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Abstract
A method for clustering of multidimensional non-stationary meteorological time se-

ries is presented. The approach is based on optimization of the regularized averaged
clustering functional describing the quality of data representation in terms of K regression
models and a metastable hidden process switching between them. Proposed numer-
ical clustering algorithm is based on application of the finite element method (FEM)
to the problem of non-stationary time series analysis. The main advantage of the
presented algorithm compared to HMM-based strategies and to finite mixture models
is that no a priori assumptions about the probability model for hidden and observed
processes are necessary for the proposed method. Another attractive numerical fea-
ture of the discussed algorithm is the possibility to choose the optimal number of
metastable clusters and a natural opportunity to control the fuzziness of the result-
ing decomposition. The resulting FEM-K-Trends algorithm is compared with some
standard fuzzy clustering methods on toy model examples and on analysis of multi-
dimensional historical temperature data in Europe and a part of the North Atlantic.

Introduction

In the meteorology and climate research, recent years have seen a dramatic explosion in the
amount and precision of raw data that is available in the form of time series. Due to the devel-
opment of computational and measuring facilities in geo-sciences (e.g. reanalysis techniques in
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meteorology) large amounts of measured and simulated information from all kinds of processes
have been accumulated. Many of this processes are characterized by the presence of tran-
sitions between different local phases or regimes. Such phases can be found in meteorology
(Tsonis and Elsner 1990; Kimoto and Ghil 1993a,b; Cheng and Wallace 1993; Efimov et al.
1995; Mokhov and Semenov 1997; Mokhov et al. 1998; Corti et al. 1999; Palmer 1999) and
climatology (Benzi et al. 1982; Nicolis 1982; Paillard 1998).If knowledge about such systems is
present only in the form of observation or measurement data, the challenging problem of identify-
ing those persistent (or metastable) regimes together with the construction of reduced dynamical
models of system dynamics becomes a problem of time series analysis and pattern recognition
in high dimensions. The choice of the appropriate data analysis strategies (implying a set of
method-specific assumptions on the analyzed data) plays a crucial role in correct interpretation
of the available time series. The most popular methods for identification of multiple regimes in
high-dimensional time series are: clustering methods (like K-means or fuzzy-c-means) (Höppner
et al. 1999), methods based on hidden Markov models (HMMs) (Viterbi 1967; Bilmes 1998;
Majda et al. 2006; Horenko et al. 2008b), finite mixture models (McLachlan and Peel 2000;
Fruhwirth-Schnatter 2006), and neuronal networks (Monahan 2000).

All of the above methods share two basic problems: (i) number of clusters or phases present
in the data is a priori unknown (Christiansen 2007), and (ii) each of the analysis methods im-
plies some mathematical assumptions about the analyzed data. More specifically, most of the
commonly used clustering methods imply the (local) stationarity of the analyzed data. This can
lead to problems with identification of the optimal cluster partitioning in the case of the data with
a time trend, i. e., it can happen by application of standard K-means and fuzzy-c-means algo-
rithms to the analysis of historical temperature data. Presented paper aims at investigation of this
problem, introduction of the methods of non-stationary data clustering in context of geophysical
processes and comparison of different clustering approaches in context of historical temperature
analysis.

A short overview of the most frequently used clustering methods is given, with a special em-
phasis on structural properties and implicit mathematical assumptions intrinsic for each of the
methods. Fuzzy Clustering based on Regression Models (FCRM) algorithm for non-stationary
data clustering is shortly explained (Hathaway and Bezdek 1993).The key part of the presented
paper describes an extension of the standard K-means method in context of the finite element
method (FEM)-based clustering methods to allow for analysis of non-stationary data. More
specifically: we assume that the centers of the respective clusters evolve in time according
to a linear combination of some predefined time-dependent basis functions with some (un-
known) cluster-specific coefficients. Rewriting the problem in terms of the regularized averaged
clustering functional allows us to apply the FEM-framework for simultaneous clustering of the
data and identification of historical trends for each of the clusters. The main advantages of the
presented method compared to the HMM-based methods are: (i) there is no need to assume
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the Markovianity of the hidden process switching between the clusters, (ii) no explicit probabilistic
model (like multivariate Gaussian in HMM-Gauss and HMM-PCA) for the observed data in the
hidden states is needed, (iii) introduction of the regularization parameter allows to controls the
metastability of the resulting cluster decomposition and helps to identify the number of persistent
clusters.

We explain how the quality of the reduced representation of the data can be acquired, how it
can help to estimate the number of the metastable states and what kind of additional information
about the analyzed process can be gained. The proposed framework is illustrated on some toy
model systems and on analysis of historical 700 hPA geopotential height air temperature from
the ERA 40 reanalysis data between 1958-2002.

