
A scalable approach to the computation of invariant
measures for high-dimensional Markovian systems

Susanne Gerber1,2†, Simon Olsson3,†, Frank Noé3, Illia Horenko4∗
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Abstract
The Markovian invariant measure is a central concept in many disciplines. Conventional nu-

merical techniques for data-driven computation of invariant measures rely on estimation and fur-
ther numerical processing of a transition matrix. Here we show how the quality of data-driven
estimation of a transition matrix crucially depends on the validity of the statistical independence
assumption for transition probabilities. Moreover, the cost of the invariant measure computa-
tion in general scales cubically with the dimension - and is usually unfeasible for realistic high-
dimensional systems. We introduce a method relaxing the independence assumption of transi-
tion probabilities that scales quadratically in situations with latent variables. Applications of the
method are illustrated on the Lorenz-63 system and for the molecular dynamics (MD) simula-
tion data of the α-synuclein protein. We demonstrate how the conventional methodologies do
not provide good estimates of the invariant measure based upon the available α-synuclein MD
data. Applying the introduced approach to these MD data we detect two robust meta-stable states
of α-synuclein and a linear transition between them, involving transient formation of secondary
structure, qualitatively consistent with previous purely experimental reports.

Gaining knowledge from data is critically dependent upon our ability to prune-out biases originat-

ing from the data acquisition and data analysis procedures, as well as distinguishing these biases from

the inherent properties of the underlying system. For example, computation of simple data ensemble

averages - such as the empirical expectation or the empirical probability density function (p.d.f.) -

can provide results that depend very strongly on the data sampling procedure and measurement set-

tings. Such results would not allow a direct assessment of the intrinsic invariant characteristics of the
1



underlying dynamical system that produced these measurements. In many areas of research, invari-

ant Markov measure (or an invariant Markov distribution) is recognised as the key object allowing

for a robust analysis of the data by providing a canonical view into the dynamics of underlying sys-

tems [37, 6, 8, 17, 4]. For example, in network science and computational sociology, the Markovian

invariant measure gives a ranking of the nodes in underlying graphs, as in the Google PageRank al-

gorithm, for example [18]. In biophysical molecular dynamics (MD) the invariant measure provides

equilibrium probabilities for different molecular conformations [34, 32, 35, 1] and is used in com-

putations of various dynamical characteristics, including the most probable transition pathways [22]

and in comparison with experimental data [25, 28]. In fluid mechanics and in climate research the

Markovian invariant measure enables the identification of the coherent flow structures [11] and aids

understanding the change of an equilibrium system’s response to the external perturbations [20, 14].

Conventional computational methods used for the practical inference of the invariant measures

rely on Ulam’s approach [40]. The first step of this approach involves the creation of a finite-

dimensional, discretised representation of the system’s phase space with a fixed finite number n of

boxes/compartments {x(1), x(2), . . . , x(n)}. The second step involves the computation of the dis-

cretised time series of measurement data in this representation: {X(0), X(τ), . . . , X(s), . . . , X(S)},

where τ is a time discretisation step. For every time s going from 0 to S, every X(s) takes one and

only one of the n discrete values {x(1), x(2), . . . , x(n)}. This time-series is assumed to be Marko-

vian: in order to obtain X(s + τ) for every s it is necessary and sufficient to know only the value of

X(s). This time-series is used to compute the transfer operator - a square (n × n)-matrix of condi-

tional probabilities Λ = {Λij} = P[X(s + τ) = x(i)|X(s) = x(j)] for all s. Defining the column

vector of probabilities as π(s) = {P[X(s) = x(1)], . . . , P[X(s) = x(n)]} and making use of the law

of total probability [12, 1], one can write an exact equation describing the time-evolution of π(s) as:

π(s+ τ) = Λπ(s). (1)

This is referred to as the master equation of a Markov process and its fixed point µ

µ = lim
N→∞

ΛNπ(0), (2)
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is called an invariant measure (or invariant distribution) of the Markov process. In the third and final

step of Ulam’s approach, the invariant measure is calculated as the eigenvector correspondent to the

eigenvalue λ = 1 of the transfer operator Λ - i.e., as the non-negative solution of the system of linear

equations µ = Λµ and
∑n

i=1 µi = 1.

