximately
the same size, see Fig. 3.

Decomposition in time plays a key role in the effective computation of projections
used in the SPG-QP, see Algorithm 5. Using our approach, all data of one simplex
are stored in one particular node, therefore the projection is computed on each node
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Figure 3. Large global vector of time series data X is distributed
into nodes in a natural time-splitting way. Moreover, each node
owns the part of global vector γ, which corresponds to the time
part of local data. Since the number of model parameters Θ is
small, each node owns its own local copy.
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Figure 4. The beginning part of the benchmark signal of total
length T = 107. Here, black box represents a part of the signal
which is further enlarged to present the difference between original
signal (red) and the solution, namely the denoised signal (green).
This denoised signal was obtained using optimal penalty parameter
ε2 = 3000 (obtained with the standard L-curve method [26]) with
norm of absolute error 0.04.

fully independently. However, this decomposition in time brings new difficulties like
disruption of diagonal-block structure of A defined in analysis in form (10), therefore
we had to implement an additional local-to-global index recomputation.

5. Numerical experiments

To demonstrate the scalability of our QP solver, we consider a time series K-
means clustering problem. This problem is characterized by the most basic model-
ing functions: the piecewise-constant functions. We are trying to model the given
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data using the constant mean value in every cluster in least-square sense with the
FEM-H1 regularization penalty in time:

∀t ∈ Tk : xt = θk + εt

Lε(θ1, . . . , θK ,Γ) =
T∑
t=0

K∑
k=1

γk(t)(xt − θk)2

+ε2
K∑
k=1

T−1∑
t=0

(γk,t+1 − γk,t)2

As a benchmark, we take a short signal of length 104 and repeat this short signal
to obtain long time series Xexact(t). This long signal is considered to be an exact
benchmark solution of our denoising algorithm. As an input of our problem we
consider the signal with a variable noise ε

(40) X(t) = Xexact + ε, ε ∼ N (0, 10) .

Fig. 4 presents a beginning part of the considered long signal of length T = 107.
We provide the exact parameter solution K = 2, θ1 = 1, θ2 = 2 and solve the

pure QP problem that represents the computational bottleneck of this time series
denoising procedure. In SPG-QP, we choose τ = 0.9 and m = 20 with respect to
original SPG recommendations [9]. As a stopping criteria we choose the Euclidean
norm of a projected gradient

‖gP (x)‖ := ‖P (x− α∇f(x))− x‖ < 10−6.

We implement Algorithm 1 and Algorithm 5 in the PETSc framework and solve
this problem for several values of penalty parameter ε, see Fig. 5. Standard methods
like L-curve [26] are then used to identify the optimal values for ε. Based on these
results, we choose value ε = 3000 for the following scalability tests.

To demonstrate the scalability of our implementation, we solve the above-mention-
ed problem of parameters T = 107, K = 2, ε2 = 3000 with θ1 = 1 and θ2 = 2 on
CSCS Piz Daint using N ∈ {1, 2, 4, 8, 16, 32, 64} nodes. For complete specification
of this machine see [1]. For GPU computation, we run one MPI process per hybrid
node (Intel Xeon E5-2690 v3 with NVIDIA Tesla P100), which uses the GPU for
computation. In the case of CPU, we use pure CPU-nodes (2x Intel Xeon E5-2695,
each with 18 cores) and run 36 MPI processes per node. PETSc deliberately chose
not to support a multi-threaded model, but rather only a multi-task model (i.e.,
multiple MPI processes). Since we are using PETSc, we are left with no choice and
we do not use any CPU-thread parallelization (e.g., OpenMP) in our implementa-
tion.

We generated a time series signal of the length 107 and denoise it on different
numbers of nodes. For statistical reasons, we decided to focus on the average
numbers of QP iterations - where averaging was performed over different numbers
of involved nodes. Please see the computation time of one iteration and number
of iterations per second provided in Fig. 6. Here we can observe good scalability
of CPU for a small number of nodes. However, the problem is too small for larger
number of CPUs or GPUs, therefore the speedup is rapidly decreasing due to MPI
communication. In all cases, the GPU computation is faster, but in this case,
we should also consider the energy consumption, see Fig 7. These values were
computed using the technique presented in [22].

Next, we would like to compare the introduced SPG-QP method for solving
inner QP problem with other existing HPC open-source implementations. The
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Figure 5. The mean value of L1-norm of absolute error for several
values of penalty parameter (top). The left part of graph represents
the error which arises due to insufficient regularization and the
right part is caused by too much regularization, for the beginning
part of benchmark signal of total length T = 107 (top). The L-
curve (bottom) presents the relation between values of the linear
term (modeling error) and quadratic term (regularization) which
depends on the choice of regularization parameter.

