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Low-rank tensor approximation approaches have become an important tool in the scientific 
computing community. The aim is to enable the simulation and analysis of high-
dimensional problems which cannot be solved using conventional methods anymore due 
to the so-called curse of dimensionality. This requires techniques to handle linear operators 
defined on extremely large state spaces and to solve the resulting systems of linear 
equations or eigenvalue problems. In this paper, we present a systematic tensor-train 
decomposition for nearest-neighbor interaction systems which is applicable to a host of 
different problems. With the aid of this decomposition, it is possible to reduce the memory 
consumption as well as the computational costs significantly. Furthermore, it can be shown 
that in some cases the rank of the tensor decomposition does not depend on the network 
size. The format is thus feasible even for high-dimensional systems. We will illustrate 
the results with several guiding examples such as the Ising model, a system of coupled 
oscillators, and a CO oxidation model.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Over the last years, the interest in low-rank tensor decompositions has been growing rapidly and several different tensor 
formats such as the canonical format, the Tucker format, and the TT format have been proposed. It was shown that tensor-
based methods can be successfully applied to many different application areas, e.g. quantum physics [1,2], chemical reaction 
dynamics [3–7], stochastic queuing problems [8,9], machine learning [10–12], and high-dimensional data analysis [13]. The 
applications typically require solving systems of linear equations, eigenvalue problems, ordinary differential equations, par-
tial differential equations, or completion problems. One of the most promising tensor formats for these problems is the 
so-called tensor-train format (TT format) [14–16], a special case of the hierarchical Tucker Format [17–20]. In this paper, we 
will consider in particular high-dimensional interaction networks described by a Markovian master equation (MME). The 
goal is to derive systematic TT decompositions of high-dimensional tensors for interaction networks that are only based on 
nearest-neighbor interactions. In this way, we want to simplify the construction of tensor-train representations, which is one 
of the most challenging tasks in the tensor-based simulation of interaction networks. The resulting TT decomposition can 
be easily scaled to describe different state space sizes, e.g. number of reaction sites or number of species. The complexity of 
a tensor train is determined by the TT ranks. Not only the memory consumption of the tensor operators is affected by the 
ranks, but also the costs of standard operations such as the calculation of norms and the runtimes of tensor-based solvers.
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Many applications require solving high-dimensional systems of linear equations of the form A · T = U, where A is a linear 
TT operator and T and U are tensors in the TT format. The efficiency of algorithms proposed so far for solving such systems 
such as ALS, MALS, or AMEn [21,22,5] depends strongly on the TT ranks of the operator. As a result, it is vitally important 
to be able to generate low-rank representations of A. This can be achieved by truncating the operator, neglecting singular 
values that are smaller than a given threshold ε, or by exploiting inherent properties of the problem. Our goal is to derive 
a low-rank decomposition which represents the operator A associated with nearest-neighbor interaction networks exactly, 
without requiring truncation.

Finding a TT decomposition of a given tensor is in general cumbersome, in particular if the number of cells is not 
determined a priori. In [7], we derived a systematic decomposition for a specific reaction system and it turned out that 
the underlying idea can be generalized to describe a larger class of interaction systems. The only assumption we make is 
that the system comprises only nearest-neighbor interactions. The number and types of the cells as well as the interactions 
between these cells may differ. Moreover, systems with a cyclic network structure can be represented using the proposed TT 
decomposition. One of the main advantages of the presented decomposition is that the TT ranks of homogeneous systems 
do not depend on the number of cells of the network.

The paper is organized as follows: In Section 2, we give a brief overview of the TT format and define a special core 
notation. Furthermore, nearest-neighbor interaction systems defined on a set of cells and Markovian master equations are 
introduced. In Section 3, a specific TT decomposition is derived exploiting properties of nearest-neighbor interaction systems. 
In Section 4, we use this TT decomposition for Markovian master equations in the TT format and present numerical results. 
Section 5 concludes with a brief summary and a future outlook.

2. Theoretical background

In this section, we will introduce the concept of tensors and different tensor decompositions, namely the canonical for-
mat and the TT format. Furthermore, we will define interaction systems that are based only on nearest-neighbor couplings. 
We will distinguish between homogeneous and heterogeneous systems as well as between cyclic and non-cyclic systems.

2.1. Tensor formats

Tensors, in our sense, are simply multidimensional generalizations of vectors and matrices. A tensor in full format is 
given by a multidimensional array of the form T ∈ R

n1×···×nd and a linear operator by A ∈R
(n1×n1)⊗···⊗(nd×nd) . The entries of 

a tensor are indexed by Tx1,...,xd and the entries of operators by Ax1,y1...,xd,yd . In order to mitigate the curse of dimensionality, 
that is, the exponential growth of the memory consumption in d, various tensor formats have been proposed over the last 
years. Here, we will focus on the TT format. The common basis of various tensor formats is the tensor product which 
enables the decomposition of high-dimensional tensors into several smaller tensors.

Definition 2.1. The tensor product of two tensors T ∈ R
m1×···×md and U ∈ R

n1×···×ne defines a tensor T ⊗ U ∈
R

(m1×···×md)×(n1×···×nd) with

(T ⊗ U)x1,...,xd,y1,...,ye
= Tx1,...,xd · Uy1,...,ye ,

where 1 ≤ xk ≤ mk for k = 1, . . . , d and 1 ≤ yk ≤ nk for k = 1, . . . , e.

The tensor product is a bilinear map. That is, if we fix one of the tensors we obtain a linear map on the space where the 
other tensor lives (see Appendix A). The initial concept of tensor decompositions was introduced in 1927 by Hitchcock [23], 
who presented the idea of expressing a tensor as the sum of a finite number of rank-one tensors (or elementary tensors).

Definition 2.2. A tensor T ∈ R
n1×···×nd is said to be in the canonical format if

T =
r∑

k=1

(
T(1)
)

k,: ⊗ · · · ⊗
(

T(d)
)

k,: , (1)

with cores T(i) ∈ R
r×ni for i = 1, . . . , d. The parameter r is called the rank of the decomposition.

Remark 2.3. Given a canonical tensor T as defined in (1), a cyclic permutation of the cores yields a tensor whose indices 
are permuted correspondingly. That is, if we define

T̃ =
r∑

k=1

(
T(m)

)
k,: ⊗ · · · ⊗

(
T(d)
)

k,: ⊗
(

T(1)
)

k,: ⊗ · · · ⊗
(

T(m−1)
)

k,: ,

with 1 ≤ m ≤ d, we obtain

T̃xm,...,x ,x1,...,xm−1 = Tx1,...,xm−1,xm,...,x .
d d
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Fig. 1. Graphical representation of tensors: (a) Tensor of order 5 in the TT format, the first and the last core are matrices, the other cores are tensors of 
order 3. (b) Linear operator of order 5 in the TT format, the first and the last core are tensors of order 3, the other cores are tensors of order 4.

An analogous statement even holds for arbitrary permutations of the cores. However, we only consider cyclic permutations 
in order to derive tensor representations for the considered interaction systems.

In fact, any tensor can be represented by a linear combination of elementary tensors as in (1). However, the number of re-
quired rank-one tensors plays an important role. Although the canonical format can theoretically be used for low-parametric 
decompositions of high-dimensional tensors [24–26], it has a crucial drawback: Since canonical tensors with bounded rank 
r do not form a manifold, optimization problems can be ill-posed [27], with the result that the best approximation may not 
even exist. For more information about canonical tensors, we refer to [28].

We will use the canonical format for the derivation of TT decompositions for systems based on nearest-neighbor in-
teractions. For the actual computations, however, we will rely on the TT format. The TT format, which was developed by 
Oseledets and Tyrtyshnikov in 2009, see [14,15], is a promising candidate for numerical computations due to its stability 
from an algorithmic point of view and reasonable computational costs.

Definition 2.4. A tensor T ∈ R
n1×···×nd is said to be in the TT format if

T =
r0∑

k0=1

· · ·
rd∑

kd=1

(
T(1)
)

k0,:,k1
⊗ · · · ⊗

(
T(d)
)

kd−1,:,kd

,

where the T(i) ∈R
ri−1×ni×ri , i = 1, . . . , d, are called TT cores and the numbers ri TT ranks of the tensor. Here, r0 = rd = 1.

It is important to note that the TT ranks determine the numerical complexity. The lower the ranks, the lower the memory 
consumption and the computational costs. However, high ranks might be required to represent the state of the network or 
the solution of a system of linear equations accurately. Nevertheless, it is advantageous to use the TT format since the TT 
ranks often exhibit a better behavior than the ranks of canonical decompositions, especially for increasing system sizes. In 
general, the TT ranks are bounded by the canonical rank when expressing the same tensor in both formats, see [29].

The TT decomposition presented in this paper can also be used to express linear operators A in the TT format. We 
assume that these operators are generalizations of square matrices, i.e. A ∈R

(n1×n1)×···×(nd×nd) .

Definition 2.5. A linear operator A ∈R
(n1×n1)×···×(nd×nd) is said to be in the TT format if

A =
r0∑

k0=1

· · ·
rd∑

kd=1

(
A(1)
)

k0,:,:,k1
⊗ · · · ⊗

(
A(d)
)

kd−1,:,:,kd

,

with TT cores A(i) ∈R
ri−1×ni×ni×ri for i = 1, . . . , d. Here, we require again that r0 = rd = 1.

Fig. 1 shows a graphical representation of a tensor train T ∈ R
n1×···×nd as well as a TT operator A ∈ R

(n1×n1)×···×(nd×nd) . 
A core is depicted as a circle with different arms indicating the modes of the tensor and the rank indices. Due to the fact 
that r0 and rd are equal to 1, we regard the first and the last TT core as matrices. Analogously, the first and the last core of 
A are interpreted as tensors of order 3.

As for the canonical format, the storage consumption of tensors in the TT format depends only linearly on the number of 
dimensions. For problems with a certain structure, one can indeed bound the ranks in order to achieve a linear scaling, see 
e.g. [7]. One of the main advantages of the TT format over the canonical format is its stability from an algorithmic point of 
view [21]. An important property of the TT format is the ensured existence of a best approximation with bounded TT ranks 
[21,30]. With the aid of the TT format, we are able to avoid the curse of dimensionality – provided the modes and ranks are 
reasonably small – and we can compute quasi-optimal approximations of high-dimensional tensors. Thus, in order to speed 
up calculations and to be able to solve even high-dimensional problems, low-rank TT representations of linear operators are 
of utmost importance.
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Fig. 2. Visualization of nearest-neighbor interaction networks. Elementary interactions/reactions involve only one cell or two cells, respectively. Interactions 
between the last and the first cell are optional, i.e. we consider cyclic and non-cyclic systems.

For the sake of comprehensibility, we represent the TT cores as 2-dimensional arrays containing matrices as elements, 
cf. [31]. For a given tensor-train operator A ∈ R

(n1×n1)×···×(nd×nd) with cores A(i) ∈ R
ri−1×ni×ni×ri , i = 1, . . . , d, each core is 

written as

[
A(i)
]

=

⎡⎢⎢⎢⎢⎢⎢⎣
A(i)

1,:,:,1 · · · A(i)
1,:,:,ri

...
. . .