In practical applications the transfer operator Λ is either assumed to be explicitly known and given

(e.g., as in the case of the PageRank algorithm [18]) - or it is estimated from the discretised data, for

example by maximising the observational log-likelihood function

L(Λ) =
n∑
i,j

Nij log Λij → max
Λij

, (3)

where Nij =
∑S−τ

s=0 χ(X(s + τ) = xi)χ(X(s) = xj) (with χ being an indicator function) contains

the numbers of observed transitions between x(j) and x(i) in the data, after a step τ . Problem (3) can

be solved analytically, resulting in the widely used empirical frequency estimator:

Λij =
Nij∑n
j Nij

. (4)

Validity of the log-likelihood function formulation (3) - as well as the validity of the resulting

maximum log-likelihood empirical frequency estimator (4) - rest heavily on the validity of the im-

plicit assumption about the independence of transitions between different states. This independence

assumption allows us to write down the likelihood as a product of probabilities and the respective

log-likelihood in (3) as a sum of log-likelihoods, resulting in a very simple analytical solution (4).

However, this assumption can be easily violated in realistic systems when different transition prob-

abilities jointly depend on some latent variables or processes. In such a case applying the empirical

frequency estimator (4) when computing the invariant measure µ would introduce a bias, deforming

the results and interpretations. This problem is exacerbated by the absence of practical computational

tools that can assess the validity of this independence assumption.

The second bottleneck of the empirical frequency estimation (4) for Λ is induced by the intrinsic

uncertainty of this estimate, growing polynomially in n for a fixed statistics size S/τ [1, 13]. Practical

manifestation of this bottleneck is the so-called overfitting phenomenon: i.e., when S/τ is small and
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n(n−1)/2 is large, then there is not enough data to have a reliable statistics of transitionsNij , meaning

that the empirical frequency estimator (4) will fit the training data well, but generalizes poorly and

fails to reproduce validation data.

The third main bottleneck of the popular invariant measure computation procedures is the sheer

numerical cost of computing the µ from a given transition operator Λ. If Λ does not exhibit any

particular structure (i.e., if it is not sparse), the overall numerical cost of the invariant measure com-

putation scales as O(n3), thereby confining its practical applicability to relatively small systems (i.e.,

n cannot routinely exceed 10’000 or 20’000 when working on commodity hardware) [32, 35, 1]. For

the applications in network science and computational social sciences some successful examples for

n being of the order 109−1010 have been shown [18]. However, in these particular cases a very strong

sparsity of Λ was used, a sparsity that is usually not given a priori for many realistic applications in

MD and in the geosciences [13].

Summarising, in the case of the data-driven analysis the three main bottlenecks of standard pro-

cedures based on Ulam’s approach are: (i) biasing independence assumptions involved in a practical

computation of the transfer operator Λ; (ii) overfitting phenomenon; and (iii) the numerical cost scal-

ing for computing µ from unstructured Λ with a large n. In the following we will present a simple

idea allowing to construct a joint algorithmic remedy for these bottlenecks.

1 Latent Markovian inference of the invariant measure

Let {X̂(0), X̂(τ), . . . , X̂(S)} be a latent (i.e., unobserved) categorical process that is defined on a

statistically disjoint set of (yet unknown) categories {x̂(1), x̂(2), . . . , x̂(K)} (with K < n). Deploy-

ing the law of total probability, we can establish the Bayesian relation between X̂(s + τ) and X(s),

and between X(s) and X̂(s). The former relation is achieved for all s through the conditional proba-

bilities Γ̂kj = P
[
X̂(s+ τ) = x̂(k)|X(s) = x(j)

]
and the latter through the conditional probabilities

λ̂ik = P
[
X(s) = x(i)|X̂(s) = x̂(k)

]
. Subsequently, it is straightforward to validate that an optimal
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probability-preserving reduced approximation of the full relation model (1) takes a form:

