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1. Derivation of the full Bayesian relation model and its properties (maximum log-likelihood es-

timates, their uncertainty).

2. Derivation of the reduced Bayesian model formulation and its properties, proof of the theorem

from the main manuscript.

3. Imposing a priori information on DBMR.

4. Description of the Bayesian Model Reduction algorithms introduced in the main manuscript.

5. Methodological comparison of the Bayesian Model Reduction methods introduced in the manuscript

to the Probabilistic Latent Semantic Analysis (PLSA).

6. Additional figures.
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1 Derivation of the full Bayesian relation model and its proper-
ties (maximum log-likelihood estimates, their uncertainty)

Here, we will present a derivation of a full model of Bayesian relations between the categorical

processes and investigate some of it’s properties. Process Y below will serve as a reference process

- meaning that it will not change when process X is reduced. The terms ’categorical process’ and

’categorical variables’ mean that - in every particular case - s (e.g., at any given time s or for any

given instance s in the data set) Y (s) is taking only one of the possible values from m categories

{y(1), y(2), . . . , y(m)} and X(s) from only one of the n categories {x(1), x(2), . . . , x(n)}. Since the

system can not be in two different global categories simultaneously, these categories are disjoint and

relation between the probability for Y (s) to attain a category y(i) in its instance/realisation s and the

probabilities for X(s) can be formulated exactly (i.e., without the model error [8]) via the conditional

probabilities and the law of the total probability [6]:

P [Y (s) = y(i)] =
n∑
j=1

ΛijP [X(s) = x(j)] , (1)

where matrix elements {Λ}ij = P[Y (s) = y(i)|X(s) = x(j)] are conditional probabilities. They

can be used as indicators for existence of causality relations between the processes Y and X in the

randomised studies: if {Λ}ij = P[Y (s) = y(i)] for all j and s the processes are then independent -

meaning that information about process X provides no additional advantage in computing the proba-

bility of the outcomes of Y . If {Λ}ij 6= P[Y (s) = y(i)] for some j, consequently, there exists some

relation between X and Y [12]. To be able to interpret these conditional probabilities as some mea-

sure of the true causality relations in practical studies when {Λ}ij are estimated from the available

observations of X and Y , one needs to guarantee that the data is appropriately randomised, meaning

that the resulting Λ-estimates are unbiased by the presence of hidden/latent variables [12, 9].

Defining the column vectors of probabilities ΠY (s) = {P[Y (s) = y(1), . . . , P[Y (s) = y(m)]},

ΠX(s) = {P[X(s) = x(1), . . . , P[X(s) = x(n)]}, we can re-write the above equation in a matrix-
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vector form:

ΠY (s) = ΛΠX(s). (2)

In a particular case, when m = n, when s is the time index and X(s) ≡ Y (s − τ) (where τ is

a time-step), the above formulation (2) is equivalent to a so-called master equation of a Markov

process (and - thereby - is a particular time-discrete case of the well-known time-continuous Fokker-

Planck equation [6]). The n × n-matrix Λ in this case will be a transpose of the Markov transition

operator [14]. If matrix Λ is known it provides full information about the relations between processes

Y and X - and can be used to simulate Y , if X is available. However, in many application areas

(e.g., in molecular dynamics, computer-aided disease diagnostics, in genome-wide association studies

(GWAS) in genomics) this matrix is not directly available and can only be estimated from data.

If observational data {X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)} are available, an

estimate Λ∗ of the rectangular m × n matrix Λ can be obtained by applying the well-known maxi-

mum likelihood principle. Hereby one seeks for a set of such parameters Λ̂∗ that would maximise

the total probability (or likelihood) of simultaneously observing these two particular sequences of ob-

servations. In this procedure the observational data is assumed to be fixed, resulting in the following

expression for the log-likelihood function (i.e., a logarithm of the observational probability):

LogL (Λ) = log (P [{X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)} |Λ]) =

=
S∑
s=1

m∑
i=1

n∑
j=1

χ(Y (s) = yi)χ(X(s) = xj)logP [Y (s) = yi|X(s) = xj] =

=
S∑
s=1

m∑
i=1

n∑
j=1

χ(Y (s) = yi)χ(X(s) = xj) log Λij =
m∑
i=1

n∑
j=1

Nij log Λij, (3)

with

Λ∗ = argmax
Λ

{LogL (Λ)} = argmax
Λ

{
m∑
i=1

n∑
j=1

Nij log Λij

}
, (4)
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where Nij =
∑S

s=1 χ(Y (s) = yi)χ(X(s) = xj) (with χ being an indicator function) is the total

number of instances in the data when X(s) was in category x(j) and - simultaneously - Y (s) was

in category y(i). To guarantee that the elements of the obtained Λ∗ preserve the basic properties

of conditional probability, maximisation of the log-likelihood function (3) must be subject to the

following linear equality and inequality constraints

Λij ≥ 0,
m∑
i=1

Λij = 1, for all i, j. (5)

It turns out that analogously to how it is done for the standard estimation of Markov transition ma-

trices [6], the optimal solution of this constrained minimisation problem (4-5) and further properties

of the resulting estimates can be retrieved analytically. These results and properties are summarised

in the following two Lemma.

Lemma 1: for the given observational data {X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)}

the maximum log-likelihood problem (4-5) has a unique solution Λ∗ij = Nij/
∑m

i=1Nij (where i =

1, . . . ,m and j = 1, . . . , n) if
∑m

i=1Nij 6= 0. Asymptotic posterior uncertainty

σ2
ij = Var

{
P
[
Λij|Λ∗ij, X, Y

]}
of this maximum-likelihood parameter estimate Λ∗i, (characterised in

terms of the posterior parameter variance) can be computed analytically as σ2
ij =

Λ∗ij(1−Λ∗ij)∑m
i=1Nij

.

