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a b s t r a c t

Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in het-
erogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary
reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particu-
larly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which
offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary
complexity in one- to three-dimensional lattice systems, involvingmultiple active sites in periodic or ape-
riodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually,
kmos achieves a maximum runtime performance which is essentially independent of lattice size by gen-
erating code for the efficiency-determining local update of available events that is optimized for a defined
kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a
high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user
interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary
reactions, while allowing on-the-fly changes of simulation parameters.We demonstrate the performance
and scaling of kmos with the application to kMC models for surface catalytic processes, where for given
operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are
catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of
individual elementary processes in the reaction network.

Program summary

Program title: kmos
Catalogue identifier: AESU_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESU_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 3
No. of lines in distributed program, including test data, etc.: 27450
No. of bytes in distributed program, including test data, etc.: 2777387
Distribution format: tar.gz
Programming language: Python 16.4%, fortran90: 83.6%.
Computer: PC, Mac.
Operating system: Linux, Mac, Windows.
RAM: 100 MB+
Classification: 7.8.
External routines: ASE, Numpy, f2py, python-lxml
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Microkinetic simulations of complex reaction networks with all elementary processes occurring at active
sites of a static lattice.
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Solution method:
Efficient lattice kinetic Monte Carlo solution of the Markovian master equation underlying the reaction
network.
Unusual features:
The framework implements a Fortran90 code generator
Running time:
From 10 s to 10 h

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The pressing demands for ever more energy- and resource-
efficient processing reinforce the long-standing quest towards a
detailed mechanistic understanding of heterogeneous catalysis. At
best down to the atomic level, such understanding would pave the
way for a rational design of improved catalysts, which ultimately
will be tailored to the nanoscale. Quantitative theory increasingly
contributes to this quest with refined kinetic models that mean-
while allow to accurately predict the activity of model catalysts of
increasing complexity (from single-crystal surfaces up to nanopar-
ticles at planar supports) without any recourse to experimental
data [1–8]. Such models have to span a range of scales in length
and time, starting with the making and breaking of the individual
chemical bonds at the electronic structure level, over the meso-
scopic interplay of the various elementary reactions in the reaction
network, to the heat and mass transport at the macroscopic (reac-
tor) scale [9–15].

To achieve this, state-of-the-art multi-scale models resort to
a hierarchical combination of different methodology. The current
framework for the mesoscopic level are microkinetic approaches
evaluating a (Markovian) master equation (vide infra) [9,16,17].
Using as input kinetic parameters for all elementary reactions
(e.g. provided from first-principles electronic structure theory
calculations), such microkinetic models determine for given oper-
ation conditions at the surface (e.g. temperature T and partial pres-
sures {pi} of all reactants i) not only the catalytic activity (typically
measured as turn-over frequency, TOF, in units of products per ac-
tive site and time) but also other important information such as
surface composition, the occurrence of individual reaction steps in
the network, or in particular the presence of a dominant reaction
mechanism as well as rate-determining steps therein [18,19]. Av-
eraged over a sufficiently large catalyst surface area the TOF output
can then for example be used as input for macroscale simulations
of heat and mass transport in a given reactor geometry [20–27].

The traditional and still prevalent microkinetic approach em-
ploys a mean-field approximation to solve the master equation,
and then only accounts for average surface coverages of the dif-
ferent reaction intermediates at the active surface. In case of het-
erogeneous arrangement of active sites, strong lateral interactions
among the adsorbed species, or diffusion limitations, this approx-
imation is known to break down and lead to qualitatively wrong
results [19,28,29]. This has contributed to the recent rise of alter-
native kinetic Monte Carlo (kMC) simulations, which do not need
to rely on the mean-field approximation and therefore provide
a faithful account of the detailed spatial distributions of species
at the catalyst surface, as well as their correlations and fluctua-
tions [30–32]. In contrast to effective rate equation based models
for which a definition of some abstract active site (type) is often
sufficient, kMC thus needs as input detailed information about the
microscopic arrangement of the true active sites of the crystal sur-
face. In return, it then provides comprehensive information about
the (time-resolved) arrangement of chemicals at all these active
sites during catalyst operation. Apart from awealth of mechanistic
information, e.g. about correlations in the occupation of neighbor-
ing sites at the surface, this allows to obtain proper (not erroneous
mean-field) mesoscopic averages of quantities like TOFs that ulti-
mately are required for reactor level modeling.

Due to the inherent methodological simplicity of kMC, semi-
nal works in the surface catalysis context typically relied on spe-
cialized code written from scratch [1–3,33–35]. Even though kMC
models are used in the field with increasing frequency this prac-
tice has largely prevailed and only few general kMC packages have
been put forward to date [36–39]. This stands in stark contrast
to the manifold of established and powerful software packages
employed in the multi-scale framework for either the underlying
electronic structure calculations [40] or the continuummechanics
reactor scale simulations [41]. Noting this as an obstacle to a fur-
ther, wide-spread use of the kMC approach to surface catalysis has
been the motivation for the here presented kmos package, which
as its core objective aims at a most user-friendly and efficient im-
plementation, execution, and evaluation of increasingly complex
lattice kMC models in the surface catalysis context.