π(s+ τ) = λ̂Γ̂π(s), (5)

where {πi(s)} = P[X(s) = x(i)], i = 1, . . . , n. Γ̂ is a rectangular (K × n) column-stochastic

matrix (i.e., sums of the elements in each column equal to one and all of the matrix elements are non-

negative) whereas λ̂ is a rectangular (n×K) matrix that is also column-stochastic (Figure 1). Formal

derivation of the formula (5) and the proof of a probability preservation property of (5) can be found

in the supplement. In being essentially a matrix-vector formulation of the law of total probability, the

reduced model (5) is exact in the Bayesian sense and involves no further approximations.

X̂(t + ⌧)X̂(t)

X(t) X(t + ⌧)
�̂�̂ �̂�̂

�̂�̂ �̂�̂

�̂�̂�̂

Figure 1: An illustration of the latent Markov model as a Bayes net. The conditional structure is
shown as directed edges, who are annotated with their transition matrices. The transfer operators
(dashed lines) of the latent process (orange nodes) and the observed process (cyan nodes) can be
obtained by the inner and outer products of the conditional transition matrices, λ̂ and Γ̂.

For a given discretised times series of the observational data {X(0), X(τ), . . . , X(S)}, both of

the unknown matrices λ̂ and Γ̂ can be computed iteratively - e.g., deploying the log-likelihood max-

imisation (as described above for the case of the standard master equation (1)). Practically, for this

purpose one can use the algorithms like PLSA (Probabilistic Latent Semantic Analysis - an expec-

tation maximisation algorithm [15, 16]) or DBMR (direct Bayesian model reduction - a clustering

algorithm [13]). For further details related to a comparison of these two alternative methods we re-
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fer to [13]. As was demonstrated in [13], estimation of λ̂ and Γ̂ with DBMR scales much more

favourably with problem dimension both in terms of the space and time complexity. Following the

same line of argument for the latent Markov model representation (5), one obtains that the overall

computational cost of the DBMR algorithm until reaching the convergence when applied to (5) will

scale as O (K min(n2, S/τ)) and will require no more than O (min(n2, S/τ)) of memory. In order

to avoid the problem of overfitting it is important to guarantee that the overall number of free param-

eters in the latent Markov model (5) does not become too large compared with the size S/τ of the

available data statistics - and does not exceed the number of free parameters in the original master

equation without latent variables (1), resulting in a simple algebraic expression for the upper bound

of K: K < n2

(2n−1)
.

The key idea that will help us to adopt this latent Markov model (5) for the computation of in-

variant measures in the presence of latent process {X̂(0), X̂(τ), . . . , X̂(S)} is based on the following

simple observation: inserting (5) into (2) and keeping K fixed we obtain

µ = lim
N→∞

(λ̂Γ̂)Nπ(0) = λ̂ lim
N→∞

(P̂K)N−1Γ̂π(0), (6)

where P̂K = Γ̂λ̂ is a (K ×K) column-stochastic reduced transfer operator. If there exists a unique

dominant eigenvector µ̂K correspondent to the eigenvalue 1.0 of the matrix P̂K (i.e., µ̂K = P̂Kµ̂K),

then we can express µ in terms of P̂K and λ̂ using the Perron-Frobenius theorem [12]:

µ =
1∑K

k=1 µ̂k
λ̂µ̂K . (7)

It is very straightforward to validate that setting K = 1 transforms (5) into a memoryless Bernoulli

model with µ becoming the empirical probability density function (p.d.f.) of the data. Setting K > 1

results in the memory-one Markovian models - where the memory is carried by the latent process X̂

with K states.