most straightforward choice is to use methods already implemented in PETSc, for
instance the Toolkit for Advance Optimization (TAO [4]). However, for the combi-
nation of linear equalities and bound constraints (8), one can only use the Interior-
Point method. Unfortunately, the actual manual pages say that the state-of-the-art
implementation of the Interior-Point method in TAO is more of a place-holder for
future constrained optimization algorithms and should not yet be used for large
problems or production code. The most promising implementation of QP solvers
in PETSc is PERMON [3]. The results for solving QP problems arising in linear
elasticity contact problems [28] suggest good scalability performance and efficiency
in the case of massivelly parallel CPU computation. However, our problem (10)
has particular properties, especially the null spaces of the Hessian matrix and the
matrix of linear equality constraints being not disjoint, see Lemma 1. Therefore, in
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Figure 6. The strong scalability results: solution of QP problem
of size 2 ·107 on Piz Daint machine using different architectures —
the computation time of one iteration (upper right), relative speed-
up of computation time of one iteration (upper left), the number of
iterations per second (lower left), and computation times on CPU
and GPU (lower right).

our case the QP problem could have more then one solution. Besides that, we have
tried to solve our problem with PERMON, but the algorithm is not able to solve
problems with larger dimensions T > 104. Also the parameters of the algorithm
have to be more precisely investigated and their tunning is non-trivial. Luckily,
authors are working on generalization of the inner solver for solving the problems
with singular Hessian matrices [20] and this approach should be implemented soon.
Moreover, the GPU implementation is also future work. Summarizing these expe-
riences, we were not able to find any QP-solver that would be applicable to the
particularly-structured problem (10) of time series analysis - when the time series
data is big (i.e., when T � 104). For complete survey of existing HPC QP libraries
see [27].
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Next, we also compare the introduced FEM-H1 with implementation to stan-
dard denoising methods. We were not able to find any HPC open-source library
which includes the HPC implementation of the denoising methods for time series
on hybrid architectures. In our implementation, we decided to use PETSc for
basic vector/matrix operations, therefore we are directly able to switch between
CPU/GPU computations. Existing denoising libraries (e.g. Dlib C++ [2]) usu-
ally implement these operations using own code from the scratch, including basic
vector/matrix operations or (in the best case) use only sequential external BLAS li-
braries and cannot run on distributed memory architectures. Therefore, we decided
to compare the denoising efficiency only for relatively short signals using the uni-
form sequential implementations in Matlab [43]. To be more specific, we compare
the following denoising algorithms

• Fourier uses Matlab implementation of fft/ifft and has one parameter s,
which defines the size of the window.
• Fourier L2 is Fourier filtering with an additional L2 regularization term.

There are two parameters: s as a size of the window and λ as a regulariza-
tion parameter.
• Fourier Sobolev is Fourier filtering with additional Sobolev prior penalty.

Algorithm uses two parameters: size of the window s and regularization
parameter λ.
• Fourier TVR is Fourier transformation with Total Variation Regularization.

The method leads to the system of non-linear equations, which is typically
solved using gradient method with constant step-size and monotone descent
of the solution error. The method uses three parameters: size of the window
s and regularization parameters λ, ε.
• Bayesian HMM is Bayesian Hidden Markov Model method [43]. This

machine-learning algorithm uses random initial guesses, therefore we run it
10 times and take the best solution with respect to the absolute error.
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We have generated large set of above-mentioned testing signals of length T =
1000. For every standard deviation

σ ∈ 0.1 · [2, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288]

we generated 100 signals with random noise using formula (40) and then denoised
the signal using proposed algorithms. We set various algorithm parameters s ∈
[5, 20, 30, 40, 60, 80], λ = [0.111050100], ε = [0.001, 0.01, 0.1] and consider only the
best solution with respect to the absolute norm computed as a difference between
the denoised signal and the exact signal Xexact. Similarly for FEM-H1, we solved
the problem for various values of penalty parameter.

In the end of solution process, we computed the average absolute error value
through all random noises. The results are presented in Fig. 8. Here, the signal-
to-noise ratio (SNR) was computed as the ratio of the maximum variation of the
true signal to the maximum variation of the noisy signal.

As can be seen from Fig. 8, FEM-H1 methology outperforms the standard
methods when the signal-to-noise ratio becomes smaller (i.e., when the noise is
becoming larger as compared to the true underlying signal).
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6. Conclusion

In this paper, we introduced an extension of the nonparametric FEM-H1 frame-
work allowing it application to denoising of very large time series data sets. We
investigated basic properties of the inner large-scaled QP sub-problem - being the
most expensive part of the FEM-H1 non-stationary time series analysis methodol-
ogy. To solve this problem with HPC, we presented a modification of the Spectral
projected gradient method for QP problems. This method is based on projections,
enjoys high granularity of parallelization and it is suitable to run on GPU clus-
ters, such as Piz Daint at the Swiss Supercomputing Centre CSCS. We presented
numerical results for solving a large-scaled time series denoising problem.

In the future work, we will compare SPG-QP with state-of-the-art parallel imple-
mentations of popular optimization methods for solving not only benchmarks, but
also solving problems in practical applications, such as the inference of causality
networks from multiscale economical data. Additionally, our code will be extended
by spatial regularization to increase the number of data analysis applications which
could be practically solved by our emerging open-source HPC-library.
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