2. Theoretical background

2.1. (Surface) chemistry on a lattice

In terms of microkinetic modeling, the atomistic evolution pro-
ceeding during surface catalytic reactions is quite representative
for a wider class of problems including crystal growth, initial
corrosion, diffusion in crystalline (battery) materials or surface
self-assembly. These problems feature a range of common charac-
teristics, which motivate a so-called lattice approach to kMC that
also underlies the kmos package. In the following we use a survey
over these characteristics to briefly introduce this lattice approach
to kMC and clearly define terminology henceforth employed. For
a more detailed account of general kMC methodology we refer to
existing reviews [30–32]. Even though the following introduction
is done within the surface catalysis context, the generalization to
the other problems mentioned is self-evident.
Site-specific adsorption and lattice mapping. The first defining char-
acteristic is that the surface adsorption of all reactants and reaction
intermediates is assumed to be site-specific, i.e. it always occurs
in well-defined so-called active sites offered by the crystalline sur-
face. Due to the periodicity of the latter this generally leads to a
lattice with each lattice point representing one such site [42]. The
actual kMC simulations only consider this lattice, which allows to
encompass a wide range of system geometries within this frame-
work. Most straightforward are extended low-index single-crystal
surfaces, where the lattice is simply composed of multiple identi-
cal surface unit-cells and then continued through the use of peri-
odic boundary conditions. Fig. 1 illustrates [43] this for a fcc(100)
model catalyst surface exhibiting two types of active sites. More
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Fig. 1. (Color online) Schematic representation of a typical model catalyst surface,
showing the top layer atoms of a metal(100) facet as large spheres. The periodic
surface consists of repeating unit cells, each containing one or more active
sites (here indicated by circles and squares for hollow and bridge adsorption
sites, respectively). Possible elementary reactions in the context of CO oxidation
(dissociative adsorption, diffusion, reaction and desorption) are indicated by yellow
arrows.

complex geometries like entire nanoparticles are accessed through
the thoughtful use of non-primitive unit-cells and/or pseudo re-
action intermediates (e.g. declaring different active sites, effective
species and kinetic parameters for every facet).

At each site an integer occupation value represents one of sev-
eral possible reaction intermediates binding to this site (e.g. 1 for
adsorbed O, 2 for adsorbed CO in the prominent CO oxidation con-
text), including a reaction intermediate empty (e.g. occupation
value 0) and also including the possibility that a (larger) reaction
intermediate extends over more than one site (in the lattice con-
text simply achieved by additional constraints linking the occupa-
tion of neighboring sites). One specific set of occupation values on
the entire lattice is called a configuration (denoted by small Latin
letters u, v, . . .), and a transition fromone configuration to another
proceeds through the occurrence of an event (denoted by small
Greek letters α, β, . . .). An event thus changes the occupation of
one or more sites.
Rare-event dynamics and Markovian master equation. The second
defining characteristic is that the time evolution is characterized
by a so-called rare-event dynamics [44]. Due to activation barri-
ers well exceeding thermal energies, the reaction intermediates
reside most of the time in their adsorption (lattice) sites, and the
events in form of the actual elementary reactions (adsorption, dif-
fusion, reaction, desorption) happen comparably fast in between.
Exploiting this separation of time scales, prevalent microkinetic
theory [16,45] generally assumes that any such event occurs inde-
pendent of all preceding ones, i.e. it applies a Markov approxima-
tion. The time evolution of the system (in this case the transitions
from configuration to configuration through the consecutive oc-
currence of events) is then described by a Markovian master equa-
tion

ρ̇u(t) =


v

(wuvρv(t) − wvuρu(t)) , (1)

where ρu(t) is the probability for the system to be in configuration
u at time t , and wvu is the transition rate (in units of time−1) at
which configuration u changes to configuration v.
Locality of elementary reactions. The third defining characteristic of
the systems mentioned initially is that changes in configuration
due to an event are typically geometrically narrowly confined to as
few as∼1–10 sites. Due to this locality it is possible and convenient
to uniquely define any elementary reaction a in terms of the local
educt Ea lattice configuration before and the local product Pa lattice
configuration after the event, as well as the concomitant rate
constant ka,

a : Ea
ka
−→ Pa. (2)
Obviously, these local lattice configurations have to extend at least
over all sites that actually change occupation due to the occurring
elementary step. For a simple unimolecular CO adsorption step the
local lattice configuration must e.g. contain the very site involved
that changes its occupation from 0 (empty) to 2 (CO). For a disso-
ciative adsorption step of O2 the minimum local lattice configura-
tionmust in turn extendover the twoneighboring sites that change
their occupation from 0 (empty) to 1 (O), and for more complex
reactions involving reaction intermediates covering multiple sites
the minimum local lattice configurations span even larger lattice
areas. In cases the local lattice configurations may need to include
further nearby lattice sites, which do not change their actual occu-
pation from educt to product configuration, but occupation value
of which is a necessary information to determine the elementary
reaction. This is prominently the case in the presence of lateral in-
teractions. In order to properly capture such interactions the lo-
cal lattice configuration needs to include all lattice sites within the
interaction radius to uniquely define the local adsorbate environ-
ment. Imagine for the case of the aforementioned unimolecular CO
adsorption that this depends on whether or not a site neighboring
the actual adsorption site is also occupiedwith CO. In this situation
the local educt and product lattice configuration need to include
the actual adsorption site i (which changes its occupation) and the
neighboring site j to uniquely define two distinct elementary reac-
tions:

a1 : empty@i; empty@j
ka1
−→ CO@i

and

a2 : empty@i; CO@j
ka2
−→ CO@i.

In the presence of periodicity in the employed lattice there can
be a large number of events that in fact all represent the same
elementary reaction, just occurring at different lattice sites. The
definition through the local lattice configurations allows to effi-
ciently achieve this classification by first checking if local educt and
product lattice configurations can be transformed into each other
through a lateral lattice translation vector. Since an elementary re-
action is not affected by any lattice configuration difference outside
the local educt and product configuration this grouping correctly
includes many events which only differ by the (non-changing) oc-
cupations outside these local configurations. To illustrate this con-
sider again CO adsorption on an empty periodic surface featuring
one type of active site. Given that adsorption into any of these sites
is equivalent, adsorption events on sites i and j are different events
in terms of the overall lattice configuration, yet they would both
be grouped to the same elementary reaction by their identical lo-
cal educt and product lattice configurations. Similarly, adsorption
on site i with another adsorbate present on site k is again a differ-
ent event, but falls still into the same elementary reaction class if
there are no lateral interactions between sites i and k, and k is cor-
respondingly outside the local lattice configuration. Notwithstand-
ing, it is important to realize that identical local educt and product
lattice configurations are only a necessary, but not a sufficient con-
dition for the same elementary reaction. In the surface catalysis
context, this is notably exemplified by Eley–Rideal type reaction
events, where an adsorbed reaction intermediate is reacted off in
a gas-phase scattering reaction. The local educt and product lattice
configurations for such an event are identical to those describing
a mere desorption process of the reaction intermediate. Yet, these
are two distinct elementary reactions, which in the lattice frame-
work is accounted for through two different rate constants.