The overall cost of computing µ from (7) consists of the cost for computing λ̂ and Γ̂ (being

O (K min(n2, S/τ)) for DBRM algorithm [13]), cost for computing PK (being O (K(K − 1)n2)),

cost for computing the dominant eigenvector µ̂K for P̂K (being O (K3)) and cost for comput-

ing µ from λ̂ and µ̂K in (7) (being O (K2n)). Adding all terms together and keeping only the
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leading-order terms in n and K we obtain that the overall numerical cost for computing the n-

dimensional invariant measure µ in a presence of the K-dimensional latent (unobserved) process X̂

is O (K(K − 1)n2 +K min(n2, S/τ) +K3). Analogously, the overall memory consumption of this

method in the leading order will be no more thenO (min(n2, S/τ) +K3). These results mean that in

the situations where the latent dimension K < n is fixed and independent of the observed dimension

n, the cost and the memory consumption for this latent Markovian invariant measure computation

will both scale quadratically in n - resulting in a more favourable cost scaling than the standard com-

putation based on the full transfer operator Λ in (1) (that scales cubically in n for general unstructured

and non-sparse matrices Λ).

Next, we are going to address the question of selecting the optimalK - as well as deciding whether

the latent Markov computation (7) or the standard Markov computation based on the empirical fre-

quency estimator (4) without the latent processes provide a better description of the discretized data

series {X(0), X(τ), . . . , X(S)}. Many of the standard model selection tools from the area of machine

learning can be used to answer this question, in the following examples we will use two of them: (i)

a cross-validation approach and (ii) the Bayesian or Akaike information criteria. Cross-validation

involves pooling the data into two parts - the training and validation sets. Candidate models are fitted

to the training set and the model exhibiting the best performance on the validation data set is selected

as the most adequate. However, in many situations (especially when the underlying model is non-

stationary or when the available data is very sparse) this approach can lack robustness since it will

crucially rely on the way how the original data is separated into the training and the validation sets.

The family of information criteria, e.g., Akaike Information Criterion (AIC), Bayesian Information

Criterion (BIC), and others [3] provide an alternative which does not rely on ad hoc sub-division of

the data prior to validation. These approaches measure and compare the posterior parameter uncer-

tainty of different models - allowing to perform this comparison by means of the very simple formula

involving the model quality/performance (measured in terms of the optimal log-likelihood value) and

penalising the model complexity (measured as the overall number of free model parameters). Then,

a model with the minimal value of the information criterion provides the most adequate and the most
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statistically-significant among the considered models (in terms of the posterior model probability)

description for a given data [3]. When applying information criteria one needs to keep in mind that

they can only give an asymptotical comparison between the models - i.e., they must be used with

caution when the statistics size S/τ is small [3]. Practical examples for the alternative methods of

K-selection are shown in the Fig. 3A and 3B. Combination of the estimator formula (7) with these

procedures of K-selection allows a fully-automated inference invariant measures that is not relying

on any user-defined tuning parameter. In the following we will illustrate this automated approach on

two examples.

2 Application Examples

Lorenz-63 oscillator: quantification of the bias, scalability tests Lorenz-63 is a deterministic

dynamical system often used as a benchmark [19, 6, 8, 7]. We use the standard setting of Lorenz

model parameters (σ = 10, ρ = 28, β = 8/3) and generate the observational data with a time step

τ = 10−3 and an overall simulation time S = 103 by means of the adaptive Runge-Kutta-method.

In the first step of Ulam’s approach, these data are discretised on a uniform 100 × 100 × 100 box

grid, resulting in a discretised time series {X(1), X(2), . . . , X(S)} describing the jumps between

n = 106 of the 3D boxes. Next, we compute the standard invariant measure µ as the normalised

dominant eigenvector of the sparse empirical frequency matrix. Since this matrix is sparse we use a

specialised Lanzcos-Krylov-solver as implemented in Matlab (command eigs() in MATLAB versions

7 and later). Then we compute µ from the latent Markov model (5,6) with the latent dimensionK = 2