1. Geometrical Clustering: K-Means, Fuzzy-c-Means and FCRM
methods

a. Cluster distance functional and K-Means clustering

Let xt : [0, T ] → Ψ ⊂ R
n be the observed n-dimensional time series. We look for K clusters

characterized by K distinct sets of a priori unknown cluster parameters

θ1, . . . , θK ∈ Ω ⊂ R
d, (1)

(where d is the dimension of a cluster parameter space) for the description of the observed time
series. Let

g (xt, θi) : Ψ × Ω → [0,∞) , (2)

be a functional describing the distance from the observation xt to the cluster i. For a given
cluster distance functional (2), under data clustering we will understand the problem of a function
Γ(t) = (γ1(t), . . . , γK(t)) called the cluster affiliation (or the cluster weights) together with cluster
parameters Θ = (θ1, . . . , θK) which minimize the averaged clustering functional

L(Θ, Γ) =
K
∑

i=1

∫ T

0

γi(t)g (xt, θi) dt → min
Γ(t),Θ

, (3)

subject to the constraints on Γ(t):

K
∑

i=1

γi(t) = 1, ∀t ∈ [0, T ] (4)

γi(t) ≥ 0, ∀t ∈ [0, T ] , i = 1, . . . ,K. (5)
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One of the most popular clustering methods in multivariate data-analysis is the so-called K-means
algorithm (Bezdek 1981; Höppner et al. 1999). The affiliation to a certain cluster i is defined by
the proximity of the observation xt ∈ Ψ to the cluster center θi ∈ Ψ. In this case the cluster
distance functional (2) takes the form of the square of the simple Euclidean distance between
the points in n dimensions:

g (xt, θi) = ‖ xt − θi ‖
2 . (6)

If the analyzed data xt is available only at some discrete observation times tj, j = 1, . . . , n,
functional (3) gets the form

K
∑

i=1

n
∑

j=1

γi(tj) ‖ xtj − θi ‖
2 → min

Γ(t),Θ
. (7)

K-means algorithm iteratively minimizes the functional (7) subject to constraints (4-5) assigning
the new cluster affiliations γ(l)(tj) and updating the cluster centers θ

(l)
i in iteration (l) according

to the following formulas

γ
(l)
i (tj) =

{

1 i = arg min ‖ xtj − θ
(l−1)
i ‖2,

0 otherwise,
(8)

θ
(l)
i =

∑n

j=1 γ
(l)
i (tj)xtj

∑n

j=1 γ
(l)
i (tj)

. (9)

Iterations (8-9) are repeated until the change of the averaged clustering functional value does
not exceed a certain predefined threshold value.

b. Stationary data: Fuzzy c-Means Clustering

As it can be seen from (8), the assignment of observed data point xtj to a certain cluster i
is sharp, i. e., a single point can not be assigned simultaneously to different clusters. This can
cause a problem in the case of geometrically overlapping clusters. To fix this problem, a following
modification of the averaged clustering functional (7) was suggested (Bezdek 1981)

K
∑

i=1

n
∑

j=1

γm
i (tj) ‖ xtj − θi ‖

2 → min
Γ(t),Θ

, (10)

where m > 1 is a fixed parameter called the fuzzyfier (Bezdek 1981; Bezdek et al. 1987). Analo-
gously to the k-means, the fuzzy c-means algorithm is an iterative procedure for minimization of
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(10)

γ
(l)
i (tj) =



























1P
K

p=1

 
‖xtj

−θ
(l−1)
i

‖2

‖xtj
−θ

(l−1)
p ‖2

! 1
m−1

if Ixtj
is empty,

∑

r∈Ixtj

γ
(l)
r (tj) = 1 if Ixtj

is not empty, i ∈ Ixtj
,

0 if Ixtj
is not empty, i 6∈ Ixtj

,

(11)

θ
(l)
i =

∑n

j=1 γ
(l)
i (tj)xtj

∑n

j=1 γ
(l)
i (tj)

. (12)

where Ixtj
= {p ∈ {1, . . . ,K}| ‖ xtj − θ

(l−1)
p ‖2= 0} (Höppner et al. 1999). As it follows from

(11), for any fixed fuzzifier m, cluster affiliations γ
(l)
i (tj) get values between 0 and 1, for m → ∞

γ
(l)
i(tj)

→ 1
K

. This feature allows clustering of overlapping data. However, the results are very much
dependent on the choice of the fuzzifier m and there is no mathematically founded strategy of
choosing this parameter dependent on the properties of the analyzed data. Moreover it is not
a priori clear how many clusters are there in the data and which value should K take. Another
problem is that the data is assumed being (locally) stationary, i.e., that the conditional expectation
values θi calculated for the respective clusters i are assumed to be time independent. As we will
see later, this can result in misinterpreting of the clustering results, if the data has a temporal
trend.

