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1 Abstract

In this article we present an idea to speed up the sampling exit of rates from
metastable molecular conformations. The idea is based on flattening the energy
landscape by a global transformation which decreases the energy barrier. In this
matter we create different energy surfaces in which we sample the exit rate and use
these to extrapolate the exit rate for the original potential. Because of the lower
energy barrier the sampling is computationally cheaper and also the variance of the
estimators for the exit rate in the transformed energy landscape is smaller.

2 Introduction

The problem we are interested in is motivated by molecular dynamics. The question
we try to answer is how long does a molecule reside in a specific conformation. Since
one can connect the internal energy of a molecule and its conformation we know
that metastable conformations have a low internal energy. We are interested in the
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time how long a molecule stays in a certain energetic minimum. In physical terms
a change of conformation is related to a big change of the internal energy of the
system. We say that these conformations are metastable because the molecule will
stay in the basin around this energy for a very long time until it rapidly changes into
another conformation or metastable state. Since these changes do not occur very
often they are very hard to observe during a simulation. They can be seen as rare
events. In order do build good estimators for these rare events one has to observe
them more often. This can be done by decreasing the energetic barrier which the
molecule has to cross, such that one can recover the original quantities of interest.

In this article we consider an atomistic model for the molecule given by a stochas-
tic differential equation (SDE). The model will be described in more detail later.
The first observation is that this equation consists of two parts: a deterministic and
a stochastic. If the stochastic part is rather small it is obvious that the metasta-
bility is mainly caused by the deterministic part of this SDE. This means to speed
up the sampling one has to change the deterministic part in a clever way such that
the metastability decreases. The problem of finding the minima which causes the
metastability is, due to the high dimensionality and the complexity of the system,
very hard. This problem is sometimes called the sampling problem.

In order to decrease the metastability we transform the energy landscape of the
original system such that all its main characteristics are approximately preserved
but the metastability is weaker than before. As a global transformation we will use
a convolution with a Gaussian kernel. The idea to use the convolution approach to
find the global minimum of a energy landscape was introduced by [Piela et al., 1989]
and further investigated by [Kostrowicki and Piela, 1991] and [Weber, 1999]. In
this article we connect the convolution approach with a direct sampling of the exit
rate. So we speed up the sampling of the underlying dynamics by lowering the
energy barrier without a priori knowledge of the location of metastable regions.
The intuition of this method is that the convolution first smooths out the small
energy barriers which hinder the trajectory from moving in the energy landscape
freely. Secondly the convolution decreases the depth of the minima such that the
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metastability is decreased and thus the sampling is accelerated.
Because of the linearity of the convolution our approach is also applicable for

many particle systems with distance dependent energy landscapes. It is not clear
how the convolution will effect the metastability. But if there is an impact on the
metastable region and this is what our first experiments show one could use this
strategy to build a multilevel Monte Carlo method for molecular dynamics.

Furthermore our approach does not rely on a specific simulation algorithm and
is extendable to all existing simulation algorithms which are used in practice. We
will show in detail of how to apply the convolution for a many particle system
later in a theoretical setting and give a short impression how the metastability is
influenced. In our examples we will also consider different algorithms for simulating
the dynamical system. One big advantage of our approach is that it is applicable
even if there are entropic barriers since the convolution is working directly on the
energy landscape.

Of course there many algorithms in the literature that try to do speed up the
sampling in a similar manner for example metadynamics [Laio and Parrinello, 2002],
flat histogram approach [Wang and Landau, 2001] or adaptive biasing force
[Darve and Porohille, 2001]. The main idea of these ideas is to bias the sampling
adaptively which is different from our approach. Other ideas to overcome these
sampling problems are for example high temperature sampling or parallel temper-
ing [Hansmann, 1997]. One could see our approach in a quite similar way because
the smoothing can be seen as a solution of the heat equation. But we do not
have a time evolution in mind by using the smoothing. We will go into detail of
this discussion later. Another very interesting algorithm to speed up the sampling
are splitting techniques like adaptive multilevel splitting [Cerou and Guyader, 2006]
or [Elber and West, 2010]. Here one introduces intermediate sampling goals which
are easier to reach. The sampling between these intermediate steps can be par-
allelized and so the overall sampling becomes a lot faster. A very nice overview
with a lot of mathematical analysis of all these different methods can be found in
[Leliévre et al., 2010]. More mathematical tools to describe metastability can be
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found in [Leliévre, 2011] and a mathematical analysis of simulation tools can be
found here [Leliévre, 2015].