...

A(i)
ri−1,:,:,1 · · · A(i)

ri−1,:,:,ri

⎤⎥⎥⎥⎥⎥⎥⎦ . (2)

We then use the following notation for a tensor train A ∈ R
(n1×n1)×···×(nd×nd):

A =
[

A(1)
]
⊗
[

A(2)
]
⊗ · · · ⊗

[
A(d−1)

]
⊗
[

A(d)
]

=
[

A(1)
1,:,:,1 · · · A(1)

1,:,:,r1

]
⊗

⎡⎢⎢⎣
A(2)

1,:,:,1 · · · A(2)
1,:,:,r2

...
. . .

...

A(2)
r1,:,:,1 · · · A(2)

r1,:,:,r2

⎤⎥⎥⎦⊗ · · ·

· · · ⊗

⎡⎢⎢⎣
A(d−1)

1,:,:,1 · · · A(d−1)
1,:,:,rd−1

...
. . .

...

A(d−1)
rd−2,:,:,1 · · · A(d−1)

rd−2,:,:,rd−1

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
A(d)

1,:,:,1
...

A(d)
rd−1,:,:,1

⎤⎥⎥⎦ .

This operation can be regarded as a generalization of the standard matrix multiplication, where the cores contain matrices as 
elements instead of scalar values. Just like multiplying two matrices, we compute the tensor products of the corresponding 
elements and then sum over the columns and rows, respectively. Below, we will use this notation to derive a compact 
representation of the tensor operators pertaining to nearest neighbor interaction systems.

2.2. Nearest-neighbor interaction systems

Following the terminology used for coupled cell systems, see e.g. [32], we describe a nearest-neighbor interaction system
(NNIS) as a network of interacting systems – so-called cells. These cells can represent highly diverse physical or biological 
systems, e.g. coupled laser arrays [33], n-body dynamics [34], chemical reaction networks [35], or heterogeneous catalytic 
processes [7]. Given a finite number of cells �1, . . . , �d coupled in a chain or a ring, we only allow interactions/reactions R
involving one cell �i , i ∈ {1, . . . , d}, as well as reactions involving two adjacent cells �i and �i+1, i ∈ {1, . . . , d − 1}, and, if 
the system is cyclic, �d and �1. This coupling structure is shown in Fig. 2.

We assume that the state space is finite, i.e. each cell �i can have ni different states, which are identified by the set of 
natural numbers {1, . . . , ni}. Thus, the state space S is given by

S = {1, . . . ,n1} × {1, . . . ,n2} × · · · × {1, . . . ,nd}
and a state of the system by a vector X = (x1, . . . , xd)

T ∈ S , with xi ∈ {1, . . . , ni} for i = 1, . . . , d. A tensor T ∈ R
n1×···×nd

based on nearest-neighbor interactions can be expressed elementwise as

Tx1,...,xd =
d∑

i=1

(Si)xi
+

d−1∑
i=1

(
Ki,i+1

)
xi ,xi+1

+ (Kd,1
)

xd,x1
, (3)

with vectors Si ∈ R
ni representing interactions on a single cell and matrices Ki,i+1 ∈ R

ni×ni+1 representing interactions 
between the cells �i and �i+1. The last term in (3) is only required for cyclic NNISs, i.e. the matrix Kd,1 is only nonzero if 
there is at least one interaction between �d and �1. We will call an NNIS homogeneous if the cell types and the interactions 
do not depend on the cell number, i.e. S1 = S2 = · · · = Sd and K1,2 = K2,3 = · · · = Kd−1,d(= Kd,1), otherwise the system is 
called heterogeneous. Consequently, it also holds that n1 = n2 = · · · = nd if the system is homogeneous.



144 P. Gelß et al. / Journal of Computational Physics 341 (2017) 140–162
Analogously, a linear operator A ∈ R
(n1×n1)×···×(nd×nd) corresponding to an NNIS can be expressed elementwise as

Ax1,y1,...,xd,yd =
d∑

i=1

(Si)xi ,yi
+

d∑
i=1

(
Ki,i+1

)
xi ,yi ,xi+1,yi+1

+ (Kd,1
)

xd,yd,x1,y1
. (4)

In this case, the components Si are matrices and Ki,i+1 are tensors of order 4. As already mentioned in [5], simple examples 
for tensors of this form are Ising models and linearly coupled oscillators, see Section 3. Also more complex operators 
describing Markovian master equations can have the form (4). Examples for these generators can be found in Section 4.

Remark 2.6. Alternatively, the representation (3) may be given by

Tx1,...,xd =
d∑

i=1

(Si)xi
+

d−1∑
i=1

βi∑
μ=1

(
Li,μ ⊗ Mi+1,μ

)
xi ,xi+1

+ (Ld,μ ⊗ M1,μ

)
xd,x1

, (5)

In order to obtain this representation, we only have to apply a QR-factorization or a singular value decomposition to the 
matrices Ki,i+1 which would yield

Ki,i+1 =
βi∑

μ=1

Li,μ ⊗ Mi+1,μ,

with vectors Li,μ ∈ R
ni , Mi+1,μ ∈ R

ni+1 , and βi being the rank of the matrix Ki,i+1. The same argumentation can be used 
for linear operators (4) in the TT format, as we will show below.

3. General SLIM decomposition

In this paper, we are particularly interested in master equations corresponding to NNISs, i.e. computing the probability 
distribution of all states of a system over time. However, the TT decomposition derived here may be applied in a more 
general way.

3.1. Derivation

Let us consider tensor trains in general. An NNIS can be represented by a tensor that has a canonical representation 
only consisting of elementary tensors, where at most two (adjacent) components are unequal to a vector of ones or to the 
identity matrix, respectively. That is, we assume that the canonical decomposition of a tensor T ∈ R

n1×···×nd is given by

T = S1 ⊗12 ⊗ · · · ⊗1d + . . . + 11 ⊗ · · · ⊗1d−1 ⊗ Sd

+
β1∑

μ=1

L1,μ ⊗ M2,μ ⊗13 ⊗ · · · ⊗1d + . . .

+
βd−1∑
μ=1

11 ⊗ · · · ⊗1d−2 ⊗ Ld−1,μ ⊗ Md,μ

+
βd∑

μ=1

M1,μ ⊗12 ⊗ · · · ⊗1d−1 ⊗ Ld,μ,

(6)

with 1i = (1, . . . , 1)T ∈ R
ni . The last line of (6) is only required if the system is cyclic. The components Si , Li,μ , and Mi,μ

are vectors in Rni . If we consider a linear operator A(n1×n1)×···×(nd×nd) , its canonical decomposition is given by

A = S1 ⊗ I2 ⊗ · · · ⊗ Id + . . . + I1 ⊗ · · · ⊗ Id−1 ⊗ Sd

+
β1∑

μ=1

L1,μ ⊗ M2,μ ⊗ I3 ⊗ · · · ⊗ Id + . . .

+
βd−1∑
μ=1

I1 ⊗ · · · ⊗ Id−2 ⊗ Ld−1,μ ⊗ Md,μ

+
βd∑

M1,μ ⊗ I2 ⊗ · · · ⊗ Id−1 ⊗ Ld,μ,

(7)
μ=1
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with identity matrices Ii ∈ R
ni×ni . In this case, the components Si , Li,μ , and Mi,μ are matrices in Rni×ni . Again, the last 

line is only required for cyclic systems. Since the derivations of the TT decomposition for (6) and (7) are almost identical, 
we will describe only the operator representation from now on. We gather all matrices Li,μ and Mi+1,μ in the TT cores Li
and Mi+1, respectively. The cores are then defined as

[Li] = [ Li,1 . . . Li,βi

] ∈R
1×ni×ni×βi ,

[Mi+1] = [Mi+1,1 . . . Mi+1,βi

]T ∈R
βi×ni+1×ni+1×1,

for i = 1, . . . , d − 1, and

[Ld] = [ Ld,1 . . . Ld,βd

]T ∈R
βd×nd×nd×1,

[M1] = [M1,1 . . . M1,βd

] ∈R
1×n1×n1×βd ,

where we utilize the core-notation from (2) and the definition of rank-transposed TT cores given in Appendix A. With the 
aid of the TT format, it is often possible to derive more compact representations of tensors than in the canonical format. 
When different rank-one tensors of a canonical representation share a number of identical cores, these elementary tensors 
may be expressed as one compact tensor train. Thus, the whole operator can be written in a shorter form as

A = S1 ⊗ I2 ⊗ · · · ⊗ Id + · · · + I1 ⊗ · · · ⊗ Id−1 ⊗ Sd

+ [L1] ⊗ [M2] ⊗ I3 ⊗ · · · ⊗ Id + · · · + I1 ⊗ · · · ⊗ Id−2 ⊗ [Ld−1] ⊗ [Md]

+ [M1] ⊗ [J2] ⊗ · · · ⊗ [Jd−1] ⊗ [Ld] ,

(8)

where Ji ∈ R
βd×ni×ni×βd is a TT core with

[Ji] =
⎡⎢⎣ Ii 0

. . .

0 Ii

⎤⎥⎦ .

Note that Ji is not a block matrix but the compact representation of a tensor. As before, the last line of (8) is only required 
for cyclic systems. Finally, we gather the TT cores Si , Li , and Mi in corresponding supercores and express the linear operator 
A in the TT format in a condensed form, namely as a TT decomposition given by

A = [S1 L1 I1 M1
]⊗
⎡⎢⎢⎣

I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

⎤⎥⎥⎦⊗ · · · ⊗

⎡⎢⎢⎣
Id−1 0 0 0

Md−1 0 0 0
Sd−1 Ld−1 Id−1 0

0 0 0 Jd−1

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
Id

Md
Sd
Ld

⎤⎥⎥⎦ , (9)

where Ii = Ii ∈ R
ni×ni . The above equation holds for all heterogeneous, cyclic systems. A proof can be found in Appendix B. 

From now on, we will call the TT decomposition given in (9) SLIM decomposition. The origin of this term is explained by the 
structure of the first core. The TT ranks of the decomposition are given by

ri = 2 + βi + βd,

for i = 1, . . . , d − 1. Furthermore, r0 = rd = 1. For the homogeneous case, where all βi are equal, the TT ranks are therefore 
bounded which results in a linear growth of the storage consumption with increasing dimensionality, cf. Appendix B. Even 
considering heterogeneous systems, we can obtain a linear scaling if the ranks βi and dimensions ni are bounded. To reduce 
the storage consumption, the different TT cores can be stored as sparse arrays. An estimate of the storage consumption is 
given in Appendix B. For homogeneous systems, the decomposition can be simplified to

A = [S L I M
]⊗
⎡⎢⎢⎣

I 0 0 0
M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗ · · · ⊗

⎡⎢⎢⎣
I 0 0 0

M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
I

M
S
L

⎤⎥⎥⎦ . (10)

A beneficial property of the SLIM decomposition of homogeneous systems is the arbitrary scaling of the interaction system, 
i.e. decreasing or increasing the number of cells corresponds to removing or inserting a TT core. Only the first and the last 
core in (10) have to be fixed. The number of cores in between can differ, but must be greater than 0 (since cyclic systems 
have at least 3 cells, two linked cells are represented by (11)).