c. Non-stationary data: Fuzzy Clustering based on Regression Models (FCRM)

To overcome the aforementioned stationarity restriction, R. Hathaway and J. Bezdek suggested
the fuzzy c-regression models (FCRM) (also known in the literature as switching regression
models) (Hathaway and Bezdek 1993). They suggested to describe each cluster-specific tem-
poral trend as a certain (linear) regression model of a certain fixed order R given by some pre-
defined basis functions φk (t) , k = 0, . . . ,R (e. g, time monomials tk) and some a priori unknown
regression coefficients θik (lower index i denotes the number of the respective cluster). FCRM
clustering algorithm yields simultaneous estimates of the regression parameters θik, k = 0, . . . ,R
together with a fuzzy partitioning of the data based on the minimization of the modified form of
the averaged clustering functional (10)

K
∑

i=1

n
∑

j=1

γm
i (tj) ‖ xtj −

R
∑

k=0

θikφk (tj) ‖
2 → min

Γ(t),c
. (13)
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Comparison of (13) and (10) makes clear that the time-independent cluster centers θi in context
of fuzzy c-means clustering are replaced by time-dependent functions

θi (t) =
R
∑

k=0

θikφk (tj) , (14)

i. e., the cluster centers are assumed to be moving and the overall dynamics not assumed to
be stationary. The overall algorithmic procedure can be efficiently implemented in context of
Expectation-Maximization (EM) algorithms, if certain statistical assumptions about the underly-
ing observation probability distribution can be made (Preminger et al. 2007). Analogously to
fuzzy c-means clustering algorithm, the FCRM-algorithm is an iterative procedure with the same
re-estimation formula for cluster weights (11) (except that θ

(l)
i has a form of (14)). However, it is

not always clear whether the probabilistic assumptions (like Gaussianity of the regression resid-
uals or their statistical independence (Preminger et al. 2007)) are fulfilled for the analyzed data.
Moreover, similar to the fuzzy c-means algorithm, there is no practical and universal recipe for
choosing the number of clusters K and fuzzifier m.

2. Regularized Averaged Clustering Functional: FEM-K-Trends
algorithm

As it was emphasized above, the arbitrariness of parameter choice (especially for the number of
clusters K and fuzzifier m) can make the application of the described clustering methods more
problematic, especially in the case of the strongly overlapping data clusters. In the following,
an extension of the recently proposed algorithm based on application of finite elements method
(FEM) towards non-stationary data will be presented (Horenko 2008a). Dynamical approach to
control the cluster-fuzzyness and the number of clusters will be introduced.

a. Regularized Averaged Clustering Functional for Non-stationary Data

Let us consider the clustering of non-stationary multidimensional data xt ∈ R
d as a minimization

problem (3) subject to constraints (4-5). The corresponding cluster distance functional (2) has
the regression form as in the case above

g (xt, θi) = ‖ xt −
R
∑

k=0

θik ⊙ φk (t) ‖2, (15)

where θik ∈ R
d is a vector of regression coefficients, φk (t) ∈ R

d is a vector of time-dependent
regression functions and ⊙ denotes a component-by-component product of 2 vectors. As it was
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demonstrated in (Horenko 2008a), instead of the introduction of an artificial fuzzifier-parameter
(as in case of c-means clustering and FCRM) and direct time discretization of (3), one incor-
porates some additional information into the optimization. One of the possibilities is to impose
some smoothness assumptions in space of functions Γ (·) ) and then apply a finite Galerkin time-
discretization of this infinite-dimensional Hilbert space. For example, one can impose the weak
differentiability of functions γi, i. e.:

|γi|H1(0,T ) = ‖ ∂tγi (·) ‖L2(0,T )=

∫ T

0

(∂tγi (t))
2 dt ≤ Ci

ǫ < +∞, i = 1, . . . ,K. (16)

For a given observation time series, the above constraint limits the total number of transitions
between the clusters and is connected to the metastability of the hidden process Γ(t) (Horenko
2008a).

b. Finite Element Approach: FEM-K-Trends algorithm

To derive the algorithmic procedure for minimization of (3) subject to constraints (4), (5) and
(16), one of the possibilities is to apply the Lagrange-formalism and incorporate the constraint
(16) directly into the minimized functional with the help of the Lagrange-multiplier ǫ2

L
ǫ(Θ, Γ, ǫ2) = L(Θ, Γ) + ǫ2

K
∑

i=1

∫ T

0

(∂tγi (t))
2 dt → min

Γ,Θ
. (17)

Let {0 = t1, t2, . . . , tN−1, tN = T} be a finite subdivision of the time interval [0, T ] with uniform
time interval ∆t. We can define a set of continuous functions {v1(t), v2(t), . . . , vN(t)} called hat
functions or linear finite elements (Braess 2007)

vk(t) =



















t−tk
∆t

2 ≤ k ≤ N − 1, t ∈ [tk−1, tk] ,
tk+1−t

∆t
2 ≤ k ≤ N − 1, t ∈ [tk, tk+1] ,

t2−t
∆t

k = 1, t ∈ [t1, t2]
t−tN−1

∆t
k = N, t ∈ [tN−1, tN ] .

