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Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME)
and associated Markov jump processes in molecule number space. If the reactants are present in large
amounts, however, corresponding simulations of the stochastic dynamics become computationally
expensive and model reductions are demanded. The classical model reduction approach uniformly
rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential
equations, the well-known mass action reaction rate equations. For systems with multiple scales, there
exist hybrid approaches that keep parts of the system discrete while another part is approximated either
using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the
different hybrid approaches, focusing on their basic concepts and the relation between them. We
derive a novel general description of such hybrid models that allows expressing various forms by
one type of equation. We also check in how far the approaches apply to model extensions of the
CME for dynamics which do not comply with the central well-mixed condition and require some
spatial resolution. A simple but meaningful gene expression system with negative self-regulation is
analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed.
Especially, we reveal the cause of error in the case of small volume approximations. Published by
AIP Publishing. https://doi.org/10.1063/1.4986560

I. INTRODUCTION

Stochastic modeling of biochemical reaction networks,
such as gene expression systems, is of fundamental interest in
molecular biology.1–4 Of central relevance is the description by
the chemical master equation (CME) and associated Markov
jump processes where the discrete states refer to numbers for
all species of reactant molecules. The dynamics can be sim-
ulated by Gillespie’s stochastic simulation algorithm5–7 that
generates exact realizations of the underlying jump process.
However, the simulations may get extremely time-consuming,
especially if parts of the molecular population appear in high
copy numbers or reaction rates are high. For such situations,
various approximation methods and reduced models have been
developed.

Beside the numerical schemes to speed up simulations
(like τ-leaping methods8), there exist analytical approaches to
reduce the system’s complexity by defining simplified mod-
els. If the copy number is large for all involved species, the
CME can be approximated by stochastic differential equations
or ordinary differential equations (ODE’s)—this is a classical
result proven by Kurtz.9–11 The approximation is based on an
equal scaling of all molecule numbers. In many applications—
as in genetic networks—however, some of the involved species
(e.g., proteins) are typically present in much greater abun-
dance than others (e.g., DNA), which makes an equal scaling
inappropriate. This leads to hybrid methods where only a
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part of the system is approximated by continuous dynamics,
whereas species in small amounts remain discrete. The most
prominent hybrid approach is given by piecewise determin-
istic Markov processes (PDMP’s) which were introduced by
Davis in 1984.12 As the name suggests, these processes move
deterministically for some period of time before the flow is
interrupted by a random jump. PDMP’s have been extensively
studied in Refs. 13–15, including a convergence analysis and
an application to autocatalytic genetic networks. Similar meth-
ods have been proposed in Refs. 16–18, with error estimates
conducted in Ref. 19.

Other existing hybrid approaches are based on a partition
of the set of reactions into fast and slow ones, modeling the
fast reactions by continuous Markov processes while the slow
reactions remain discrete.20–25 Although the resulting hybrid
algorithms significantly reduce the computational time, the
underlying separation of reactions might be ambiguous and
will not always provide a convenient description of the given
dynamics. For many applications, the more natural partition is
given in terms of population size levels.

In this paper, we focus on such natural partitions, i.e.,
species of reacting molecules will be partitioned into two or
more regimes according to their abundance and not accord-
ing to the speed of the reaction channels they are involved
in. We give a short description of PDMP’s and expand the
model formulation by allowing noise around the determinis-
tic trends of the rescaled species, which leads to piecewise
chemical Langevin equations (PCLE’s), also called “hybrid
diffusions.”26–28 As a consequence, we arrive at a novel joint
equation for all hybrid models with (a) low copy number
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species with discrete molecule number states and stochastic
jump process description, (b) medium copy number species
with continuous molecule density states and stochastic PCLE-
type description, mixed with (c) high copy number species with
continuous molecule density states and deterministic reaction
rate equation description, given by

Y(t) = Y(0) +
∑

k∈Klow

Pk

(∫ t

0
α̃k(Y(s)) ds

)
ν̃k

+
∑

k∈Kmedium

∫ t

0
α̃k(Y(s))ν̃k ds +

∫ t

0
Ξ(Y(s)) dW(s)

+
∑

k∈Khigh

∫ t

0
α̃k(Y(s))ν̃k ds, (1)

where the state Y(t) is composed of the molecule numbers as
well as molecule densities in the system at time t, the reactions
are numbered by k and grouped according to their nature (i.e.,
their impact onto the three classes of species) into sets Klow ,
Kmedium, and Khigh, while α̃k and ν̃k denote the correspond-
ingly scaled propensity functions and stochiometric vectors
of the reactions, Pk are standard Poisson clock processes, Ξ
defines appropriately scaled noise intensities, and W(s) denote
standard vector-valued white noise processes. The details of
how to derive all these quantities for a given chemical reaction
network are explained in Sec. III.

For illustration, we investigate a gene expression system
with negative self-regulation which very well demonstrates the
different approximation properties of PDMP’s and PCLE’s;
especially it reveals that PCLE’s are better suited to reproduce
empirical distributions and sizes of stochastic events like pro-
tein bursts, which are a typical characteristic of self-repressing
gene expression systems. Moreover, the proposed genetic net-
work provides a basis for clarifying the cause of a small
volume failure: What exactly goes wrong if the approximative
rescaling is applied to species with low copy numbers?

When considering the gene expression system within a
eukaryotic cell, some spatial resolution is required because the
individual reactions may be subject to local restrictions. This
motivates to extend the analysis to reaction-diffusion systems
described by spatiotemporal CME’s. We will give a short intro-
duction to such extended CME’s and show that the associated
reaction-diffusion dynamics can suitably be approximated by
the presented hybrid methods, as well.

The article intends to give a structured overview and joint
description of the existing model formulations and to illus-
trate the relation between them. However, also novel recom-
binations of the models will be presented and analysed. In
Sec. II, we review the CME formalism and its approxima-
tion by chemical Langevin equations (CLE’s) and reaction-
rate equations (RRE’s). Also the spatiotemporal chemical
master equation (ST-CME) is depicted as a model exten-
sion for non-well-mixed reaction systems. Hybrid models
for multiscale dynamics are presented in Sec. III, where we
derive consistent time-change representations of the respective
combined processes. Finally, Sec. IV contains the applica-
tion to a gene regulatory system, including a detailed error
analysis giving new insights into the structure of multiscale
approximations.

II. FROM CME TO ODE: MODELING REACTION
NETWORKS

In the following, we give a short review of several mod-
eling approaches for chemical reaction kinetics. Starting with
the chemical master equation as the most accurate model for
well-mixed reaction systems in Sec. II A, we motivate the rel-
evance of approximative modeling approaches, some of which
are presented in Sec. II C. Finally, we show in Sec. II D
how the CME-model can be extended to situations where the
well-mixed condition is broken and some spatial resolution is
required to capture the characteristics of the dynamics.

A. The chemical master equation

We consider a system of L ∈N chemical species S1, . . . , SL

which behave well-mixed in a fixed space of motion Ω. The
system is affected by K ∈N reaction channels R1, . . . , RK .
The state of the system at time t ≥ 0 is given by X(t) =
(X1(t), . . . , XL(t)) ∈ NL

0 with X l(t) denoting the number of
molecules of species Sl at time t. The effect of reaction Rk

is given by the state-change vector νk = (ν1k , . . . , νLk) ∈ ZL

where νlk defines the net change in the number of molecules
of species Sl due to reaction Rk . If the reaction is represented
by the stoichiometric equation

Rk : a1kS1 + · · · + aLkSL → a′1kS1 + · · · + a′LkSL, (2)

with coefficients alk , a′lk ∈ N0, the related state-change vector
has entries νlk = a′lk − alk .29

Given X(t)= x= (x1, . . . , xL), the corresponding transi-
tion

x→ x + νk

occurs at rate αk(x) > 0 where αk is a well-defined propensity
function. According to the law of mass action, the propensity
is a function of the corresponding macroscopic rate constant
γk > 0 and the number of molecules involved in the reaction.
For example, for a unimolecular reaction by species Sl, it holds
that αk(x) = γkxl and for a bimolecular reaction of two species
Sl, Sl′ , l , l′, it holds that αk(x) = γk

V xlxl′ , where V is the
system’s volume times the Avogadro constant.30 The inverse
scaling by the volume for the bimolecular reaction reflects the
fact that inside a larger volume, it takes more time for two
reactant molecules to find each other. Analogue arguments for
a reaction as in (2) lead to the general propensity function

αk(x) = γkV
L∏

l=1

xl!
(xl − alk)!Valk

,

see Ref. 31 for details.
In order to state the time evolution of X(t), letRk(t) denote

the number of times the reaction Rk has occurred by time t.
Then, obviously,

X(t) = X(0) +
K∑

k=1

Rk(t)νk .

Given that the reaction propensities depend only on the cur-
rent value X(t) of the system, the model satisfies the Markov
property and the counting processes Rk can be represented
in terms of Poisson processes. This gives the time-change
representation
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X(t) = X(0) +
K∑

k=1

Pk

(∫ t

0
αk(X(s))ds

)
νk (3)

of the continuous-time Markov process X(t), with Pk , k
= 1, . . . , K , denoting independent, unit-rate Poisson pro-
cesses.32

As an alternative to this time-change representation, the
dynamics can be characterized by the Kolmogorov forward
equation for the distribution of X(t). Defining

P(x, t) B Prob(X(t) = x|X(0) = x0)

for some initial state x0 ∈NL
0 , the system of differential

equations

∂P(x, t)
∂t

=

K∑
k=1

(
αk(x − νk)P(x − νk , t) − αk(x)P(x, t)

)
(4)

is fulfilled, which in the context of reaction networks is called
the chemical master equation (CME).

