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Abstract

In this article we propose an adaptive importance sampling scheme for dy-
namical quantities of high dimensional complex systems which are metastable.
The main idea of this article is to combine a method coming from Molecular
Dynamics Simulation, Metadynamics, with a theorem from stochastic analysis,
Girsanov’s theorem. The proposed algorithm has two advantages compared
to a standard estimator of dynamic quantities: firstly, it is possible to produce
estimators with a lower variance and, secondly, we can speed up the sam-
pling. One of the main problems for building importance sampling schemes
for metastable systems is to find the metastable region in order to manipulate
the potential accordingly. Our method circumvents this problem by using an
assimilated version of the Metadynamics algorithm and thus creates a non-
equilibrium dynamics which is used to sample the equilibrium quantities.
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1 Introduction and Motivation
In Molecular Dynamics simulation (MD) observables like exit times or transition
probabilities are often calculated by averages over long trajectories of some con-
tinuous space-time-model which describes the molecular movement e.g. an (over-
damped) Langevin equation. For these sampling approaches metastability is one
of the main difficulties. Metastability means that the trajectory is trapped for a
long time in so called metastable state, until it changes very rapidly into another
metastable state. The transition between these metastable region happen rarely
and thus it is hard to sample them. Mathematically speaking, metastability means
that behind the continuous space model there is a Markov Jump Process which de-
scribes the jump from one metastable state into another c.f. [1]. In order to sample
dynamic quantities between metastable regions the regions have to be known. This
is in general also a very hard question but shall not be of a concern in this article.
There are many ideas in the literature how this can be achieved see for example
[2, 3] and the references therein. Here we assume that the metastable states are
known for the considered dynamics.

Thus the computation of dynamics quantities in metastable systems by ensem-
ble averages (we will call these Monte Carlo estimators) is computationally extreme
costly. Furthermore the estimators suffer from a high variance. This is why in many
applications importance sampling is used. In general one can consider Markov Chain
Monte Carlo (MCMC) as some kind of importance sampling because it allows us to
perform simulations which only sample in a realistic energetic environment. There
are extensions for the problem metastability and MCMC methods like Metady-
namics [4], Umbrella Sampling [5] and many more. But all these methods are not
designed for the sampling of dynamic quantities and it is not straight forward how
to extend them for this purpose. The problem which arise by the calculation of
dynamics quantities is sometimes called the sampling problem.

On the other hand there are several ideas in the mathematical literature how an
importance sampling strategy for dynamics quantities of complex systems can be
designed. In a series of papers different strategies were suggested motivated by a
special form of the Hamilton Jacobi Bellman (HJB) equation arising from the large
deviation context [6, 7, 8]. These ideas were developed further in the direction of
molecular dynamics by [9]. In their paper the authors proposed a sampling scheme
which is based on the solution of a deterministic control problem which is associated
to the sampling problem. A more sophisticated situation of which could also arise
in Molecular Dynamics Simulation was studied in [10]. Here an importance scheme
for the situation with resting points was developed. The numerical examples of the
paper showed that the for this situation constructed importance sampling scheme
is better than the scheme which does not take the resting point into account. [11]
proposed a similar strategy also based on the solution of a control problem. In
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order to solve this problem the solution of the HJB equation is projected to some
space of ansatz functions and then a stochastic optimization problem needs to be
solved to find the best approximation. The main difficulty in this approach is to
determine the metastable region to place the ansatz functions correctly since the
ansatz functions should change the metastability of the dynamics. [12] was able
to develop a performance measure for importance sampler related to small noise
diffusion processes which give the possibility to compare the different importance
sampling schemes analytically.