Proof: First of all, it is straightforward to see that obtaining the solution for the above problem (4-5)

is equivalent to obtaining the solutions for the following n independent maximisation problems (with

j = 1, . . . , n):

Λ∗:j = argmax
Λ

{
m∑
i=1

Nij∑m
i=1Nij

log Λij

}
, s.t. (6)

Λ:j ≥ 0,
m∑
i=1

Λij = 1, for all i. (7)

Since
∑m

i=1
Nij∑m
i=1Nij

≡ 1, for any j = 1, . . . , n these problems are convex combinations of the

concave optimisation problems defined on the convex and bounded domains - therefore solutions to
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all of these problems will exist and be unique if the respective
∑m

i=1Nij 6= 0. Therefore, also a

solution of the original problem (4-5) will exist and be unique. Deploying a method of Lagrange

multipliers and taking into account only the equality constraints from (5) first, for
∑m

i=1Nij 6= 0 we

obtain that

Λ∗ij =
Nij∑m
i=1 Nij

. (8)

Alternatively, one can obtain the same result without the Lagrange multipliers methods, by observing

that the above expression (6) represents a negative of the cross entropy distance between the unknown

distribution Λ:j and a distribution N:j∑m
i=1Nij

that is given by the observational data. Thereby, maximi-

sation of (6-7) is equivalent to the minimisation of the cross entropy between the two distributions -

attaining the minimum if the two distributions are equal, i.e., when (8) is fulfilled.

Next, we consider a problem of estimating a variance of the maximum log-likelihood estimator for

Λ∗ (8). For this purpose we can first deploy the Bayes theorem that will allows us to express the poste-

rior distribution of the parameter Λ∗ (conditioned on fixed observed sequences {X(1), X(2), . . . , X(S)}

and {Y (1), Y (2), . . . , Y (S)}) in terms of the log-likelihood function (3) and the prior probabilities

Pprior [{X(1), X(2), . . . , X(S)} , {Y (1), Y (2), . . . , Y (S)}] and Pprior [Λ]. Applying the logarithm to

both sides of the obtained expression we gain:

log (Ppost [Λ| {X(1), X(2), . . . , X(S)} , {Y (1), Y (2), . . . , Y (S)}]) =

= LogL (Λ) + log (Pprior [Λ])− log (Pprior [{X(1), X(2), . . . , X(S)} , {Y (1), Y (2), . . . , Y (S)}]) =

= LogL (Λ) + const1, (9)

where in the second equality we used the fact that the least-biased prior for the bounded categorical

variables and discrete stochastic matrices (bounded on the intervals [0, 1]) are the uniform priors1. In

1Please note that the essential issue here is the boundedness of the domain of realisations for categorical processes:
if the X and Y where the unbounded random processes in Rn, then according to the maximum-entropy principle the
least-biased prior with the fixed variance would be a Gaussian prior [6].
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the following we will estimate the marginal variance of this posterior distribution

Ppost [Λ| {X(1), X(2), . . . , X(S)} , {Y (1), Y (2), . . . , Y (S)}] with respect to a single matrix element

Λij - when all of the other matrix elements Λ∗i′j′ (for all i6=i′ and j 6=j′) are kept fixed for a given series

of the observed data X and Y . In such a case we can formulate the maximum log-likelihood problem

(4-5) as an unconstrained optimisation problem:

LogL (Λij) = Nij log(Λij) + (Nj −Nij) log(1− Λij) + const, (10)

where Nj =
∑m

i=1Nij and const is a factor that is independent of Λij .

Again, multiplying (10) with 1
Nj

(by assuming that Nj 6=0), we get an equivalent optimisation

problem that is concave (being a convex combination of concave problems). Being defined on a

bounded concave domain, this problem has a unique solution that can be obtained by setting the first

derivative of (10) to zero and solving the resulting equation with respect to Λij . It is instructive to see

that it results in the same maximum log-likelihood estimate (8).

Considering the log(Λij) as random realisations of the i.i.d. random variable we can observe that

the right-hand side of (4) is the expectation of this variable and deploying the central limit theorem2,

we get that asymptotically (for S →∞ ) the posterior distribution of the parameter Λ∗ij is a Gaussian

distribution of the form

P [Λij|Λ∗] = exp
[
LogL

(
Λ∗ij
)

+ 0.5(Λij − Λ∗ij)
2∂2LogL

(
Λ∗ij
)]

(11)

where we essentially have deployed the quadratic Taylor-approximation of the function

log (Ppost [Λ| {X(1), X(2), . . . , X(S)} , {Y (1), Y (2), . . . , Y (S)}]) around the maximum log-likelihood

2The line of the argument that is deployed here is exactly the same as the one used in the proofs of the asymptotic
Akaike Information Criterium, we refer to [1] for further details.
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estimate Λ∗ij . Then, the variance of this Gaussian distribution can be expressed analytically as

σ2
ij = Var {P [Λij|Λ∗, X, Y ]} = − 1

∂2LogL
(
Λ∗ij
) =

= − 1

−N2
j

Nij
− N2

j

Nj−Nij

=
Nij(Nj −Nij)

N3
j

=
Λ∗ij(1− Λ∗ij)

Nj

. � (12)

Lemma 2: if the categorical process X is obtained from the box-discretisation of a d-dimensional

process with N discretisation boxes per dimension, then the supremum of a least-biased estimate σ2
ij

for the uncertainty of the maximum log-likelihood parameter estimates Λ∗ij is given by the expression

supσ2
ij = Nd(m−1)

Sm2

Proof: since the categories x(1), . . . , x(n) of the full process X should be statistically-disjoint (to

allow for applying the law of the total probability (1)), every category x(j) should correspond to

a one of the Nd original dimension box-combinations - i.e., n≤Nd. According to the maximum-

entropy principle [6], the least-biased prior distribution for the data matrix elements Nij is provided

by the uniform prior, i.e., by Nij = S/(nm). It is easy to verify that this results in the maximum

log-likelihood estimate

Λ∗ij = 1/m, (13)

and substituting (14) and n≤Nd into (11) we get

σ2
ij =

n(m− 1)

Sm2
≤ sup

ij
σ2
ij =

Nd(m− 1)

Sm2
� (14)

Interpretation: In realistic applications the number of categories n can grow exponentially with

the physical dimension of the problem (”curse of dimension”) - leading to the exponential growth

of uncertainty for the Λ∗ estimation problem, when the available statistics size S and number m of

Y -categories are fixed. Obtained formula (11) also means that the uncertainty of all further physical

observables obtained from Λ∗ will be also growing with the growing n, making practical deployment
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of eq. (2) problematic for realistic systems with ”large” n and ”small” S. This also means that

if we want to reduce the dimensionality n - for example, through identification of a small number

K of collective categorical variables that agglomerate the original n categories of process X into K

groups/boxes - then this methodology should rather not rely on a direct estimation of the full Bayesian

causality matrix Λ∗ in these situations when ”n” is large and ”S” is small. In the following we shall

present a simple idea circumventing the need of direct estimation/computation of Λ∗ and allowing for

a direct computation of the reduced/agglomerated collective variables.