(in the left upper panel of Fig. 2). Comparison both by means of the model cross-validation and by

means of the information criteria (AIC and BIC) [3] shows that the invariant measure based on the

latent Markov model provides a significantly better description of the data. It is very instructive to in-

spect the corresponding matrix Γ̂ of the conditional probabilities, relating the observed process X(s)

and the latent process X̂(s + 1). This matrix is obtained with the DBMR algorithm [13] (MATLAB

implementation available at https://github.com/SusanneGerber), its row k contains ele-
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ment zero in a position j if there is no conditional relation between the observed state x(j) (i.e., some

particular 3D box in our case) and the latent state x̂(k) - and contains element one if there is such a

relation. As can be seen from the upper right panel of Fig. 2, for K = 2 the optimal latent Markov

model (5) decomposes the original states/boxes in two latent sets: latent state x̂(1) - with conditional

probability 1.0 containing all of the original boxes/compartments on the right wing of the Lorenz-

attractor (marked yellow), and the latent state x̂(2) - with conditional probability 1.0 containing the

original boxes/compartments on the left wing of the Lorenz-attractor (marked blue). It means that the

identified latent process {X̂(0), X̂(τ), . . . , X̂(S)} is a process switching between the two wings of

the Lorenz-attractor and that the transitional probabilities between the boxes are not all independent

(as implied by the empirical frequency estimator (4)) but ”belong together” and are conditionally

dependent on the wing (left or right).

Lower panels of the Fig. 2 show a comparison of the statistics of errors (lower left) and statistics

of computational costs for the standard method (red lines) and for the latent Markov computation

of the invariant measure (blue). Every error bar indicates average values and their 95% confidence

intervals obtained from the ensembles of 500 independent Lorenz data trajectories. For the standard

µ computation we use the efficient sparse Lanzcos-Krylov solver to obtain the dominant eigenvectors

of (4). As can be seen from the two plots, latent Markov computation outperforms a standard compu-

tation based on (1,4), enabling quantification and separation of the biases coming from the overfitting

and from the implicit independence assumption, respectively (Fig. 2).

Analysis of α-Synuclein MD data The protein α-synuclein is abundant in the brain and has been

associated with a number of neurodegenerative conditions including Morbus Parkinson. Despite of

the apparent importance of α-synuclein indicated in many studies, the scope of biological functions

and it’s exact role in disease development remains poorly understood. Some experimental evidence

suggest that aggregation of α-synuclein monomers has a cytotoxic effect and may trigger the neurode-

generative process in brain cells [29]. Further, single-molecule experiments tie this agglomeration

process to a large variety of metastable conformational states of the α-synuclein monomers [41, 24].
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Figure 2: Application of the latent Markov invariant measure computation (5,6) to the data from a
Lorenz-oscillator simulation and comparison with a standard Ulam’s procedure based on (1,4): (A)
resulting invariant measure µ; (B) affiliation of the original discretisation boxes to the identified latent
states; (C) comparison of the error statistics as a function of the statistics size S; and (D) comparison
of the computational costs as a function of problem dimension n.
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However, gaining a more detailed understanding of these processes (e.g., by means of MD simula-

tions) is hampered by a combination of two factors that make the MD simulations of α-synuclein

difficult: (i) its a fairly large disordered protein (140 amino acid residues) which makes it necessary

to use very large solvation boxes which makes reaching experimentally relevant time-scales difficult

and (ii) many state-of-the-art molecular mechanics forcefields do not describe disordered proteins

well. Moreover, even if MD simulation of such a system becomes feasible, the intrinsic complex

properties of the data as well as the relatively short sampling time spans may prohibit application of

the conventional Markov modelling machinery. Overcoming this would enable the quantitative ex-

traction of information about thermodynamics and molecular kinetics of conformational transitions

of the system. However, as of yet we are limited to the most basic statistical quantities such as the

empirical averages and p.d.f. [31].

To evaluate whether the latent Markov model approach allows us to overcome problems we face

when using conventional Markov modelling tools, we turned to a previously published 11 µs trajec-

tory, conducted in the Amber12 forcefield with the TIP4P-D water-model which has been shown to

agree well with experimental data [31]. Molecular features were extracted from all frames of the

trajectory: including sines and cosines of all backbone torsions, as well as the minimum C-α dis-

tances between all pairs of secondary structure elements. The secondary structure elements involve

the following residue ranges; [3; 11], [17; 19], [21; 32], [41; 44], [45; 47], [52; 55], [66; 68], [70;

78], [80; 83], [88; 89], [110; 113], [120; 122], [124; 126] and [133; 136], as defined in Uniprot entry

P37840 [5]. In total, this yields 647 features. These features were projected into a three dimensional

space by means of Time-lagged Independent Component Analysis (TICA, lag time 50 nanoseconds)

[23, 30], this space was subsequently clustered into 200 disjoint states using K-means clustering. MD

data processing and analysis was performed using MDTraj and PyEMMA [33, 21].