In order to design an importance sampling scheme one needs a lot of a priori
knowledge about the dynamics. Especially the placing of the bias function can be
very challenging. Our method circumvents this problem by placing the bias func-
tions automatically assimilated to the dynamics. In order to do so we are going
to use the Metadynamics algorithm which is quite famous in MD. This algorithm
was first proposed by [13] called Local Elevation and was reintroduced by the name
Metadynamics by [4]. The algorithm is designed for sampling the free energy sur-
face. This is done by adding a bias to the states which have been already visited by
the trajectory and so fills up the minimum which causes the metastability. In the lit-
erature there are many ideas which share the main idea of using an adaptive biasing
force to speed up the sampling for example [14, 15] or [16]. These methods belong
to a broader class of algorithms which are called adaptive biased forcing (ABF)
methods. An overview with rigorous mathematical analysis of the different methods
can be found in [17]. But as stated before all of these methods are not designed
for the sampling of dynamics quantities. Also general non equilibrium methods in
the sense of [18] or [19] which can be related to the methods above are not appli-
cable in this situation because they are not designed for the sampling of dynamics
quantities. This is why we are going to assimilate the Metadynamics algorithm and
connect it to the standard importance sampling by Girsanov’s theorem. In this way
it is possible to generate an automatic importance sampling scheme for dynamics
quantities for metastable systems.

The paper is structured as follows. We will first give a short introduction into
the stochastic analysis which is needed for our method namely Girsanov’s theorem.
Then we are going to review the Metadynamics algorithm. In the second part we
are going show how these two things are combined and how the Metadynamics
algorithm is tailored to our needs. We will proof that Girsanov’s theorem can be
applied in the considered setting. In the end we are going to apply our method to
different numerical examples.
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2 Theory
In this part we present the two main ingredients of our algorithm. The first part is
a short repetition of the main idea behind importance sampling supplemented with
stochastic analysis which is needed. The second part is a short introduction into the
Metadynamics algorithm.

2.1 Importance Sampling

In this article we consider a diffusion process given by the stochastic differential
equation (SDE) as a model of the atomistic movement of a molecule. This SDE
satisfies

dXt = −∇V (Xt)dt+
√

2β−1dBt, X0 = x (1)

where Xt is the state of the system at time t ≥ 0, V : Rn → R is a sufficiently
smooth (e.g. C∞) potential energy function, β > 0 is an arbitrary scaling factor for
the noise often called the inverse temperature and Bt is a standard n-dimensional
Brownian motion with respect to the probability measure P on some probability
space (Ω,P,F). The method which is presented in this context can be generalized
to the situation in which the term in front of the Brownian motion is state dependent,
but we will only consider this simple case here. We moreover assume that the process
is trapped in a metastable region S ⊂ Rn which is an open and bounded set with
smooth boundary. We further define a target set T also a open and bounded set with
smooth boundary. Furthermore we define the stopping time τ = inf{t > 0 : Xt ∈ T }
to be the first time that the process (1) hits the target set e.g. when an dihedral
angle reaches a certain value.

We are interested in dynamics quantities of the from

E[e−βg(X0:τ )] (2)

where X0:τ is a trajectory of (1) until time τ and g is some function on C([0, τ ]×Rn).
As pointed out by [9] a very interesting case of this quantity arises if g = 0 if Xt ∈ S
and g =∞ otherwise. Then the quantity of interest (2) becomes

P[Xt ∈ S]. (3)

The main problem with these expectations is that they cannot be reweighted with
the standard techniques like WHAM etc. c.f. [20] or
[19].

A Monte Carlo estimator of (2) looks like this

I =
1

N

N∑
i=1

e−βg(X
i
0:τ ) (4)
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where the X i
0:τ is a independent sample of the path given by (1). This estimator is

unbiased because of the independence of the samples. The variance of the estimator
is given by

V ar(I) =
1

N
(E[e−2βg(X0:τ )]− E[e−βg(X0:τ )]2). (5)

The relative error is given by

r(I) =

√
(V ar(I))

E[I]
=

1√
N

√
E[e−2βg(X0:τ )]

E[e−βg(X0:τ )]2
− 1. (6)

To build now an importance sampling scheme for this diffusion process (1) one
has to increase the depth of the minima which cause the metastable behaviour. The
deterministic part of the SDE given in (1), called drift in the SDE literature, is a
negative gradient descent. So the process Xt will always stay in the region around
the minimum of V when the drift dominates the equation. If the stochastic part,
called diffusion, of the equation will dominate the deterministic part the process will
leave the minimum and go into the next minimum. To overcome this problem we
can change the deterministic part of the SDE. But by changing the deterministic
part we are also going to change the quantity of interests. To compensate the change
we can use Girsanov’s theorem which we are going to state next.