B. Stochastic simulation

The CME (4) is the Fokker-Planck equation associated
with the Markov jump process (3). In general, its state space is
not finite, that is, the CME consists of a countable (but infinite)
set of coupled ODE’s which, even for rather simple chemical
reaction systems, becomes very complex. Solving the CME
analytically is impossible in almost all situations of practical
interest. Instead, numerical solution methods can be applied,
with the methods falling into two main categories: numeri-
cal integration methods for (4) that aim at approximating the
probability distribution P(x, t) and sampling techniques that
compute an ensemble of realization of the jump process (3)
and then approximate expectation values and higher moments
of the probability distribution P(x, t) by statistical means.
Gillespie’s stochastic simulation algorithm (SSA)7 is the most
prominent sampling technique. In its basic form, it uses the
fact that given a state x ∈ NL

0 , the random waiting time for the
next reaction to occur follows an exponential distribution with
mean 1/α0(x), where

α0(x) B
K∑

k′=1

αk′(x).

The index k of the next reaction is a statistically independent
integer random variable with point probability αk(x)/α0(x).
In total, the stochastic simulation algorithm (SSA) is the
following:

1. Initialize time t = t0 and state x = x0 and choose a time
horizon T > t0.

2. Calculate αk(x) for all k = 1, . . . , K and their sum α0(x).
3. Generate two random numbers r1, r2 from independent

uniform distributions in [0, 1], set

τ =
1

α0(x)
ln

(
1
r1

)
and choose k to be the smallest integer satisfying∑k

k′= αk′(x) > r2α0(x).

4. Execute the next reaction by replacing t ← t + τ and
x← x + νk .

5. Return to 2 or end the simulation in case of t ≥ T .

Obviously, the SSA is easy to implement and results in
exact realizations of the jump process. There exist reformu-
lations of it which reduce the computational effort per itera-
tion step (i.e., per reaction event), see, e.g., the next-reaction
method by Gibson and Bruck33 or other methods in Refs. 34
and 35. Such alternative versions of the SSA are useful;
however, they do not decrease the number of iteration steps
necessary (on average) to reach a given time horizon. In the
case of closely following reaction events, the so-called dense
accumulations, the time increase τ in each iteration step is
small—which induces a long runtime, no matter how effective
the reaction events are determined in each step. This motivates
to forgo the perfect exactness of the SSA in order to find faster
approximate simulation strategies. One of them is the so-called
τ-leaping method which is based on the idea of aggregating
several reaction events per iteration step.7 The analytical back-
ground is the following. Given a state X(t) = x at time t, let
τ > 0 be small enough such that during the time interval
[t, t + τ) the propensity functions of all reactions are likely to
stay roughly constant. Thereby, the number of times reaction
Rk fires during [t, t + τ) follows a Poisson distribution with
mean αk(x)τ, and the state at time t + τ can be approximated
by

X(t + τ) ≈ x +
K∑

k=1

Pk(αk(x)τ)νk , (5)

where Pk(µk) are statistically independent Poisson variables
with mean (and variance) µk . Equation (5) is an approxima-
tion of (3) and obviously suggests to apply basic numerical
schemes—like the explicit Euler method—for approximative
simulations of X(t): Given a lag-time τ > 0 as well as a
state X(tj) = xj at some time tj ≥ 0, generate for each k
an independent Poisson random number Pk(αk(xj)τ) and set
xj+1 = xj +

∑K
k=1 Pk(αk(x)τ)νk as an approximation of X(tj+1).

For more details and practical issues (like how to choose the
lag-time τ), we refer to Refs. 7, 32, and 36.

C. Approximation methods

Dense accumulations of reaction events occur for any
reaction rate constants γk if the number of reactant molecules
is large. In this case, a direct analytical approximation of the
CME by a chemical Langevin equation or an ODE is reason-
able not only to speed up numerical simulations but also to
uncover the structure of the chemical system. We give a short
summary of the stepwise approximation, for details see, e.g.,
Refs. 7, 9–11, and 30.

As before, let τ > 0 be small enough such that an approxi-
mation of the dynamics by (5) is justified. If, on the other hand,
τ is also large enough for all reaction channels to fire several
times [i.e., αk(x)τ � 1 for all k], then the Poisson variables
can further be approximated by normal random variables, and
Eq. (5) is approximated by

X(t + τ) ≈ x +
∑

k

Nk (αk(x)τ, αk(x)τ) νk , (6)

where Nk(µk ,σ2
k ) are independent normal random variables

with mean µk and variance σ2
k . Reordering Eq. (6) yields

X(t + τ) = x +
∑

k

αk(x)τνk +
∑

k

√
αk(x)τNk(0, 1)νk ,
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which, in the form of an Itô stochastic differential equation,
gives the chemical Langevin equation (CLE)

dX(t) =
∑

k

αk(X(t))νk dt +
∑

k

√
αk(X(t))νk dWk(t), (7)

where W k(t) denotes a one-dimensional Wiener process (stan-
dard Brownian motion) for each k.37 While the process
defined by (3) or (4) runs within NL

0 , the state space for
the approximative process (7) extends to RL. Its integral
notation

X(t) = X(0) +
K∑

k=1

∫ t

0
αk(X(s))νk ds

+
K∑

k=1

∫ t

0

√
αk(X(s))νk dWk(s)

clearly exhibits the approximate character in comparison to
(3).

In the thermodynamic limit where both the system’s vol-
ume V and the volume-dependent molecule numbers X (V )

k

approach infinity in a way that the concentrations X (V )
k /V stay

constant, the noise terms in the chemical Langevin equation
become negligible, leading to a deterministic system described
by a set of ODE’s. This is due to the fact that the propen-
sity functions grow in direct proportion to the volume.5–7,38

Actually, for a first-order reaction of species Sl,

αk(x) = γkxl = Vγk
xl

V
= Vγkcl,

where cl B
xl
V is the concentration in moles per unit volume;

for a second-order reaction of two different species Sl and Sl′ ,

αk(x) =
γk

V
xlxl′ = Vγkclcl′ .

Thus, by defining the volume-scaled propensities

α̃k(c) B
αk(x)

V

for the vector of concentrations c = (cl)l=1,...,L, multiplication
of (7) by 1

V leads to

dC(t) =
∑

k

α̃k(C(t))νk dt +
∑

k

1
√

V

√
α̃k(C(t))νk dWk(t),

which, for V → ∞, reduces to a simple system of ODE’s for
the concentrations

dC(t) =
∑

k

α̃k(C(t))νk dt,

see Refs. 9, 11, and 18 for details. A scalar transformation back
to numbers rather than concentrations gives the reaction-rate
equation (RRE),

dX(t) =
∑

k

αk(X(t))νk dt, (8)

a deterministic equation characterizing the dynamics in the
large population/large volume limit where the fluctuations
become negligible.

Figure 1 shows trajectories of the dynamics character-
ized by the CME and its approximation equations for a simple
system of binding and unbinding.

Formally, the approximation of Markov jump processes
by Langevin dynamics or deterministic dynamics can be
obtained by the Kramers-Moyal expansion:39–41 In the first
order, one gets the deterministic dynamics, and in the second
order, one gets the Langevin dynamics. For linear reaction net-
works, it is well known that the first-order moments of all three
approaches (CME, RRE, and CLE) match, that the CME and
CLE match to the second moment, and that all approaches
diverge at third order moments.42

Although the relation between the discrete stochastic
model and its continuous approximations has been under-
stood in every detail, the applicability is limited to systems
with uniform population scaling. If only part of the sys-
tem scales with the volume while some relevant species
appear in low copy numbers independent of the volume,
more sophisticated models are necessary. These hybrid models
will be presented in Sec. III. To further motivate the rele-
vance of multiscale molecular populations, we now present
a common extension of the CME to systems with spatial
resolution.

D. Spatial extension: The spatiotemporal CME

Modeling a reaction system by means of a CME (or by
the approximative CLE or RRE) assumes the dynamics to
be “well-mixed” in space which means that the diffusion of
the molecules is fast compared to their reaction propensi-
ties. This implies that the spatial positions of the molecules
are negligible, and the state of the system is fully described by

FIG. 1. Gillespie simulation of the
CME (red/blue), Euler simulation of the
corresponding CLE (gray), and deter-
ministic time-evolution determined by
the RRE (black dashed) for a system
of binding A + B→C and unbinding
C→A + B of the chemical species
S1 = A, S2 = B, S3 = C. Initial states
XC (0) = 0 and XA(0) = XB(0) = V with
V ∈ {102, 103 }. (a) V = 102 and (b) V
= 103.
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total numbers of molecules. If this well-mixed condition is
broken, models with spatial resolution are required. The most
detailed standard approach consists of individual molecule
tracking where molecules are typically modeled as points or
spheres undergoing spatially continuous Brownian motion,
and bimolecular chemical reactions occur when reactive
molecules pass within specified reaction-radii.43–45 Alterna-
tively, there exist approaches which discretize the space into a
collection of non-overlapping compartments and approximate
diffusion by jumps between the compartments. Interpreting the
jumps as first-order reactions, this leads to an extended CME
where the states have an additional spatial interpretation.46–50

This second type of approach is considered in the following.
As in the setting of the CME, there are L species S1, . . . , SL

which are governed by K reaction channels R1, . . . , RK . Given
a space discretization

Ω = Ω1∪̇ . . . ∪̇ΩM

into M ≥ 2 compartments, let Xlr(t) ∈ N0 denote the num-
ber of molecules of species Sl in compartment Ωr at time
t ≥ 0. We use the notation Xr(t) B (X1r(t), . . . , XLr(t)) and
identify the overall state of the system by the matrix X(t)
= (Xr(t))r=1,...,M ∈ NL,M

0 containing the number of molecules
of each species in each compartment. This state is affected both
by chemical reactions and by diffusive transitions between the
compartments.