In general it is very hard to determine in a system with a many interacting
particles was is the reason of the metastability. This is why many methods only
work on a low dimensional projection of the high dimensional system namely the
effective coordinates. How one can find those reactive coordinates is a very active
field of research e.g. [Zhang et al., 2016]. The idea presented in this paper can
be applied in either the case that the effective coordinates are known or in the
high dimensional system with distance dependent force field. We focus on the low
dimensional case here and only comment on the high dimensional setting since this
is ongoing research.

The paper is organised as follows. First we describe the considered model in
more detail. Then we introduce the convolution for the specific energy landscape
we are looking at. In the third part we derive a formula for the extrapolation. The
extrapolation is done with an exponential regression which is based on the Kramers’
law. After introducing all necessary theory we give two examples in different dimen-
sions. The last part is giving a partial differential equation point of view into the
stated problem.

3 Modelling of metastable molecules

We will model the position of the atoms in the molecule with a stochastic process.
The model is an overdamped Langevin equation and satisfies

dXt = −∇V (Xt)dt+
√

2β−1dBt X0 = x. (1)

Here X ∈ R3n are the positions of the atoms, n is the number of atoms in the
molecule, V : R3n → R is the potential energy, Bt is a standard n-dimensional
Brownian motion, β is 1/kBT with kB being the Boltzmann constant and T being
th temperature and t is the time. With Xx

. we denote the process which starts in x.
This kind of model will stay a very long time in a minimum since it has a negative
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gradient form only perturbed by a Brownian motion. Since the equation (1) has
not closed form solution we have to solve this equation numerically. For this we
use a Euler Maruyama discretization with a small time step c.f. [Higham, 2001]. In
general this model allows us to sample area around the minimum very well while
the transition into another minimum will happen very rarely at least we have to
simulate the SDE for quite some time to see this transition.

Let the metastable region S be a bounded domain in Rn with smooth boundary.
We denote the exit time to leave the domain S of a stochastic process which started
in x by

τxS = inf{t > 0, Xx
t /∈ S}. (2)

The quantity of interest is the mean first exit time of the metastable set mathemat-
ically speaking E[τxS ]. Furthermore we know that this problem can be expressed as
the following PDE problem c.f. [Øksendal, 2003]

−∇V (x)∇f(x) + β−2∇2f(x) = −1 x ∈ S (3)

f(x) = 0 x ∈ δS (4)

with f(x) = E[τxS |X0 = x], ∇ is the gradient and ∇2 is the Lapacian. The solution
of the PDE can be expressed with a Feynman Kac formula e.g. [Øksendal, 2003] and
that sampling the exit time of the SDE is solving the PDE for one point X0 = x. To
solve the PDE we can sample the exit time of the above SDE due to this connection.
So investigating the stability of our molecules corresponds to solving a PDE in the
dimension of the molecule or sampling the SDE. Since the solution of the PDE is
not available for high dimensional problems we have to use the sampling of the
SDE. Sampling the solution of this PDE by the Feynman Kac formula is also quite
expensive because of the metastability of the underlying stochastic process. The
metastability will also cause a high variance for the estimator for the stopping time.