A more physical interpretation of this theorem is that it gives a way to sample
equilibrium quantities of some dynamics by sampling the dynamics out of equilib-
rium.

We now state Girsanov’s theorem following [21].

Theorem 1. Let Xt ∈ Rn and Yt ∈ Rn be a Itô diffusion and a Itô process of the
form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≤ T, X0 = x (7)
dYt = (ut + b(Yt))dt+ σ(Yt)dBt, t ≤ T, Y0 = y (8)

where b : Rn → Rn and σ : Rn → Rn×m satisfy some Lipschitz condition such
that we can guarantee uniqueness and existence of the solution. Suppose that there
exists a process

σ(Yt)at = ut (9)

which satisfies the Novikov condition

E[exp(
1

2

∫ T

0

a2tdt)] <∞. (10)

Then we can define a measure dQ on the probability space for t ≤ T

dQ = MTdP on FT (11)
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with

Mt = exp(−
∫ T

0

atdBt −
1

2

∫ T

0

a2tdt). (12)

Proof. [21] p.158

In terms of the sampling we are interested in creating different dynamics which
is not metastable any more and will give us the same statistics as the original
dynamics. To achieve this we can sample the dynamics (13) then reweight the
quantity of interest by the weight (15). Decreasing the metastability can be achieved
by changing the drift of the dynamics.

To illustrate the idea behind Girsanov’s theorem we will give an example in the
following. The example is motivated by [21] and extended to our situation.

Example:
The perturbed dynamics then satisfy

dYt = (
√

2ut −∇V (Yt))dt+
√

2β−1dBt, Y0 = x (13)

where
√

2ut is a function which changes the gradient of the potential in the metastable
regions. To get the right statistics from the perturbed dynamics we construct a new
probability measure by using the theorem from Girsanov. For a fixed time T < ∞
we have

dQ = MTdP on FT (14)

with

Mt = exp
(
−
∫ T

0

atdBt −
1

2

∫ T

0

|at|2dt
)

(15)

and at is the change of the drift divided by the noise prefractor. In the proposed
algorithm we will consider a change of drift which will be independent of the time
t, but it is easy to generalize this and to consider a change which is both state and
time dependent [1]. In the further presentation we will drop the time dependence
and denote the change of drift by a0

a0 =
1√

2β−1

√
2ut. (16)

Then

B̂t :=

∫ t

0

a0ds+Bt (17)

is a Brownian motion with respect to the measure Q for t ≤ T and we get

dYt = (−∇V (Yt))dt+
√

2β−1dB̂t. (18)
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If we know set Y0 = x we know that the pair (Yt, B̂t) is a weak solution of (1) for
t ≤ T , which means that the solution agree on average but not necessarily pathwise.
By weak uniqueness the Q-law of Yt coincides with the P-law of Xt so that we can
use

EP[f1(Xt1) . . . fk(Xtk)] = EQ[f1(Yt1) . . . fk(Ytk)] =

= EP[MTf1(Yt1) . . . fk(Ytk)]

for f1 . . . fk ∈ C0(Rn) and t1 . . . tk ≤ T . In this way it is possible to get statistics
which belong to the dynamics at equilibrium (1) from a non-equilibrium simulation
(13).