Size and structure of the transition matrix. The considerations about
locality provide important insight into the structure of the overall
transition matrix w in Eq. (1). First, it can be decomposed into a
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sum of elementary reaction matrices as

wvu =


a

wa
vu, (3)

where

wa
vu =


ka (u → v) ∈ a
0 else (4)

and ka is the reaction rate constant of elementary reaction a. The
total number of different matrix elements is thus given by the
number of inequivalent elementary reaction steps in the model.

Second, with respect to the structure of w it is useful to define
the set of available events σu for any configuration u as the set
of all events αvu that lead from configuration u to any other
configuration v

σu = {αvu|wvu ≠ 0}, (5)

i.e. σu is formed by the non-zero elements in the uth column ofw.
The locality of the elementary reactions implies that there are no
events that connect largely differing lattice configurations. As such,
σu ismuch smaller than the total size ofw, i.e. the transitionmatrix
is sparse. For the later kMC efficiency discussion we further note
that given an event αvu, all events in σv \ σu are said to be enabled
by αvu, while all events in σu \ σv are said to be disabled by αvu.
As any event is local and thus affects much less sites than the total
number of sites in the lattice, for every event αvu the number of
enabled or disabled events is again much smaller than the number
of available events in both u and v, or

|σu ∩ σv| ≫ |(σu ∪ σv) \ (σu ∩ σv)|. (6)

This difference in sizewill become themore pronounced the larger
the lattice that is to be simulated.

These insights into the structure of the transitionmatrix are im-
portant as the formal simplicity of the master equation (1) easily
disguises the complexity in solving it in practice in the surface cat-
alytic context. This is due to the sheer size of the space of all possi-
ble lattice configurations. To illustrate this, let us assume a simple
surface system that exhibits only one type of active site per unit
cell and allows for a minimum number of two different reaction
intermediates at this site (again in the context of CO oxidation this
could be adsorbed O and CO). Together with the possibility of an
active site being empty, this yields three possible occupations of
every site. In order to properly capture the ensemble characteris-
tics of the system like the average TOF we typically need to explic-
itly simulate at least a surface area of (10 × 10) surface unit-cells
that is then continued by periodic boundary conditions. The total
number of configurations possible on this lattice is 3100

≈ 1047,
and the (3100

× 3100) transition matrix w features (3100)2 ≈ 1095

matrix entries wvu. As discussed this matrix is sparse though, as
there are no events that connect largely differing lattice configura-
tions, and σu for every configuration u will be much smaller than
3100. Nevertheless, w still contains a total number of non-zero el-
ements that is too large to be stored directly. On the other hand,
due to the translational symmetry of the lattice the total number
of inequivalent matrix entries wvu is typically rather small and de-
termined by the total number of inequivalent elementary reactions
a in the reaction network, cf. Eq. (4). For a CO oxidation model in
the described simple surface system this total number can be as
low as seven: dissociative adsorption of O2, associative desorption
of two adsorbed O, CO adsorption, CO desorption, O diffusion, CO
diffusion, and CO+O reaction.

2.2. Kinetic Monte Carlo

It is clearly hopeless to explicitly solve such a high-dimensional
master equation directly or even just aim to store the entire
probability density in a lattice representation. The idea behind
kinetic Monte Carlo (kMC) simulations is instead to achieve a
numerical solution by generating an ensemble of trajectories of the
underlying Markov process, where each trajectory propagates the
system correctly from configuration to configuration in the sense
that the average over the entire ensemble of trajectories yields the
probability densities ρu(t) of Eq. (1) [30–32,46–48]. Analysis of any
single (stochastic) kMC trajectory is correspondingly meaningless,
unless a stationary system state (in the catalysis context: steady-
state operation) allows to replace the ensemble average by a
time average over one trajectory. The actual objective for a kMC
computer algorithm (and in turn for a software package like
kmos) is therefore to generate such kMC trajectories. For this, the
kMC code generally only needs to store the (evolving) occupation
values on the lattice, as well as the inequivalent rate constants
of all elementary reactions. On-the-fly it then generates and
focuses on those transition rates wvu that are actually required to
propagate the trajectory. More specifically kmos aims to optimize
the execution of previously definedmodels.While advancedmodel
generation schemes (like self-learning kMC) could be implemented
on top of the kmos framework, they are currently out of the scope
of general first-principles methodology [9,32] and not included in
this manuscript.

Differences betweenkMCsolvers arise in thewayhow the event
sequence is chosen and the concomitant way how the elapsed
system time is determined. For the latter, one generally exploits
that waiting times for uncorrelated events are Poisson distributed
[46–48]. This means that given a rate constant k for an event, the
probability that n events occur in an interval ∆t is

pn(k, ∆t) = (k∆t)ne−k∆t/n!. (7)

The waiting time between two events is then simply given by the
case that no events occur

p0(k, ∆t) = e−k∆t ,

for which a suitably distributed random number can be directly
computed from a uniformly distributed random number r ∈

]0, 1] [49] as

∆t =
− ln(r)

k
. (8)

Lukkien et al. [50] proposed a unified scheme consisting of three
categories that classify existing kMC solvers: The first reaction
method (FRM), the variable step-size method (VSSM), and the
random selection method (RSM). We now briefly describe the
essential features of each category, primarily to contrast the
conceptual differences. The equivalence of all three approaches has
also been shown by Lukkien et al. [50], such that a preference for
one or the other emerges only out of efficiency considerations as
discussed in the next section.