If we consider a non-cyclic system, either homogeneous or heterogeneous, interactions between the last and the first cell 
are omitted. In particular, the SLIM decomposition for non-cyclic, heterogeneous systems is given by

A = [S1 L1 I1
]⊗
⎡⎣ I2 0 0

M2 0 0
S2 L2 I2

⎤⎦⊗ · · · ⊗
⎡⎣ Id−1 0 0

Md−1 0 0
Sd−1 Ld−1 Id−1

⎤⎦⊗
⎡⎣ Id

Md
Sd

⎤⎦ . (11)
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Fig. 3. Pictorial representation of the Ising model. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

3.2. Examples

3.2.1. Ising model
The first example is taken from the field of statistical mechanics. Ising models were proposed by Wilhelm Lenz [36] and 

first studied in detail by Ernst Ising [37]. Consisting of d cells that represent magnetic dipole moments of atomic spins, Ising 
models describe ferromagnetic effects in solids. The spin corresponding to each cell can be in two states, +1 or −1. Usually 
the cells are arranged in an d-dimensional lattice where only adjacent cells interact. Ising models are of particular interest 
since they can be solved exactly.

Interactions are either between two adjacent cells or on one cell. Let xi = ±1 be the state of cell �i . The spin configu-
ration of the whole system is then given by X = (x1, . . . , xd)

T . Furthermore, we denote by N the set of all pairs of indices 
corresponding to nearest neighbors, i.e. (i, j) ∈ N if �i and � j are adjacent cells. We consider the Hamiltonian function H
with

H(X) = −
∑

(i, j)∈N
J i jxi x j − μ

d∑
i=1

hi xi .

The equation above represents the energy of the spin configuration X . The interaction strength between two adjacent cells 
�i and � j is denoted by J i j , μ and hi represent the magnetic moment and an external magnetic field, respectively.

Here, we focus on the one-dimensional Ising model (see Fig. 3), which is represented by a cyclic, homogeneous NNIS, 
i.e. we consider d cells �1, . . . , �d arranged in a ring. It is common to simplify the Ising model by assuming the same 
interaction strength between all nearest neighbors, i.e. J i j = J for all (i, j) ∈ N , and a constant external magnetic field, i.e. 
hi = h for i = 1, . . . , d. The Hamiltonian of the one-dimensional Ising model then becomes

H(X) = −
d∑

i=1

J xi xi+1 − μ

d∑
i=1

hxi,

with xd+1 = x1. Now, we consider the Hamiltonian function as a tensor H ∈ R
2×···×2. That is, all indices can take the value 

1 and 2, respectively, with

Hy1,...,yd = H(x1, . . . , xd),

where

xi =
{

+1, if yi = 1,

−1, if yi = 2.

Using the canonical format, we can express the tensor H as

H = − μh ·
(+1

−1

)
⊗1⊗ · · · ⊗1− μh ·1⊗ · · · ⊗1⊗

(+1
−1

)
− J ·

(+1
−1

)
⊗
(+1

−1

)
⊗1⊗ · · · ⊗1− · · ·

· · · − J ·1⊗ · · · ⊗1⊗
(+1

−1

)
⊗
(+1

−1

)
− J ·

(+1
−1

)
⊗1⊗ · · · ⊗1⊗

(+1
−1

)
.

By defining S = −μh · (+1, −1)T , L = − J · (+1, −1)T , I = (1, 1)T , and M = (+1, −1)T , we can express H as a SLIM 
decomposition similar to (10):

H = [S L I M
]⊗
⎡⎢⎢⎣

I 0 0 0
M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗ · · · ⊗

⎡⎢⎢⎣
I 0 0 0

M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
I

M
S
L

⎤⎥⎥⎦ .
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Fig. 4. Visualization of linearly coupled oscillators, where all masses are in equilibrium position. Displacements xi are between −1 and 1.

3.2.2. Linearly coupled oscillator
The second example for a general application of the SLIM decomposition is a quantum system consisting of a one-

dimensional chain of d identical harmonic oscillators coupled by springs, see e.g. [38,39]. Fig. 4 shows an illustration of this 
quantum system. Assuming periodic boundary conditions, the Hamiltonian operator of the system is given by

Ĥ =
d∑

i=1

(
1

2m
p̂2

i + mω2

2
x̂2

i + cm

2
(x̂i − x̂i+1)

2
)

, (12)

where m is the mass of each oscillator, ω its natural frequency, and c the coupling strength.
The displacement of the i-th mass point with respect to its equilibrium position is measured by the position operator x̂i , 

while p̂i represents the momentum operator of the i-th mass point. Applied to a wave function ψi at position xi of the i-th 
oscillator, these operators can be expressed as

p̂iψi(xi) = −ı�
∂

∂x
ψi(xi) and x̂iψi(xi) = xi · ψi(xi),

where ı denotes the imaginary unit. Using the finite difference method with mesh width h = 1/m, m ∈N, we obtain

p̂2
i ψi(xi) ≈ −�

2 ψi(xi − h) − 2ψi(xi) + ψi(xi + h)

h2
. (13)

Defining the discrete displacements xi,k = k · h for k = −m, . . . , 0, . . . , m and ψi,k representing the numerical approximation 
of ψi(xi,k), this yields

(
�

h

)2

⎛⎜⎜⎜⎜⎝
2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=:D p

⎛⎜⎝ψi,−m
...

ψi,m

⎞⎟⎠ . (14)

Discretizing x̂i , we obtain⎛⎜⎝xi,−m

. . .

xi,m

⎞⎟⎠
︸ ︷︷ ︸

=:Dx

⎛⎜⎝ψi,−m
...

ψi,m

⎞⎟⎠ . (15)

Since the momentum and position operators p̂i and x̂i act only on the wave function corresponding to the cell/oscillator �i , 
we can express these operators as rank-one tensors containing the matrices from (14) and (15), respectively, as a component. 
Representing the discretization of the position and momentum operators as tensor decompositions p̂i and x̂i , we can write

p̂2
i =
(
�

h

)2

· I ⊗ · · · ⊗ I ⊗ D p︸︷︷︸
i-th

component

⊗I ⊗ · · · ⊗ I,

x̂2
i = I ⊗ · · · ⊗ I ⊗ D2

x︸︷︷︸
i-th

component

⊗I ⊗ · · · ⊗ I.

The rules for tensor multiplication then imply that we can write 
(
x̂i − x̂i+1

)2
, compare (12), as(

x̂i − x̂i+1
)2 = x̂2

i + x̂2
i+1 − 2 · I ⊗ · · · ⊗ I ⊗ Dx︸︷︷︸

i-th

⊗ Dx︸︷︷︸
(i+1)-th

⊗ I ⊗ · · · ⊗ I.
component component
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Finally, by defining

S = �
2

2mh2
D p + mω2

2
D2

x + cmD2
x , L = −cmDx, M = Dx,

we can give the SLIM decomposition of the discretized Hamiltonian Ĥ as

Ĥ = [S L I M
]⊗
⎡⎢⎢⎣

I 0 0 0
M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗ · · · ⊗

⎡⎢⎢⎣
I 0 0 0

M 0 0 0
S L I 0
0 0 0 J

⎤⎥⎥⎦⊗

⎡⎢⎢⎣
I

M
S
L

⎤⎥⎥⎦ .

4. SLIM decomposition for Markov generators

In this section, we will consider tensor representations of Markovian master equations and illustrate the results using 
a simple guiding example. Consider a continuous-time Markov jump process on the state space S . Let P (X, t) be the 
probability that the system is in state X at time t under the condition that it was in state X0 at time t0. For the sake 
of simplicity, the dependence on the initial state is omitted. The probability distribution P (X, t) then obeys an MME [40], 
given by

∂

∂t
P (X, t) =

∑
Y

W (X |Y )P (Y , t) −
∑

Y

W (Y |X)P (X, t),

where W (Y |X) is the transition rate to go from state X to state Y by an elementary reaction as described above. Note that 
W (Y |X) is only nonzero if X and Y are elements of the state space S and there is an elementary reaction Rμ involving 
both states. If we denote the net changes in the state vector X caused by a single firing of Rμ by the vector ξμ ∈ Z

d , the 
reaction propensity aμ is given by

aμ(X) = W (X + ξμ|X),

which is only nonzero if X satisfies the requirements that Rμ may fire. Thus, summing over all M allowed reactions 
R1, . . . , RM , we obtain

∂

∂t
P (X, t) =

M∑
μ=1

aμ(X − ξμ)P (X − ξμ, t) − aμ(X)P (X, t). (16)

We assume that all reaction events are local, i.e. an event will only change the configuration in the vicinity of a particular 
cell. Thus, the number of elementary reactions we have to consider is bounded and the number M will be very small 
compared to the size of the state space.

Equation (16) has the same structure as a so-called chemical master equation (CME) [41], a special type of an MME 
which describes the time-evolution of a chemical system. However, in our case, the state space does not represent numbers 
of different molecules, instead it denotes the more general configuration of the cells. Due to the summation in (16), we 
consider exactly all possible states from which X can be reached and all states that can be reached from X by a single firing 
of one of the elementary reactions Rμ .

From now on, we consider a Markovian master equation defined on an NNIS. The elementary reactions occurring in such 
systems are of the form

(i) Rμ : xi → yi,

(ii) Rμ : xi, xi+1 → yi, yi+1, and

(iii) Rμ : xd, x1 → yd, y1,

(17)

respectively, with xi, yi ∈ {1, . . . , ni} for i = 1, . . . , d. That is, each reaction only changes the state of one cell or of two 
adjacent cells. We will call these types single-cell reactions (SCR) and two-cell reactions (TCR). TCRs of the form (iii) only 
occur in cyclic systems.

Example 4.1. As a simple example of an NNIS, we consider a cascading process on a genetic network consisting of 20 genes, 
see [5,42,43]. Here, the cells represent adjacent genes producing proteins that affect the expression of subsequent genes. 
The state of a cell describes the number of such proteins. In Fig. 5, the structure of this system is shown. The reactions and 
reaction propensities are:

Creation of the first protein corresponding to �1:

R1 : x1 → x1 + 1, a1(X) = 0.7.
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Fig. 5. Visualization of the signal cascade model. Elementary reactions on one cell are creation and destruction reactions. Elementary reactions proceed only 
in one direction and represent the creation of one protein depending on the number of the preceding proteins.

Creation of a protein corresponding to �i , 2 ≤ i ≤ d:

Ri : xi−1, xi → xi−1, xi + 1, ai(X) = xi−1

5 + xi−1
.