2 Derivation of the reduced Bayesian model formulation and its
properties, proof of the theorem from the main manuscript.

To achieve this aim, we shall be looking for a categorical process {X̂(1), X̂(2), . . . , X̂(S)} (being

a reduced representation of the full categorical process X) that is defined on a reduced set of cate-

gories {x̂(1), x̂(2), . . . , x̂(K)} with K < n. Deploying again the law of the total probability we can

establish a relation between the probability density π̂X̂(s) of this - still unknown - process and the full

probability density of the observed process ΠX(s):

π̂X̂(s) = Γ̂ΠX(s), (15)

where Γ̂kj = P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
is the matrix of Bayesian conditional probabilities re-

lating the two processes X and X̂ . This matrix can also be understood as a discrete probabilistic

projection operator, playing in the following a similar role as the linear projection operators built of

the dominant eigenvectors of the relation matrices in standard reduction methods (e.g., projection

matrices built from the dominant eigenvectors of the data covariance matrix deployed in the Princi-

pal Component Analysis method or the Frobenius-eigenvectors of propagator and generator matrices

used in the spectral reduction theory of Markov chains). The main conceptual difference of the Γ̂

matrix from the projection operators obtained in the standard reduction methods is that it is preserv-
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ing the l1-norm - thereby guaranteeing that the reduced process density πX̂ will always preserve the

probability (i.e.,
∑K

i=1 {π̂X̂(s)}i ≡ 1 and {π̂X̂(s)}i ≥ 0 for all i). In contrast, the projection matri-

ces in standard approaches like Markov spectral reduction theory and PCA are l2 objects and do not

automatically preserve a probability of the reduced density in this sense.

Next, we deploy a law of the total probability to establish a Bayesian relation between the reduced

(and unobserved) process X̂ and the observed process Y :

Π̂Y (s) = λ̂πX̂(s), (16)

where λ̂ik = P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
is the matrix of conditional probabilities connecting the

two processes. Substituting (15) into (16) we obtain a reduced representation of the original model

(2):

Π̂Y (s) = λ̂Γ̂π̂X(s), (17)

that now connects the observed processes not directly (as was the case for the full model (2)) but

rather indirectly - through a latent reduced process X̂ that is defined on a categorical space of a

smaller dimension K.

If the two sets of categorical data {X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)} (where

for any s, X(s) ∈ {x(1), x(2), . . . , x(n)} and Y (s) ∈ {y(1), y(2), . . . , y(n)}) are given, the maxi-

mum log-likelihood parameter estimates for λ̂ and Γ̂ in the reduced model (17) can be obtained with

one of the two following computational approaches.

Analogously to the procedure deployed in the Lemma 1 above, one can try to estimate the matri-

ces Γ̂ and λ̂ directly from the observed data {X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)}.

The optimal parameter estimates can be obtained by solving the exact log-likelihood maximisation
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problem subject to equality and inequality constraints:

L̂ =
m∑
i=1

n∑
j=1

Nij log
{
λ̂Γ̂
}
ij
→ max

λ̂,Γ̂
, s.t. (18)

λ̂ik ≥ 0,
m∑
i=1

λ̂ik = 1, for all i,k, (19)

Γ̂kj ≥ 0,
K∑
k=1

Γ̂kj = 1, for all k, j, (20)

Structure of this problem motivates deployment of the iterative methods (e.g., of the sequential

quadratic programming procedures [13]) - since the parameters λ̂ and Γ̂ naturally separate the problem

into two concave maximisation problems with linear equality and inequality constraints. However,

following the standard procedure for this particular problem (i.e., substitution of the linear equality

constraints into (18) - followed by taking the partial derivatives of the resulting function with respect

to the arguments λ̂ and Γ̂ and setting the obtained derivatives to zero) - results in the nonlinear sys-

tem of equations that can not be solved analytically. Moreover, resulting system of equations does

not include the inequality constraints, providing no guarantee that the obtained solutions will be non-

negative. And - as it is straightforward to verify - the full numerical solution of the problem (18,19,20)

by means of gradient-based optimisation methods would require
(
O
(
(2K − 1)3 (n+m)3)+O (S)

)
of operations. It means that the numerical cost of this reduced model identification procedure will

scale polynomially with the dimension n - prohibiting an application of this method to realistic prob-

lems with large n. Computer code implementing this seqential quadratic optimisation algorithm is

provided for open access as a part of the BMR-toolbox (in Matlab) that can be found in the supple-

mental information to this manuscript and over the GitHub-portal www.github.com.

It turns out that substituting the function L̂ with its lower-bound approximation L̂ ≥ l̂ =

=
∑m

i=1

∑n
j=1

∑K
k=1NijΓ̂kj log

(
λ̂ik

)
(which directly results from applying the Jensen’s inequality

to (18)) allows providing a computational method that can solve this approximate model reduction

problem with a linear scaling of the computational cost in n. Moreover, as will be demonstrated
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below, it provides those solutions that are more simple and ”regular” - meaning that the obtained

model matrices (e.g., the projector matrix Γ̂) require much less parameters to encode them3. As

shown on the application example, this results in two further practical advantages: (i) the reduced

approximate models allow a better physical interpretation (since the original systems dimensions

are thereby sharply and ”deterministically” assigned to the reduced systems dimensions); and (ii)

obtained models are less subject to the overfitting issues and are more advantageous in terms of the

model quality measures (like information criteria) - measures that take into account both the model

quality and the model complexity [3].

Properties of this approximate model reduction procedure are summarised in the following theo-

rem.