(18)

Assuming that γi ∈ H1 (0, T ) we can write

γi = γ̃i + δN

=
N
∑

k=1

γ̃ikvk + δN , (19)
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where γ̃ik =
∫ T

0
γi (t) vk (t) dt and δN is some discretization error. Inserting (19) into functional

(17) and constraints (4,5) we get

L̃
ǫ =

K
∑

i=1

[

a(θi)
Tγ̃i + ǫ2γ̃T

i Hγ̃i

]

→ min
γ̃i,Θ

, (20)

K
∑

i=1

γ̃ik = 1, ∀k = 1, . . . , N, (21)

γ̃ik ≥ 0, ∀k = 1, . . . , N, i = 1, . . . ,K, (22)

where γ̃i = (γ̃11, . . . , γ̃iN) is the vector of discretized affiliations to cluster i,

a(θi) =

(

∫ t2

t1

v1(t)g(xt, θi)dt, . . . ,

∫ tN

tN−1

vN(t)g(xt, θi)dt

)

, (23)

is a vector of discretized model distances and H is the symmetric tridiagonal stiffness-matrix of
the linear finite element set with 2/∆t on the main diagonal, −1/∆t on both secondary diagonals
and zero elsewhere. The only difference to the derivation presented in (Horenko 2008a) is the
time-dependence of the cluster distance functional (15).

If ǫ2 = 0, then the above minimization problem (20-22), can be solved analytically wrt. γ̃
(l)
i for

a fixed set of cluster model parameters Θ(l) (where l again denotes the index of current iteration)
resulting in

γ
(l)
i (tj) =

{

1 i = arg min
∫ tj+1

tj
vj(s) ‖ xs −

∑

R

k=0 θ
(l)
ik ⊙ φk (s) ‖2 ds,

0 otherwise,
(24)

If ǫ2 > 0, for a fixed set of cluster model parameters Θ(l) the minimization problem (20-
22), reduces to a sparse quadratic optimization problem with linear constraints which can be
solved by standard tools of sparse quadratic programming (sQP) with computational cost scaling
as O (N log (N)) (Gill et al. 1987; Arioli 2000). Therefore, from a computational point of view,
the presented approach is more expensive (for ǫ2 > 0) then the traditional fuzzy c-means and
FCRM algorithms (which both scale as O (N)). However, as will be demonstrated by numerical
examples, this drawback is compensated by nice properties of the presented method wrt. the
choice of K and good performance in analysis of strongly overlapping data-clusters.

In addition, the minimization problem (20 -22) wrt. the parameters Θ for a fixed set of
discretized cluster affiliations γ̃i is equivalent to the unconstrained minimization problem

K
∑

i=1

a(θi)
Tγ̃

(l)
i → min

Θ
. (25)
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Since g (xt, θi) has a form of (15), this is a linear regression problem and can be solved explicitly
using the least squares method.

Therefore, the clustering FEM-K-trends algorithm can be implemented as the following itera-
tive numerical scheme:

FEM-K-Trends Algorithm.
Setting of optimization parameters and generation of initial values:

· Set the number of clusters K, regularization factor ǫ2, finite discretization
of the time interval [0, T ], and the optimization tolerance TOL

· Set the iteration counter l = 1

· Choose random initial γ̃
(1)
i , i = 1, . . . ,K satisfying (21-22)

· Calculate Θ(1) = arg min
Θ

L̃
ǫ
(

Θ, γ̃
(1)
i

)

solving the linear regression problem (25)

Optimization loop:
do
· Compute γ̃(l+1) = arg min

γ̃

L̃
ǫ
(

Θ(l), γ̃
)

satisfying (21-22) applying QP (if ǫ2 > 0)

or applying (24) (if ǫ2 = 0)

· Calculate Θ(l+1) = arg min
Θ

L̃
ǫ
(

Θ, γ̃
(l+1)
i

)

solving the linear regression problem (25)

· l := l + 1

while
∣

∣

∣
L̃

ǫ
(

Θ(l), γ̃
(l)
i

)

− L̃
ǫ
(

Θ(l−1), γ̃
(l−1)
i

)
∣

∣

∣
≥ TOL.

Major advantage of the presented algorithm compared to HMM-based strategies (Horenko
et al. 2008b; Horenko 2008b; Horenko et al. 2008a) and to finite mixture models (McLachlan and
Peel 2000; Fruhwirth-Schnatter 2006) is that no a priori assumptions about the probability model
for hidden and observed processes are necessary in the context of the FEM-K-Trends algorithm.