Destruction of a protein corresponding to �i , 1 ≤ i ≤ d:

Ri+d : xi → xi − 1, ai+d(X) = 0.07 xi .

If we start with an initial state where all numbers of proteins are 0, the value of the probability density function for any 
xi ≥ 63 is below machine precision for all times t ≥ 0, see [5]. Thus, we can consider a finite state space

S = {0, . . . ,63} × · · · × {0, . . . ,63}.
We map this state space to S ′ = {1, . . . , 64} × · · · × {1, . . . , 64} since we identify the states of each cell by a set of natural 
numbers as mentioned above. In this way, we prevent conflicts with the later introduced tensor indexing notation. The 
model is non-cyclic and heterogeneous since the first creation reaction differs from the other creation reactions. An exact 
TT decomposition of the corresponding MME operator of this system can be found in [5]. That decomposition, however, 
differs from the generally applicable SLIM decomposition as we will show in the following sections. 


4.1. Tensor representation of the Markovian master equation

In this section, we show how to derive tensor-based expressions of MMEs written as CMEs and introduce corresponding 
quantities such as, for instance, multidimensional shift operators. For an analogous derivation of the tensor representation 
of a CME, see [5]. Let M be the number of all elementary reactions involving one or two cells. We identify each propensity 
function aμ : S → R with a tensor aμ ∈R

n1×···×nd , i.e. for a state X = (x1, . . . , xd)
T ∈ S , we define(

aμ

)
x1,...,xd

= aμ(X),

for μ = 1, . . . , M. These propensity tensors can then be expressed in the canonical format as

aμ =
rμ∑

k=1

(
a(1)
μ

)
k,: ⊗ · · · ⊗

(
a(d)
μ

)
k,: ,

with cores a(i)
μ ∈ R

rμ×ni . Here, we only rely on the fact that aμ can be expressed as a canonical tensor without taking the 
rank rμ into account. Furthermore, we describe the probabilities P (X, t) by a tensor P(t) ∈R

n1×···×nd , with

(P(t))x1,...,xd = P (X, t).

Definition 4.2. Let Gi(k) ∈ R
ni×ni denote the shift matrix which is given by (Gi(k))x,y := δy−x,k with δy−x,k representing the 

Kronecker delta1. Then the multidimensional shift operators Gμ and G0 are defined as

Gμ = G1(−ξμ(1)) ⊗ · · · ⊗ Gd(−ξμ(d))

and

G0 = G1(0) ⊗ · · · ⊗ Gd(0) =: I.

With the aid of this definition, we can now reformulate (16) in a more compact way as

∂

∂t
P(t) =

⎛⎝M∑
μ=1

(Gμ − I) · diag(aμ)

⎞⎠ · P(t), (18)

1 Note that Gi(0) is then simply the identity matrix in Rni×ni .
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where we define diag(aμ) to be the tensor product of matrices containing the entries of 
(

a(1)
μ

)
k,: , . . . , 

(
a(d)
μ

)
k,: as diagonals, 

i.e.

diag(aμ) =
rμ∑

k=1

diag

((
a(1)
μ

)
k,:

)
⊗ · · · ⊗ diag

((
a(d)
μ

)
k,:

)
,

for μ = 1, . . . , M. A proof that this notation is equivalent to the master equation given in (16) can be found in Appendix A
as well as in [7]. In what follows, let

A =
M∑

μ=1

(Gμ − I) · diag(aμ), (19)

so that (18) can be written as ∂
∂t P(t) = A · P(t). The aim is then to solve the tensor-based MME numerically using implicit 

integration schemes. The resulting systems of linear equations can be solved, for instance, with ALS [44].

Example 4.3. Let us consider our guiding example defined above and illustrate what the reaction propensities, the vectors 
of net changes, and the shift operators look like in this case. For this purpose, we split the reactions into creation and 
destruction operations, i.e. the reaction Rμ , μ = 1, . . . , d, represents the creation of the protein corresponding to cell �μ

and for μ = d + 1, . . . , 2d, we consider the destruction of the proteins, see Example 4.1. Written as rank-one tensors, the 
reaction propensities have the following form:

a1 = 0.7 ·1⊗ · · · ⊗1, ad+1 =
⎛⎜⎝ 0.07 · 0

...

0.07 · 63

⎞⎟⎠⊗1⊗ · · · ⊗1,

a2 =
⎛⎜⎝

0
5+0
...

63
5+63

⎞⎟⎠⊗1⊗ · · · ⊗1, ad+2 = 1⊗
⎛⎜⎝ 0.07 · 0

...

0.07 · 63

⎞⎟⎠⊗1⊗ · · · ⊗1,

...
...

ad = 1⊗ · · · ⊗1⊗
⎛⎜⎝

0
5+0
...

63
5+63

⎞⎟⎠⊗1, a2d = 1⊗ · · · ⊗1⊗
⎛⎜⎝ 0.07 · 0

...

0.07 · 63

⎞⎟⎠ .

The vectors of net changes are all zero except for one entry, i.e.

ξ1 = (1 0 · · · 0
)
, ξd+1 = (−1 0 · · · 0

)
,

...
...

ξd = (0 · · · 0 1
)
, ξ2d = (0 · · · 0 −1

)
.

By defining the shift matrices G↓ := Gi(−1) and G↑ := Gi(1) for i = 1, . . . , d, i.e.

G↓ =

⎛⎜⎜⎜⎝
0 0
1 0

. . .
. . .

0 1 0

⎞⎟⎟⎟⎠ and G↑ =

⎛⎜⎜⎜⎜⎝
0 1 0

0
. . .

. . . 1
0 0

⎞⎟⎟⎟⎟⎠ ,

the corresponding shift operators for the creation and destruction reactions are given by

G1 = G↓ ⊗ I ⊗ · · · ⊗ I, . . . , Gd = I ⊗ · · · ⊗ I ⊗ G↓,

and

Gd+1 = G↑ ⊗ I ⊗ · · · ⊗ I, . . . , G2d = I ⊗ · · · ⊗ I ⊗ G↑.

We will describe the resulting SLIM decomposition in the next section. 
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4.2. Derivation

As mentioned above, for the nearest-neighbor interaction networks considered in this paper, an elementary reaction 
involves only one or two cells, respectively, i.e. elementary reactions either depend on the state of a single cell or on the 
states of two adjacent cells, see (17). This implies that any reaction propensity that belongs to an SCR Ri,μ on cell �i has 
the form

ai,μ = 11 ⊗ · · · ⊗1i−1 ⊗ ai,μ ⊗1i+1 ⊗ · · · ⊗1d, (20)

with ai,μ ∈ R
ni and μ = 1, . . . , αi , where αi ∈ N is the number of all SCRs on �i . For the two-cell propensities ai,i+1,μ

corresponding to TCRs Ri,i+1,μ on the cell pairs �i and �i+1, i = 1, . . . , d − 1, we can write

ai,i+1,μ = 11 ⊗ · · · ⊗1i−1 ⊗ ai,i+1,μ ⊗1i+2 ⊗ · · · ⊗1d, (21)

with ai,i+1,μ ∈ R
ni×ni+1 . We assume that there are βi TCRs between the cells �i and �i+1, i.e. μ = 1, . . . , βi . As already 

mentioned in Remark 2.6, we can decompose ai,i+1,μ into canonical tensor cores by applying, for instance, a singular value 
decomposition2 or QR-factorization, i.e.

ai,i+1,μ =
ri,i+1,μ∑

k=1

(
a(1)

i,i+1,μ

)
k,: ⊗

(
a(2)

i,i+1,μ

)
k,: .

For cyclic systems, we consider the permuted propensity tensor ãd,1,μ with 
(
ãd,1,μ

)
x2,...,xd,x1

= (ad,1,μ

)
x1,x2,...,xd

, see Re-
mark 2.3. This tensor can then be written as

ãd,1,μ = 12 ⊗ · · · ⊗1d−1 ⊗ ad,1,μ,

for μ = 1, . . . , βd , with βd being the number of TCRs between the cells �d and �1. Again, we can decompose ad,1,μ and 
write

ãd,1,μ =
rd,1,μ∑
k=1

12 ⊗ · · · ⊗1d−1 ⊗
(

a(1)

d,1,μ

)
k,: ⊗

(
a(2)

d,1,μ

)
k,: . (22)

As stated in Remark 2.3, a cyclic permutation of the cores corresponds to a permutation of the indices. Thus, we have

ad,1,μ =
rd,1,μ∑
k=1

(
a(2)

d,1,μ

)
k,: ⊗12 ⊗ · · · ⊗1d−1 ⊗

(
a(1)

d,1,μ

)
k,: , (23)

for μ = 1, . . . , βd . That is, only the components corresponding to one cell or to two adjacent cells of each reaction propensity 
are unequal to a vector of ones and we obtain

diag
(
ai,μ
)= I ⊗ · · · ⊗ I ⊗ diag

(
ai,μ
)⊗ I ⊗ · · · ⊗ I,

and

diag
(
ai,i+1,μ

)= ri,i+1,μ∑
k=1

I ⊗ · · · ⊗ I ⊗ diag

((
a(1)

i,i+1,μ

)
k,:

)
⊗ diag

((
a(2)

i,i+1,μ

)
k,:

)
⊗ I ⊗ · · · ⊗ I,

respectively. Analogously, for a cyclic system we obtain

diag
(
ad,1,μ

)= rd,1,μ∑
k=1

diag

((
a(2)

d,1,μ

)
k,:

)
⊗ I ⊗ · · · ⊗ I ⊗ diag

((
a(1)

d,1,μ

)
k,:

)
.

Furthermore, any elementary reaction only changes the configuration of one or two cells. Thus, any vector of net changes 
has the form

ξi,μ = (0, . . . ,0, pi,μ,0, . . . ,0)T , (24)

with pi,μ ∈ Z, for an SCR Ri,μ, or

ξi,i+1,μ = (0, . . . ,0, pi,i+1,μ,qi,i+1,μ,0, . . . ,0)T , (25)

2 Assume that ai,i+1,μ = U�V T =∑r
k=1 σkuk ⊗ vk , then 

(
a(1)

i,i+1,μ

)
= σkuk and 

(
a(2)

i,i+1,μ

)
= vk .
k,: k,:
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with pi,i+1,μ, qi,i+1,μ ∈ Z, for a TCR Ri,i+1,μ. As result, the multidimensional shift operators also have a special structure. 
Using Gi(0) = I ∈ R

ni×ni , we obtain a shift operator Gi,μ belonging to an SCR Ri,μ

Gi,μ = I ⊗ · · · ⊗ I ⊗ Gi(−pi,μ) ⊗ I ⊗ · · · ⊗ I

and for a shift operator Gi,i+1,μ belonging to a TCR Ri,i+1,μ (we identify Rd,d+1,μ with Rd,1,μ)

Gi,i+1,μ = I ⊗ · · · ⊗ I ⊗ Gi(−pi,i+1,μ) ⊗ Gi+1(−qi,i+1,μ) ⊗ I ⊗ · · · ⊗ I,

and

Gd,1,μ = G1(−qd,1,μ) ⊗ I ⊗ · · · ⊗ I ⊗ Gd(−pd,1,μ).