Theorem: Given two sets of categorical data {X(1), X(2), . . . , X(S)} and {Y (1), Y (2), . . . , Y (S)}

(where for any s, X(s) ∈ {x(1), x(2), . . . , x(n)} and Y (s) ∈ {y(1), y(2), . . . , y(n)}), the approx-

imate maximum log-likelihood parameter estimates for λ̂ and Γ̂ in the reduced model (17) can be

obtained via a maximisation of the lower bound l̂ of the above log-likelihood function L̂ from (18):

L̂ ≥ l̂ =
m∑
i=1

n∑
j=1

K∑
k=1

NijΓ̂kj log
(
λ̂ik

)
→ max

λ̂,Γ̂
, (21)

subject to the constraints (19,20). Solutions of this problem exist and are characterised by the dis-

crete/deterministic optimal matrices Γ̂ that have only elements zero and one. Solutions of (21,19,20)

can be found in a linear time, by means of the monotonically-convergent DBMR-Algorithm shown

below, with a computational complexity of a single iteration scaling as O (K ·min{mn, S}) and

requiring no more then O (K(m− 1) + n+ min{mn, S}) of memory. Asymptotic posterior uncer-

tainty of the obtained parameters λ̂∗ (characterised in terms of the posterior parameter variance) can

3The optimal assignment of projector elements Γ̂ij resulting from the DBMR-algorithm introduced below appears to
be either zero or one - which requires much less basis functions (e.g., wavelet basis functions) to represent the rows of the
obtained matrices as compared to Γ̂ with elements being everywhere between zero and one.
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be computed analytically as Var
{
P
[
λ̂ik|λ̂∗, Γ̂∗X, Y

]}
=

λ̂∗ik(1−λ̂∗ik)∑m
i=1

∑n
j=1Nij Γ̂∗kj

. The least-biased estimate

of the ratio ρ for the expectations of posterior parameter variances from the resulting full and reduced

models equals to

ρ =
Eij Var {P [Λij|Λ∗, X, Y ]}

Eik Var
{
P
[
λ̂ik|λ̂∗, Γ̂∗X, Y

]} =
n

K
. (22)

Direct Bayesian Model Reduction Algorithm (DBMR-Algorithm)

Choose random λ̂(0), set I = 0.

Set Γ
(0)
kj to 1 if k = argmax

k′

∑m
i=1Nij log(λ̂

(0)
ik′ ) and else to 0 - for all j and k.

Do until ‖̂l(Γ(I), λ̂(I))− l̂(Γ(I−1), λ̂(I−1))‖ becomes less then a tolerance threshold:

Step 1: set λ̂(I+1)
ik =

∑n
j=1NijΓ

(I)
kj∑m

i=1

∑n
j=1NijΓ

(I)
kj

for all i, k

Step 2: set Γ
(I+1)
kj = 1 if k = argmax

k′

∑m
i=1Nij log(λ̂

(I+1)
ik′ )

and else Γ
(I+1)
kj = 0 - for all j, k .

I = I + 1.

Proof: Step 1 (existence of solution) Since 0 ≥ L̂ ≥ l̂, function l̂ is bounded with zero from above.

Existence of a solution for the respective optimisation problem then follows straightforwardly from

the boundedness of the function (21) and boundedness of a convex [0, 1]-simplex domain defined by

the linear constraints (19,20) [13]. Please note that this solution might not be unique.

Step 2 (uniqueness of the analytical solution wrt. λ̂ for a fixed parameter Γ̂) For any fixed Γ̂ that

satisfies (20), the problem (21,19) becomes a concave maximisation problem wrt. λ̂ that is subject

to linear equality and inequality constraints. Deploying a standard method of Lagrange multipliers

for equality constraints only, if
∑m

i=1

∑n
j=1

{
Γ̂
}
kj
Nij 6=0 (for all k = 1, . . . , K) one obtains a unique
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optimal solution:

{
λ̂
}∗
ik

=

∑n
j=1

{
Γ̂
}
kj
Nij∑m

i=1

∑n
j=1

{
Γ̂
}
kj
Nij

, (23)

that apparently also satisfies the inequality constraints in (19). Therefore, it will be also a unique

solution of the full problem (21,19,20) when Γ̂ is fixed.

Step 3 (discrete analytical solution wrt. Γ̂ for a fixed parameter λ̂) For any fixed λ̂ that satisfies

(19), the problem (21,20) is a linear maximisation problem (LP) with block-diagonal matrices of lin-

ear equality and inequality constraints. Due to this block-diagonal structure of constraints, solution of

this LP-problem is equivalent to an independent solution of the n following LP-problems - separately

for every j: 
∑K

k=1 αkjΓ̂kj → max
Γ̂1j ,...,Γ̂Kj

s.t.
∑K

k=1 Γ̂kj = 1, Γ̂kj ≥ 0,
,

(24)

where αkj =
∑m

i=1Nij log λ̂ik are fixed non-positive constants when λ̂ is fixed. Then, as it is very

easy to check, substituting the following expression for Γ∗

Γ̂∗kj =

{
1, if k = argmax

k′
{αk′j}

0, else
,

(25)

into (24) (when argmax
k′
{αk′j} is unique for all j) provides a maximum value to the LP-functions that

also satisfies the constraints. When the argmax
k′

{αk′j} is not unique (i.e., when there are some j for

which there exists some set k = {k1, k2, . . . , kp} such that αk1j = · · · = αkpj = max
k′
{αkj}) then the

solution of (24) is not unique and every combination of Γ̂kj that satisfies Γ̂k1j + · · ·+ Γ̂kpj = 1, Γ̂:j≥0

- including a deterministic one (where one arbitrarily-selected Γk′j (k′∈k) is set to one and all other

Γk′′j (k′′ 6=k′) are set to zero) - would provide an optimum of the problem (21,20) for a fixed λ̂.
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Step 4 (monotonic convergence of the DBMR-algorithm, computational iteration cost) According

to the above Step 2 and Step 3 of this Proof, in every step (I) the problem can be solved via the iter-

ative optimisation procedure switching between the optimisations for fixed iterated parameter values

Γ̂(I) (in Step 3) and λ̂(I) (in Step 2). Iterative repetition of these two steps - starting at some arbitrarily

chosen value Γ̂(1) or λ̂(1) in the first algorithm iteration - will result in a monotonic increase of the

respective function value l̂(I) when I increases (i.e., l̂(I) < l̂(I+k), where k≥1). Since the overall prob-

lem (21,19,20) is bounded from above with zero and is defined on a bounded domain, this iterations

will monotonically converge to some local maximum of the function (21) - dependent on the initial

choice of the iteration parameters Γ̂(1) or λ̂(1).

Computational cost of this algorithm consists of the cost O (S) (for creating a matrix N with

Nij =
∑S

s=1 χ(Y (s) = yi)χ(X(s) = xj) from the observational data) and the computational iteration

complexity of O (K ·min{mn, S}) for analytical computation of the optima (25) and (23) in every

iteration of the DBMR-algorithm, as derived in the Step 2 and the Step 3 above.