3. Postprocessing of results

The quality of the clustering is very much dependent on the original data, especially on the length
of the available time series. The shorter the observation sequence is, the bigger the uncertainty
of the resulting estimates. The same is true, if the number K of the hidden states is increasing
for the fixed length of the observed time series: the bigger K is, the higher will be the uncer-
tainty for each of the resulting clusters. Therefore, in order to be able to statistically distinguish
between different hidden states, we need to get some notion of the FEM-K-trends robustness.
This can be achieved through the postprocessing of the clustering results and analysis of the
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transition process and regression models estimated for the clusters. If there exist two states
with overlapping confidence intervals for each of the respective model parameters, then those
are statistically indistinguishable, K should be reduced and the optimization repeated. In other
words, confidence intervals implicitly give a natural upper bound for the number of possible clus-
ters. However, in many atmospherical applications, the question about the optimal number of
clusters is highly non-trivial and is very difficult to answer without incorporation of some addi-
tional information (Christiansen 2007).

As was demonstrated in (Horenko 2008a), there is a connection between the regularization
factor ǫ2 and metastability of the resulting data decomposition. As it will be shown later in numer-
ical examples, for fixed K the number of transitions between the identified clusters will decrease
with growing ǫ2. This means that respective mean exit times for the identified clusters get longer
and the corresponding cluster decompositions become more and more metastable. Careful in-
spection of the transition process Γ (t) identified for different values of ǫ2 can help to find out the
optimal number K of metastable cluster states.

Another possibility to estimate the optimal number of clusters can be used, if the identified
transition process Γ (t) is shown to be Markovian for given K, ǫ2. Markovianity can be verified
applying some standard tests, e. g., one can check the generator structure of the hidden process,
see Metzner et al. (2007). In such a case the hidden transition matrix can be calculated and its
spectrum can be examined for a presence of the spectral gap. If the spectral gap is present, then
the number of the dominant eigenvalues (i. e., eigenvalues between the spectral gap and 1.0)
gives the number of the metastable clusters in the system (Schütte and Huisinga 2003; Huisinga
et al. 2004).

Positive verification of the hidden process’ Markovianity has an additional advantage: it al-
lows to construct a reduced dynamical model of the analyzed process and to estimate some
dynamical characteristics of the analyzed process, e. g., one can calculate relative statistical
weights, mean exit times and mean first passage times for the identified clusters (Gardiner 2004;
Horenko et al. 2008a). Reduced Markovian description can also be helpful in construction of the
operative weather predictions based on historical observation data.

Analysing the resulting regression coefficients for the identified clusters can help to reveal
the temporal trends and the degree of non-stationarity of the analyzed data. Moreover, standard
tools of regression analysis can be used to estimate the statistical significance of the identified
trends, to calculate the confidence intervals of the identified parameters and to define the optimal
regression order parameter R for each of the clusters (Kedem and Fokianos 2002).
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4. Illustrative model examples

In the following we will illustrate the proposed strategy for clustering of non-stationary data with
time trend and identification of metastable states on three examples: (a.) a model system build
of two three-dimensional linear regressions and a predefined metastable process switching be-
tween them, (b.) a model system build of three three-dimensional linear regressions and a fixed
transition process with two rapidly mixing states and two metastable states (c.) a set of historical
averaged daily temperatures between 1958 and 2002 on a 31 × 18 spatial grid covering Europe
and part of the north Atlantic.

Example (a.) represents a toy model aiming to illustrate the proposed framework on a simple
and understandable system. The effects induced by the regularization parameter are explained
and a comparison with the standard FCRM-algorithm for analysis of non-stationary data is per-
formed.

In the next example (b.) we demonstrate two approaches to identifying the optimal number K

of metastable clusters. In contrast to other methods based on HMMs and finite mixture models
we are aware of (McLachlan and Peel 2000; Horenko 2008b; Horenko et al. 2008a), the proposed
method allows assumption free identification of the hidden states for a given observation data.

Finally, in example (c.) the application of the FEM-K-trends–algorithm is demonstrated on
clustering of historical temperature data. Markovianity of the identified transition process is ver-
ified and 3 metastable temperature clusters are identified. The identified Markovian transition
process is investigated wrt. the inhomogeneity and a long-term variability of the transition ma-
trix coefficients. Resulting regressions are compared with the trends calculated from standard
stationary k-means clustering and the discrepancies are discussed.

a. Two hidden states

As the first application example for the proposed framework we consider a time series x (t) ∈ R
3

generated as an output of two switching linear regressive models with Gaussian noise:
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Figure 1: Upper panel: metastable transition process switching between two linear regressions
(26). The other 3 panels demonstrate resulting three-dimensional time series for σ = 1.0 (solid).
Dashed lines indicate the linear trends characteristic for both clusters in respective dimensions.

xj (t) = θi(t)j(t − t̄j) + σN (0, 1) , i = 1, 2, j = 1, 2, 3

θ1 =
(

0.01 −0.01 0.01
)

, θ2 =
(

−0.01 0.01 −0.01
)

t̄ =
(

0 300 600
)

(26)

In the following numerical studies we will use the fixed transition process i (t) that is shown in
the upper panel of Fig. 1. The other panels of the Fig. 1 demonstrate a three-dimensional time
series with 600 elements generated by the model (26) for the chosen i (t) and noise intensity
σ = 1.0.