Assuming that within each compartment the dynamics
actually behave well-mixed, a local description by a CME is
appropriate. Denoting again the net effect of reaction Rk onto
the molecular population by νk = (ν1k , . . . , νLk) ∈ ZL, the
emergence of this reaction in the rth compartment given the
actual state X(t) = x ∈ NL,M

0 refers to the transition

x→ x + νk1r ,

where 1r ∈ NM is a row vector with the value 1 at entry r and
zeros elsewhere. [νk1r is a L ×M-matrix whose rth column is
equal to νk while all other columns contain zeros and simply
indicate that X(t) changes in compartment Ωr .] The reaction
propensities may now depend on the compartment and are
given by functions αr

k(x) which denote the probability per unit
of time for reaction Rk to occur in compartment Ωr given that
Xr(t) = xr , i.e., αr

k(x) depends only on the values of x referring
to compartment Ωr .

These local reaction dynamics are combined with diffu-
sive jumps of the molecules between the compartments. A
jump of a molecule of species Sl from compartment Ωr to
compartmentΩs, s , r, given the actual state X(t) = x ∈ NL,M

0
is described by the transition

x→ x + 1l
s − 1l

r ,

where 1l
r is a matrix whose elements are all zero except the

entry (l, r) which is one. Let λl
rs denote the rate for each indi-

vidual molecule of species Sl to perform this jump. Since all
molecules are assumed to diffuse independently of each other
and jumps are treated as first-order reactions, the probability
per unit of time for such a jump to occur at time t is λl

rsXlr(t).
As in the setting of the CME, let

P(x, t) = P(X(t) = x|X(0) = x0)

be the probability that the process is in state x ∈ NL,M
0 at time

t given an initial state X(0) = x0. Analogously to (4), the time
evolution of P(x, t) is now characterized by

dP(x, t)
dt

=

M∑
r,s=1
r,s

L∑
l=1

(
λl

sr(xls + 1)P(x + 1l
s − 1l

r , t)

− λl
rsxlrP(x, t)

)
+

M∑
r=1

K∑
k=1

(
αr

k(x − νk1r)

×P(x − νk1r , t) − αr
k(x)P(x, t)

)
, (9)

where the first line refers to the diffusive part while the sec-
ond line describes the chemical reactions within the com-
partments. This system of ODE’s is named reaction-diffusion
master equation (RDME) or spatiotemporal chemical master
equation (ST-CME)—depending on the underlying coarse-
graining of space. The latter term indicates that the spatial
discretization is not given by a regular Cartesian lattice but
decomposes the state into areas of metastability, assuming that
the considered reaction-diffusion process naturally exhibits a
metastable behavior.46 A typical example is given by reaction-
diffusion systems within eukaryotic cells with a natural split-
up into nucleus and cytoplasm; this setting will be considered
in Sec. IV D.

No matter which type of coarse-graining is chosen, the
main insight is that Eq. (9)–even if it looks more complex
than the CME (4)—actually is just a CME with increased
dimensionality. Both the simulation tools of Sec. II B and the
approximation by chemical Langevin equations may directly
be transferred to this spatial setting. The consideration of the
thermodynamic limit to obtain deterministic dynamics, how-
ever, is based on a scaling by the volume which—in such a
spatial consideration—gets a new and more concrete meaning.
Relating the volume to the size of the spatial compartments
means that an increasing volume affects the transition rates
λl

sr between the compartments. The simple interpretation of
jumps as first-order reactions with rates independent of the
volume is not sustainable any more, and a general statement
about how these rates scale with the volume is impossible.
Here, a more specific analysis is required. On the other hand,
the RRE as a limit model to describe the evolution of a reaction
system also makes sense for systems with spatial interpreta-
tion. With regard to a fixed volume, the RRE simply provides
an approximative description of the dynamics defined by the
spatiotemporal chemical master equation as long as the consid-
ered compartments and their respective molecular populations
are not too small.

The possible presence of multiple scales within the
dynamics becomes even more evident in such a spatially inho-
mogeneous environment: While a huge molecular population
in one compartment may permit approximations by Langevin
dynamics or RRE’s, a small population in another compart-
ment may require the maintenance of the stochastic, discrete
nature of a Markov jump process. Also the spatial inhomogene-
ity of reaction propensities easily leads to cascades of reac-
tion speeds—asking for hybrid methods to handle multiscale
dynamical systems.
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III. HYBRID MODELS FOR MULTISCALE SYSTEMS

The approximation of the CME (4) by the RRE (8)
requires all species to appear in high copy numbers. If some
species remain in small copy numbers, an equal scaling of
the whole system is inappropriate and the approach may fail.
A typical example is given by the process of gene expres-
sion in single cells where the produced proteins may appear
in large copy numbers while the template for transcription,
the DNA, is present only in one or two copies. By describ-
ing the whole system in terms of RRE’s, the stochastic nature
of the system completely gets lost. Such situations require
multiscale modeling approaches which take into account the
different scaling levels. One prominent example of such multi-
scale approaches is given by piecewise deterministic Markov
processes (PDMP’s) which consider the large copy number
limit for parts of the molecular population only while other
parts are kept stochastic and discrete (the low copy number
species). We give a short introduction to PDMP’s, followed by
an extension to hybrid diffusions where the high copy number
species are described by CLE’s rather than by RRE’s.

A. Piecewise deterministic Markov processes
1. Special case: Piecewise deterministic
reaction processes

As in Sec. II, we consider a system of L chemical species
S1, . . . , SL undergoing K reaction channels R1, . . . , RK which
are specified by their state-change vectors ν1, . . . , νK . Given
the system’s volume V > 0, let X (V )

l (t) ∈ N0 denote the num-
ber of molecules of species Sl at time t ≥ 0. In contrast to
the derivation of the RRE (8), we assume that only part of the
molecular population scales with the system’s volume, while
some of the species appear in low copy numbers independent
of V. Without loss of generality, let S1, . . . , Sd for some d < L
be these low copy number species. For partially approximat-
ing the dynamics, only the components X (V )

d+1(t), . . . , X (V )
L (t)

referring to the high abundant species are scaled by 1/V while
the others are left unscaled, i.e., we consider the process
Y (V )(t) =

(
Y (V )

l (t)
)

l=1,...,L
defined by

Y (V )
l (t) B




X (V )
l (t), l = 1, . . . , d,

1
V X (V )

l (t), l = d + 1, . . . , L.

Analogously to the time-change representation (3) of the
unscaled process, the dynamics of the partially scaled process
(Y (V )(t)) are characterized by

Y (V )(t) = Y (V )(0) +
K∑

k=1

Pk

(∫ t

0
α(V )

k

(
Y (V )(s)

)
ds

)
ν(V )

k (10)

for suitable partially scaled state-change vectors ν(V )
k defined

by

ν(V )
lk B

{
νlk , l = 1, . . . , d,
1
V νlk , l = d + 1, . . . , L

and adapted reaction propensity functions α(V )
k . As before, Pk ,

k = 1, . . . , K , denote independent, unit-rate Poisson processes.
Let now K ⊂ {1, . . . , K } be the subset of those indices

belonging to reactions which do not affect the low copy number

species, i.e.,

K B {k ∈ {1, . . . , K }| νlk = 0 ∀l = 1, . . . , d} .

Given this separation of reaction channels, we assume that
there exist non-zero limit vectors ν̃k with

V · ν(V )
k

V→∞
−−−−→ ν̃k , for k ∈ K (11)

and
ν(V )

k

V→∞
−−−−→ ν̃k , for k < K. (12)

This implies that the state-change vectors νk do not scale with
V such that, in the limit model, the dynamics of the high abun-
dant species will be globally continuous. Generalizations of the
model allow also jump in the high abundant species; however,
in the interest of transparency, we stick to this more special set-
ting. Assuming that also for the propensity functions there exist

suitable limits α̃k with 1
V α

(V )
k

V→∞
−−−−→ α̃k uniformly on compacts

for k ∈ K andα(V )
k

V→∞
−−−−→ α̃k uniformly on compacts for k < K,

it has been shown in Ref. 15 that the sequence
(
Y (V )

)
V ≥1

of
scaled Markov jump processes solving (10) converges to a
stochastic process given by

Y(t) = Y(0) +
∑
k<K

Pk

(∫ t

0
α̃k(Y(s)) ds

)
ν̃k +

∫ t

0
F(Y(s)) ds,

(13)

in the sense of Y (V )(t)
V→∞
−−−−→ Y(t) almost surely for each t ≥ 0,

with the vector field F : RL → RL given by

F(y) B
∑
k∈K

α̃k(y)ν̃k . (14)

That is, we have

Y(t) = Y(0) +
∑
k<K

Pk

(∫ t

0
α̃k(Y(s)) ds

)
ν̃k

+
∑
k∈K

∫ t

0
α̃k(Y(s))ν̃k ds (15)

in comparison to (3) which clearly shows that it is a mixture
of the jump process and deterministic dynamics: The process
Y(t) exhibits a piecewise deterministic behavior; after starting
at time t = 0 in Y(0), it follows a deterministic motion deter-
mined by the vector field F until t reaches the first jump time
of any of the Poisson processes Pk , k ∈ {1, . . . , K } \K. Then
the respective Poisson process jumps and the deterministic
evolution restarts with a new initial state. Note that by defini-
tion of K, it holds that (F(y))l = 0 for l = 1, . . . , d and any
y ∈ RL which means that the deterministic flow is constrained
to the components Y l, l = d + 1, . . . , L, of large copy number
species.