Coming back to the importance sampling. Due to Girsanov’s theorem we can
now write the importance sampling estimator as

Î =
1

N

N∑
i=1

e−βg(Y
i
0:τ )M i

0:τ (19)

where Y i
0:τ and M i

0:τ are independent samples from (13) and (15). For a ut which
satisfies Novikov condition and a stopping time which is bounded one can guaran-
tee that Mt is a continuous bounded local martingale with E[Mt] = 1. Then the
importance sampling estimator is an unbiased estimator with expectation

E[Î] = E[e−βg(X0:τ )] (20)

cf. [1]. The relative error of this estimator is

r(Î) :=
1√
N

√
E[e−2βg(Y0:τ )(M0:τ )2]

E[e−βg(X0:τ )]2
− 1. (21)

In order to control the relative error we have to control the ratio

R(Î) :=

√
E[e−2βg(Y0:τ )(M0:τ )2]

E[e−βg(X0:τ )]2
. (22)

In order to apply Girsanov’s theorem for dynamic quantities like exit time in
which a stopping time is used one has to make sure that the Novikov condition
holds. This can be achieved by different assumptions on the stopping time. We will
present two different ways how the assumptions can be formulated in the next two
conditions.

Condition 1. Let W = C([0,∞],Rn) be the space of continuous paths of arbitrary
length equipped with the Borel σ-algebra σ(W ). This σ-algebra is generated by all
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cylinder sets of the form {f ∈ W : f(t1) ∈ E1, f(t2) ∈ E2, . . . f(tk) ∈ Ek} where
k ∈ N, Ei ∈ B(Rn) and 0 ≤ t1 ≤ t2 . . . tk < ∞. Let further Ft = σ({ws : s ≤ t})
denote the σ-algebra generated by the Brownian motion (ws) up to time t < ∞.
Then, Girsnaov’s theorem holds on the measurable space (W,σ(W )) as long as the
family (Mt)t≥0 of random variables

Mt = exp
( −1√

2β−1

∫ t

0

asdBs −
1

2

∫ t

0

1

2β−1
|as|2ds

)
(23)

is a uniform integrable martingale. By Itô’s formula [21], (Mt)t≥0 is a nonnegative
local martingale, which is uniformly integrable if Novikov’s condition holds (10).
This could be achieved by taking a admissible control which is defined up to a random
stopping time τ as it is done in [22].

Condition 2. Another way to make sure that Girsanov’s theorem is applicable is
to assume that the stopping time is bounded for the specific problem. The second
assumption is by far non trivial and can only be shown analytically in very few sit-
uations. On the other hand from a numerical viewpoint it is impossible to simulate
trajectories which have length infinity. So one has to stop the simulation after a
finite number of steps. So one can approximate the quantity of interest by the quan-
tity of interest conditioned on the event happens in a finite simulation time. The
trajectories which do not simulate the quantity of interest within this simulation time
are then excluded from the further calculation or the simulation is repeated. This
procedure corresponds exactly to the second argument which guarantees the stopping
time to be bounded from which Novikov’s condition follow for a reasonable function
ut. The now considered stopping time is τ̂ = min(τ, TN) where TN is the length of
the numerical simulation which is a similar treatment as suggested in [1].

Condition 1 would mean that one uses a bias function only up to a certain time
which is finite. Thus one can guarantee that the integral in the Girsanov weight
(15) is bounded. The simulation could go on without that the bias function is acting
on the trajectory. Condition 2 means that the sampling of the quantity of interest
has to be finite in time. If the sampling is too long (t > TN) one has to repeat the
sampling and exclude the trajectory which has not reached the target set yet from
the further calculations.

Summarizing Girsanov’s theorem gives us an opportunity to sample a dynamic
with is less metastable but will give us the same estimators for the quantities of
interest by reweigthing the expectation. The main difficulty of applying Girsanov’s
theorem for this is to determine the metastable region for changing it accordingly.
To do this for different systems we are going to use Metadynamics. This algorithm
is used in MD to sample the free energy surface and can be seen as an adaptive
biasing force method. In order to use this algorithm for our purpose we are going
to assimilate the algorithm.
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2.2 Metadynamics

Metadynamics, proposed by [4], is an adaptive method for sampling the free energy
surface (FES) of high dimensional molecular systems. The method combines dynam-
ics in reaction coordinates with adaptive bias potentials. The idea of the method
is to perturb the energy landscape when the simulation is trapped in a metastable
region. This is done by adding locally Gaussian functions along a reaction coordi-
nate which fill up the minima in which the simulation is trapped. In this way it
is possible to explore the energy landscape in a rather short time compared to the
plain sampling approach. The method is originally designed to calculate free energy
differences. It is possible to prove that the method converges exactly to the free
energy surface when the sampling is done sufficiently long.