Step 5 (asymptotic uncertainty estimator for the reduced model) Following the same line of argu-

ment as introduced in the proof of the Lemma 1 (i.e., deploying the Bayes theorem to express the

logarithm of the posterior reduced parameter log-likelihood through the reduced log-likelihood l̂ and

expanding the obtained logarithm with Taylor series up to the second order), we obtain the expression

for the asymptotic marginal variance of the λ̂∗:

Var
{
P
[
λ̂ik|λ̂∗, Γ̂∗X, Y

]}
=

λ̂∗ik(1− λ̂∗ik)∑m
i=1

∑n
j=1 NijΓ̂∗kj

, (26)

when all other parameters and the observation data are fixed.

Step 6 (optimal reduced model in the least-biased situation)

As shown in the proof of the Lemma 2 above, the least biased prior for the data matrix N is the

uniform prior of the form

Nij =
S

nm
, for all i, j, (27)
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that leads to a maximum log-likelihood estimator Λ∗ij = 1/m. Then, substituting this estimator into

(21) one can see that maximisation of the reduced log-likelihood function (21) becomes equivalent to

a minimisation of the cross entropy between the two unknown discrete distributions Γ̂ and λ̂. Since

the absolute minimum of the cross entropy is attained for the uniformly-distributed λ̂ (for any fixed

distribution Γ̂), it means that the optimal solution of the reduced problem (21,19,20) for the least-

biased prior is given by

{
λ̂∗
}
ik

=
1

m
, for all i, k. (28)

Step 7 (expected ratio of parameter uncertainties in the least-biased situation) Substituting (27) and

(28) into (26) we obtain

Eik Var
{
P
[
λ̂ik|λ̂∗, Γ̂∗X, Y

]}
=

K(m− 1)

Tm2
, (29)

Dividing the expectation of the left side of (14) with (29) we obtain (22). �

3 Imposing a priori information on DBMR

When dealing with real-life applications, it is also important to have an option for adjusting a set of

collective variables according to a physical intuition or some prior knowledge [5]. For example, one

could have some prior physical information that certain dimensions of the original problem have a

higher relevance for the dynamics then some other physically less-relevant dimensions. This is es-

pecially relevant for very short data series with small S (as in the medical Example 2 below) - due

to an imminent danger of ”overfitting” the data through a model with a large number of free ad-

justable parameters. One straightforward way of resolving this problem would be in deploying some

ad hoc smoothing or sparsifying strategies (e.g., Ridge- or LASSO-regularizations) that would add

additional convex constraints to (19,20) or some concave penalty terms to (21). However, because

of the particular analytical structure of the obtained non-concave optimisation problems it is more
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appropriate to use the non-concave regularization strategies that were systematically derived for this

type of clustering problems, e.g., the regularization methodologies that allow to impose a priori avail-

able expert information cast into a form of a network/graph on clustering algorithms in optimisational

formulation [7].

Defining the original categories x = {x(1), x(2), . . . , x(n) as the edges E of a graph G, in many

situations we will be able to formulate the a priori available physical information as an n× n matrix

of weights WG for the vertices V connecting the edges of this graph (please see [7] for particular

examples). Then, since the DBMR optimisation problem (21) has a form of the clustering problem,

we can deploy a graph-based regularisation methodology introduced in [7] in order to impose this a

priori information on the problem of finding an optimal reduced Bayesian model. This will result in

the following maximisation problem:

L̂ ≥ l̂ ≥ l̂DG,ε =
m∑
i=1

n∑
j=1

K∑
k=1

NijΓ̂kj log
(
λ̂ik

)
− ε2

n∑
j1,j2=1

K∑
k=1

DG(j1, j2)Γ̂kj1Γ̂kj2 → max
λ̂,Γ̂

,(30)

whereDG = P−2W+Q (with diagonal matrices Puu ≡
∑

v|(v,u)∈EWv,u andQuu ≡
∑

v|(u,v)∈EWu,v)

is kernel distance matrix of the graph. Computationally, this results in adding an additional penalty

term to the right-hand side of (3), which practically means that the analytically-computable explicit

formulas from Steps 1 and 2 in the original DBRM algorithm need to be substituted by solutions of

sparse quadratic programming problems and resulting in the overall iteration cost of

O (mK + n(K − 1) log[n(k − 1)]) (pseudocode description of the DBMR-graph algorithm can be

found in the Section 5 below). More details on imposing available information on clustering methods

can be found in [7], a practical application of this information-imposing clustering method to the

analysis of relatively short data series with a small n is given in the breast cancer diagnostics Example

2 from the main manuscript.
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4 Description of the Bayesian Model Reduction algorithms intro-
duced in the main manuscript.

Exact iterative log-likelihood maximisation First of all, we observe that for any fixed λ̂, the orig-

inal exact log-likelihood maximisation problem (18,19,20) can be decomposed into n independent

optimisation problems of the form

L̂j =
m∑
i=1

Nij log

(
K∑
k=1

λ̂ikΓ̂kj

)
→ max

λ̂,Γ̂1j ,...,Γ̂Kj

, (31)

Γ̂kj ≥ 0,
K∑
k=1

Γ̂kj = 1, for all k, j, (32)

and L̂ =
∑n

j=1 L̂j . For every j = 1, . . . , n the problem (31, 32) is a concave maximisation problem on

a simplex domain - and can be approached with standard methods of constrained convex optimisation

[13] with the iteration cost of O ((K − 1)3).

For a fixed Γ̂ the original exact log-likelihood maximisation problem (18,19) is also a con-

cave maximisation problem on a simplex domain - and can be solved with the iteration cost of

O ((m− 1)3K3). Then, it is straightforward to validate that in order to achieve a monotonic max-

imisation of the exact log-likelihood L̂, it would be enough to iterate the procedure where only one

iteration step is performed for each of these concave maximisations problems. Then, the overall iter-

ation cost for a full iterative optimisation of the original exact log-likelihood maximisation problem

will be O ((m− 1)3K3 + n(K − 1)3). This algorithmic procedure was deployed in order to obtain

the exact log-likelihood optima that were used to create the Figure 1.c) from the main manuscript.

Pseudocode description of this algorithmic procedure is provided below:

Algorithm 1 (direct iterative maximisation of the exact log-likelihood L̂)

Choose a random Γ̂(0),

compute λ̂(I) from one iteration of the problem (18,19) for a fixed Γ̂(0)
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set I = 1.