Equation (15) defines the piecewise deterministic reac-
tion process as a hybrid Markov process using time-change
representations. In another branch of the literature, the cor-
responding CME was discussed and derived, see, e.g., Refs.
16 and 18. It can be shown that the reduced CME associated
with (15) allows for approximation of expectation values of
the probability distribution governed by the full CME (4) up
to an error of order 1/V.18 This implies that a statistically rep-
resentative path ensemble of the process given by (15) would
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allow for the same order of accuracy (if one can control the
additional statistical error originating from the fact that one
can only compute a finite sample of the path ensemble).

2. General case: Piecewise-deterministic
Markov processes

The process Y(t) characterized by (13) or (15) belongs to
a general class of hybrid processes, called piecewise determin-
istic Markov processes (PDMP’s), that are defined in a more
general setting:12,15,51 The state of a PDMP at some time t ≥ 0
is given by a couple Y(t) = (I(t), C(t)) containing a discrete
variable I(t) ∈ Nd

0 and a continuous variable C(t) ∈ Rn. As
the name suggests, the process Y(t) follows a deterministic
motion which is interrupted by random jumps. The lengths of
the time intervals between two successive jumps are random
variables that will be called waiting times τj. The jump times
(tj)j∈N0 are recursively defined by t0 = 0 and tj+1 = tj + τj.
Within each of the time intervals [tj, tj+1), the discrete vari-
able remains constant, while the continuous variable evolves
according to a given ODE. More precisely, consider the state
space

S = Nd
0 × R

n,

provided with the Borelσ-algebraB(S), and define the dynam-
ics of the PDMP Y(t) = (I(t), C(t)) within S by the following
characteristics.

1. The deterministic flow: For each i ∈ Nd
0 , there is a contin-

uous vector field f (i) : Rn → Rn defining the determinis-
tic flow of the continuous variable C(t) by the differential
equation

dC(t) = f (i)(C(t)) dt. (16)

2. The jump rate function λ : S→ [0,∞) which determines
the distribution of waiting times of the process within a
branch {i} × Rn of the state space.

3. The transition kernel Q : S × B(S) → [0, 1] specifying
the distribution of the process after a jump. We assume
Q(y, {y}) = 0 for all y ∈ Swhich means that only “proper”
jumps are considered as jumps.

With these ingredients, a sample path (Y(t))t≥0 = (I(t),
C(t))t≥0 of the PDMP, given an initial state y0 = (i0, c0) ∈ S
at time t0 = 0, is recursively constructed as follows. Given the
state Y(tj) = (ij, cj) ∈ S of the process at time tj, j ∈ N0, let
Φij (cj, t) be the solution of the initial value problem

dΦij (cj, t) = f (ij)(Φij (cj, t)) dt, Φij (cj, 0) = cj. (17)

We assume this solution to exist and to be unique for t ≥ 0.
Define the next jump time by tj+1 B tj + τj, where the waiting
time τj has the distribution

P(τj > t) = exp

(
−

∫ t

0
λ(ij,Φij (cj, s)) ds

)
.

The deterministic evolution within the time interval [tj, tj+1)
is given by

I(tj + s) B ij, C(tj + s) B Φij (cj, s) for s ∈ [0, τj).

Then, the post-jump state Y(tj+1) = (ij+1, cj+1) at time tj+1 = tj
+ τj is selected independently according to the distribution

P(Y(tj+1) ∈ A) = Q((ij,Φij (cj, τj)), A), A ∈ B(S).

Thus, on the time interval [tj, tj+1], the process Y(t) is defined
by

Y(tj + s) = (I(tj + s), C(tj + s)) =

{
(ij,Φij (cj, s)), s ∈ [0, τj),
(ij+1, cj+1), s = τj,

with the post-jump value cj+1 of the continuous component
serving as an initial value for the next time interval.

At the jump times tj, both the discrete and the continu-
ous variables can instantaneously change their values by the
transitions

ij → ij+1, Φij (cj, τj)→ cj+1.

If cj+1 = Φij (cj, τj) for all j ∈ N0, the trajectories of the contin-
uous variable are globally continuous and the only effect of a
jump is a change in the regime by a new value of the discrete
variable. If, on the other hand, cj+1 , Φij (cj, τj), the trajectories
of the continuous variable are only piecewise continuous.

3. Relation

The relation between the general construction and the spe-
cial case given by (13) for reaction processes is as follows. The
discrete process I(t) is given by the first d (unscaled, integer-
valued) components (Y1(t), . . . , Yd(t)), while the continuous
process is given by C(t) = (Yd+1(t), . . . , YL(t)) ∈ Rn with
n = L � d. In short, we denote states as y = (i, c). The vec-
tor field f (i) which works on the subspace of the continuous
component is related to the vector field F via

F(y) = F((i, c)) = (0, f (i)(c)).

The jump rate function λ is determined by the reaction
propensities α̃ via

λ(y) =
∑
k<K

α̃k(y), (18)

and the transition kernel Q is given by

Q(y, {y + ν̃k }) =
α̃k(y)∑

k′<K α̃k′(y)
(19)

for each k ∈ {1, . . . , K } \ K. This relation connects the con-
siderations for piecewise deterministic reaction processes to
the more general literature on piecewise deterministic Markov
processes and opens up the manifold of deep results on
convergence and numerical approximation.

B. Hybrid diffusion

Between two consecutive jump times tj and tj+1, the con-
tinuous variable C(t) of a PDMP is given by the deterministic
flow C(t) = Φi(c, t) with I(tj) = i and C(tj) = c and satis-
fies the ODE dC(t) = f (i)(C(t)) dt, see Eq. (16). In Ref. 26,
Crudu et al. propose to consider an Itô stochastic differential
equation instead of this ODE, thus adding a diffusion term to
produce noise in the flow of the continuous variable, which
leads to processes called hybrid diffusion. Similar to a PDMP,
such a hybrid diffusion is given by a process Y(t) = (I(t), C(t))
which consists of a discrete component I(t) ∈ Nd

0 and a contin-
uous component C(t) ∈ Rn. Both components have piecewise
continuous trajectories interrupted by jumps at jump times tj,
j ∈ N0. Again, the jump dynamics are specified by a rate func-
tion λ and a transition kernel Q. Instead of the deterministic
flow (16) between two jump times, however, the dynamics
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of the continuous variable C(t) are given by the stochastic
differential equation

dC(t) = f (i)(C(t)) dt + ξ(i)(C(t)) dW(t), (20)

where W(t) is an m-dimensional Wiener process, f (i) : Rn

→ Rn is a continuous vector field, and ξ(i) : Rn → Rn,m is a
diffusion matrix for each i ∈ Nd

0 .
Sampling the hybrid diffusion follows the same proce-

dure as sampling the PDMP, with the deterministic flow (16)
replaced by the randomized flow (20). That is, in between two
jump times tj, tj+1, the process is defined by

I(tj + s) B ij, C(tj + s) B Φij (cj, s) for s ∈ [0, τj),

where Φij (cj, s) is now the solution of

dΦij (cj, t) = f (ij)(Φij (cj, t)) dt + ξ(ij)(Φij (cj, t)) dW(t),

Φij (cj, 0) = cj. (21)

Equation (21) is the analogue to (17) which defines the dynam-
ics of the continuous variable in the piecewise deterministic
setting.

In the context of a multiscale reaction system described by
the special kind of PDMP (13), a nearby approach is to replace
the deterministic flow of the species arising in high copy
numbers by chemical Langevin dynamics as defined in (7).
Again, we assume a two-scale separation of the species’ abun-
dance and subdivide the given reaction channels R1, . . . , RK

according to their effect onto the classes of species, with the
index subset K ⊂ {1, . . . , K } separating those reactions which
affect only high copy number species. Without loss of gener-
ality, we here assume that this subset K consists of the first
m indices 1, . . . , m (m ≤ K), which will simplify the nota-
tion in the following description. As a direct analogue to the
time-change representation (13) of the related piecewise deter-
ministic reaction process, we define the piecewise chemical
Langevin equation (PCLE)

Y(t) = Y(0) +
∑
k<K

Pk

(∫ t

0
α̃k(Y(s)) ds

)
ν̃k

+
∫ t

0
F(Y(s)) ds +

∫ t

0
Ξ(Y(s)) dW(s), (22)

with F(y) B
∑

k∈K α̃k(y)ν̃k as in (13), W(s) denoting an m-
dimensional Wiener process, and the diffusion matrix Ξ :
RL → RL,m is given by

(Ξ(y))lk B
√
α̃k(y)ν̃lk , l = 1, . . . , L, k = 1, . . . , m. (23)

In between the random jump times which are determined by
the Poisson processes Pk , the dynamics of Y(t) follow an Itô
diffusion process given by the last two summands of (22).
These two summands are just an integral version of a chemical
Langevin equation like (7).