That is, only one or two shift matrices unequal to an identity matrix appear within these multidimensional shift operators. 
The properties above imply that we can write the operator A of a non-cyclic NNIS as

A =
d∑

i=1

αi∑
μ=1

Ai,μ +
d−1∑
i=1

βi∑
μ=1

Ai,i+1,μ, (26)

with

Ai,μ = (Gi,μ − I
) · diag

(
ai,μ
)

= I ⊗ · · · ⊗ I ⊗ (Gi(−pi,μ) · diag
(
ai,μ
))⊗ I ⊗ · · · ⊗ I − I ⊗ · · · ⊗ I ⊗ diag

(
ai,μ
)⊗ I ⊗ · · · ⊗ I

(27)

and

Ai,i+1,μ = (Gi,i+1,μ − I
) · diag

(
ai,i+1,μ

)
=

ri,i+1,μ∑
k=1

I ⊗ · · · ⊗ I ⊗
(

Gi(−pi,i+1,μ) · diag

((
a(1)

i,i+1,μ

)
k,:

))

⊗
(

Gi+1(−qi,i+1,μ) · diag

((
a(2)

i,i+1,μ

)
k,:

))
⊗ I ⊗ · · · ⊗ I

−
ri,i+1,μ∑

k=1

I ⊗ · · · ⊗ I ⊗ diag

((
a(1)

i,i+1,μ

)
k,:

)
⊗ diag

((
a(2)

i,i+1,μ

)
k,:

)
⊗ I ⊗ · · · ⊗ I.

(28)

For a cyclic system, we add the term 
∑βd

μ=1 Ad,1,μ to (26), with Ad,1,μ = (Gd,1,μ − I
) · diag

(
ad,1,μ

)
. Note that (27) holds for 

all elementary reactions taking place only on the cell �i , whereas reactions involving two adjacent cells �i and �i+1 can 
be represented by (28). In order to simplify the notation, we now define the matrices

Si,μ = Gi(−pi,μ) · diag
(
ai,μ
)

and S̃ i,μ = diag
(
ai,μ
)
, (29)

for i = 1, . . . , d and μ = 1, . . . , αi , as well as

Li,μ,k = Gi(−pi,i+1,μ) · diag

((
a(1)

i,i+1,μ

)
k,:

)
,

L̃i,μ,k = diag

((
a(1)

i,i+1,μ

)
k,:

)
,

Mi+1,μ,k = Gi+1(−qi,i+1,μ) · diag

((
a(2)

i,i+1,μ

)
k,:

)
,

M̃i+1,μ,k = diag

((
a(2)

i,i+1,μ

)
k,:

)
,

(30)

for i = 1, . . . , d − 1, μ = 1, . . . , βi and k = 1, . . . , ri,i+1,μ. For cyclic systems, we further define

Ld,μ,k = Gd(−pd,1,μ) · diag

((
a(1)

d,1,μ

)
k,:

)
, L̃d,μ,k = diag

((
a(1)

d,1,μ

)
k,:

)
,

M1,μ,k = G1(−qd,1,μ) · diag

((
a(2)

d,1,μ

) )
, M̃1,μ,k = diag

((
a(2)

d,1,μ

) )
,

k,: k,:
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for μ = 1, . . . , βd and k = 1, . . . rd,1,μ . Due to the bilinearity of the tensor product (see Appendix A), we can compute the 
sum of all matrices Si,μ and S̃ i,μ and define

Si =
αi∑

μ=1

(
Si,μ − S̃ i,μ

)
. (31)

All SCRs on �i can then be represented as I ⊗ · · · ⊗ I ⊗ Si ⊗ I ⊗ · · · ⊗ I . Written in the canonical tensor format, A has now 
the form

A = S1 ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ Sd

+
β1∑

μ=1

r1,2,μ∑
k=1

(
L1,μ,k ⊗ M2,μ,k ⊗ I ⊗ · · · ⊗ I

)
−
(

L̃1,μ,k ⊗ M̃2,μ,k ⊗ I ⊗ · · · ⊗ I
)

+ . . .

+
βd−1∑
μ=1

rd−1,d,μ∑
k=1

(
I ⊗ · · · ⊗ I ⊗ Ld−1,μ,k ⊗ Md,μ,k

)− (I ⊗ · · · ⊗ I ⊗ L̃d−1,μ,k ⊗ M̃d,μ,k

)

+
βd∑

μ=1

rd,1,μ∑
k=1

(
M1,μ,k ⊗ I ⊗ · · · ⊗ I ⊗ Ld,μ,k

)
−
(

M̃1,μ,k ⊗ I ⊗ · · · ⊗ I ⊗ L̃d,μ,k

)
.

(32)

The last sum is only required if we consider a cyclic interaction system, i.e. there are βd elementary reactions between 
the cell �d and �1. Equation (32) is of the same type as (7). Thus, we can gather all the matrices Li,μ,k, ̃Li,μ,k and 
Mi+1,μ,k, M̃i+1,μ,k in the TT cores Li and Mi+1, respectively. The cores are then defined as

[Li] =
[

Li,1,1 −L̃i,1,1 . . . Li,βi ,ri,i+1,βi
−L̃i,βi ,ri,i+1,βi

]
︸ ︷︷ ︸

∈R1×ni×ni×(βi ·ri,i+1,βi
)

,

[Mi+1] =
[

Mi+1,1,1 M̃i+1,1,1 . . . Mi+1,βi ,ri,i+1,βi
M̃i+1,βi ,ri,i+1,βi

]T
︸ ︷︷ ︸

∈R(βi ·ri,i+1,βi
)×ni+1×ni+1×1

,

(33)

for i = 1, . . . , d − 1, and

[Ld] =
[

Ld,1,1 −L̃d,1,1 . . . Ld,βd,rd,1,βd
−L̃d,βd,rd,1,βd

]T
︸ ︷︷ ︸

∈R(βd ·rd,1,βd
)×nd×nd×1

,

[M1] =
[

M1,1,1 M̃1,1,1 . . . M1,βd,rd,1,βd
M̃1,βd,rd,1,βd

]
︸ ︷︷ ︸

∈R1×n1×n1×(βd ·rd,1,βd
)

.

(34)

These TT cores can now be inserted into Equation (9) and we obtain the SLIM decomposition of the generator A. Note that 
it may be possible to compress the cores Li and Mi+1. By considering the tensor product [Li] ⊗ [Mi+1], we can conclude 
that only a basis of matrices of the core Li as well as a basis of matrices of the core Mi+1 is needed such that the tensor 
multiplication of these bases yields the same result as [Li] ⊗ [Mi+1]. This is explained in detail in Algorithm 1, where we 
use the multi-index notation described in Appendix A.

Algorithm 1 Compression of 2-dimensional tensor-train operators.

1: INPUT: Tensor train T = [T1] ⊗ [T2] ∈R
m×m×n×n with TT cores [T1] = [T(1)

1 . . .T(β)

1 ] ∈R
1×m×m×β and

[T2] = [T(1)
2 . . .T(β)

2 ]T ∈ R
β×n×n×1.

2: Compute full tensor T and reshape it as a matrix T ∈R
(m·m)×(n·n) .

3: Apply compact singular value decomposition, i.e. T = U�V T with U ∈R
(m·m)×γ , � ∈R

γ×γ , and V ∈R
(n·n)×γ .

4: for k = 1, . . . , γ do

5: Define T̃(k)
1 ∈R

m×m by 
(

T̃(k)
1

)
x,y

= Ux,y,k .

6: Define T̃(k)
2 ∈R

n×n by 
(

T̃(k)
2

)
x,y

= (�V T )k,x,y .

7: end for
8: OUTPUT: Tensor train T̃ = [T̃1] ⊗ [T̃2] with TT rank γ ≤ β .
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The cores corresponding to cyclic reactions between the cells �d and �1 can also be compressed by applying Algorithm 1
to [Ld]T ⊗ [M1]T . This becomes clear using the same argument as for (22) and (23). The core components defined in (31), 
(33), and (34) (optionally after application of Algorithm 1) then form the corresponding elements of the SLIM decomposition 
given in (9) and (11), respectively. Algorithm 2 can be used to automatically construct SLIM decompositions of master 
equation operators corresponding to systems based on nearest-neighbor interactions.

Algorithm 2 Construct SLIM decomposition of master equation operator.
1: Given an NNIS with d cells on state space S = {1, . . . , n1} × · · · × {1, . . . , nd}. If the NNIS is cyclic, set �d+1 = �1, nd+1 = n1, Rd,d+1,μ = Rd,1,μ etc.
2: INPUT: Single-cell reactions (SCR)

For each cell �i , 1 ≤ i ≤ d, and every Ri,μ , μ = 1, . . . , αi , define the net change pi,μ ∈ Z (see (24)) and the vector ai,μ ∈R
ni

(see (20)) containing the values of the corresponding reaction propensity.
3: Two-cell reactions (TCR)

For each pair of cells �i , �i+1, 1 ≤ i ≤ d − 1 (1 ≤ i ≤ d if cyclic), and every Ri,i+1,μ , μ = 1, . . . , βi , define the net changes pi,i+1,μ, qi,i+1,μ

∈ Z (see (25)) and the matrix ai,i+1,μ ∈ R
ni×ni+1 (see (21)) containing the values of the corresponding reaction propensity.

4: for i = 1, . . . , d do
5: Compute Si =∑αi

μ=1

(
Gi(−pi,μ) − I

) · diag
(
ai,μ
)

as defined in (31).
6: end for
7: for i = 1, . . . , d − 1 (i = 1, . . . , d if NNIS is cyclic) do
8: for μ = 1, . . . , βi do
9: Compute canonical representation of ai,i+1,μ , i.e.

ai,i+1,μ =∑ri,i+1,μ

k=1

(
a(1)

i,i+1,μ

)
k,: ⊗

(
a(2)

i,i+1,μ

)
k,: .

10: Compute Li,μ,k , L̃i,μ,k , Mi+1,μ,k , and M̃i+1,μ,k as defined in (30).
11: end for
12: Construct Li and Mi+1 as defined in (33) and (34).
13: Apply Algorithm 1 to [Li ] ⊗ [Mi+1] in order to compress the cores Li

and Mi .
14: end for
15: OUTPUT: SLIM decomposition of master equation operator A as given in (9) and (11), respectively.

Example 4.4. Using the decompositions given in Example 4.3, we now construct the SLIM decomposition corresponding to 
our signal cascade model with d genes, cf. [5]. The reaction propensities satisfy (20), i.e. they can be written as a rank-one 
tensor where only one component is unequal to a vector of ones. As defined in (19), the master equation operator is given 
by

A =
M∑

μ=1

(Gμ − I) · diag(aμ),

with M = 2d. In canonical format, we can express this as

A = 0.7 · G↓ ⊗ I ⊗ · · · ⊗ I − 0.7 · I ⊗ I ⊗ · · · ⊗ I

+ H1 ⊗ G↓ ⊗ I ⊗ · · · ⊗ I − H1 ⊗ I ⊗ · · · ⊗ I

+ . . .