Do until ‖L̂(Γ(I), λ̂(I))− L̂(Γ(I−1), λ̂(I−1))‖ becomes less then a tolerance threshold:

Step 1:

for j=1,. . . ,n

for a given j, compute Γ̂
(I)
1j , . . . , Γ̂

(I)
Kj from one iteration of the problem (31, 32)

with a fixed λ̂(I−1)

end

Step 2: compute λ̂(I) from one iteration of the problem (18,19) for a fixed Γ̂(I)

I = I + 1.

Algorithm 2 (DBMR)

Direct Bayesian Model Reduction Algorithm (DBMR-Algorithm)

Choose random λ̂(0), set I = 0.

Set Γ
(0)
kj to 1 if k = argmax

k′

∑m
i=1Nij log(λ̂

(0)
ik′ ) and else to 0 - for all j and k.

Do until ‖̂l(Γ(I), λ̂(I))− l̂(Γ(I−1), λ̂(I−1))‖ becomes less then a tolerance threshold:

Step 1: set λ̂(I+1)
ik =

∑n
j=1NijΓ

(I)
kj∑m

i=1

∑n
j=1NijΓ

(I)
kj

for all i, k

Step 2: set Γ
(I+1)
kj = 1 if k = argmax

k′

∑m
i=1 Nij log(λ̂

(I+1)
ik′ )

and else Γ
(I+1)
kj = 0 - for all j, k .

I = I + 1.
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Algorithm 3 (DBMR-graph)

Algorithm 3 (DBMR-graph, with the imposed a priori informotation in the graph form)

Choose a random Γ̂(0),

compute λ̂(I) from one iteration of the problem (18,19) for a fixed Γ̂(0)

set I = 1.

Do until ‖l̂DG,ε(Γ(I), λ̂(I))− l̂DG,ε(Γ(I−1), λ̂(I−1))‖ becomes less then a tolerance threshold:

Step 1: compute Γ̂(I) by solving the sparse quadratic problem (30) subject to (20) for a fixed λ̂(I−1)

Step 2: set λ̂(I)
ik =

∑n
j=1NijΓ

(I)
kj∑m

i=1

∑n
j=1NijΓ

(I)
kj

for all i, k

I = I + 1.

5 Methodological comparison of the Bayesian Model Reduction
methods introduced in the manuscript to the Probabilistic La-
tent Semantic Analysis (PLSA)

In the following we present a list of methodological issues that arise from comparison of the model

reduction framework proposed in this manuscript to the Probabilistic Latent State Analysis (PLSA)

approaches that were developed in the area of information retrieval for analysis and reduction of

documents and texts [10, 11, 4].

PLSA: formulation, EM optimisation, limitations in a context of large-scale dynamical systems

PLSA is a methodology developed in the areas of information retrieval and mathematical linguistics in

order to perform a semantic analysis and to identify the latent semantic spaces of texts and documents

[10, 11]. Adopting the notation used so far, we can write the PLSA model (e.g., equations 1 and 2
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from [10] and the equation 3 from [11]) as:

P [X(s) = x(j) and Y (s) = y(i)] =

= P [X(s) = x(j)]
K∑
k=1

P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
. (33)

An equivalent symmetric form of this model (equation 4 from [10] and equation 5 from [11]) has

the form:

P [X(s) = x(j) and Y (s) = y(i)] =

=
K∑
k=1

P
[
X(s) = x(j)|X̂(s) = x̂(k)

]
P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
P
[
X̂(s) = x̂(k)

]
, (34)

with x = {x(1), . . . , x(n)} being some fixed set of n documents and y {y(1), . . . , y(m)} being a

predefined collection of m different words (a vocabulary).

Please note that by this construction used in [10, 11], both sets x and y are not assumed to build

complete coverages of the respective realisation spaces - i.e., {x(1), . . . , x(n)} should not necessary

build a full set of all documents and {y(1), . . . , y(m)} should not be a full vocabulary of all words.

This fact implies that in general, for any s it is true that 0 ≤
∑n

j=1 P [X(s) = x(j)] ≤ 1 and 0 ≤∑m
i=1 P [Y (s) = y(i)] ≤ 1. Another implication of this fact is that if we would cast this model into

the particular context of discrete Markov processes in time - by setting x ≡ y, Y (s) ≡ X(s+1) (with

s being a discrete time index) - and shall be using the PLSA model as an iterative dynamic model to

propagate the probability density from some initial value X(0) for s = 1, 2, ..., S (as in the molecular

dynamics application Example 1 from the main manuscript), then it is straightforward to validate that

the obtained vectors will not remain the probability densities - i.e., the resulting propagation of the

Markov chain in time will not be probability-preserving.

Representing the available dataX and Y in the form of the term frequency matrixNij =
∑S

s=1 χ(Y (s) =

yi)χ(X(s) = xj) (with χ being an indicator function), in PLSA framework one would like to seek for

the values of conditional probabilities P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
and P

[
X̂(s) = x̂(k)|X(s) = x(j)

]
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that would maximise the following log-likelihood function (equation 4 from [11]):

L =
n∑
j=1

Ni [πX(j)+

+
m∑
i=1

Nij

Nj

log

(
K∑
k=1

P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
P
[
Y (s) = y(i)|X̂(s) = x̂(k)

])]
, (35)

where Nj =
∑m

i=1Nij and

P [X(s) = x(j)] ≡ πX(j), for all s = 1, . . . , S; j = 1, . . . , n, (36)

i.e., in addition it is implicitly assumed thatX(s) is i.i.d. (i.e., independent/memoryless and identically-

distributed process) in s. As demonstrated in [4], this maximum log-likelihod formulation of the

PLSA inference problem is equivalent to the Nonnegative Matrix Factorisation method (NMF) in the

Kulback-Leibler norm [2]4.

However, a direct maximisation of the log-likelihood function (35) is hampered by the fact that due

to a specific form of the non-linearity in the right-hand side of the expression (being a logarithm of the

sum over k of the nonlinear expressions P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
)

one can not find the analytical expressions for the arguments P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
and

P
[
Y (s) = y(i)|X̂(s) = x̂(k)

]
that would simultaneously maximise (35) and remain probabilities

(i.e., would satisfy 0 ≤ P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
≤ 1 and 0 ≤ P

[
Y (s) = y(i)|X̂(s) = x̂(k)

]
≤

1). Application of the standard numerical optimisation methods for this problem would result in the

prohibitively-large computational complexity of the iterations in the optimisation procedure5, scaling

as O
(
(m+ n)3K3

)
.