The left panel of Fig. 2 shows the influence of the fuzzifier m on results of the FCRM-clustering.
It demonstrates that the choice of the parameter has no significant impact on the clustering qual-
ity, it rather gets worse for increasing m and the identified clusters getting ”blurred”. The right
panel of Fig. 2 illustrates the influence of a regularization factor ǫ2 on assignment of data to
respective clusters for FEM-K-trends algorithm. In contrast to FCRM-clustering, the regulariza-
tion factor has a strong influence on the FEM-K-trends-clustering results. Increasing ǫ2 results
in a coarse graining of the identified affiliation functions, i. e., only ”long living” structures in γ
”survive” with increasing ǫ2. It means that the regularization factor ǫ2 has a direct connection to
a dynamical behavior of the analyzed time series, i. e., it allows to control the metastability of
underlying transition process.

Next, we compare the FEM-K-trends-method with FCRM-clustering algorithm wrt. the sen-
sitivity to noise σ. Fig. 3 reveals that application of the FEM-K-trends-methods results in much
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Figure 2: Identified transition path between the clusters 1 and 2 as a function of time (color
denotes the affiliation to a corresponding cluster): (left panel) calculated for different val-
ues of fuzzifier m with FCRM-algorithm (K = 2, optimization repeated 100 times with ran-
domly generated initial values), and (right panel) for different values of regularization factor ǫ2

(FEM-K-Trends-algorithm with K = 2, optimization repeated 100 times with randomly generated
initial values). The analyzed time series is in both cases the same, generated with model (26)
with transition process from the upper panel of Fig. 1 and noise amplitude σ = 7. Dashed lines
denote the moments when the original transition process from Fig. 1 was switching between the
clusters.

more reliable cluster identification in the case of a noisy data. Fig. 3 also demonstrates that the
introduction of the fuzzifier m > 1 in context of FCRM-method results in the worsening of cluster
identification for well–separated clusters with relatively low noise intensity.

b. Three hidden states

In order to demonstrate the performance of the presented framework wrt. the identification of
metastable cluster sets, we extend the previous example by adding a new linear regression
cluster state and change the transition process in a way presented in Fig. 4. The hidden process
switches frequently between the first and the second states and from time to time goes into the
third state, i. e., the third state is metastable, as well as the combination of the first and the
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Figure 5: Cluster affiliation functions γ1(t), γ2(t) and γ3(t) (color indicates the value of the function
between 0 and 1). The calculation is performed with the FEM-K-Trends-algorithm for different
values of regularization factor ǫ2 ( with K = 3, optimization repeated 100 times with randomly
generated initial values). The analyzed time series is generated with model (27) with the transi-
tion process from the upper panel of Fig. 1 and noise amplitude σ = 7.

second states together builds the second metastable cluster set.

xj (t) = θi(t)j(t − t̄j) + σN (0, 1) , j = 1, 2, 3

θ1 =
(

0.0 0.0 0.0
)

θ2 =
(

0.01 −0.01 0.01
)

, θ3 =
(

−0.01 0.01 −0.01
)

t̄ =
(

0.0 300 600
)

(27)
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Figure 6: Results of the optimal linear regression fit (θ0 + θ1t) for the whole length of the analyzed
temperature time series.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

Number of Clusters, K

E
C

V
(K

)

1 2 3 4 5 6
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Index of the Eigenvalue

E
ig

en
va

lu
es

 o
f t

he
 M

ar
ko

v 
G

en
er

at
or

 

 

Figure 7: Comparison of two criteria for the choice of K: Explained Cluster Variance (ECV)
criterion (28) (left panel), and Markovian spectral gap criterion (right panel, dotted lines indicate
the confidence intervals of the calculated Markov generator eigenvalues).

As it was already mentioned above, there are two basic possibilities to estimate the number of
metastable sets in the analyzed data and thereby to choose the optimal K: (i) spectral analysis of
the Markov transition matrix and (ii) variation of the regularization parameter ǫ2 and careful com-
parison of the respective cluster affiliations γi(t), i = 1, . . . ,K. In the following, both approaches
will be exemplified for the time series from Fig. 4.