Since we are interested in the exit time of the stochastic process we consider this
situation as a double well situation. We have one well in which the process starts
and everything which is outside of this metastable region will be seen as one well.
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We assume that there is one minimal point which will be passed by the trajectory
the significant saddle point z. We will call the minimum x. So the height of the
barrier is defined by

∆E = V (z)− V (x). (5)

We will further assume that there is only a weak thermal fluctuation namely

kBT

∆E
� 1. (6)

The relevant time scale of the exit event to happen scales exponentially in 1
kBT

τxS = ν−1 exp
(∆E

kBT

)
. (7)

In the literature it is common to define now the reaction rate κ = τ−1 which is the
rate with which the molecules leave the well. The reaction rate is given by

κ = ν exp
(
− ∆E

kBT

)
. (8)

The difficulties to sample this rate arise by the dependence on the barrier heights.
In general a lower barrier leads to a smaller exit time and thus it is easier to sam-
ple. Thus the convolution causes the event to occur more frequently. In general it
is necessary to have the global information where the minimum which causes the
metastability is located. But due to the high dimensionality only local information
by sampling are accessible. So it is very hard to decrease the metastability a priori.
If the minima is known there are methods to speed up the sampling for example
[Hartmann and Schütte, 2012].

4 Decreasing the Metastability by Convolution

The main idea to level the depth of the minima is to smooth the energy landscape.
So we can solve the problem by solving some easier related problems and extrapolate
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to solve the real problem.
This approach is motivated by [Piela et al., 1989]. In this article a transforma-

tion is proposed to destabilize any potential well. We assume that V : Rn → R be
a function in C2. Then they use as a transformation

V [1] = V (x) + ξV ′′(x) for ξ > 0. (9)

Under this transformation the inflection point does not under go any change since
V ′′ = 0 for this point but the convex part of the function goes up and the concave
part goes down. So the existing extrema are destabilized. A repetition of this
transformation leads to a connection to the heat equation see [Piela et al., 1989] or
[Kostrowicki and Piela, 1991] for details. This is why we use the general solution of
the heat equation as the global transformation. It is given by

V (x, λ) =

∫
Rn

V (y) exp
(
− (x− y)2

2λ2

)
dy. (10)

From now on we will use V (x, λ) to denote the convolution of the function V . We
smooth the energy landscape for a fixed parameter λ and use the result as a new
energy landscape. We then sample the exit rate in this smoothed energy landscape.
We repeat this procedure a couple of time for a decreasing sequence of λ. In this
way we can get information about the underlying system in a cheaper way because
the metastability is not that strong but it is not completely vanished. We use this
information to extrapolate the real exit time or rate.

In the literature one finds that this is the solution of the heat equation∇2V (x, λ) =
∂
∂λ
V (x, λ) where ∇2 is the Laplacian and λ is the ’time’ [Evans, 2010]. But as we

explained above we are not interested in a λ evolution of the underlying energy
landscape. We will only solve this equation for fixed parameter λ and sample the
exit time in the resulting energy landscape. This is why we call λ the smoothing
parameter.

Remark: Since λ is converging to 0 and not to ∞ one could get the impression
the we are interested in solving the heat equation backwards in ’time’. This is not
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the case. We solve the heat equation for a sequence of fixed λ which converge to 0.
But we use the original potential as the boundary condition. We set V (x, 0) = V (x).
Solving the heat equation backwards in time is actually a hard inverse problem c.f
[Evans, 2010].

In general solving the heat equation in a high dimension is also very challenging.
This is why we restrict ourself to a distance dependent energy landscape. In this
situation we can use the linearity of the convolution to calculate the convolution
and thus the solution of the heat equation in high dimensions. Because of this our
approach can be applied in a many particle system with distance dependent en-
ergy landscape. The idea of smoothing function for global optimization is not new
and was developed by [Kostrowicki and Piela, 1991, Moré and Wu, 1995]. Because
of the intense research in this field there are different special cases in which the
convolution can be expressed in a much simpler way as (10). One case is if V is
a polynomial then the convolution can be expressed as a finite sum of polynomi-
als. This makes the convolution extremely efficient and also numerical applicable
in may particle system with a distance dependent interaction potential. We give
here a short summary of the theory of global optimization for polynomials first
following [Kostrowicki and Piela, 1991] for deriving the method and then following
[Moré and Wu, 1995] for the numerical treatment.