The method assumes that the high dimensional system can be projected down
on a few relevant collective coordinates si i = 1, . . . , n. Only the dependence of
these parameters on the free energy F(s) is considered. One possible way to find
these collective variables for stochastic dynamics can be found in [23]. But there
are more ideas how this can be achieved in the literature see [20] and the reference
therein. The exploration of the free energy surface (FES) is guided by the forces
F t
i = −∂F(s)/∂sti. The exploration of the free energy surface gets stuck most often

in a local minimum of the FES. In order to sample the FES more efficiently a bias
force is added to the system whenever the simulation is stuck in such a minima. With
Metadynamics one constructs a bias potential Vbias : Rn → R which is composed of
K ∈ N bias functions bi. We define b′is in the next paragraph. The complete bias
potential is then

Vbias(x) =
K∑
i=1

wi exp
(
− (x− ci)2

2λ2i

)
(24)

where wi ∈ R is a weight ci ∈ R is the center of the Gaussian and λ ∈ R is the width.
These functions are placed along the trajectory so that it can escape form this region
easily. The method can be parallelized easily since the bias force only depends on
the history of the individual trajectory. This make the method extremely efficient.
The bias also prevents the trajectory from going back to the visited states. When
the sampling is done for a sufficient long time the bias will converge to the negative
free energy surface plus a constant see e.g. [17].

2.3 Assimilation of Metadynamics

We are going to assimilate the idea of bias forcing to the sampling of dynamics
quantities. For our framework we do not have to calculate the complete FES. We
only need a bias which makes sure that we do not get trapped in the metastable
region. Before we start sampling the quantity of interest we are going to build a

9



basing function. The major difference of Metadynamics and our method is that
instead of changing the potential energy function V we change the gradient of the
potential energy ∇V . Thus we generate a dynamics which satisfies

dYt = (∇Vbias(Yt)−∇V (Yt))dt+
√

2β−1dBt (25)

where now the gradient of the system is biased with a sum of Gaussian functions.
We denote the bias of the gradient as bias function which is defined by

∇Vbias(Yt) :=
K∑
i=1

bi(Yt, c, w, λ). (26)

The bias function is build in the same way as the bias potential in Metadynamics.
But for our purpose it is enough to generate a bias potential only in the metastable
region. From a physical point of view the bias function could be interpreted as an
additional force which is applied on the system to steer the system in a direction.

Suppose the trajectory is trapped in the metastable set S. The sampling is
stopped and the bias function is built. For this we start a trajectory in the metastable
region. In every k-th step k ∈ N we add a bias function bi : (Rn,Rn,R,R) → R to
the bias function of the form

bi(x; c, w, λ) =
wi√
2πλ2i

exp
(
− (x− ci)2

2λ2i

)
, i ∈ [1, . . . , K] (27)

where ci ∈ Rn ∀i ∈ [1, . . . , N ] is the center of the bias function, wi ∈ R ∀i ∈
[1, . . . , K] is a weight and λi ∈ R ∀i ∈ [1, . . . , N ] is the width of the bias function.
We do this to decrease the metastable region such that the trajectory leaves this
region faster. We choose the center ci of the Gaussian functions to be the current
position of the trajectory when the bias function is added. The other parameters
wi and λi are constants which must be assimilated to the simulation. Especially
the sign of the wi has to be chosen carefully. The proposed algorithm does not
generate a flat energy landscape since the gradient of the system is perturbed. The
resulting dynamics is a Brownian motion with drift. This is why one needs to know
in which direction the dynamics has to be steered. The signs of wi’s have to be
chosen accordingly. Other ways of getting the parameters for the bias function are
possible. We introduce another idea in 1.