(i) If the transition process resulting from an application of the clustering algorithm (with K
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Figure 8: Comparison of transition pathes calculated with K-means algorithm for K = 3 (dashed)
and FEM-K-trends algorithm for K = 3,R = 1, ǫ2 = 0 (solid).

chosen a priori high enough) was found to be Markovian, one can investigate a spectrum of the
correspondent transition matrix for a presence of the spectral gap that can help to identify the
number of metastable Markovian sets in the data (Schütte and Huisinga 2003; Huisinga et al.
2004). Applying the FEM-K-trends algorithm with K = 4 and ǫ2 = 0 we get the hidden transition
process that can be shown to be Markovian (Metzner et al. 2007). Calculating a spectrum of
the correspondent transition matrix we get the following eigenvalues (1.0, 0.99, 0.57, 0.49). The
spectral gap indicates the presence of two essential eigenvalues, 1.0 and 0.99, therefore the
existence of K = 2 metastable sets is shown.

(ii) Alternatively, if the Markovianity of the transition process is not fulfilled, one can choose
some a priori value for K and repeat the FEM-K-trends clustering with increasing values of ǫ2.
For the time series from Fig. 4, respective results are summarized in Fig. 5 for K = 3. Whereas
the cluster affiliation γ1(t) indicates a sharp separation of two states (only taking values near
0 and 1 almost independently of the regularization factor ǫ2), cluster affiliations γ2(t) and γ3(t)
approach the value 0.5 very fast with growing ǫ2. This means that both states become statistically
indistinguishable and the number of cluster states K should be decreased. Analysis of the same
data with K = 2 results in a sharp separation of two metastable states (almost independently of
ǫ2). As in the case (i) before, this feature indicates K = 2 as an optimal number of metastable
sets in the data.

c. Analysis of Historical Temperature Data in Europe
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Description of the data Using the method presented in the previous sections, we analyze daily
mean values of the 700 hPa air temperature field from the ERA 40 reanalysis data (Simmons and
Gibson 2000). We consider a region with the coordinates: 27.5°W – 47.5°E and 32.5°N – 75.0°
N , which includes Europe and a part of the Eastern North Atlantic. The resolution of the data
is 2.5°which implies a grid with 31 points in the zonal and 18 in the meridional direction. For the
analysis we have considered temperature values only for the period 1958 till 2002, thus we end
with a 558-dimensional time series of 16314 days.

In order to remove the seasonal trend we apply a standard procedure, where from each value
in the time series we subtract a mean build over all values corresponding to the same day and
month e.g., from the data on 01.01.1959 we subtract the mean value over all days which are first
of January and so on.

Discussion of the results We start the data analysis calculating the optimal linear regression
fit (R = 1) for the whole length of the analyzed time series. The correspondent expected mean
temperature change during the whole observation period Ndays = 16314 can then be calculated
as θ1Ndays, where θ1 ∈ R

558 is a vector of the first-order part coefficients for the analyzed data on
the respective grid. As it can be seen from the right panel of the Fig. 6, mean overall temperature
changes do not exceed 1.0◦C.

Next, we cluster the data with FEM-K-trends(for K = 6,R = 1, ǫ2 = 0). In order to avoid the
problem of trapping in local optima of the functional (20), we repeat the clustering procedure 100
times with different randomly initialized cluster parameters and keep the clustering results with
the lowest value of the functional (20). Fig. 7 illustrates the comparison of two alternative criteria
used to determine the number of clusters K in the data. First we apply the Explained Cluster
Variance (ECV) criterion, defined as

ECV (K) = 1 −

∑

K

i=1

∑n

j=1 γm
i (tj) ‖ xtj − µi ‖

2

∑n

j=1 ‖ xtj − E (xt) ‖2
,

E (xt) =
1

n

n
∑

j=1

xtj , (28)

where µi are the geometrical cluster centers. As it is demonstrated on the left panel of Fig. 7,
the value of ECV (K) increases uniformly with K and implicates no obvious choice of K. The
right panel of Fig. 7 shows the eigenvalues of the Markov-generator estimated from the transition
process resulting from FEM-K-trends(for K = 6,R = 1, ǫ2 = 0). The presence of the spectral
gap indicates existence of 3 metastable sets in the analyzed data.

Applying of the FEM-K-trends procedure (for K = 6,R = 1, ǫ2 = 0, clustering repeated 100
times with different randomly chosen initial cluster parameter values) results in the identification
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of the transition process shown in Fig. 8 (solid line). Besides of some similarity, the identified
path is quite different from the transition calculated with K-means-algorithm. This difference be-
comes more obvious if we compare the trends calculated for the K-means clusters as it was
done in Philipp et al. (2007) (see Fig. 9) and the values resulting from the FEM-K-trends cluster-
ing (see Fig. 10). Standard methods of regression analysis were applied (Kedem and Fokianos
2002), statistical significance of the resulting linear trends was confirmed and confidence inter-
vals for the regression coefficients were calculated demonstrating the credibility of the identified
temperature trends.