We assume first that the energy is the sum of the different atom-atom-interactions.
Further we assume that these interaction are distance dependent and can be ex-
pressed in a polynomial way. For this kind of energy landscapes we can now use the
linearity of the convolution. Thus we can calculate the convolution of every atom-
atom-interaction itself in order to calculate the convolution of the energy landscape.
The assumption that every atom-atom-interaction is distance dependent reduces
the dimension of the energy landscape. Each atom-atom-interaction is now only a
function from R to R.

We assume that the underlying distance dependent interactions for atoms i and
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j Vij : R→ R has following structure

Vij(x) =
d∑
i=0

aix
i. (11)

Since we know that the convolution is the fundamental solution of the diffusion
equation and the atom-atom-interactions are polynomials of order d we can write

Vij(x, λ) = exp(λ∇2)Vij(x) =
d∏
j=1

exp(λ(∂/∂x2j))Vij(x)

=
∑
i

ai

d∏
j=1

exp(λ(∂/∂x2j))x
i

=
∑
i

ai

bn/2c∑
k=0

n!

k!(n− 2k)!

(λ
2

)2
kxn−2k.

Using the linearity of the convolution we can express the energy landscape as

V (x) =
n∑
i>j

Vij(x) =
n∑
i>j

Hij(rij(x)) (12)

with Hij : R3 → R being the potential function for a certain distance and rij(x) :

R3×R3 → R the distance between two points in R3 defined by rij(x) = ‖xi − xj‖2.
Due to this structure the can express the convolution as

V (x, λ) =
n∑
i>j

Hij(rij(x), λ)

where Hij(rij(x), λ) denotes the convolution of the atom-atom interaction.
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5 Extrapolation

Since we are interested in simulating the mean first exit time of a stochastic process
from a certain region we can assume Kramers’ law to be true. The situation we
are interested is that the molecule is in a minimum and will leave this at one point.
This is why we consider this as a double well situation. In order to leave the basin
around the minimum the stochastic process will have to cross the minimum on the
boundary. From this we can then define a rate.

It is known from literature e.g. [Berglund, 2013, Bovier and den Hollander, 2015]
that in the double well potential situation it is possible to prove

E[τxS ] = [1 + o(1)]
2π√

−V ′′(z)V ′′(u)
exp[(V (z)− V (u))]/ε. (13)

We note that the convolution of a polynomial is again a polynomial with the
same degree as before c.f [Piela et al., 1989]. The above formula show that the
convoluted polynomial is also a polynomial new variable. So we assume that we can
approximate the difference of the local maximum point and the minimum with a
polynomial. So we approximate

log(ε

√
−V ′′(z)V ′′(u)

2π
(Ex[τxS (λ)])) ≈ V (z, λ)− V (x, λ)

=

bn/2c∑
k=0

n!

k!(n− 2k)!
tkzn−2k −

bn/2c∑
k=0

n!

k!(n− 2k)!
tkxn−2k

=

bn/2c∑
k=0

n!

k!(n− 2k)!
(z − x)n−2ktk (14)

and see that the exit time of the transformed dynamics is changing in a polynomial
fashion in t. We will use this in order to extrapolate the exit time for the unperturbed
potential. For this we sample the exit rate for different fixed values of t. From (14) we
know that the log exit time depends polynomial on λ. To determine the coefficients
in front of λ we use the calculated data and solve a least square problem. To find the
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reaction rate we use the definition by bringing the logarithm on the other side and
inverting it. This kind of regression is known in literature as logarithmic regression
c.f. [Guest, 2012].

So the idea of the method is to create less metastable energy landscape in which
we can sample the exit time easier. This information is then used to extrapolate
the exit time in the original energy landscape. In order to extrapolate we use a
logarithmic regression based on Kramers’ law. We will give an example in the next
section.