+ I ⊗ · · · ⊗ I ⊗ H1 ⊗ G↓ − I ⊗ · · · ⊗ I ⊗ H1 ⊗ I

+ (G↑ · H2) ⊗ I ⊗ · · · ⊗ I − H2 ⊗ I ⊗ · · · ⊗ I

+ · · ·
+ I ⊗ · · · ⊗ I ⊗ (G↑ · H2) − I ⊗ · · · ⊗ I ⊗ H2,

with identity matrix I ∈R
64×64, G↓ and G↑ as defined in Example 4.3 and

H1 = diag

(
0

5
,

1

6
, . . . ,

63

68

)
, H2 = 0.07 · diag(0,1, . . . ,63),

where diag(v) denotes the diagonalization of the vector v ∈ R
64. By defining

S∗ = 0.7 ·
(

G↓ − I
)

, S =
(

G↑ − I
)

· H2, L = H1, I = I, M = G↓ − I,

we obtain the non-cyclic SLIM decomposition

A = [S∗ L I
]⊗
⎡⎣ I 0 0

M 0 0
S L I

⎤⎦⊗ · · · ⊗
⎡⎣ I 0 0

M 0 0
S L I

⎤⎦⊗
⎡⎣ I

M
S

⎤⎦ . 
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Fig. 6. (a) Top view of the RuO2(110) surface showing the two prominent adsorption sites, bridge sites between the ruthenium atoms in blue and cus sites 
on the ruthenium atoms in red. (b) 2D lattice model of the coarse-grained surface composed of alternating rows of bridge and cus sites as used in [49,50]. 
(c) 1D lattice model completely composed of cus sites. (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

Table 1
Elementary reaction steps on the cus sites together with their corresponding 
rate constants, see [49] for details. The reactions are defined on two neighbor-
ing sites �i and � j , except for adsorption and desorption of CO, which are 
defined only on site �i .

Adsorption
RAd

O2
: ∅i +∅ j → Oi + O j , kAd

O2
= 9.7 · 107 s−1

RAd
CO : ∅i → COi , kAd

CO = 104 − 1010 s−1

Desorption
RDe

O2
: Oi + O j → ∅i +∅ j , kDe

O2
= 2.8 · 101 s−1

RDe
CO : COi → ∅i , kDe

CO = 9.2 · 106s−1

RDe
CO2

: COi + O j → ∅i +∅ j , kDe
CO2

= 1.7 · 105 s−1

Diffusion
RDiff

O : Oi +∅ j → ∅i + O j , kDiff
O = 0.5 s−1

RDiff
CO : COi +∅ j → ∅i + CO j , kDiff

CO = 6.6 · 10−2 s−1

Remark 4.5. In order to speed up calculations and to reduce the storage consumption even further, one can apply the 
so-called quantized tensor-train format (QTT format) [45–47]. That is, we reorder the elements of each core in a new tensor 
which has the same number of elements but a higher order and smaller mode sizes. These tensors can then be split into 
several QTT cores, e.g. by applying singular value decompositions. In [5], a TT/QTT decomposition of the operator A and 
some numerical results using the Crank–Nicolson time integration scheme can be found.

4.3. Examples

4.3.1. CO oxidation at RuO2

The first example is a cyclic, homogeneous NNIS that we already considered in [7]. However, the SLIM decomposition, 
which is more general, had not been developed at that time and a different TT decomposition was used instead. Here, we 
consider a heterogeneous catalytic process where the cells �1, . . . , �d represent adsorption sites on a RuO2(110) surface, 
see Fig. 6a. The aim is to simulate the CO oxidation at the surface. Because it has been found that the chemical kinetics 
predominantly take place only on the coordinatively unsaturated sites (cus) [48], we construct a ring of d cus sites, see Fig. 6b 
and 6c.

Each site may be in three different states (1 =̂ empty, 2 =̂ O-covered, 3 =̂ CO-covered). The possible events are uni-
molecular adsorption/desorption of CO, dissociative oxygen adsorption on two neighboring sites and the corresponding 
reverse processes, diffusion of adsorbed CO/O to a neighboring site, and the formation of gaseous CO2 from adsorbed CO 
and O on neighboring sites. For further details on the established microkinetic model for the CO oxidation at RuO2(110) 
we refer to [49]. Table 1 summarizes the elementary reactions of the reduced model and the specific values of the reaction 
propensities. For a detailed description of the gas phase conditions, see e.g. [50].

In order to construct the operator according to the MME, we use Algorithm 2 with inputs

ai,1 = (kAd
CO 0 0

)T
, pi,1 = +2,

ai,2 = (0 0 kDe
CO

)T
, pi,2 = −2,
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Fig. 7. Pictorial representation of the toll station model. The red curve shows the probability distribution of incoming cars, the green curve the probability 
distribution of processing times. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

and

ai,i+1,1 =
⎛⎝ kAd

O2
0 0

0 0 0
0 0 0

⎞⎠ , [pi,i+1,1, qi,i+1,1] = [+1, +1],

ai,i+1,2 =
⎛⎝ 0 0 0

0 kDe
O2

0
0 0 0

⎞⎠ , [pi,i+1,2, qi,i+1,2] = [−1, −1],

ai,i+1,3 =
⎛⎝ 0 0 0

0 0 0
0 kDe

CO2
0

⎞⎠ , [pi,i+1,3, qi,i+1,3] = [−2, −1],

ai,i+1,4 =
⎛⎝ 0 0 0

0 0 kDe
CO2

0 0 0

⎞⎠ , [pi,i+1,4, qi,i+1,4] = [−1, −2],

ai,i+1,5 =
⎛⎝ 0 0 0

kDiff
O 0 0
0 0 0

⎞⎠ , [pi,i+1,5, qi,i+1,5] = [−1, +1],

ai,i+1,6 =
⎛⎝ 0 kDiff

O 0
0 0 0
0 0 0

⎞⎠ , [pi,i+1,6, qi,i+1,6] = [+1, −1],

ai,i+1,7 =
⎛⎝ 0 0 0

0 0 0
kDiff

CO 0 0

⎞⎠ , [pi,i+1,7, qi,i+1,7] = [−2, +2],

ai,i+1,8 =
⎛⎝ 0 0 kDiff

CO
0 0 0
0 0 0

⎞⎠ , [pi,i+1,8, qi,i+1,8] = [+2, −2].

Since we consider a cyclic, homogeneous NNIS here, the inputs above hold for i = 1, . . . , d, where ad,d+1,μ = ad,1,μ and 
[pd,d+1,μ, qd,d+1,μ] = [pd,1,μ, qd,1,μ]. The output of Algorithm 2 is then a TT operator with TT ranks equal to 16, which 
is the same size as the operator in [7]. Using this exact tensor-train decomposition, we can compute stationary and time 
dependent probability distributions by formulating eigenvalue problems or applying implicit time propagation schemes 
combined with ALS. In [7], we carried out several experiments including the analysis of the computational costs for an 
increasing number of dimensions, computing central quantities describing the efficiency of the catalyst, and a demonstration 
of the advantage of the TT approach for stiff systems.

4.3.2. Toll station
As a final example, we examine a quasi-realistic traffic problem. Imagine a toll station with d lanes. Cars form a queue 

in these lanes arriving according to a given distribution. Each car can then change its lane but may only go from one 
lane to a neighboring one, depending on a given interaction parameter. We assume that the time to pass the toll station 
depends on the toll booths. In our example, we choose a normal distribution for the incoming cars and a sum of two normal 
distributions for the outgoing flux, see Fig. 7.

The state space is given by

S = {1, . . . ,n} × · · · × {1, . . . ,n},
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Fig. 8. Simulation results for the toll station model. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

and state X = (x1, . . . , xd)
T ∈ S now represents the number of cars in each lane, e.g. there are xi − 1 cars on lane �i . In 

what follows, we set d = 20, n = 10, and define the functions

f in(t) = 1√
2πσ 2

in

· e
− 1

2
t2

σ2
in + 0.05,

fout(t) = 1√
2πσ 2

out,left

· e
− 1

2
(t−νout,left)

2

σ2
out,left + 1√

2πσ 2
out,right

· e
− 1

2
(t−νout,right)

2

σ2
out,right ,

with σ 2
in = 2.5, σ 2

out,left = 1, σ 2
out,right = 0.5, νout,left = −1.5, and νout,right = 1.5. The positions of the lanes are given by 

ti = −2 + 0.5(i − 1), for i = 1, . . . , d. For the rate to change from lane �i to lane �i+1 and vice versa, we assume a step 
function on xi − xi+1 which is only unequal to zero if there are fewer cars in the neighboring lane, i.e.

fchange(xi − xi+1) =
{

5, if xi − xi+1 > 0,

0, otherwise.

Again, we apply Algorithm 2 to construct the generator according to this heterogeneous, non-cyclic NNIS. The inputs are

ai,1 = f in(ti) · (1 1 . . . 1
)T

, pi,1 = +1,

ai,2 = fout(ti) · (0 1 . . . 1
)T

, pi,2 = −1,

and matrices ai,i+1,1, ai,i+1,2 ∈ R
n×n with (ai,i+1,1)xi ,xi+1 = fchange(xi − xi+1) and (ai,i+1,2)xi ,xi+1 = fchange(xi+1 − xi). Further-

more, [pi,i+1,1, qi,i+1,1] = [−1, +1] and [pi,i+1,2, qi,i+1,2] = [+1, −1].
In this case, the output of Algorithm 2 is a tensor-train operator A ∈ R

(n×n)×···×(n×n) with ranks equal to 39. We are 
interested in the transient behavior of the distribution of cars depending on a given initial state. For this purpose, we apply 
the implicit Euler method

(I − τA)Tk+1 = Tk, (35)

with step size τ = 10−1 and set T0 ∈ R
n×···×n to the singular probability distribution with (T0)6,...,6 = 1. The resulting 

systems of linear equations are solved with ALS where the TT ranks of the solution have been arbitrarily set to 10. The 
simulation results in Fig. 8 show that the constant distribution at the beginning rapidly changes due to the different input 
and output rates of the lanes. Also, the length of the queues of cars are decreasing over a short time interval. In order to 
evaluate the accuracy of the results, we consider the relative errors of the systems of linear equations given in (35):

εk =
∥∥(I − τA)Tk − Tk−1

∥∥
F∥∥Tk−1

∥∥
F

,

where ‖ .‖F denotes the Frobenius norm for tensors. The errors for all 300 steps are less than 5%.
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5. Conclusion and outlook

In this paper, we proposed an approach to construct TT decompositions of potentially high-dimensional nearest-neighbor 
interaction systems. The aim is to reduce the memory consumption as well as the computational costs significantly and to 
mitigate the curse of dimensionality. First, we have shown how to apply the SLIM decomposition to general NNISs and then 
we gave a detailed description of TT decompositions of high-dimensional Markovian master equations. Additionally, we pre-
sented algorithms which can be used to construct SLIM decompositions of Markovian generators automatically. The results, 
which were illustrated with several examples from different application areas such as quantum physics and heterogeneous 
catalysis, show that by exploiting the coupling structure of a system it is possible to compute low-rank tensor decomposi-
tions of probability distributions and associated linear operators. We also considered homogeneous systems where the ranks 
of the SLIM decomposition do not depend on the network size, resulting in a linear growth of the storage consumption.