FRM. At every kMC step the FRM updates the sequence of available
events σu and their corresponding rate constants ku. From this it
calculates a sequence of time increments τ = − ln(r)/ku, where
r ∈]0, 1] is a sequence of uniformly distributed random numbers.
The smallest element of τ is selected, the elapsed time is advanced
by the corresponding time increment, and the corresponding event
is executed by updating the system configuration accordingly.

VSSM. At every kMC step the VSSM updates the sequence of avail-
able events σu and calculates the total rate ktot,u =


v∈σu

kvu. The
time is advanced by − ln(r)/ktot,u, where r ∈]0, 1] is a uniformly
distributed random number, and one of the available events is se-
lected for execution with a probability weighted by its rate con-
stant. Since VSSM is the algorithm underlying kmos, Fig. 2 further
illustrates these steps in form of a flow chart.
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Fig. 2. The basic steps of a VSSM kinetic Monte Carlo algorithm.

RSM. At every kMC step the RSM calculates K =


a ka, where the
sum runs over all elementary reactions a. One elementary reaction
is chosen with a probability weighted by its rate constant, and
one of the Nsites sites in the lattice is randomly selected. The time
is increased by − ln(r)/NsitesK , where r ∈]0, 1] is a uniformly
distributed random number. The lattice is updated if the event is
available at the selected site.

2.3. Efficient lattice kMC

For small lattice sizes and simple kMC models containing a
limited number of elementary reactions efficiency of the kMC code
is generally not an issue. In particular in the context of multi-scale
modeling approaches the computational costs of kMC simulations
are completely negligible compared to typical costs of first-
principles electronic structure theory calculations.With increasing
lattice sizes and complexity of the kMC model this situation
changes, in particular when considering that likely larger numbers
of kMC simulations have to be run to cover different gas-phase
operation conditions or when performing sensitivity analyses. In
this situation, efficiency of the lattice kMC simulations becomes
paramount. For the RSM algorithm a major limitation to efficiency
might arise out of a diminishing probability for successful events.
In the surface catalysis context this commonly arises in situations
of almost fully occupied lattices and the presence of a very fast
diffusion process. Such events are then predominantly chosen,
but essentially never successful. For the rejection-free FRM and
VSSM algorithms the main bottleneck arises instead out of the
necessity to update the sequence of available events at every
kMC step. A naïve approach that is straightforward to implement
(and accordingly chosen in many ‘from scratch’ programs) is to
determine σu through iteration over all lattice sites. With the
number of lattice sites possibly going up to tens of thousands for
entire nanoparticle simulations any retraction to such a sequential
operation on the full lattice (O(Nsites)) will then drastically impede
the overall performance.

Lukkien et al. [50] have systematically analyzed the efficiency
of the three kMC approaches and concluded on VSSM as most
promising method. In line with this analysis, VSSM has also been
chosen as basic algorithm underlying kmos. In contrast to the
FRM algorithm VSSM requires only two random numbers per kMC
step, cf. Fig. 2. As such its main computational burden lies in the
repeating update of the set of available events and total reaction
rate ktot,u. In contrast to the naïve O(Nsites) approach, exploitation
of the locality of the elementary reactions allows to largely reduce
the scaling of both these calculation steps.With respect to the set of
available events this is achieved through local update procedures,
thereby taking into account Eq. (6). Rather than building this set
anew at every kMC step, these local updates merely determine a
new σv from the previous set of available events σu by strictly
removing all disabled events (σu\σv) and adding all enabled events
(σv \ σu), or formally

σv = (σu \ (σu \ σv)) ∪ (σv \ σu).

From the new set of available events σv its corresponding total
rate constant ktot,v =


w∈σv

kwv can also be calculated without
iterating over the full size of the set (which would generally also
scale as O(Nsites)). For this, not only the contained events directly,
but also the number of events Navail

a,v that belong to the same ele-
mentary reaction a are stored. This way, if an event αwv belonging
to an elementary reaction a is added to the set of available events,
the corresponding counter Navail

a,v is simply increased by 1, whereas
if αwv was removed, the counter is decreased. As a result one can
quickly calculate ktot,v as

ktot,v =


a

kaNavail
a,v , (9)

where the sum does not iterate over the elements in σv , but only
over the much smaller set of elementary reactions (O(Nreact)). Fur-
ther, if the previous summation is carried out by filling an array of
accumulated rates

kacc1,v = 0 (10)

kacca,v = kacca−1,v + kaNavail
a,v , (11)

the next event αwv can also be selected without retracting to
O(Nsites) operations by using a random number r ∈ ]0, 1] and se-
lecting the elementary reaction b for which

kaccb−1,v < rktot,v ≤ kaccb,v, (12)

through a binary search (O(log(Nreact))), and then selecting ran-
domly one of the Navail

b,v available events belonging to elementary
reaction b (O(1)).

As this analysis shows every required task of a VSSM lattice kMC
solver can thus be carried out with a computational effort that is
independent of the number of sites in the system.

2.4. Sampling of reaction rates

A central capability of kMC simulations in the context of hetero-
geneous catalysis is the calculation of reaction rates. Normalized to
active site or surface area, corresponding TOFs yield the occurrence
of any elementary reaction per time. If this elementary reaction
yields a final product, then its TOF measures the overall catalytic
activity with respect to this product. If there are several elemen-
tary reactions leading to different products, then the ratios of their
TOFs additionally provide the selectivities.

In the context of kMC simulations a straightforward definition
of the TOF per active site of any elementary reaction a at any time
t is

TOFa(t) =
⟨Na(t)⟩
Nsites

, (13)

where Na(t) is the number of times that reaction a has occurred
at time t , and the average ⟨ ⟩ is over a sufficiently large ensemble
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of kMC trajectories. Realizing that the actual occurrence of an
event is given by the probability for the system to actually be in
a configuration where the event is enabled times its rate constant,
an equivalent definition is

TOFa(t) =


u

ρu(t)

v

wa
vu

Nsites
, (14)

where the sums run over all configurations u and v, ρu(t) is the
probability for the system to be in configuration u at time t , and
wa

vu are as defined in Eq. (4) the transition rates of all events αvu
that correspond to the elementary reaction a.