When the trajectory hits the target set we save the bias potential. The bias
potential consists of number of steps needed/k bias functions. The choice of k is
a compromise between adding as less bias functions as necessary, getting a small
hitting time τ and not perturbing the potential too much. It depends on the pa-
rameters wi and λi how many bias functions are needed. It is obvious that the
simulation of Metadynamics gets more expensive the more bias functions are added
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due to the increasing number of function evaluations. This is why all parameters
should be adapted to the problem such that the computation does not get to costly.

After the bias potential is built the sampling of the original trajectory is con-
tinued with the biased potential. To resume the original values of the quantity of
interest the calculated values have to be corrected by the formula given in (15). So
while sampling the perturbed dynamics the Girsanov weights Mt has to be sampled
as well, but these values can be computed on the fly.

Remark 1. In order to create a good bias potential within a reasonable computa-
tional cost one can use the history of the trajectory to estimate the parameters of the
bias functions. The midpoint ci can be chosen to be the mean of the average of the
last k steps and the λi can be chosen to be the maximal distance form the starting
point of the last k steps times a constant, C(λi = max(|Xi∗(1:k)− ci|)), C ∈ R. This
can be more efficient as we will see in the example shown above. In the literature
there are a lot of extensions of Metadynamics which could be used as well e.g. [24]

Remark 2. The construction of the bias potential depends on the history of the
trajectory. But since the simulation to get the bias function is done in a additional
step the potential is not getting time dependent. So the simulated dynamic does not
have to be changed only the potential changes. Furthermore the discretization of (1)
always gives a discrete time Markov process because of the independence of the Brow-
nian motion. The construction of the bias potential itself is not Markovian because
it depends on the history of the trajectory. But since the construction of the bias
function and the sampling of the quantity of interest are done independent of each
other the bias does not have an influence of the Markovianity of the perturbed SDE
(13). In general an extension of the proposed method for Non-markovian dynamics
should be possible. For this one could use the Metadynamics methods proposed in
[16].

3 The algorithm
We now present the algorithm in pseudo code. We will first use the Metadynamics
algorithm to build an bias potential such that the dynamics is not metastable any
more. We then sample the transition in this biased potential N times and weight
the sampling with the weight given by the Girsanov’s theorem.
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3.1 Pseudo Code

Data: dynamics Yt, starting set S, traget set T
Result: estimators for quantities of interest
initialisation: Y0 = x; ai, λi
Step 1: Build bias potential
while transition has not occurred do

sample the dynamic Yt;
every k steps add a new bias function;

end
save the bias potential;
Step 2: Sample the quantity of interest
for N do

sample the transition in the biased potential;
sample the Girsanov weights for the biased potential;

end
reweight according to Girsanov;

3.2 Proof of Novikov condition

To apply Girsanov’s theorem one has to make sure that the Novikov condition is
satisfied.

Lemma 1. Let τ̂ be the stopping time as given in Condition 2. Further let S ⊂ Rn

be a bounded domain and the biased potential consists of N < ∞ bias functions.
We choose the weights of the bias function such that the sum over the squares is
bounded

∑N
i=1 a

2
i < C1. When the perturbation potential is uniformly continuous

then the Novikov condition hold and we can use the Girsanov theorem to calculate
path dependent quantities from non equilibrium sampling for the equilibrium dynam-
ics.