Future research will include the consideration of nearest-neighbor interaction systems from other scientific areas and the 
examination of more general interaction systems, especially the generalization of the SLIM decomposition to next-nearest-
neighbor interaction systems or other systems with a certain coupling structure.
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Appendix A. Tensor notation and properties

A.1. Bilinearity of the tensor product

The tensor product is a bilinear map, i.e. the following properties hold:

(i) (T1 + T2) ⊗ U = T1 ⊗ U + T2 ⊗ U,

(ii) T ⊗ (U1 + U2) = T ⊗ U1 + T ⊗ U2,

(iii) (λ · T) ⊗ U = T ⊗ (λ · U1) = λ · (T ⊗ U) ,

for T, T1, T2 ∈ R
m1×...×md , U, U1, U2 ∈ R

n1×...×ne , and λ ∈R.

A.2. Rank-transposed of a TT core

Given TT cores T(i) ∈R
ri−1×ni×ri and A(i) ∈ R

si−1×ni×ni×si with

[
T(i)
]

=

⎡⎢⎢⎢⎢⎢⎢⎣
T(i)

1,:,1 · · · T(i)
1,:,ri

...
. . .

...

T(i)
ri−1,:,1 · · · T(i)

ri−1,:,ri

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

[
A(i)
]

=

⎡⎢⎢⎢⎢⎢⎢⎣
A(i)

1,:,:,1 · · · A(i)
1,:,:,si

...
. . .

...

A(i)
si−1,:,:,1 · · · A(i)

si−1,:,:,si

⎤⎥⎥⎥⎥⎥⎥⎦ ,

we define the rank-transposed cores 
[
T(i)
]T

and 
[
A(i)
]T

as

[
T(i)
]T =

⎡⎢⎢⎢⎢⎢⎢⎣
T(i)

1,:,1 · · · T(i)
ri−1,:,:,1

...
. . .

...

T(i) · · · T(i)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
1,:,:,ri ri−1,:,:,ri
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and

[
A(i)
]T =

⎡⎢⎢⎢⎢⎢⎢⎣
A(i)

1,:,:,1 · · · A(i)
si−1,:,:,1

...
. . .

...

A(i)
1,:,:,si

· · · A(i)
si−1,:,:,si

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the vectors/matrices within the cores are not transposed, only the outer indices of each element are interchanged.

A.3. Equivalence of the master equation formulations

Theorem. For any state X = (x1, . . . , xd)
T ∈ S , it holds that(

∂

∂t
P(t)

)
x1,...,xd

= ∂

∂t
P (X, t).

Proof. Following the definition of the tensor multiplication, see e.g. [51], we can write

(
∂

∂t
P(t)

)
x1,...,xd

=
⎛⎝⎛⎝ M∑

μ=1

(Gμ − I) · diag(aμ)

⎞⎠ · P(t)

⎞⎠
x1,...,xd

=
M∑

μ=1

n1∑
i1=1

· · ·
nd∑

id=1

(
(Gμ − I) · diag(aμ)

)
x1,i1,...,xd,id

(P(t))i1,...,id
.

Furthermore, it holds that

(
(Gμ − I) · diag(aμ)

)
x1,i1,...,xd,id

=
n1∑

j1=1

· · ·
nd∑

jd=1

(
Gμ

)
x1, j1,...,xd, jd

(
diag(aμ)

)
j1,i1,..., jd,id

−
n1∑

j1=1

· · ·
nd∑

jd=1

(I)x1, j1,...,xd, jd

(
diag(aμ)

)
j1,i1,..., jd,id

.

Considering Definition 4.2 of the shift operators, this results in(
diag(aμ)

)
x1−ξμ(1),i1,...,xd−ξμ(d),id

− (diag(aμ)
)

x1,i1,...,xd,id
.

Just as aμ(X) and P (X, t) are set to zero if X /∈ S , we set(
diag(aμ)

)
x1−ξμ(1),i1,...,xd−ξμ(d),id

= 0,

if xk − ξμ(k) /∈ {1, . . . , ni} for a k ∈ {1, . . . , d}. Analogously, we do the same for (P(t))x1−ξμ(1),...,xd−ξμ(d) . Due to the construc-
tion of diag(aμ), we finally obtain(

∂

∂t
P(t)

)
x1,...,xd

=
M∑

μ=1

aμ(X − ξμ)P (X − ξμ, t) − aμ(X)P (X, t) = ∂

∂t
P (X, t). �

A.4. Little–Endian convention

Consider the state space N = {1, . . . , n1} × {1, . . . , n2} × · · · × {1, . . . , nd}. The multi-index

x1, . . . , xd := φN (x1, . . . , xd),

for X = (x1, . . . , xd)
T ∈N , is defined by a bijection φN with

φN : N → {1, . . . ,

d∏
ni}, X �→ φN (X).
i=1
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Using the little-endian convention, this bijection is given by

φ(x1, . . . , xd) = 1 + (x1 − 1) + . . . + (xd − 1) · n1 · . . . · nd−1

= 1 +
d∑

i=1

(xi − 1)

i−1∏
j=1

n j .

Appendix B. Properties of the SLIM decomposition

B.1. Equivalence of SLIM and canonical decomposition

Theorem B.1. The SLIM decomposition given in (9) corresponds to the canonical decomposition given in (8).

Proof. Consider the first two TT cores of the SLIM decomposition, given by

[
S1 L1 I1 M1

]⊗
⎡⎢⎢⎣

I2 0 0 0
M2 0 0 0
S2 L2 I2 0
0 0 0 J2

⎤⎥⎥⎦=

[
S1 ⊗ I2 + I1 ⊗ S2 + [L1] ⊗ [M2] I1 ⊗ [L2] I1 ⊗ I2 [M1] ⊗ [J2]

]
.

Successively, we obtain

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 ⊗ I2 ⊗ · · · ⊗ Id−1 + . . .

· · · + I1 ⊗ · · · ⊗ Id−2 ⊗ Sd−1
+[L1] ⊗ [M2] ⊗ I3 ⊗ · · · ⊗ Id−1 + · · ·

· · · + I1 ⊗ · · · ⊗ Id−3 ⊗ [Ld−2] ⊗ [Md−1]
I1 ⊗ · · · ⊗ Id−2 ⊗ [Ld−1]

I1 ⊗ · · · ⊗ Id−1

[M1] ⊗ [J2] ⊗ · · · ⊗ [Jd−1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⊗

⎡⎢⎢⎣
Id

Md
Sd
Ld

⎤⎥⎥⎦

= S1 ⊗ I2 ⊗ · · · ⊗ Id + · · · + I1 ⊗ · · · ⊗ Id−1 ⊗ Sd

+ [L1] ⊗ [M2] ⊗ I3 ⊗ · · · ⊗ Id + · · · + I1 ⊗ · · · ⊗ Id−2 ⊗ [Ld−1] ⊗ [Md]
+ [M1] ⊗ [J2] ⊗ · · · ⊗ [Jd−1] ⊗ [Ld] ,

which is exactly the same expression as (8). �
B.2. Storage consumption of the SLIM decomposition

Theorem B.2. The storage consumption in the sparse format of the SLIM decomposition for cyclic, heterogeneous NNISs as given in (9)
is

O

(
d∑

i=1

(βi−1 + βi + 1)n2
i +

d−1∑
i=2

(βd + 2)ni + n1 + nd

)
,

with β0 = βd.

Proof. We assume the matrices of the core elements Si , Li , and Mi , i = 1, . . . , d, to be dense, i.e. the storage consumption of 
a single matrix is then estimated as O (n2

i ). For the components Ii , we obtain O (ni) since Ii = I ∈ R
ni×ni has only ni entries. 

Furthermore, we can analogously estimate the storage of Ji as O (βd · ni). Thus, we have the following storage estimates for 
the different TT cores.

A(1) : O
(
(βd + β1 + 1)n2

1 + n1
)
,

A(i),2 ≤ i ≤ d − 1 : O
(
(βi−1 + βi + 1)n2

i + (2 + βd)ni
)
,

A(d) : O
(
(βd−1 + βd + 1)n2

d + nd
)
.

Summation over all cores concludes the proof. �



P. Gelß et al. / Journal of Computational Physics 341 (2017) 140–162 161
References

[1] S.R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (19) (1992) 2863–2866, http://dx.doi.org/10.1103/
PhysRevLett.69.2863.

[2] H.-D. Meyer, F. Gatti, G.A. Worth (Eds.), Multidimensional Quantum Dynamics: MCTDH Theory and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 
2009.

[3] T. Jahnke, W. Huisinga, A dynamical low-rank approach to the chemical master equation, Bull. Math. Biol. 70 (8) (2008) 2283–2302, http://dx.doi.org/
10.1007/s11538-008-9346-x.

[4] V. Kazeev, M. Khammash, M. Nip, C. Schwab, Direct solution of the chemical master equation using quantized tensor trains, PLoS Comput. Biol. 10 (3) 
(2014) e1003359, http://dx.doi.org/10.1371/journal.pcbi.1003359.

[5] S. Dolgov, B. Khoromskij, Simultaneous state-time approximation of the chemical master equation using tensor product formats, Numer. Linear Algebra 
Appl. 22 (2) (2015) 197–219, http://dx.doi.org/10.1002/nla.1942.

[6] V. Kazeev, C. Schwab, Tensor approximation of stationary distributions of chemical reaction networks, SIAM J. Matrix Anal. Appl. 36 (3) (2015) 
1221–1247, http://dx.doi.org/10.1137/130927218.

[7] P. Gelß, S. Matera, C. Schütte, Solving the master equation without kinetic Monte Carlo: tensor train approximations for a CO oxidation model, J. Com-
put. Phys. 314 (2016) 489–502, http://dx.doi.org/10.1016/j.jcp.2016.03.025.

[8] P. Buchholz, Product form approximations for communicating Markov processes, Perform. Eval. 67 (9) (2010) 797–815, http://dx.doi.org/10.1016/j.peva.
2009.12.005.

[9] D. Kressner, F. Macedo, Low-rank tensor methods for communicating Markov processes, in: Quantitative Evaluation of Systems, in: Lecture Notes in 
Computer Science, vol. 8657, 2014, pp. 25–40.