4Equivalence of the two optimisational formulation does not imply the equivalence of the algorithmic procedures: e.g.,
in context of the large-scale dynamical systems discussed above, the NMF algorithm implementation would rely on the
availability of the empirical frequency estimator of the full relation matrix Λ. As shown in the Lemma 1 and 2, these
estimates will be subject to the uncertainty that may grow exponentially with the physical problem dimension.

5This is explained by the fact that this optimisation problem has (m + n)K arguments and the limiting step in the
computations based on gradient-ascent methods would be the inversion of the respective Jacobian (having a dimension of
(m + n)K times (m + n)K). The cost of this operation scales cubically for general unstructured matrices [13].
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So, in order to obtain the optimisers, PLSA deploys the Expectation Maximization (EM) algo-

rithm, that - instead of a direct maximisation of (35) - maximises (35) over its approximate lower

bound that is obtained by deploying the Jensen’s inequality to the expectation of the log-likelihood

function (35) taken with respect to the latent process X̂(s).

EX̂ (L) =
n∑
j=1

m∑
i=1

Nij

K∑
k=1

πX̂(k, i, j) log
(
P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
P
[
Y (s) = y(i)|X̂(s) = x̂(k)

])
,

(37)

where

P
[
X̂(s) = x̂(k)|X(s) = x(j) and Y (s) = y(i)

]
≡ πX̂(k, i, j), for all s, j, i, (38)

i.e., it is also implicitly assumed that X̂(s) is i.i.d. (i.e., independent/memoryless and identically-

distributed process) in s for any fixed combination of X(s) and Y (s). The fact that the numerical

inference procedures in PLSA are not based on the direct maximisation - but are actually maximising

the lower bound approximation (obtained with the help of the Jensen’s inequality) is a standard part

of the EM and is not mentioned explicitly in the PLSA literature. However, it becomes clear when

for example comparing the formula 4 and 7 in [11].

In contrast to the original log-likelihood function (35), its lower bound approximation (38) allows

a direct analytical computation of the extrema arguments (by taking the function derivatives, setting

them to zero and solving the obtained equations analytically). This is performed in the E-step (for the

hidden process probabilities πX̂(k, i, j)) and in the M-step (for the probability vector πX(j) and for the

conditional probability matrices P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
and P

[
Y (s) = y(i)|X̂(s) = x̂(k)

]
).

Again, the reason allowing this was given by the fact that deploying the Jensen’s inequality al-

lowed approximating the analytically-intractable nonlinearity (logarithm of the sum) through the

analytically-tractable one (sum of the logarithms).

Compared with the direct numerical optimisation of (35) that has a computational iteration com-

plexity of O
(
(m+ n)3K3

)
, the main advantage of this iterative EM procedure is its linear complex-
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ity scaling - with iteration cost scaling as O (K min{mn, S}). However, as discussed above, this

advantage was coming at a price. The following list summarises the ”cost items” that were needed

to achieve this advantage - and that might hamper the applicability of the PLSA in context of the

large-scale dynamical systems:

(i) introduction of the new optimisation arguments πX(j) and πX̂(k, i, j) (that come in addition to

the original quantities of interest P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
and P

[
Y (s) = y(i)|X̂(s) = x̂(k)

]
)

means increasing the overall number of free parameters - and the required program memory -

from O (K(m+ n) + min{mn, S}) to O (K(m+ n) +Kmn+ n+ min{mn, S});

(ii) construction of the EM for PLSA requires imposing additional i.i.d. assumptions (36) and (38) -

and introduces a bias if these assumptions are not fulfilled for the underlying dynamical system;

(iii) as was shown in the Lemma 1 and 2 above, in context of the large-scale dynamical systems

the number of categorical problem dimensions may grow exponentially with the physical di-

mension of the underlying system. Following the same line of argument as deployed in the

Lemma 1 and 2 on can demonstrate that this will be resulting in the exponential growth of

uncertainty for the respective EM-estimators of the additional variables πX(j) and πX̂(k, i, j).

Since all of the variables are iteratively coupled in the estimation procedure, this will also

result in the additional growth of estimation uncertainty for the original values of interest

P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
and P

[
Y (s) = y(i)|X̂(s) = x̂(k)

]
;

(iv) as explained above, EM algorithm is optimising the lower bound approximation (37) of the

original log-likelihood function (35), meaning that thereby obtained quantities of interest

P
[
X̂(s) = x̂(k)|X(s) = x(j)

]
and P

[
Y (s) = y(i)|X̂(s) = x̂(k)

]
might not necessary also be

the global optimisers of the original log-likelihood. And quantifying the deviations between the

optima of (35) and the solutions obtained by the EM algorithm is not straightforward due to the

nonlinearity and nonconvexity of both functions.
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(v) In context of application to the large-scale dynamical systems, matrices obtained with EM may

be difficult to interpret and to understand since they provide only ’fuzzy’ and probabilistic - and

not deterministic - relations between the original and the reduced dimensions of the underlying

problem.

(vi) EM algorithm for PLSA does not allow a direct possibility to impose an a priori available

”physical” information on the problem (e.g., an information that certain dimensions of the

original problem have a higher relevance for the dynamics then some other physically less-

relevant dimensions).

Comparison of the PLSA methodology with the three algorithms introduced in this manuscript

Below we provide a list of items that arise when comparing the PLSA with the Bayesian Model

Reduction (BMR) algorithms introduced in the manuscript:

a) BMR algorithm 1 introduced above allows a direct explicit optimisation of the exact log-

likelihood L̂, whereas the DBMR, DBMR+graph and PLSA-EM all maximise different lower

bound approximations of the exact log-likelihood (please see the Figure S6 for a graphic repre-

sentation).

b) BMR algorithms do not require introduction and iterative estimation of the additional model

parameters πX(j) and πX̂(k, i, j) (that are crucial for the PLSA). It means that BMR algo-

rithms do not rely on - and are not biased by - the additional strong i.i.d. assumptions (36) and

(38) that are imposed in the PLSA. Another implication of the much smaller number of opti-

misation parameters in the case of the DBMR are much more favourable memory requirements

(scaling as O (K(m+ n) + min{mn, S})) and a more favourable computational scaling for

single iterations (see the Figure S6). It also allows to avoid an additional estimation uncertainty

and reduces the risk of overfitting - that can, for example, be reflected in a more favourable
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(i.e., smaller) values of information-theoretical measures like AIC and BIC measured for BMR

results (please see the Figure S5).