6 Example 1D

In order to show how our method works we will give a 1D example of a particle
moving in a energy landscape over time. We are interested in the mean first exit
time of the particle leaving a basin around the minimum.

The position of the particle Xt ∈ R at time t is given by (1). For our toy example
the potential V is

V (x) = 8x4 − 44/3x3 + 2x2 + 11/3x+ 1. (15)

The plain Monte Carlo sampling gives an estimator of the exit time which has a
very high variance and needs a long time to compute. The Monte Carlo sampling
gives E[τxS ] ≈ 1.6958E + 03 with variance V ar[τxS ] = 2.9471E + 06. We have calcu-
lated 100 trajectories and set the parameter

√
2β−1 = 0.6. This computation took

227.260852 seconds. The estimator for the stopping time has a confidence interval
[1.4238e+03,2.1019e+03].

According to the above formula the convolution of this polynomial is given by

V (x, λ) = V (x) + 48λ4 + (2− 44x+ 48x2)λ2. (16)

We now perturb the dynamics with three different λs and sample the expected
exit time in these perturbed landscapes. We then use this sampled exit times to
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approximate the different rates for the different perturbed energy landscapes. We
use these different rates as input data for our logarithmic regression.
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λ = 0.15
λ = 0.2
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Figure 1: The landscapes for the different perturbation parameters.

Now we repeat this calculation for the perturbed dynamics and extrapolate.
For sampling 3 times 100 trajectories with λ = 0.15, 0.2, 0.25 in the perturbed dy-
namics we needed 177.579312 seconds. The estimators are E[τxS (0.15)] ≈ 528.6703

with variance V ar[τxS (0.15)] = 3.2286E + 05, E[τxS (0.2)] ≈ 158.7054 with variance
V ar[τxS (0.2)] = 0.2507E+05 and E[τxS (0.25)] ≈ 31.3443 with variance V ar[τ(0.25)] =

0.0081E + 05. These estimators have a smaller variance compared to the MC esti-
mator in the original dynamics.

We want to use this data to extrapolate the rate for the unperturbed dynamics.
For this we have to know approximately the dependency of the parameter λ on the
mean first exit time. In order to show that the method is working quite well we
calculate the corresponding PDE problems (4) for λ ∈ [0, 0.25]. We then compare
the PDE solution with our sampled solution. Because of the assumption that the
dependency of the exit time on the parameter λ we use exponential regression to
approximate the real solution for λ = 0.

We clearly see that the extrapolation is very bad for high values of λ but since
we are interested in the value at λ = 0 this is not of our bigger concern.

Here we see that the extrapolated solution and the real PDE solution fit quite
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Figure 2: PDE solution for different parameters λ in [0,0.35] at x=-0.25 and the
extrapolation which is calculated of the sampled data from the smoothed dynamics.

well in the extrapolation region. We also see that the exponential dependency on
λ based on Kramer’s law is quite reasonable. Since we are extrapolating the exit
time we have an error. The error for this extrapolation is compare to the PDE
solution is |E[τxS (0)]PDE − E[τxS (0)]sampling| = 123.1427. So one can clearly see that
our estimator is in the confidence interval of the MC estimator.
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Figure 3: Semilog plot of PDE solution for different parameters λ in [0,0.35] (blue)
and extrapolated solution (green) with the two calculated data points for λ = 0.15,
λ = 0.2 and λ = 0.25 (red) for x = −0.25 .
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Here in this example we can calculate the approximation error which is err =

|κPDE − κsampling| = 4.9108e− 05. All together we have a very good approximation
of the exit rate with less computational cost.