[10] G. Beylkin, J. Garcke, M.J. Mohlenkamp, Multivariate regression and machine learning with sums of separable functions, SIAM J. Sci. Comput. 31 (3) 
(2009) 1840–1857, http://dx.doi.org/10.1137/070710524.

[11] A. Novikov, D. Podoprikhin, A. Osokin, D. Vetrov, Tensorizing neural networks, in: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Eds.), 
Advances in Neural Information Processing Systems 28 (NIPS), Curran Associates, Inc., 2015, pp. 442–450, arXiv:1509.06569v2.

[12] N. Cohen, O. Sharir, A. Shashua, On the expressive power of deep learning: a tensor analysis, arXiv:1509.05009, 2015.
[13] S. Klus, P. Gelß, S. Peitz, C. Schütte, Tensor-based dynamic mode decomposition, SIAM J. Sci. Comput. (2016), submitted for publication 

arXiv:1606.06625v1.
[14] I.V. Oseledets, A new tensor decomposition, Dokl. Math. 80 (1) (2009) 495–496, http://dx.doi.org/10.1134/S1064562409040115.
[15] I.V. Oseledets, E.E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput. 31 (5) (2009) 

3744–3759, http://dx.doi.org/10.1137/090748330.
[16] I.V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317, http://dx.doi.org/10.1137/090752286.
[17] W. Hackbusch, S. Kühn, A new scheme for the tensor representation, J. Fourier Anal. Appl. 15 (5) (2009) 706–722, http://dx.doi.org/10.1007/

s00041-009-9094-9.
[18] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 2029–2054, http://dx.doi.org/

10.1137/090764189.
[19] A. Arnold, T. Jahnke, On the approximation of high-dimensional differential equations in the hierarchical Tucker format, BIT Numer. Math. 54 (2) (2013) 

305–341, http://dx.doi.org/10.1007/s10543-013-0444-2.
[20] C. Lubich, T. Rohwedder, R. Schneider, B. Vandereycken, Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. 

Appl. 34 (2) (2013) 470–494, http://dx.doi.org/10.1137/120885723.
[21] S. Holtz, T. Rohwedder, R. Schneider, On manifolds of tensors of fixed TT-rank, Numer. Math. 120 (4) (2012) 701–731, http://dx.doi.org/10.1007/

s00211-011-0419-7.
[22] S.V. Dolgov, D.V. Savostyanov, Alternating minimal energy methods for linear systems in higher dimensions. Part II: faster algorithm and application to 

nonsymmetric systems, arXiv:1304.1222v2, 2013.
[23] F.L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys. 6 (1927) 164–189.
[24] J.D. Carroll, J.J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart–Young’ decomposition, 

Psychometrika 35 (3) (1970) 283–319, http://dx.doi.org/10.1007/BF02310791.
[25] N.D. Sidiropoulos, R. Bro, G.B. Giannakis, Parallel factor analysis in sensor array processing, IEEE Trans. Signal Process. 48 (8) (2000) 2377–2388, http://

dx.doi.org/10.1109/78.852018.
[26] L.D. Lathauwer, J. Castaing, Tensor-based techniques for the blind separation of DS–CDMA signals, Signal Process. 87 (2) (2007) 322–336, http://

dx.doi.org/10.1016/j.sigpro.2005.12.015.
[27] V. de Silva, L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30 (3) (2008) 

1084–1127, http://dx.doi.org/10.1137/06066518X.
[28] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (3) (2009) 455–500, http://dx.doi.org/10.1137/07070111X.
[29] I.V. Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Algebra Appl. 432 (1) (2010) 70–88, http://dx.doi.org/

10.1016/j.laa.2009.07.024.
[30] A. Falcó, W. Hackbusch, On minimal subspaces in tensor representations, Found. Comput. Math. 12 (6) (2012) 765–803, http://dx.doi.org/10.1007/

s10208-012-9136-6.
[31] V. Kazeev, B.N. Khoromskij, Low-rank explicit QTT representation of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl. 33 (3) (2012) 

742–758, http://dx.doi.org/10.1137/100820479.
[32] Z. Lin, Distributed Control and Analysis of Coupled Cell Systems, VDM Verlag, 2008.
[33] H.G. Winful, S.S. Wang, Stability of phase locking in coupled semiconductor laser arrays, Appl. Phys. Lett. 53 (1988) 1894–1896, http://dx.doi.org/

10.1063/1.100363.
[34] J.B. Griffiths, The Theory of Classical Dynamics, Cambridge University Press, 1985.
[35] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22 (4) (1976) 

403–434, http://dx.doi.org/10.1016/0021-9991(76)90041-3.
[36] W. Lenz, Beiträge zum Verständnis der magnetischen Eigenschaften in festen Körpern, Phys. Z. 21 (1920) 613–615.
[37] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31 (1925) 253–258.
[38] S. Lievens, N. Stoilova, J.V. der Jeugt, Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system, J. Math. Phys. 47 (11) 

(2006) 113504, http://dx.doi.org/10.1063/1.2364183.
[39] M.B. Plenio, J. Hartley, J. Eisert, Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom, New J. Phys. 

6 (2004), http://dx.doi.org/10.1088/1367-2630/6/1/036.
[40] N.G. van Kampen, Stochastic Processes in Physics and Chemistry, third edition, North-Holland Personal Library, Elsevier B.V., 2007.
[41] D.T. Gillespie, A rigorous derivation of the chemical master equation, Physica A 188 (1–3) (1992) 404–425, http://dx.doi.org/10.1016/0378-

4371(92)90283-V.

http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4D45594552s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4D45594552s1
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1371/journal.pcbi.1003359
http://dx.doi.org/10.1002/nla.1942
http://dx.doi.org/10.1137/130927218
http://dx.doi.org/10.1016/j.jcp.2016.03.025
http://dx.doi.org/10.1016/j.peva.2009.12.005
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4B524553534E4552s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4B524553534E4552s1
http://dx.doi.org/10.1137/070710524
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4E4F56494B4F5632303135s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4E4F56494B4F5632303135s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib434F48454E32303135s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4B4C5553s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4B4C5553s1
http://dx.doi.org/10.1134/S1064562409040115
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1007/s10543-013-0444-2
http://dx.doi.org/10.1137/120885723
http://dx.doi.org/10.1007/s00211-011-0419-7
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib444F4C474F563033s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib444F4C474F563033s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4849544348434F434Bs1
http://dx.doi.org/10.1007/BF02310791
http://dx.doi.org/10.1109/78.852018
http://dx.doi.org/10.1016/j.sigpro.2005.12.015
http://dx.doi.org/10.1137/06066518X
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1007/s10208-012-9136-6
http://dx.doi.org/10.1137/100820479
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4C494E32303038s1
http://dx.doi.org/10.1063/1.100363
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib47524946464954485331393835s1
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4C454E5A31393230s1
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4953494E4731393235s1
http://dx.doi.org/10.1063/1.2364183
http://dx.doi.org/10.1088/1367-2630/6/1/036
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4B414D50454Es1
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1007/s11538-008-9346-x
http://dx.doi.org/10.1016/j.peva.2009.12.005
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1007/s00211-011-0419-7
http://dx.doi.org/10.1109/78.852018
http://dx.doi.org/10.1016/j.sigpro.2005.12.015
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1007/s10208-012-9136-6
http://dx.doi.org/10.1063/1.100363
http://dx.doi.org/10.1016/0378-4371(92)90283-V


162 P. Gelß et al. / Journal of Computational Physics 341 (2017) 140–162
[42] M. Hegland, C. Burden, L. Santoso, S. MacNamara, H. Booth, A solver for the stochastic master equation applied to gene regulatory networks, J. Comput. 
Appl. Math. 205 (2) (2007) 708–724, http://dx.doi.org/10.1016/j.cam.2006.02.053.

[43] A. Ammar, E. Cueto, F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions, 
Int. J. Numer. Methods Biomed. Eng. 28 (9) (2012) 960–973, http://dx.doi.org/10.1002/cnm.2476.

[44] S. Holtz, T. Rohwedder, R. Schneider, The alternating linear scheme for tensor optimization in the tensor train format, SIAM J. Sci. Comput. 34 (2) 
(2012) A683–A713, http://dx.doi.org/10.1137/100818893.

[45] I.V. Oseledets, Approximation of matrices with logarithmic number of parameters, Dokl. Math. 80 (2) (2009) 653–654, http://dx.doi.org/10.1134/
S1064562409050056.

[46] I.V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 2130–2145, http://dx.doi.org/
10.1137/090757861.

[47] B.N. Khoromskij, O(d log n)-quantics approximation of n-d tensors in high-dimensional numerical modeling, Constr. Approx. 34 (2) (2011) 257–280, 
http://dx.doi.org/10.1007/s00365-011-9131-1.

[48] H. Meskine, S. Matera, M. Scheffler, K. Reuter, H. Metiu, Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo 
simulations, Surf. Sci. 603 (10) (2009) 1724–1730, http://dx.doi.org/10.1016/j.susc.2008.08.036.

[49] K. Reuter, M. Scheffler, First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110), Phys. 
Rev. B 73 (4) (2006) 045433, http://dx.doi.org/10.1103/PhysRevB.73.045433.

[50] S. Matera, H. Meskine, K. Reuter, Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) 
with first-principles kinetic Monte Carlo, J. Chem. Phys. 134 (2011) 064713, http://dx.doi.org/10.1063/1.3553258.

[51] W. Hackbusch, Tensor spaces and numerical tensor calculus, in: Springer Series in Computational Mathematics, vol. 42, Springer, 2012.

http://dx.doi.org/10.1016/j.cam.2006.02.053
http://dx.doi.org/10.1002/cnm.2476
http://dx.doi.org/10.1137/100818893
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1137/090757861
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1016/j.susc.2008.08.036
http://dx.doi.org/10.1103/PhysRevB.73.045433
http://dx.doi.org/10.1063/1.3553258
http://refhub.elsevier.com/S0021-9991(17)30278-4/bib4841434B425553434832303132s1
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1137/090757861

	Nearest-neighbor interaction systems in the tensor-train format
	1 Introduction
	2 Theoretical background
	2.1 Tensor formats
	2.2 Nearest-neighbor interaction systems

	3 General SLIM decomposition
	3.1 Derivation
	3.2 Examples
	3.2.1 Ising model
	3.2.2 Linearly coupled oscillator


	4 SLIM decomposition for Markov generators
	4.1 Tensor representation of the Markovian master equation
	4.2 Derivation
	4.3 Examples
	4.3.1 CO oxidation at RuO2
	4.3.2 Toll station


	5 Conclusion and outlook
	Acknowledgements
	Appendix A Tensor notation and properties
	A.1 Bilinearity of the tensor product
	A.2 Rank-transposed of a TT core
	A.3 Equivalence of the master equation formulations
	A.4 Little-Endian convention

	Appendix B Properties of the SLIM decomposition
	B.1 Equivalence of SLIM and canonical decomposition
	B.2 Storage consumption of the SLIM decomposition

	References