The process defined by the piecewise chemical Langevin
equation (22) is a special type of hybrid diffusion. Just as in the
setting of piecewise deterministic dynamics, the first d compo-
nents of Y(t) referring to low copy number species define the
discrete variable I(t), while the remaining components define
the continuous variable C(t). By definition ofK, the first d rows

of Ξ(y) contain only zeros; the other rows form the diffusion
matrix ξ(i)(c) for y = (i, c), i.e., we have

Ξ(y) = Ξ((i, c)) =

(
0

ξ(i)(c)

)
.

The vector fields are again related by F(y) = F((i, c)) = (0,
f (i)(c)), and the jump rate function and the transition kernel
are given by Eqs. (18) and (19), respectively. In contrast to the
piecewise deterministic process, the dynamics defined by this
piecewise chemical Langevin equation keep some randomness
also for the species arising in high copy numbers.

By the noise term, both the CLE and the PCLE can
induce negative values in the population, which of course is an
unphysical prediction. This problem is addressed in Ref. 52.
However, we stress that only the dynamics of medium or high
abundant species are approximated by Langevin dynamics,
such that negative values become extremely unlikely.

C. Joint equation

We note that hybrid diffusions contain piecewise deter-
ministic Markov processes as a special case of the diffusion
intensities ξ(i) vanishing to zero. This means that—without fur-
ther work—we can also consider a hybrid model that mixes all
three approaches: the description by discrete jump processes
for low copy number species, chemical Langevin dynamics
containing stochastic fluctuation for medium copy number
species, and deterministic reaction kinetics for large copy
number species. We arrive at the joint equation (1) that was
announced in the Introduction. In direct analogy to the parti-
tion of reactions considered for the two-scale systems before,
the index set Khigh is given by those reactions whose effect
is restricted to high copy number species (i.e., νlk = 0 for l
referring to a low or medium copy number species), while
reactions in Kmedium may affect both medium and high copy
number species (but not low copy number species), and Klow

contains the remaining reactions which affect at least one low
copy number species.

The underlying idea is that the medium copy num-
ber species possess a volume scaling different from one of
the high copy number species. For example, given that the
high copy number species scale linear in V (as assumed in
Secs. III A and III B), the medium copy number species could
scale like

√
V . An adapted definition of the partially scaled

process Y (V )—in this specific case,

Y (V )
l (t) B




X (V )
l (t) , l = 1, . . . , d,
1√
V

X (V )
l (t), l = d + 1, . . . , d ′,

1
V X (V )

l (t) , l = d ′ + 1, . . . , L,

where S1, . . . , Sd are the low copy number species and
Sd+1, . . . , Sd′ are the medium copy number species for some
1 < d < d ′ < L, and likewise for the corresponding state-
change vectors ν(V )

k , it then again leads to suitable limit vectors
ν̃k , in this case, given by

ν̃k B




limV→∞ V · ν(V )
k , k ∈ Klow ,

limV→∞
√

V · ν(V )
k , k ∈ Kmedium,

limV→∞ ν(V )
k , k ∈ Khigh.
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By the multiple scaling, the limit state-change vectors ν̃k of
reactions k ∈ Kmedium have zero entries for high copy number
species (i.e., ν̃lk = 0 for l = d ′ + 1, . . . , L, k ∈ Kmedium), such
that the noise induced by the diffusion matrix Ξ is restricted
to the medium copy number species, see its definition (23).
The dynamics of the high copy number species are thus solely
defined by the third line of (1), which is an ODE describ-
ing deterministic dynamics, but with coefficients that possibly
depend not only on the discrete state of the low copy num-
ber species but also on the continuous stochastic flow of the
medium copy number species.

The explicit form of the limit state-change vectors ν̃k and
the corresponding propensity functions α̃k depends on the con-
crete scaling of the different classes of species, which in turn
depends on the application at hand. The joint equation (1) is
quite general in the sense that its concrete shape and the result-
ing dynamics depend on the chosen scaling. In particular, it
comprises the two hybrid models of the PDMP and PCLE as
special cases. All the hybrid models enable to reduce the com-
plexity of a given reaction system while keeping its stochas-
tic nature at a characteristic level. This is demonstrated in
Sec. IV by an application to a multilevel gene expression
system.

The asymptotic behavior of multiscale processes is inves-
tigated in Ref. 53, with several results on the weak convergence
of these processes toward PDMP’s. We note that in general the
multiscale approaches will be able to reproduce the distribu-
tion of a multiscale process also in cases where a uniform
rescaling and approximation by a RRE or CLE might fail to
capture the process’ characteristics (like in settings of multi-
stability, see Ref. 54). Error bounds are given in Refs. 18 and
19, stating that the hybrid model of a PDMP approximates the
marginal distributions of the low abundant species and the con-
ditional moments of the high abundant species up to an error
of order 1/V—a statement which directly can be transferred
to the joint equation (1) with three levels. The dependence
of the approximation quality on the system’s volume will
be illustrated and analysed in the context of the following
application.

IV. APPLICATION: AUTOREPRESSIVE
GENETIC SYSTEM

A set of meaningful examples for multiscale reactive
systems is given by gene regulatory networks.55 While the
template for transcription, the DNA, is present only in one
or two copies which can be active or inactive, the syn-
thesized messenger RNA (mRNA) and protein molecules
may reach high population levels. There exist many network
models for the interactions between the involved species and

the regulation of gene activity (see, e.g., Ref. 26 for a set of
more or less complex gene network models). In Refs. 13–15,
an autocatalytic network of gene expression is investigated
as an example for PDMP’s. In such a network, the proteins
regulate the transcription by a positive feedback law, i.e., the
proteins activate the gene by binding to its binding sites. It has
been shown that for such a system the proteins become extinct
in finite time; and the point mass in zero is the only stationary
distribution of the system.

However, many genes are controlled by negative self-
regulating transcription factors, especially in prokaryotes like,
e.g., E. coli organisms.56 For such autorepressive genetic sys-
tems, gene expression typically occurs in bursts. Bursts can
only appear when part of the system (at least the DNA) is
treated as a discrete random variable. In the limit of describ-
ing the whole system by ODE’s, the bursts naturally get lost
(because the activity state of DNA is averaged). Bursting of
gene expression can arise at the transcriptional or the transla-
tional level,55 or the bursts are modeled as individual stochastic
events by which a certain number of products are instanta-
neously introduced to the system.57 We will here describe
the transcriptional bursting where the gene switches between
activity and inactivity.

A. Model

We consider the gene expression system depicted in Fig. 2.
If the gene (DNA) is active, messenger RNA (mRNA) is tran-
scribed at rate γ1 and translated into proteins P at rate γ2. Each
protein can interrupt this stepwise production by repressing the
gene and causing its inactivity at rate γ3. The gene is activated
again at a rate γ4. Both within time periods of gene activity
and within time periods of gene inactivity, mRNA is degraded
at rate γ5 and proteins are degraded at rate γ6. All individ-
ual reactions are displayed in the reactions scheme (24) with
DNA0 denoting the repressed (inactive) gene,

DNA
γ1
−−→ DNA + mRNA,

mRNA
γ2
−−→ mRNA + P,

DNA + P
γ3
−−→ DNA0,

DNA0
γ4
−−→ DNA + P,

mRNA
γ5
−−→ ∅,

P
γ6
−−→ ∅.

(24)

For the CME, we denote the state of the gene expression
system at time t by X(t) = (D(t), M(t), P(t)) ∈ {0, 1} × N2

0

FIG. 2. Gene expression with negative self-regulation:
By transcription, the active gene (DNA) produces mes-
senger RNA (mRNA) which is translated into proteins.
Both mRNA and proteins degrade with time. The proteins
repress the production by deactivating the gene. Repress-
ing is reversible: The gene is activated again at a constant
rate.
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with D(t) ∈ {0, 1} referring to the number of active DNA and
M(t) ∈ N0 and P(t) ∈ N0 giving the number of mRNA and
proteins, respectively. The net change vectors of the reactions
listed in (24) are given by

ν1 =
*.
,

0
1
0

+/
-

, ν2 =
*.
,

0
0
1

+/
-

, ν3 =
*.
,

−1
0
−1

+/
-

,

ν4 =
*.
,

1
0
1

+/
-

, ν5 =
*.
,

0
−1
0

+/
-

, ν6 =
*.
,

0
0
−1

+/
-

,

(25)

and the related propensity functions read as

α1(x) = Vγ1x1, α2(x) = γ2x2, α3(x) = γ3
V x1x3,

α4(x) = γ4(1 − x1), α5(x) = γ5x2, α6(x) = γ6x3.
(26)

In this case, the population size of both mRNA and proteins
scales with the volume V. In the hybrid models, DNA is there-
fore treated as the stochastic, discrete variable, and mRNA and
proteins are treated as continuous variables. The state space of
the PDMP is given by

S = {(i, c) : i ∈ {0, 1}, c ∈ R2}.