Proof. Novikov’s conditions states that

E[exp(
1

2

∫ τ̂

0

|Vbias(Ys; c, w, λ)|2ds)] <∞. (28)

We assume that the metastable region is bounded so we can further assume the the
ansatz functions added by the metadynamics have bounded support. We are going
to show that the integral

∫ τ
0
|f(x; c, λ)|2ds is bounded from which we can then follow

that the Novikov condition hold.∫ τ̂

0

|Vbias(Ys; c, λ)|2ds =

∫ τ̂

0

∣∣∣ N∑
i=1

ai exp
(
− (Ys − ci)2

2λ2

)∣∣∣2ds
12



≤
∫ τ̂

0

( N∑
i=1

∣∣∣ai exp
(
− (Ys − ci)2

2λ2

)∣∣∣)2ds
=

∫ τ̂

0

( N∑
i=1

ai exp
(
− (Ys − ci)2

2λ2

))2
ds

≤
∫ τ̂

0

N∑
i=1

a2i sup
Ys∈S

N∑
i=1

exp
(
− (Ys − ci)2

2λ2

)2
ds

=

∫ τ̂

0

N∑
i=1

a2i

N∑
i=1

sup
Ys∈S

exp
(
− (Ys − ci)2

2λ2

)2
ds

≤
∫ τ̂

0

C1C2dt = Cτ̂ <∞

We know that the supx∈S
∑N

i=1 exp
(
− (Ys−ci)2

λ2

)2
is bounded because we exp(x) is a

continuous differentiable function on a bounded domain and so is its sum. The sup
can be pulled inside the sum because all bias functions are independent of each other.
Furthermore the stopping time is bounded due to the assumption in Condition 2.
If follows that the whole expression is bounded and from this we conclude that (28)
is satisfied and thus Novikov’s condition holds.

4 Examples
In the following we study different applications of the method presented above and
the presented variants. We will first study a low dimensional example in which we
show all variants of our method first the construction of the bias potential with
fixed parameters, second the construction of the bias potential with estimating the
parameters form the history of the trajectory as proposed in Remark 1.

We consider the dynamics given by (1) and the potential given by

V (x) =
1

2
(x2 − 1)2. (29)

This potential has two minima at x = ±1 and a local maximum at x = 0. We are
interested in the transition probability for (1) starting at X0 = −1 with β = 3.0
for all experiments. The stopping time is defined as the first hitting time of the
set T = [0.9, 1.1]. We sample the dynamics with a standard Euler Mayurama
discretization with a time step ∆t = 10−4 c.f. [25]. We are going to compute
two quantities first the transition probability for which we are going to chose the
function g(Ys) = 0 for Ys ∈ S and g(Ys) = 1 for Ys ∈ T . Secondly we are going to
compute the moment generating function of the stopping time for which we chose
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g(Ys) =
∫ τ̂
0

11T (Ys)ds where 11T is the indicator function of the target set T . For both
quantities we are interested in getting estimators with a lower variance compared to
the Monte Carlo estimator (4) and a speed up in the simulations.
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Figure 1: In blue the potential function (29) is shown and red is a realisation of (1)
shwoing the desired transition we want to sample.

4.1 One dimensional diffusion in a double well potential with
fixed parameters

For this computation we chose wi = 0.1, λi = 0.8 for all bias functions. The sign
of the wi’s are chosen to be positive since we want to observe a transition from the
left to the right well. The ci of every bias function is chosen as the current value
of the trajectory when the new bias function is added to the bias potential. The
maximal simulation time was TN = 15000 time steps. We also fixed the random
number generator to have a better comparison within the different experiments. We
computed 1000 realization of trajectories and calculated the quantities of interest
over the ensemble average (Monte Carlo estimator). To variance of the estimators
was calculated by repeating the experiment 10 times. The random number gener-
ator was set to rng(i,’twister’), where i is the number of iteration in the variance
experiment. The experiments was repeated for different random number generators.
The experiments showed similar results as shown in the table above.

In this example 66 bias functions have been used. The estimators of the Monte
Carlo and the importance sampling agree in both cases. One also sees that the vari-
ance of the estimator is reduced for both quantities of interest. The variance for the
transition probability is reduce by a factor 3/2 and for the moment generating func-
tion by a factor of 2. So the automatically generated bias potential by the adjusted
Metadynamics algorithm is actually a good potential in the sense of importance

1This is actually the conditional probability P (Xt ∈ T |t ≤ TN ). The mathematical misuse is
due to space issues.
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Figure 2: In red the gradient of the potential function (29) is shown and in blue the
gradient of the biased potential is shown.