As was already discussed above, K-means-framework uses an implicit assumption that the
analyzed time series is (locally) stationary. In contrast, FEM-K-trends actually uses the non-
stationarity of the data as an additional property which helps to cluster the data according to
the differences in time trend. Figures 9-10 demonstrate how big the discrepancy between the
clustering results obtained with different methods can be and how important it is to choose the
right tool dependent on the analyzed data and the property of interest.

Finally, we analyze the identified transition process. As it was mentioned above, the major
advantage of the presented FEM-K-trends approach compared to the HMM-based strategies
(Horenko et al. 2008b; Horenko 2008b,b) is its independence on assumptions about the type of
the probability model. Therefore one does not have to assume a priori that the hidden transition
process is an output of the time-homogenous Markov chain. In context of FEM-K-trends this
assumption can be checked a posteriori and can help to construct reduced predictive Markovian
models based on the observation data. As it is shown in the Fig.11, the eigenvalues of the un-
derlying generator can be assumed to be time-independent and the process switching between
3 regression models can be assumed to be Markovian. To investigate the time-dependence of
the identified Markovian process switching between the linear regressive models from Fig. 10,
we define a moving window of 1000 days, slide it along the time series of transition process Γ (t)
and calculate the transition matrix P (t) of the underlying Markov chain for all t. The resulting
transition probabilities as functions of time are shown in Fig. 12. It demonstrates that the Markov-
ian transition process is not time-homogenous and considerable amount of long-term variability
is present in it.

5. Conclusion

We have presented a numerical framework for clustering multidimensional non-stationary time
series based on minimization of a regularized averaged clustering functional. Finite element
discretization of the problem allowed us to suggest a numerical algorithm based on the iterative
minimization of this functional. We have compared the resulting FEM-K-trends algorithm with
standard clustering techniques and analyzed the connection between the regularization factor,
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metastabilty and identification of optimal number of metastable substates in the analyzed data.
When working with multidimensional data, it is very important to be able to extract some

reduced description out of it (e.g., in form of hidden transition pathes or reduced dynamical
models). In order to control the reliability of the clustering, one has to analyze the sensitivity of
obtained results wrt. the length of the time series and the number K of the identified clusters.
We have given some hints for the selection of an optimal K and explained how the quality of the
resulting reduced representation can be acquired.

As an application of the proposed method to analysis of historical temperature data, it has
been demonstrated how the problem of temperature trend identification can be solved simul-
taneously with the clustering problem. Large discrepancies between the temperature trends
identified for K-means and FEM-K-trends clusters were found. It reveals how big the impact of
implicit method assumptions about the data (like local data stationarity in the case of the widely
used K-means algorithm) on the analysis results and their interpretation is.
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Figure 9: Results of the optimal linear regression fit (θi0 + θi1t) , i = 1, 2, 3 (coloring in ◦C) calcu-
lated for each of the cluster states identified by the K-means algorithm for K = 3.
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Figure 10: Regression coefficients (coloring in ◦C) θi0, i = 1, 2, 3 and the mean temperature
change θi1Ndays, i = 1, 2, 3 resulting from FEM-K-trends clustering for K = 3,R = 1, ǫ2 = 0.
Confidence intervals for the estimated parameters do not exceed 0.4◦C for θi0 and 0.2◦C for θi125
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Figure 11: Markovianity test: generator eigenvalues estimated for different time lags are shown
together with their confidence intervals (e. g.,time lag τ = 2 means that only every second
element of the transition path is taken for the estimation). Dashed lines show the mean estimates
obtained for all of the shown time lags.

5000 1000015000
0.7

0.8

0.9

Time (days)

P
11

5000 1000015000

0.1

0.15

0.2

Time (days)

P
12

5000 1000015000

0.05

0.1

0.15

Time (days)

P
13

5000 1000015000

0.04
0.06
0.08
0.1

0.12
0.14

Time (days)

P
21

5000 1000015000

0.65
0.7

0.75
0.8

0.85

Time (days)

P
22

5000 1000015000
0.1

0.15

0.2

0.25

Time (days)

P
23

5000 1000015000
0.05

0.1

0.15

Time (days)

P
31

5000 1000015000
0.05

0.1

0.15

Time (days)

P
32

5000 1000015000

0.75

0.8

0.85

0.9

Time (days)

P
33

Figure 12: Inhomogeneity of the transition Markov process P : elements of the transition matrix
P are calculated with the help of a moving frame of the length 1000 from the FEM-K-trends
transition process. Dotted lines denote the confidence intervals for the calculated quantities.
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