For each t ≥ 0, the state of the PDMP is denoted by
(I(t), C(t)) ∈ S with I(t) ∈ {0, 1} defining the state of the
DNA [I(t) = 1 referring to active DNA and I(t) = 0 referring
to repressed DNA] and C(t) = (C1(t), C2(t)) ∈ R2 defining
the concentration of mRNA and proteins. The index set K of
reactions that do not affect the low copy number “species”
DNA is given by K = {1, 2, 5, 6}. After the suitable partial
scaling of the state-change vectors, given by ν(V )

1 =
(
0, 1

V , 0
)
,

ν(V )
2 =

(
0, 0, 1

V

)
, ν(V )

3 =
(
−1, 0,− 1

V

)
, ν(V )

4 =
(
1, 0, 1

V

)
, ν(V )

5

=
(
0,− 1

V , 0
)
, ν(V )

6 =
(
0, 0,− 1

V

)
, the limit vectors defined by

(11) and (12) read as

ν1 =
*.
,

0
1
0

+/
-

, ν2 =
*.
,

0
0
1

+/
-

, ν3 =
*.
,

−1
0
0

+/
-

,

ν4 =
*.
,

1
0
0

+/
-

, ν5 =
*.
,

0
−1
0

+/
-

, ν6 =
*.
,

0
0
−1

+/
-

.

The limit propensities depending on the state y = (i, (c1, c2))
are given by

α̃1(y) = γ1i, α̃2(y) = γ2c1, α̃3(y) = γ3ic2,

α̃4(y) = γ4(1 − i), α̃5(y) = γ5c1, α̃6(y) = γ6c2.

By definition (14), we obtain

F(y) = γ1i *.
,

0
1
0

+/
-

+ γ2c1
*.
,

0
0
1

+/
-

+ γ5c1
*.
,

0
−1
0

+/
-

+ γ6c2
*.
,

0
0
−1

+/
-

,

such that depending on the state I(t) = i ∈ {0, 1} of the DNA,
the deterministic flow for the mRNA and protein concentration
is given by the vector field

f (i) : R2 → R2, f (i)(c) =

(
γ1i
0

)
+

(
−γ5 0
γ2 −γ6

)
c. (27)

The rate function for jumps of the DNA takes the form

λ(i, c) = γ3ic2 + γ4(1 − i),

and the transition kernel is deterministic in the sense of
Q((i, c), ((1 − i), c)) = 1 for i ∈ {0, 1}, c ∈ R2. This means
that for each time t, the stochastic repressing reaction takes
place at rate γ3I(t)C2(t) while activation takes place at rate
γ4(1 − I(t)), giving

d
dt
P(I(t) = 1) = γ4P(I(t) = 0) − γ3C2(t)P(I(t) = 1)

= −
d
dt
P(I(t) = 0).

With m= |K| = 4, the diffusion function of the corre-
sponding piecewise chemical Langevin dynamics turns out to
be

ξ(i)(c) =

(√
γ1i 0 −

√
γ5c1 0

0
√
γ2c1 0 −

√
γ6c2

)
,

meaning independent noise in the flows of mRNA and proteins.
In this special case, the resulting flow equation (20) for the
continuous component C(t) can be written as a coupled set of
stochastic differential equations

dC1(t) = (γ1I(t) − γ5C1(t)) dt +
√
γ1I(t) + γ5C1(t) dW1(t)

for mRNA, and

dC2(t) = (γ2C1(t) − γ6C2(t)) dt +
√
γ2C1(t) + γ6C2(t) dW2(t)

(28)

for proteins, with independent Wiener processes W1(t) and
W2(t). Here, we used the fact that given two indepen-
dent Wiener processes W1(t) and W2(t), the weighted sum
aW1(t)+bW2(t)
√

a2+b2
is another Wiener process.

B. Simulation results and model comparison

We compare the dynamics defined by the three mod-
els (CME, PDMP, and PCLE) for the self-regulated gene
expression system with rates

γ1 = 10−2, γ2 = 0.5, γ3 = 0.1,
γ4 = 10−2, γ5 = 5 · 10−3, γ6 = 0.2

(29)

and a large volume V = 100. These are artificial values without
any claim to capture reality. Anyway, the parameter values in
gene expression systems vary a lot and depend on the organism
under consideration. The rates proposed here induce high pop-
ulation levels for both mRNA and proteins and comparatively
long time periods of active DNA and are thereby well suited
to demonstrate the relation between the three models under
consideration—which is the main purpose of this section.

Sample paths of the CME are generated computationally
by the stochastic simulation algorithm (see Sec. II B). For
the PCLE and PDMP, the Euler-Maruyama method and Euler
method are used, combined with a check-up for a switch in
DNA in each iteration step. Trajectories of all three models are
given in Fig. 3. One can observe comparatively long periods of
time with active DNA (marked by gray areas) where both pop-
ulations show a positive trend, while a repressed DNA (white
areas) induces negative trends. The Gillespie simulation of
the CME shows fluctuations around the trends which are well
reproduced by the PCLE. The high population levels of mRNA
and proteins induce long run times for the simulations of the
CME; the approximations by the PDMP or PCLE significantly
reduce the computational effort.



114115-11 S. Winkelmann and C. Schütte J. Chem. Phys. 147, 114115 (2017)

FIG. 3. Independent simulations of the
CME, the PCLE, and the PDMP for
parameter set (29) and initial state given
by active DNA (D(0) = I(0) = 1) and
absence of mRNA and proteins (M(0)
= C1(0) = 0, P(0) = C2(0) = 0). The gray
areas indicate the time periods of active
DNA (D(t) = I(t) = 1). In the interest
of comparability with the CME, we plot
the abundance V · C1(t) and V · C2(t)
for the PCLE and PDMP (V = 100). (a)
CME, (b) PCLE, and (c) PDMP.

In order to reveal the differences in the approximation
properties of the PDMP and PCLE we consider not only first
and second order moments but also the distribution of the
molecular populations and their local maxima—referring to
protein bursts—which are typical for gene expression systems
with negative self-regulation. What concretely do we consider
as a burst? In the stochastic systems (CME and PCLE) “bursts”
(large numbers of molecules) can appear by chance at any time.
It is the piecewise deterministic model which clarifies what
kind of bursts we are interested in: the maxima in the pro-
tein population after each individual repressing reaction, see
Fig. 3(c). This motivates to define the burst size as the max-
imum number of protein molecules within a time interval of
inactive DNA. Note that by this definition also small peaks
in the molecular population are counted, namely, if repressing

takes place although the number of proteins is comparatively
small (which can occur in all three models).

While the average long-term dynamics of all three mod-
els agree very well (see Table I), the size of the protein
bursts is much better reproduced by the PCLE than by the
PDMP (see Table II) which is due to the lack of noise in the
PDMP.

Next, we compare the time-dependent evolution of the
system starting with an initial state given by active DNA (D(0)
= 1) and absence of mRNA and proteins (M(0) = 0, P(0) = 0).
Based on Monte Carlo simulations (104 runs for each model),
we draw histograms of the protein population at different
points in time (Fig. 4) and calculate the time-dependent empir-
ical averages of the three populations as an approximation of
the first-order moments (Fig. 5).

TABLE I. Empirical averages (± sample standard deviation) over long-term simulation (T = 106) for the gene
expression system with parameter set (29). Lines 1-3: long-term averages of the DNA-process D(t) (or I(t)), the
mRNA-abundance M(t) (or V ·C1(t)), and the protein-abundance P(t) (or V ·C2(t)), respectively. Lines 4-5: mean
length of time-intervals with active DNA (D(t) = 1) and time-intervals with inactive/repressed DNA (D(t) = 0).
Size of the time step for the PCLE and PDMP: 0.1.

CME PCLE PDMP

1 Mean DNA 0.34 (±0.47) 0.34 (±0.47) 0.34 (±0.47)
2 Mean mRNA 67.60 (±30.76) 67.51 (±31.20) 67.52 (±29.83)
3 Mean protein 169.03 (±77.64) 168.71 (±78.74) 168.80 (±74.41)
4 Mean active time 52.19 (±43.15) 51.37 (±43.16) 51.30 (±42.77)
5 Mean inactive time 101.46 (±101.49) 101.05 (±101.78) 100.63 (±100.01)
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TABLE II. Protein bursts: results of long-term simulation (T = 106) for the
gene expression system with parameter set (29).

CME PCLE PDMP

Mean burst size 250.43 250.08 223.13
Maximum burst size 500 500.55 420.84
Minimum burst size 39 32.16 20.25

While the average dynamics agree very well for all the
three approaches, the histogram of the PDMP reveals a clear
deviation from the histograms of the other two approaches,
see the spike at ∼190 in Fig. 4(a). The reason for this devi-
ation is the following. At time t = 100, there are about 35%
of trajectories with “non-stop” gene activity (i.e., the DNA
has never been repressed within the time interval [0, 100]).
For the PDMP—due to its determinism within this period of
time—all these trajectories are completely consistent on the
time interval [0, 100]. Especially, the populations of mRNA
and proteins agree with a value of ∼190 proteins at time
t = 100. For the CME and the PCLE, the proportion of non-
stop activity at time t = 100 is the same, but the number of
molecules varies for these non-stop activity trajectories due
to randomness. The stochastic noise is able to create protein
abundance up to 250 at time t = 100 which is simply impossible
in the setting of the PDMP. As time passes, the deviation of the
PDMP vanishes because the DNA-process D(t) or I(t) reaches
equilibrium.