Inspection of the obtained discrete time series {X(1), X(2), . . . , X(S)} reveals that it arrives

in a set of terminal states which are not reversibly connected to the other Markov states. This is

a very common practical problem emerging in Markov model analysis of limited MD data. The

immediate practical implication of this is that the corresponding empirical Markov model estimate
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Figure 3: Analysis results for the α-Synuclein MD data: (A) choice of the optimal latent dimension
K by means of the Bayesian Information Criterion; (B) choice of the optimal latent dimension K
by means of the cross-validation procedure; (C) invariant measure µ as a function of latent Markov
dimensionK; (D) comparison of the empirical p.d.f. and the invariant measure µ obtained from (5,6).
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(1,4) is irreversible, leading to a spurious concentration of probability mass at this terminal state

(Figure S1). A number of constrained estimators have been proposed to ensure a reversible Markov

model is obtained from such data [27, 2, 38], yet these do not guarantee meaningful results - and

can introduce an additional bias. In this example we note that the use of a reversible estimator in

fact exacerbates this problem (Figures S1 and S2). Consequently, we can conclude that the use of

standard Markov tools for these data is not directly possible and we are indeed limited to determining

basic statistical quantities such as the empirical averages and p.d.f. However, as explained above,

empirical averages and p.d.f. are not invariant with respect to sampling and do not allow an insight

into intrinsic dynamical properties of the molecule that could be otherwise accessible through the

Markovian invariant measure.

Next, we computed latent Markov models for different K values between K = 1 (corresponding

to the memoryless Bernoulli case with µ becoming the empirical p.d.f.) and K = 100 (that is beyond

the ”overfitting” range of K = n2/(2n − 1) ≈ 100 (5). We selected the optimal K by both cross-

validation and using the Bayesian Information Criterion [36] - and comparing to the values obtained

for the standard Markov model (1,4) (Fig. 3A,B). This comparison reveals that the latent models

provide a significantly better description of these data, and the optimal latent dimension of K = 40

(Fig. 3A,B). The invariant measure (µ) of the latent Markov model converges to a stable estimate

already at K ≈ 20, (Fig 3C). For K = 40 a comparison of the invariant measure of the latent Markov

model with the empirical p.d.f. is shown with 95%-confidence intervals computed by a standard

non-parametric bootstrap sampling [10].

The optimal latent Markov model (K = 40) was chosen for further analysis. Interestingly, we find

that the non-reversibly connected states get assigned a vanishing probability (Fig. 4A), which allevi-

ates the distortion observed in the invariant measure (Figs. S1) with the standard empirical estimator

(4). For molecular systems, the second (and higher) invariant measure(s) describes the probabil-

ity flow in conformational space associated with the slow, finite relaxation time-scales of the Markov

model, and is often used to identify meta-stable configurations [9]. The empirical estimator, both with

and without reversibility constraint, attributes the slowest process exchange with the non-reversibly
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Figure 4: Discrete time-series of α-synuclein projected onto (A) the leading invariant measure φ1 = µ
and (B) the second invariant measure normalized by the first invariant measure ψ2. Meta-stable states
1 and 2 are high-lighted with magenta and green colors in B.

connected states (Fig. S2). The corresponding measure for the latent Markov model however iden-

tifies three reversibly connected meta-stable configurations (Fig. 4B). For further analysis below, we

annotate the two most temporally distant of these states, highlighted by cyan and magenta colors, as

states 1 and 2, respectively.