In catalytic applications theprimary focus is typically on steady-
state operation. Even if time-dependent operation conditions and
consequently time-dependent TOFs are of interest, the changes
generally occur over at least mesoscopic times, and can therefore
be captured through appropriate binning in constant-condition
time windows. In a corresponding stationary situation the ensem-
ble averages in Eqs. (13) and (14) can be replaced by time averages.
For the first definition this leads numerically to

TOFa ≈

 tfinal
0 Na(t)dt
Nsites tfinal

=
Na
tfinal

Nsites
, (15)

where Na
tfinal is the total number of times elementary reaction a

took place in a time span tfinal. A corresponding straightforward
counting to determine TOFs is what is primarily implemented in
simple ‘from scratch’ kMC codes. This approach becomes highly in-
efficient though, if small TOFs are to bemeasured. Due to the irreg-
ular and rare occurrence of the corresponding elementary reaction
long time spans need to be simulated to sufficiently converge the
TOF. In this situation it is advantageous to resort to the second TOF
definition in Eq. (14),

TOFa =


u

ρ̄u

v

wa
vu

Nsites

≈

Nfinal
i=1


v

wa
vui∆ti

Nsites tfinal

=

Nfinal
i=1

kaNavail
a,ui ∆ti

Nsites tfinal
,

where Nfinal are the number of kMC steps in the time span tfinal, ui
is the configuration occupied at the beginning of kMC step i and
∆ti is its duration, that is the time until the simulation jumps out
of ui. The second equality demonstrates the efficiency of this ap-
proach, which adds to the convergence of the TOF with every kMC
step even if ka is very small, and which furthermore comes at neg-
ligible overhead as Navail

a,ui is calculated at every kMC step i anyway.
For the determination of low TOFs this approach can therefore sig-
nificantly reduce the time required for a converged sampling and
is correspondingly implemented in kmos by default.

3. The kmos framework

The essential idea of the kmos approach to kMC modeling is to
use a code generator to produce highly efficient code from an ab-
stract definition of a kMC model. As further detailed below kmos
thus avoids a static and in full generality cumbersome hard-coding
of the complex conditional dependences between arbitrary events.
Instead it custom tailors the code on the basis of a defined model,
which in particular allows for most efficient local updates of en-
abled and disabled events. The general flow of information in the
kmos framework is illustrated in Fig. 3. The following three subsec-
Fig. 3. Scheme for the flow of information in thekmos framework. An abstract kMC
model is defined by using thekmosAPI. Thus, either the Python code using thekmos
API itself can serve as definitive specification of the kMC model, or the model can
be stored in an XML scheme for archiving and exchange. From the abstract model
definition kmos generates tailored Fortran90 source code that performs the actual
kMC simulations. This code can be compiled and exposed to Python again using
f2py.

tions consecutively describe the three main parts apparent from
this scheme: The specification of the kMCmodel, the code genera-
tion from the model, and how the generated code implements the
VSSM kMC algorithm.

3.1. kMC model definition

Since this part of the kmos framework is Python based, this
subsection will borrow a subset of object-oriented terminology to
describe its structure: Essentially, a kMC model is a hierarchy of
objects with attributes.

The information necessary to define a kMCmodel generally falls
into two related, but distinct categories. On the one hand, there is
the information required for the actual kMC simulations. This is in-
formation on the sites and lattice structure, on the reaction inter-
mediates (code-internally called species), on general parameters
like temperature or partial pressures that can be used to internally
compute the rate constants, aswell as all possible elementary reac-
tions. On the other hand, there is additional information required
for the analysis, in particular for an atomistic visualization of the
generated kMC trajectories. This is prominently any explicit geo-
metric information (size and shape of unit-cell, Cartesian coordi-
nates of sites within the unit-cell, representation of substrate and
reaction intermediates). In summary, this leads to the following
schematic structure of the model definition:

• model
– lattice (geometry): unit cell, [sites]
– sites: name, position
– reaction intermediates (species): name, representation
– parameters: name, value
– elementary reactions: name, [conditions], [actions], rate

constant

Within this basic skeleton the user has to define the model spe-
cific parts. For this, one could envision some configuration file-like
format. However, in particular with respect to the sequence of el-
ementary reactions it turns out that one would have to type many
very similar statements. For instance, if the same elementary re-
action can be executed in several different directions due to the
symmetry of the lattice. kmos therefore offers an application pro-
gramming interface (API) that allows to create each object in the
model by one constructor call (in terms of object-oriented pro-
gramming). This has the benefit of offering a fairly straightforward
syntax, while at the same time allowing for all the flexibility and
expressiveness of a high-level programming language and its con-
trol constructs such as for-loops and if-statements.
Lattice definition. The system is represented as a finite lattice with
periodic boundary conditions. At present kmos only supports one
global Bravais lattice; a limitation that we intend to overcome in
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Fig. 4. Illustration of the lattice representation using the four-tuple n.(x, y, z),
where x, y, z are the integer coordinates of the unit cell, and n goes over the
different active sites within the unit cell.

futurework.Multiple active siteswithin the unit cell are accounted
for through a basis. Each site is defined through a unique name.
Internally every lattice point can thus be represented with a four-
tuple n.(x, y, z), where x, y, z are the integer coordinates
of the unit cell, and n goes over the different active sites within the
unit cell as illustrated in Fig. 4. Naturally this scheme can describe
one-, two-, or three-dimensional lattices by setting 2, 1, or 0 entries
to zero respectively. By default kmos enforces periodic boundary
conditions by internally expanding the lattice by one unit cell along
each lattice axis. When interested in modeling a finite lattice, this
feature can be blocked by defining an inactive dummy reaction
intermediate and initializing the edges of the simulated geometry
with it. For visualization the shape and size of the unit cell can be
specified, aswell as the fractional Cartesian coordinates of all active
sites within the unit cell.