7 Mean first exit time and λ dependency

The smoothing of the potential influences the mean first exit time of the stochastic
process. To extrapolate the real exit time we used Kramers’ law and used the
explicit formula for the convolution of polynomials. This is only an approximation.
To express the dependency of the smoothing parameter we can use the PDE stated
above. This could be used to find a better extrapolation technique which would give
rise build a better estimator. But as we will see the underlying equation is even
harder to solve than the original problem. For this we express the exit time in terms
of a PDE Feynman Kac formula and the infinitesimal generator. Thus we would
have to solve the following boundary value problem on some domain Ω ∈ Rd with a
smooth boundary

L(x, λ)f(x, λ) = −1 x ∈ Ω

f(x;λ) = 0 x ∈ δΩ

where the generator of the convoluted potential is depending on λ and can be written
as

L(x, λ)f(x, λ) = −∇V (x;λ)∇f(x, λ) +
1

2
∆f(x, λ). (18)

This equation is a second order linear elliptic PDE.
In order to find the λ dependency of the solution we could just calculate the
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derivative of the boundary value problem.

∂

∂λ
L(x, λ)f(x, λ) = −1

⇔− ∂

∂λ
∇xV (x, λ)∇xf(x, λ) +

∂

∂λ

1

2
∆xf(x, λ) = 0

⇔−∇x
∂

∂λ
V (x, λ)∇xf(x, λ)−∇xV (x;λ)

∂

∂λ
∇xf(x, λ) +

1

2
∆x

∂

∂λ
f(x, λ) = 0

⇔L(x, λ)
∂

∂λ
f(x, λ) = ∇x

∂

∂λ
V (x, λ)∇xf(x, λ)

⇔L(x, λ)
∂

∂λ
f(x, λ) = ∇x∆xV (x, λ)∇xf(x;λ)

This result shows that the mean first exit time in case of smoothing the potential
is changing the most in the direction of the curvature. Thus it fits the observation
from Kramer’s law that a smaller curvature in the stable direction decreases the
mean first exit time c.f. [Berglund, 2013]. Since we are interested in the exit rate
we leave the investigation in the solution of this PDE for future work.

8 Discussion and Conclusion

In this article we have shown a method of how to decrease a metastability in a
structural way without a priori knowledge where the metastability is located. We
have used a convolution as a global transformation for the energy landscape of the
dynamics. With this approach we were able to construct energy landscapes which
are not so metastable as the original dynamics but still are related to the original
dynamics. Based on this it is possible to get information about the original dynamics
with less computational effort e.g the location of the metastable region. In a low
dimensional example we showed that out method can be used to extrapolate the exit
rate for a stochastic process. For this we generated three convoluted potentials in
which we sample the exit rate. Using the explicit formula for this quantity of interest
we can now use an extrapolation based on a logarithmic regression. We compared
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our 1D result to the real PDE solution for the exit rate of a metastable domain.
The results show that the method is working quite reasonable in comparison of a
Monte Carlo estimator. We could decrease the computational cost and also get
results which are very close to the true solution. But since we use a extrapolation
technique the result is highly susceptible to sampling errors.

The extrapolation is based on Kramers’ law which is totally valid in the con-
sidered situation. But there is a way to generalize the extrapolation by the PDE
formulation of the problem. Our approaches to solve the PDE problem failed so
far. It would be very interesting to investigate further in this direction since the
solution of this PDE problem would give rise to a better extrapolation technique.
But since the original problem is quite hard to solve our expectations are not pitched
very high. A perturbation analysis in λ does not give the desired result. Even the
analysis for the 1D ODE problem turns out to be quite hard.

8.1 Future Work

The approach can easily be extended to a high dimensional setting. In general it
would be very hard to solve the convolution in a high dimensional space. But if
we consider potential energy function which only distance dependent atom-atom
interactions then the potential is a sum over function form R to R. One can then
interchange summation and integration and thus calculate the convolution of the
potential energy. If the convolution still have the desired effect is ongoing research.
Especially if a projection onto some reaction coordinates is involved the effect of the
convolution is not very well understood yet. To bring some light in this questions we
are currently implementing convoluted force fields of certain molecules like Butane
in order to answer our questions. First results look quite promising.
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