To better understand the conformational changes happening in between states 1 and 2 we perform

a coarse-grained transition path analysis [22, 26]. This analysis allows us to compute committor

probabilities, which here is the probability of arriving in state 2 before returning to state 1. The

Markov states were lumped together according to their committor probability, and a resulting network

plot of the net-flux reveals a linear transition mechanism (Fig. 5A). Next, we projected the fraction

of different secondary structure elements as a function of sequence onto the committor probability

(Fig. 5B). While α-synuclein remains largely disordered with the majority of the residues not forming

persistent secondary or tertiary structural arrangements, we observe that two meta-stable states 1 and 2

show some preferences for particular secondary structure in distinct regions of the primary sequence.

State 1 adopts strand like conformation in residues surrounding position 53, 61, 80 and 88 - whereas

14



Figure 5: Net-flux along the committor from state 1 to state 2 (A), changes in relative protein sec-
ondary structure (Helix, Coil and Strands) for each residue position along the committor from states
1 to 2 (B).

state 2 adopts helical secondary configurations in residues around position 20, 37, 63 and 88. These

regions coincide with secondary structures observed in experiments, including β-sheets observed in

a solid-state NMR structure of an α-synuclein fibril [39] and α-helical conformations observed in

α-synuclein fragments bound to maltose binding protein [42]. The intermediate state 2 also shows

similar helical structures in particular around residues 37 and 63. These results suggests that a slow

conformational exchange process (with mean first passage time of around ∼ 1-10µs) in α-synuclein

involves changing secondary structure propensities between strand-like conformations to helix like

conformations. These changes are most prominent in residues surrounding position 53, 61, 80 and

88.

3 Discussion

As demonstrated above, sparse experimental data, implicit mathematical assumptions (e.g., about the

a priori independence of different transitions in the system) and computational issues (like the problem

of overfitting and the computational cost scaling) may seriously bias or even prohibit the computation
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of the invariant measures with common tools, also for very simple and well understood dynamical

systems like the Lorenz-oscillator. Deploying the algorithmic components from the Bayesian models

with latent variables [15, 16, 13] we construct a method allowing to compute the invariant measures

from latent Markov models. As implied by the computational scaling results from Fig. 2D in compar-

ison with common tools, this automated method can help to push the computational limits to much

larger systems in the situations when the dimension of the latent process is smaller than the dimension

of the observed process (Fig. 2C,D). And, as demonstrated above, this computation can be performed

beyond the restrictive independence assumption required by the standard tools.

A general problem for any method dealing with data is induced by a necessity to distinguish

between ”what is in the data?” (i.e., what are the artefacts of data sampling/acquisition procedures,

impact of statistics size, impact of dimension etc.) and ”what is in the system?” (i.e., what are the

true system’s characteristics and what are the biases introduced by the method). As discussed above,

because of various reasons this distinction is particularly problematic in the MD data analysis. When

analysing such data one only gains insight into these particular data - but not into the true underlying

system per se. But understanding what the data really says is valuable, as it allows for a systematic

assessment of the data, devoid of confounders introduced by the analysis method. As demonstrated

for α-synuclein data, applying the common methods would not allow any additional insights that

go beyond the very simple p.d.f. computations - whereas application of the latent Markov model

estimation reveals a clear transition process (Fig. 4) with particular conformational characteristics

(Fig. 5). Applying this methodology to molecular dynamics data enabled an analysis unattainable with

standard Markov methods. In particular, since the simulation data involved absorbing states, invariant

measures computed from Markov models obtained with conventional estimators were distorted by

this property. To our surprise, we found the latent Markov model method to be insensitive to this

deficiency in the data. While it remains unclear whether such favourable behaviour is to be expected

in general for this approach, this is an intriguing finding with potential for more efficient data use in

Markov modelling of molecular dynamics simulation data.

We expect this new tool for data-driven computation of invariant measures to be useful in many

16



other application areas including network science, drug design and climate research. As discussed

above, in all of these areas invariant measure computations are based on the same Ulam’s procedure

and share the same limitations. An open source implementations of the algorithms presented herein

is available online for download at https://github.com/SusanneGerber.
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[27] Frank Noé. Probability distributions of molecular observables computed from markov models.

The Journal of Chemical Physics, 128(24):244103, 2008.
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