Reaction intermediate definition. Reaction intermediates are speci-
fied through a unique name, and internally get assigned an integer
value. A species empty needs to be explicitly defined. Site block-
ing, e.g. in multidentate adsorption or to mimic infinitely repul-
sive lateral interactions, can be achieved through the definition of
dummy species (say A_blocked as additional dummy for a reac-
tion intermediate A covering multiple sites). In the specification
of the elementary reaction, the blocked sites are then occupied
with the dummy, which thus prevents them from being empty for
other elementary reactions. Special boundary conditions such as
a source or a drain that continuously inserts or removes surface
intermediates at the edges of the lattice can similarly be modeled
by using such special intermediates and corresponding elementary
reactions. For the purpose of visualization it is possible to enter a
string in the atoms-object-constructor form as understood by the
Atomic Simulation Environment (ASE) [51].

Elementary reaction definition. The elementary reactions are de-
fined in terms of the occupations in the local educt and local
product lattice configuration, as well as the corresponding rate
constant. Some sample definitions are depicted in Fig. 5. For el-
ementary reactions involving more than one site, other involved
sites are specified by relative vectors in the four-tuple represen-
Fig. 5. Graphical representations illustrating the defining characteristics of ele-
mentary reactions: Dissociative O2 adsorption (top panel), CO diffusion (middle
panel) and CO oxidation (bottom panel)..

tation. If the central site used to define the elementary reaction is
e.g. a bridge site and another bridge site in the unit cell in the
positive direction of the first lattice vector is involved, then this ad-
ditional site is referred to as bridge.(1,0,0). kmos makes no
effort to recognize symmetries in the lattice (e.g. to deduce that a
diffusion from bridge to bridge.(1,0,0) implies the possible
equivalent diffusion to bridge.(−1, 0, 0)). However, the kmos API
allows to select pairs of sites based on type and geometrical dis-
tance making the inclusion of such equivalences straightforward.
Since each element (site and occupation) of the local educt lattice
configuration acts as a requirement that the elementary step can
be executed, it is coined Condition. The definition of an elemen-
tary reaction can in principle contain an arbitrary number of such
Conditions, though there are limits on the number that the com-
piler can process as discussed in the next section. Nevertheless,
this allows to describe fairly complex elementary reactions involv-
ing lateral interactions, concerted processes, bystander adsorbates,
multidentate adsorption, and even some reconstruction of the un-
derlying lattice structure. The provided primitives (Conditions
and rate-constant expressions) allow in principle for any sophis-
ticated level of included lateral interaction in the sense of a sur-
face cluster expansion [52,53]. Yet, the analytical dependence of
the rate constant on these lateral interactions has to be explic-
itly provided by the user. Each element (site and occupation) of
the local product lattice configuration describes a change induced
by the elementary reaction and is thus coined Action. Internally,
Condition and Action are identical data types, but for sake of
clarity different class names are used.
Rate constant expressions and parameters. kmos accepts hard-coded
values for the rate constants of the individual elementary reactions.
However, in the context of surface catalysis the rate constants are
often calculated using expressions such as

k =
kBT
h

exp(−β∆G),

for activated surface processes or

k =
piA

√
2πmikBT

for adsorption processes of ideal-gas particles (see e.g. Ref. [54],
which also includes the definition of the various parameters
appearing in these expressions). Since it is convenient to quickly
iterate external parameters (like temperature T and partial
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pressures pi) or directly change activation barriers∆G for example
in a sensitivity analysis study, kmos also allows to directly enter
such mathematical expressions for the rate constants as strings,
which are later evaluated at runtime for the parameters currently
present. Since these evaluations are quite expensive, they are only
updated if any of the parameters change though.

3.2. Code generator

As discussed in Section 2.3 the main efficiency driver of a
VSSM-based kMC code is the local update procedure, with its con-
comitant determination of disabled and enabled events. This local
update procedure is also the only heavilymodel-dependent part of
any kMC program, whereas as detailed in the next section all other
parts of the actual kMC algorithm can be written in a generic way.
Complicating matters, practical kMC work typically involves fre-
quent changes of the kMC model (refinement through addition of
new elementary reaction processes, consideration of further sites
and reaction intermediates etc.). These changes require modifica-
tions of the code in typically as many locations as there are ele-
mentary reactions, since each new reaction might be affected by
all existing elementary reactions while it can also affect every ex-
isting elementary reaction (vide infra). Doing these modifications
by hand (as in the early ‘from scratch’ codes) is therefore not only
highly cumbersome, but also extremely prone to human error. The
modifications concern furthermore precisely that part of the code
that determines the overall efficiency and should therefore not be
implemented in an unoptimized way. kmos’ answer to this situa-
tion is to fully automatize this aspect of the work by outsourcing it
to a secondary code generator program. On the basis of a defined
kMC model this code generator writes the required update proce-
dure in a compilable program language (Fortran90), which consec-
utively can be included in the remaining kMC program. This way,
one gets the best of two worlds: A flexible high-level interface for
defining kMCmodels and at the same time an optimized low-level
implementation of the model.

The key to design an efficient code generator is to carefully re-
flect every logical dependence in the model to infer as many de-
cisions as possible during the generation step and minimize the
number of computational steps at runtime. This is quite different
from traditional programming approaches as reflected in the fol-
lowing explanation, since the two levels of algorithmic description
are inevitably entangled. As stated above every elementary reac-
tion is defined in terms of Conditions and Actions, and in turn
each of these is defined by a relative site coordinate and a concomi-
tant species occupation. AllConditions need to be satisfied for an
event representing the elementary reaction to become enabled and
only one of the Conditions needs to be dissatisfied for an event
to be disabled.