c) Numerical tests performed on large ensembles of randomly generated data sets revealed that

the average number of iterations required until reaching the same tolerance (measured in terms

of the normalized log-likelihood 1
mn
L̂) for different combinations of dimensions m and n

for the PLSA model with the EM algorithm grows rapidly with problem dimensions (please

see the Figure 1 from the main manuscript). In contrast, application of the DBMR to the

same problems with the same tolerance of the normalized log-likelihood results in the av-

erage number of iterations that practically does not change with problem dimensions. This

strong dimension-dependence of the number of EM iterations is then further reflected in the

dimension-dependence of the overall computational time until convergence: deploying stan-

dard statistical tools of polynomial regression fitting and discrimination [15] one obtains that

the statistically-optimal fit of the red surface (corresponding to the PLSA) from the Figure 1.b)

in the main manuscript is given by a polynomial of the third degree - whereas the green surface

from the same Figure 1.b) (corresponding to the DBMR results) is optimally fitted by a function

that is linear inm and n. Extrapolation to the typical physical problem sizes (e.g.,m = n = 105,

K = 2) that, e.g., emerge in biophysical applications like the Markov State Model inference

based on Molecular Dynamics simulations of medium-size protein molecules, indicates that it

would require approximately 1450 years of computations with the PLSA method on a single

PC. In contrast, application of the DBMR algorithm to the same data under the same conditions

and settings requires 33 minutes on a single LapTop-PC.

d) As can be seen from the Figure 1.c) in the main manuscript, the average relative log-likelihood

difference between the results of exact iterative log-likelihood optimisation (Algorithm 1) and

the DBRM results (obtained under the same conditions) converges to zero exponentially in
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m. This implies that for realistic high-dimensional applications the log-likelihood difference

between the reduced models obtained with the DBRM algorithm and with the optimisation of

the exact log-likelihood will become negligible - meaning that the reduced models obtained

with the DBRM algorithm will have essentially the same posterior probability for explaining

the observed full data as the exact reduced models.

e) Theorem 1 above provides very straightforward analytical formula for quantification of un-

certainty of the reduced Bayesian models - and provides an understanding of how does the

uncertainty change when changing the ratio of the reduced and the original problem’s dimen-

sions. Because of the additional parameters πX(j) and πX̂(k, i, j), uncertainty quantification

for the PLSA and related approaches is much less straightforward.

f) DBMR provides deterministic ({0}/{1}) relations between the original and the reduced di-

mensions of the analyzed problem - making understanding and interpretation of the obtained

reduced relation models much easier.

g) DBMR-graph algorithm allows a robust and numerically-scalable (please see Figure S6) incor-

poration of a priori available physical information - if this information can be cast into a form

of a weighted graph with the kernel weights matrix DG.

6 Additional figures

• Figure S1 Left: Ramachandran plot for the MD simulation of 10-alanine peptide in water and

its decomposition into three categorical states. Right: representation with n categories for the

whole polypeptide molecule with N residues.

• Figure S2 Values of l̂i in the optimal solution of the reduced problem (8,6-7) obtained for

different numbers of colvars (or collective causality boxes) K (on x-axis) when process Yi are
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the Ramachandran dynamics of residues number one (i=1) to eight (i=8).

• Figure S3 Three optimal colvars (or collective causality boxes) obtained for K = 3 with pro-

cess Y4 being the Ramachandran dynamics of residuum number four.

• Figure S4 Probabilities for different proportions of the chain in the same local Ramachandran

state 1 to 3 from Fig.1 in the main manuscript. 100% means that all of the residues in the chain

are in this Ramachandran state, 0% means that there is not a single residuum in this state. The

blue line indicates the values of this distribution obtained from the full MD simulation data

and the boxplot shows the probability distribution and its 95% confidence intervals obtained

from the completely local reduced model (i.e. with 100% of local causality boxes). Red points

denote the statistical outliers of the reduced model (meaning that they are outside of the 99%

confidence interval). This plot should be compared to the Fig. 4 - implying that the 3% of non-

local causality boxes used in the Fig. 4 are essential to match the statistics of reduced model

with the full MD-data.

• Figure S5 Practical comparison of PLSA methods and the approaches introduced in this manuscript

- the direct L̂-optimisation algorithm and the l̂-optimisation with the DBMR-algorithm. Com-

parison of the optimal colvars obtained by different algorithms with K = 2 for the MD data in

Example 1 from the main manuscript.

• Figure S6 Graphic representation of the three algorithms introduced in the manuscript in com-

parison with the PLSA methodology from [10, 11].
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Figure 1: Left: Ramachandran plot for the MD simulation of 10-alanine peptide in water and its
decomposition into three categorical states. Right: representation with n categories for the whole
polypeptide molecule with N residues.
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Figure 2: Values of l̂i in the optimal solution of the reduced problem (8,6-7) obtained for different
numbers of colvars (or collective causality boxes) K (on x-axis) when process Yi are the Ramachan-
dran dynamics of residues number one (i=1) to eight (i=8).
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Figure 3: Three optimal colvars (or collective causality boxes) obtained for K = 3 with process Y4

being the Ramachandran dynamics of residuum number four.
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Figure 4: Probabilities for different proportions of the chain in the same local Ramachandran state 1
to 3 from Fig.1 in the main manuscript. 100% means that all of the residues in the chain are in this
Ramachandran state, 0% means that there is not a single residuum in this state. The blue line indicates
the values of this distribution obtained from the full MD simulation data and the boxplot shows the
probability distribution and its 95% confidence intervals obtained from the completely local reduced
model (i.e. with 100% of local causality boxes). Red points denote the statistical outliers of the
reduced model (meaning that they are outside of the 99% confidence interval). This plot should be
compared to the Fig. 4 - implying that the 3% of non-local causality boxes used in the Fig. 4 are
essential to match the statistics of reduced model with the full MD-data.
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Figure 5: Practical comparison of PLSA methods and the approaches introduced in this manuscript
- the direct L̂-optimisation algorithm and the l̂-optimisation with the DBMR-algorithm. Comparison
of the optimal colvars obtained by different algorithms with K = 2 for the MD data in Example 1
from the main manuscript.
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Figure 6: Graphic representation of the three algorithms introduced in the manuscript (black) in
comparison with the PLSA methodology from [10, 11] (red).
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