As for computational effort, the two hybrid methods
outperform the Gillespie simulations by several orders of

magnitude in the case of large volume systems. Simulations of
the PCLE take longer than simulations of the PDMP because
random noise terms have to be drawn in each iteration step.
In return, the PCLE-simulations reproduce the variance in the
dynamics. The three-level approach given by the joint equa-
tion (1) is the optimal combination of both hybrid approaches
for situations of multiple levels. For illustration, consider the
same genetic network as before with the propensity func-
tions given in (26), but replace the propensity for transition
by α1(x) =

√
Vγ1x1 and the propensity for translation by

α2(x) =
√

Vγ2x2. This induces a mRNA-abundance of order√
V and a protein abundance of order V, see Fig. 6(a). The

three-scale approach couples stochastic jumps of the DNA-
state to Langevin dynamics of the medium abundant mRNA-
population and deterministic dynamics of high abundant pro-
teins. A simulation of the corresponding joint equation is given
in Fig. 6(b). The dynamics could also be approximated by a
PCLE or PDMP, but the joint three-level equation combines
both of their advantages: The runtime is reduced in compari-
son to PCLE-simulations (because noise is only calculated for
mRNA), and in contrast to the PDMP, there is stochastic noise
in the mRNA-process which—by translation—also induces
some local variance in the protein dynamics.

C. Small volume failure

The preceding investigations demonstrate that for high
levels of mRNA and protein populations, the hybrid models
deliver good approximations of the CME in terms of long-term
averages and that the PCLE is also able to properly reproduce
bursts and distributions of the number of molecules. In the case

FIG. 4. Empirical distribution of pro-
teins at times t ∈ {100, 200, 500} taken
from 104 Monte Carlo simulations of
each model, all with initial states D(0)
= 1, M(0) = 0, P(0) = 0 (or I(0) = 1,
C1(0) = 0, C2(0) = 0, respectively). (a)
t = 100, (b) t = 200, and (c) t = 500.
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FIG. 5. Average dynamics for large
volume V = 100. (a) Empirical mean
of the DNA-state D(t) or I(t), respec-
tively depending on time. This empirical
mean also approximates the probability
P(D(t) = 1) or P(I(t) = 1), respectively,
which defines the marginal distribution
of the DNA-state. [(b) and (c)] Empir-
ical means of the number of mRNA
and proteins depending on time. Results
from Monte Carlo simulations with 104

runs for each model (CME, PCLE, and
PDMP) given the initial states D(0) = 1,
M(0) = 0, P(0) = 0 (or I(0) = 1, C1(0)
= 0, C2(0) = 0, respectively). (a) DNA,
(b) mRNA, and (c) proteins.

of parameter values which induce small population levels for
mRNA and proteins, however, the approximation methods
may fail. This is shown in Fig. 7 where the overall empir-
ical averages of the populations disagree in the case of V
= 1 [with propensity functions given by (26) and rate con-
stants given by (29)]. Both the PDMP and PCLE show a
decreased DNA-activity [see Fig. 7(a)] combined with lower
levels of mRNA and protein abundance [see Figs. 7(b) and
7(c)]. On the other hand, the conditional expectations of the
mRNA and protein population given a fixed value of the DNA-
state are still consistent, see Fig. 8 where the evolution of
the mean number of mRNA-molecules and proteins condi-
tioned on D(t) = 1 (or I(t) = 1) ∀t is shown. This consistency
directly results from the fact that the conditional dynamics
only contain first-order reactions. The only second-order reac-
tion of the system (repressing) induces the switching between

the conditions and is ignored for the purpose of constant
DNA-activity. Given the fixed DNA-state, the approxima-
tion of the mRNA and protein dynamics complies with a
one-level approximation by a CLE or RRE (see Sec. II C)
such that the corresponding approximation properties apply
and first-order moments are perfectly reproduced for any
volume.

Consequently, the divergence of the overall averages
results from the fact that the marginal distributions of the
DNA-state do not coincide, see Fig. 7(a). This deviation of the
marginal distributions is caused by the second-order repress-
ing reaction DNA + P → DNA0. The following short analysis
clarifies this aspect.

Consider at first the PDMP with initial state I(0) = 1 (active
DNA) and C(0) = (C1(0), C2(0)) = c0 ∈ R2

+. Let TPDMP

denote the random time of first repression, i.e.,

FIG. 6. Independent simulations of the
CME and the joint equation (1)
for scaled propensity functions α1(x)
=
√

Vγ1x1 and α2(x) =
√

Vγ2x2 and
V = 100. Parameter values: γ1 = 1,
γ2 = 1, γ3 = 10−2, γ4 = 0.1, γ5 = 0.1,
γ6 = 0.5. The initial state given by active
DNA and absence of mRNA and pro-
teins. The gray areas indicate the time
periods of active DNA. (a) CME and (b)
joint equation.
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FIG. 7. Average dynamics for small
volume V = 1. (a) Empirical mean
of the DNA-state D(t) or I(t), respec-
tively, depending on time. This empiri-
cal mean also approximates the proba-
bility P(D(t) = 1) or P(I(t) = 1), res-
pectively, which defines the marginal
distribution of the DNA-state. [(b) and
(c)] Empirical means of the number
of mRNA and proteins depending on
time. Results from Monte Carlo simu-
lations with 105 runs for each model
(CME, PCLE, and PDMP) given the ini-
tial states D(0) = 1, M(0) = 0, P(0) = 0
(or I(0) = 1, C1(0) = 0, C2(0) = 0, respec-
tively). (a) DNA, (b) mRNA, and (c)
proteins.

TPDMP B inf {t > 0|I(t) = 0}, (30)

which will be called repressing time in the following. The
repressing time TPDMP is exponentially distributed with time
dependent rates λPDMP

t ≥ 0 given by λPDMP
t B γ3c2(t) where

c2(t) is the deterministic flow of the protein concentration dur-
ing the active period of time [0, TPDMP] given the initial state
c0. More precisely, it holds that

P
(
TPDMP ≤ t

)
= 1 − e−Λ

PDMP
t ,

with ΛPDMP
t B ∫

t
0 λ

PDMP
s ds = ∫

t
0 γ3c2(s) ds. As for the PCLE,

the rates for repression are not only time dependent but also

random, given by λPCLE
t B γ3C2(t) with C2(t) denoting the

random flow of proteins defined in (28) given some initial state
I(0) = 1, C(0) = c0 ∈ R2

+. The corresponding distribution of
the first repressing time TPCLE [again defined by (30)] is given
by

P
(
TPCLE ≤ t

)
= 1 − E

(
e−Λ

PCLE
t

)
,

with ΛPCLE
t B ∫

t
0 λ

PCLE
s ds = ∫

t
0 γ3C2(s) ds. Equivalently, for

the CME, the repressing time TCME B inf {t > 0|D(t) = 0}
has the distribution

P
(
TCME ≤ t

)
= 1 − E

(
e−Λ

CME
t

)
,

FIG. 8. Conditional average dynamics
for small volume V = 1. [(a) and (b)]
Empirical mean of mRNA and pro-
teins depending on time conditioned on
D(t) = 1 or I(t) = 1 for all t, respec-
tively. Results from Monte Carlo sim-
ulations with 105 runs for each model
(CME, PCLE, and PDMP) given the
initial states D(0) = 1, M(0) = 0, P(0)
= 0 (or I(0) = 1, C1(0) = 0, C2(0)
= 0, respectively). (a) mRNA and (b)
proteins.
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with ΛCME
t B ∫

t
0 λ

CME
s ds and λCME

t B
γ3
V P(t) where P(t) ∈

N0 gives the number of proteins at time t in the jump process
defined by the CME, again with initially active DNA, i.e.,
D(0) = 1.

Now, although the first-order moments of the number of
proteins agree for all three models, i.e., it holds that

c2(t) = E(C2(t)) = E
(

P(t)
V

)
,

for all t ∈ [0, T ], the distributions of the repressing time diverge
due to the general inequality

e−Λ
PDMP
t , E

(
e−Λ

PCLE
t

)
, E

(
e−Λ

CME
t

)
.

The fluctuations in the protein abundance have a non-
linear impact on the repression times such that their zero
averages are not carried over. Note that in the small vol-
ume setting, the PCLE is even likely to produce nega-
tive molecule numbers—which is not only inappropriate for
interpretations of the underlying real-world application but
also has a disproportional impact on the repressing propen-
sities.

In summary, the different quality of fluctuations in the
number of proteins during DNA-activity (no fluctuations for
the PDMP, white noise for the PCLE, and Poisson-like vari-
ance for the CME) causes the deviations in the repress-
ing times and with it the deviations of the marginal dis-
tributions of the DNA-state. Although, even in this small
volume setting, the conditional dynamics within time peri-
ods of constant DNA agree for all three approaches with
respect to the first-order moments, the switching times
between these periods diverge—and with it the overall pop-
ulation averages. However, for large population levels of
proteins, fluctuations become proportionally small and their
impact vanishes—and with it the deviations in the repressing
times.