In order to implement the required updates of the set of avail-
able events σv after an event αvu has been selected, some events
have to be added and some have to be removed. Removing events
is conceptually and computationally simpler than adding, since re-
moving does not require any inspection of the actual lattice con-
figuration or evaluation if all Conditions are satisfied. Instead
it can be based on evaluating if any Action of αvu dissatisfies a
Condition of an available event in σu. One therefore iterates over
the Actions (that is configuration changes) due to αvu. For each
Action i, which is defined by a species and a site, one iterates over
the sequence of elementary reactions. For each elementary reac-
tion b the first check is if b contains at least one Condition j on
the same site as in Action i. If this is the case, then such a reaction
b could potentially have been affected by the occurrence of event
αvu. We correspondingly then also check if the species of Action i
does not match with the species of Condition j. If this is also the
case then an event βwv corresponding to elementary reaction b at
the lattice site where αvu has occurred, has become disabled. Thus
compilable code is generated which removes βwv from the avail-
able events σv , if it was enabled in σu.

After the lattice configuration itself is updated (by generating
corresponding compilable code to change the occupation entries)
the newly enabled events can be added. Again one iterates over all
Actions of αvu. For each Action i again defined by a species and
site one iterates over all elementary reactions. For each elemen-
tary reaction b, the first check is again if it contains at least one
Condition j on the same site asAction i. If in addition the species
of Action i doesmatch with the species of Condition j, the cor-
responding event βwv of elementary reaction b might have been
enabled by the occurrence of event αvu. Other than in the disabling
procedure we now have to iterate over all other Conditions of
βwv though, which in fact involves inspection of the occupation of
all sites contained in the local educt lattice configuration of βwv .
Only if all Conditions are satisfied, βwv has indeed become en-
abled through the occurrence of event αvu. Thus compilable code
is generated which iterates over all Conditions of event βwv at
the corresponding location in the lattice and checkswhether in fact
the species of all Conditions of b match with the species present
at the relative site. If all Conditions are satisfied, βwv is added to
the available events σv .

In pseudo-code the combined algorithm developed above can
be concisely written as follows. Code executing before compile-
time (code generation) is set in roman type, while code executed at
runtime is set in monospaced type (vide infra). Variable names are
set in italics. The for statement borrows on the Python style syn-
tax (for i in x ↩→ block), which instructs to execute block on every
element of x and the element will be named i inside block.

# Update available events for
# elementary reaction a

#Disable events
for i = (species, site) in actions of a

for b in elementary reactions involving site
for j in conditions of b

if i contradicts j
disable βwv if enabled

Update lattice configuration

#Enable events
for i = (species, site) in actions of a

for b in elementary reactions involving site
for j in conditions of b

if i fulfills j
if all conditions of βwv are met
enable βwv

A crucial feature of this general update algorithm is hereby
that even though it requires four nested loops, the outcome of the
Conditions checked in the outermost loops is uniquely deter-
mined by the given kMC model. Rather then evaluating these con-
ditions during the actual runtime of the kMC simulation over and
over again, the kmos code generator evaluates them beforehand
and builds the outcome directly into the generated code. The parts
that need to be executed at runtime consist therefore at most of
two nested loops and are by construction optimized for the defined
kMC model. In terms of the generated code, the most tricky part
is hereby the implementation of the check, if all Conditions of
a possibly enabled event are satisfied. Checking such interdepen-
dences between different Conditions typically involves many
memory reads over all sites of the local educt lattice configuration
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and thus affects the performance. So, the question arises whether
there is an optimal way how to arrange the corresponding queries.
The corresponding problemof constructing an optimal binary deci-
sion tree has generally been shown to be NP-complete [55]. In the
kMC context the corresponding intricacy is given in loose terms
by the fact that frequent local lattice configuration motifs, which
would be the basis for an optimal construction algorithm, are un-
known beforehand and precisely the outcome of a kMC simulation.
Accordingly, only two heuristic approaches are presently imple-
mented in kmos and can be selected from the command line in the
code generation step (kmos export -b<code-generator>).

In the first approach the generated code is arranged in such a
way that the average number of memory accesses are likely to be
minimal for the case that every outcome is equally probable. To
this end, during the code generation phase, all required read ac-
cesses are collected and sorted by decreasing frequency. All possi-
ble outcomes are grouped by the result of the most common read
access and accordingly written into different conditional branches.
Within each branch this process is recursively repeated. This ap-
proach shows exceptional performance at runtime for kMC mod-
els without lateral interactions and few species. Though, for more
complex models involving more than three different species or
considerably far-ranging lateral interactions, it often produces an
exceedingly large code tree (on the order of 100 MB) and accord-
ingly long compilation time (on the order of hours).

The second approach correspondingly aims at a moderate size
of the generated code and for this assumes that the primary source
for the existence of multiple Conditions is the existence of lat-
eral interactions extending over many lattice sites. All elemen-
tary reactions are then automatically grouped into sets of identical
Actions. That is each group contains elementary reactions that
are identical in the sites and species that are changed in the exe-
cution, and only differ by their Conditions that are not changed
by the elementary reaction. The rationale behind this is that mod-
els involving lateral interactions contain only a few of these sets.
Within each set the present lateral interactions can be determined
by as few read accesses as there are lateral interactions, since one
specific lateral interaction educt excludes all others within the set.
The code resulting from this approach proves to be much shorter
even for models involving as much as five species and up to 40
Conditions (on the order of few MB), and the compilation time
stays typically on the order of minutes.

3.3. Kinetic Monte Carlo solver

The generated code is combined with other generic parts to
form a VSSM lattice kMC solver that follows the general flow chart
shown in Fig. 2. To realize the efficiency considerations summa-
rized in Section 2.3 this solver operates on a well designed data
structure. The base of this data structure is a bijective mapping
from the four-tuple n.(x,y,z) lattice representation to a one-
dimensional representation, which simply enumerates all lattice
points. This mapping can be cached in 1D and 4D arrays which
makes it very efficient. Any of the frequently executed core parts
are then performed on the 1D representation, and only if explicit
inspection of the lattice configuration is required is the trivial in-
verse mapping applied. As shown below the largest arrays then
have a size (Nreact × Nsites), where Nreact is the total number of el-
ementary reactions and Nsites is the total number of sites. Even for
very large lattices such arrays do not represent any notable mem-
ory requirements. kmos correspondingly uses fixed array sizes and
avoids dynamic data types which would require continuous mem-
ory allocation and deallocation. On this data structure the funda-
mental data operations to (a) determine the next event and (b) add
and delete events to and from the set of available events can be ex-
ecuted independent of the lattice size.
Data structures.
The deployed kMC solver operates on these 6 arrays, cf. Fig. 6:

• The array L = L(Nsites) stores the current configuration of the
system, i.e. the integer value of Lx represents the occupation at
the xth site.