MC GIR
P (Xt ∈ T ) 1 4.87× 10−2 5.18× 10−2

V ar 5.9× 10−5 3.9× 10−5

R(I) 0.1588 0.1287
E[e−βτ ] 2.6× 10−3 2.5× 10−3

V ar 1.3× 10−7 8× 10−8

R(I) 0.1412 0.1088
MFHT 1.0901 0.8626

∆t 10−4 10−4

Table 1: Comparison of the importance sampling estimators and the Monte Carlo
estimators for the simulation with fixed parameters of the biased potential.

sampling. The reduction of the MFHT means that on average the trajectories of
the importance sampling scheme are about 2000 steps shorter. This shows that also
a speed up in simulating the interesting events was achieved.

4.2 One dimension with estimated parameters

In this experiment we build the bias potential by estimating the parameters. The
parameter λi is calculated from the history of the trajectory as described in Remark
1 with the C = 10. The center of the bias function was calculated by the average
over the last k steps of the trajectory. All other parameters are kept as in the
experiment above.

In this example 67 bias functions have been used. Again we see that the Monte
Carlo estimators and the importance sampling estimator agree quite good. We have
again a variance reduction for both quantities of interest. But the variance for the
estimator for the hitting probability is not as good as in the fixed parameter case.
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Figure 3: In blue the gradient of the potential function (29) is shown and in red the
gradient of the biased potential is shown.

MC GIR
P (Xt ∈ T ) 1 4.87× 10−2 5.45× 10−2

V ar 5.9× 10−5 5.3× 10−5

R(I) 0.1588 0.1364
E[e−βτ ] 2.6× 10−3 2.8× 10−3

V ar 1.3× 10−7 8× 10−8

R(I) 0.1412 0.1014
MFHT 1.0901 0.7716

∆t 10−4 10−4

Table 2: Comparison of the importance sampling estimators and the Monte Carlo
estimators for the simulation with estimated parameters of the biased potential.

In the case for the moment generating function the desired variance reduction is
achieved comparable to the case of the fixed parameters. Furthermore the MFHT
is shorter compared to the first calculation.

5 Summary and Outlook
In this article we developed an algorithm for automatic assimilated importance sam-
pling. The main idea is to generate a similar dynamics as the original one in which
the metastability is reduced. This can be achieved by constructing bias potentials
which raise the region around the minimum of the potential energy function. For
this we combined the algorithm of Metadynamics which was adjusted to produce
bias potentials with a reweigting strategy based on Girsanov’s theorem. We proofed
that the reweigting scheme based on the theorem of Girsanov can be applied in our
situation. We also invented an algorithm which uses the history of the dynamics to
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build bias potentials which are even better adapted to the potential. In a one dimen-
sional example we could show that this algorithm generates estimators for different
quantities of interest with a reduced variance compared a Monte Carlo estimator.
The bias potential also speeded up the sampling of the event. The variant of the
algorithm that used the history of the trajectory to estimate the parameters for the
bias potential provided a better bias potential in the sense of variance reduction and
speed up. It seems that a bigger bias potential is always better but this is in general
not the case because the handling of the Girsanov weights gets numerically quite
delicate.

For future work we want to try to analyse our importance sampling scheme.
There are a lot of ideas in the literature how this can be done e.g. [26] or [12]. If
this is possible and under which condition we can guarantee that the bias potential
satisfies the conditions of the theory presented in these articles is ongoing research.

Our proposed method could also be used to generate a first initial guess for
the optimization problem proposed in [11]. The bias potential then would have
to be approximated by a coarser set of ansatz functions. Then one could solve
the optimization problem by a gradient descent in order to find the best weights
to approximate the best bias potential in the sense of the approximation. The
combination of those two methods is also ongoing research.
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