D. Extension to eukaryotes

When considering the process of gene expression modeled
in Fig. 2 within a eukaryotic cell containing a nucleus, the well-
mixed assumption on the level of the overall cell is naturally
broken. At least a minimal spatial differentiation is necessary
because the reduced permeability of the nuclear membrane
restricts the free flow through the cell and decomposes it into
two metastable compartments: the nucleus and the cytoplasm.
Moreover, some of the involved reactions [displayed in (24)]
are restricted to either one of the compartments: jhile tran-
scription takes place in the nucleus, translation typically arises
within the cytoplasm. The time it takes first for the mRNA to
leave the nucleus and second for the produced proteins to enter
the nucleus induces a delayed repressing of the DNA. The pro-
tein population still shows bursts, but these bursts occur with
time delay.

In order to demonstrate that the hybrid methods of Sec. III
can directly be applied to the spatial extensions of the CME
presented in Sec. II D, we consider the process of gene expres-
sion in a eukaryotic cell and approximate parts of the system
by chemical Langevin dynamics or RRE’s. In contrast to
Sec. IV B where we intended to uncover the differences
between the two approximation methods, we now choose more
realistic parameter values based on the data given in Refs. 56
and 58. Especially we take into account that the number of
proteins typically exceeds the number of mRNA by several
orders of magnitude.

Based on the split-up into two compartments, the state
of the ST-CME is given by the matrix X(t) ∈ N3,2

0 with the
entry X lr(t) denoting the number of molecules of species l
(l = 1: DNA, l = 2: mRNA, l = 3: proteins) in compartment
r (r = 1: nucleus, r = 2: cytoplasm). Although it holds that
X11(t) ∈ {0, 1} and X12(t) = 0 for all t (because there is at most
one active DNA which is located in the nucleus), we use this
larger state space in order to stick to the general notation of
Sec. II D. The net change vectors of the reactions are as in (25),
and the compartment-dependent reaction propensities are

αr
1(x) =

{
γ1x11, r = 1,
0 , r = 2;

αr
2(x) =

{
0 , r = 1,
γ2x22, r = 2;

αr
3(x) =

{ γ3
V1

x11x21, r = 1,
0 , r = 2;

αr
4(x) =

{
γ4(1 − x11), r = 1,
0 , r = 2;

αr
5(x) =

{
γ5x21, r = 1,
γ5x22, r = 2;

αr
6(x) =

{
γ6x31, r = 1,
γ6x32, r = 2,

where V1 is the volume of the nucleus set to V1 = 1 and the
rate constants are

γ1 = 0.1, γ2 = 0.1, γ3 = 10−2,
γ4 = 10−2, γ5 = 5 · 10−3, γ6 = 2 · 10−4.

(31)

As for the transition rates, we assume that nuclear mRNA-
molecules enter the cytoplasm at rate λ2

12 = 10−3, while their
return to the nucleus is precluded (λ2

21 = 0). Vice versa, pro-
teins switch from cytoplasm to nucleus at rate λ3

21 = 10−3 but

not back (λ3
12 = 0). For DNA, we naturally have λ1

12 = λ1
21

= 0. We assume these transition rates to be independent of the
volume.

Simulations of the resulting ST-CME reveal that for the
chosen rates, the number of mRNA-molecules in both com-
partments is much smaller than the number of proteins. This
suggests keeping the discrete, stochastic nature for mRNA
while approximating only the proteins by continuous dynam-
ics. The state space of the PDMP and the hybrid diffusion is
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FIG. 9. Independent simulations of the
ST-CME, the spatial PCLE, and the spa-
tial PDMP for parameter set given in
(31) and initial state given by active
DNA and absence of mRNA and pro-
teins. (a) ST-CME, (b) PCLE, and (c)
PDMP.

given by
S = {(i, c) : i ∈ N2,2

0 , c ∈ R2},

with i11 ∈ {0, 1} denoting the state of DNA, i21 ∈ N0 and i22

∈ N0 denoting the number of mRNA-molecules in nucleus
and cytoplasm, respectively, and c ∈ R2 describing the protein
concentration in nucleus and cytoplasm. (It is i12 = 0 as this
refers to DNA in the cytoplasm.)

The resulting index set of reactions keeping the discrete
species unchanged then reduces to K = {2, 6}. By interpret-
ing again the jumps as first-order reactions, also the jumps of
proteins belong to this group of reactions.

This time, the deterministic flow of the two-component
protein concentration c ∈ R2 depends on the number i22 ∈ N0

of mRNA-molecules in the cytoplasm and is given by the
vector field

f (i) : R2 → R2, f (i)(c) =

(
0

γ2i22

)
+

(
−γ6 λ3

21
0 −γ6 − λ

3
21

)
c.

The jump rate function is given by

λ(i, c) = γ1i11 + γ3i11c1 + γ4(1 − i11) + γ5i21 + γ5i22 + λ2
12i21

and the transition kernel is determined by the respective
fractions.

Individual simulations of the jump process defined by
the ST-CME and the approximative PCLE and PDMP with
spatial split-up are given in Fig. 9. In contrast to the dynamics

TABLE III. Empirical averages (± sample standard deviation) over long-term simulations (T = 107) for the gene
expression system in eukaryotes with parameter set given in (31). Lines 1-5: long-term averages of the DNA-process
X11(t) (or I11(t)), the mRNA-abundance X2r (t) (or I2r (t)) in both compartments, and the protein-abundance X3r (t)
(or V ·Cr (t)) in both compartments, respectively. Lines 6-7: mean length of time-intervals with active DNA (X11(t)
= 1 or I11(t) = 1, respectively) and time-intervals with inactive/repressed DNA (X11(t) = 0 or I11(t) = 0, respectively).
Step size for the PCLE and PDMP: 0.1.

ST-CME Spatial PCLE Spatial PDMP

1 Mean DNA 0.03 (±0.17) 0.03 (±0.17) 0.03 (±0.17)
2 Mean mRNA (nucleus) 0.49 (±0.84) 0.49 (±0.84) 0.49 (±0.84)
3 Mean mRNA (cytoplasm) 0.10 (±0.32) 0.10 (±0.32) 0.10 (±0.32)
4 Mean proteins (nucleus) 40.21 (±19.31) 40.30 (±19.34) 40.89 (±19.07)
5 Mean proteins (cytoplasm) 8.04 (±11.91) 8.09 (±11.83) 8.15 (±11.68)
6 Mean active time 2.99 (±3.69) 3.14 (±3.98) 3.05 (±3.76)
7 Mean inactive time 100.05 (±100.16) 99.88 (±100.15) 100.55 (±100.22)
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considered in Sec. IV B, the time periods of active DNA are
very short, such that an illustration by gray background areas
is inappropriate. Instead, the trends of the protein populations
within both compartments are determined by the actual ran-
dom and discrete number of mRNA-molecules. A comparison
of the statistics in Table III shows again a very good agreement
of all three modeling approaches with respect to long-term
averages.

V. CONCLUSION

The CME is of crucial importance for accurately modeling
discrete stochastic reaction kinetics. However, with increasing
dimension, its complexity renders existing solution methods
infeasible. This motivates the construction of reduced sys-
tems for approximating the dynamics. We presented several
hybrid approaches for modeling multiscale reaction dynamics
based on rescaling methods. We considered hybrid diffusions
as an extension of piecewise deterministic Markov processes
and formulated both models within the specific framework of
two-scale reaction dynamics. Moreover, we showed how the-
ses approaches can be combined to a generalized joint model
for systems with more than two population scales. In order
to complete the model overview, we also mentioned spatial
extensions of the CME which are suitable for systems that do
not fulfil the central well-mixed condition. The main insight
is that each of the approximation methods can as well be
transferred to this more complex setting of spatiotemporal
dynamics.

We applied some of the hybrid approaches to a multiscale
genetic network, considering both a well-mixed system within
a prokaryotic cell and a two-compartment system within a
eukaryotic cell described by the spatiotemporal CME. Due to a
negative feedback law, the produced proteins repress their own
transcription by deactivating the DNA, such that the overall
system switches between time periods of active DNA with pos-
itive trends for the gene products and time periods of inactive
DNA with negative trends for the gene products. In contrast
to uniform approximation methods, the hybrid approaches are
able to maintain this characteristic behavior. For the case of
large copy numbers of the products, a comparison of simula-
tion statistics revealed good approximation properties of the
hybrid models in terms of first-order moments. By the addi-
tional noise of the piecewise chemical Langevin dynamics,
also protein bursts and empirical distributions have accurately
been reproduced. The joint equation (1) combines the two-
scale hybrid models to an ideal framework for three-level sys-
tems. We showed that in the small volume setting, the hybrid
models under consideration fail by distorting the repression
event: although the conditional dynamics within the time peri-
ods of active or inactive DNA are still congruent with respect
to averages, the switching times between them follow different
distributions.

This paper gives a coherent overview of several modeling
approaches for stochastic reaction kinetics and reveals their
interrelation as well as possible recombinations. We only con-
sidered time-homogeneous systems where the classification of
species according to their copy number levels is fixed for all
times. In many applications, however, also switches between

different levels—induced by the occurrence of reactions—are
plausible. For the future, an investigation of flexible, time-
adaptive model combinations, as proposed, e.g., in Ref. 59,
will be of special interest.
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