• The array k = k(Nreact) stores the rate constants for all
elementary processes.

• The array Navail
= Navail(Nreact) stores the number of available

sites for all elementary reactions, cf. Eq. (9).
• The array kacc

= kacc(Nreact) stores the accumulated rate
constants, cf. Eq. (11).

• The array A = A(Nreact,Nsites) stores the available events. Each
row of A represents one elementary reaction and is filled from
the left, i.e. an element Aai = x > 0 tells that site x is currently
available for elementary reaction a.

• The array I = I(Nreact,Nsites) allows to retrieve the available
events in array A. For this, if site x is currently available for
elementary reaction a and the corresponding event is stored in
element Aai, then Iax = i. If site x is currently not available, then
Iax = 0.

Determination of the next event. In every kMC step the solver deter-
mines the next event and therewith the concomitant elementary
reaction and site as illustrated in Fig. 6. First, the array of accumu-
lated rate constants kacc is updated according to the current set
of available events. This includes the calculation of the total rate
constant as last element kacc(Nreact). The elapsed time is updated
as − ln(r1)/ktot, where r1 ∈ ]0, 1]. Using another uniform random
number r2 ∈]0, 1] and a binary search [56] an elementary reac-
tion a is determined for which kacca < ktotr2 ≤ kacca+1 by perform-
ing a binary search on kacc. Using a third uniformly distributed
random number r3 ∈]0, 1] the concomitant site for the selected
event is determined from arrayA as the value of element Aai, where
i = ⌊r3Navail

a ⌋.
Update of the set of available events. After having selected the event,
that is elementary reaction and site, the code-generated part takes
over to call the required additions and deletions to the set of
available events, as well as the update of the lattice configuration.
The prior two operations are straightforward but critical primitives
of the generated local update code. In terms of the relevant data
structures enabling site x for elementary reaction a consists of the
following steps:

1. Increase number of available events:
Navail

a := Navail
a + 1

2. Store site x: AaNavail
a

:= x
3. Assign address for site x: Iax := Navail

a .

Similarly, the deletion of a disabled elementary reaction a at site x
proceeds as:

1. Overwrite site xwith last site enabled for a: AaIax := AaNavail
a

2. Empty last site AaNavail
a

:= 0
3. Reassign address of moved site:

IaAaIax := Iax
4. Empty address of deleted site: Iax := 0
5. Decrease available events: Navail

a := Navail
a − 1

As one can see an enabling or disabling operation requires
three or five memory transactions, respectively, and thus does not
depend on the total system size or complexity. Only the search
time for the next elementary reaction grows logarithmically with
the number of elementary reactions Nreact due to the binary search
involved. However, this is not expected to become a bottleneck as
this number is generally much smaller than the total number of
events that have to be enabled or disabled.
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Fig. 6. Main data structures and event selection process of the kmos VSSM-kMC solver. The array of rate constants k is usually unchanged during a kMC simulation. Navail

reflects the number of sites available for each elementary reaction. Using one randomnumber r2 an elementary reaction a is selected using a binary search on the accumulated
rate constants kacc . For this elementary reaction a one of the available events is selected from A using the product of a random number r3 and the number of available sites
Navail
a as an index. Note that for each row a in A the first Navail

a elements are non-zero after which all entries are zero. The array I stores the position under which the available
events are stored in A so that all necessary updates can be executed on Awithout traversing it.
This concludes all required algorithmic work in one kMC step
and the next step can follow.

Random numbers. As indicated above the kMC solver requires three
uniformly distributed random numbers per kMC step. kmos relies
on the pseudo random number generator (PRNG) provided by
the Fortran compiler. Sometimes kMC practitioners are concerned
whether such a source of randomness introduces non-physical
bias to the generated kMC trajectory. We have not observed any
such bias in a kMC simulation so far. In case doubt arises this
can be easily tested by changing the PRNG seed conveniently in
the configuration file of the compiled kMC model. Furthermore,
the currently specified PRNG periods of the most commonly used
compilers typically exceed the maximum number of kMC steps
during one simulation by several orders of magnitude.

Overall code layout.Having specified the kMC solver independently
of any lattice geometry or specifics of elementary processes means
one can reuse this part of the algorithm for virtually any lattice
kMC model. This is also reflected in the structure of the overall
Fortran90 code: It is subdivided into the modules base, lattice,
and proclist, of which base contains the model-independent
parts of the VSSM loop that has been described in this Subsection.
The module lattice replicates the base API in terms of lattice
coordinates and implements corresponding information about the
model (number of lattice dimensions, numbers of sites per unit
cell, and names of sites) for visualization, as well as the central
VSSM loop. The third module proclist is the one produced by
the code-generator and implements how the set of available events
is updated after an event has been selected in a kMC step, cf.
Section 3.2.

3.4. Simulation front-end

The complete kMC model is stored in an XML text file by using
the elementtree XML library. This also allows for easy archiving
and exchange of models. A basic graphical user interface (GUI)
is provided to visually inspect all aspects of the model definition
including the elementary reactions. The generated Fortran90 code
is compiled and exposed as a Python module with the f2py [57]
interface generator. kmos offers a concise API which allows to
control all runtime aspects of a compiled model including setup
and evaluation, as a script or interactively using IPython [58] and
numpy [59], as well as a GUI which visualizes the model geometry
using ASE [51] and coverages and turnover frequencies using
matplotlib [60], while allowing to visually change parameters
during the simulation.
Fig. 7. Coverage dependence and catalytic activity of the ZGB model as
implemented using kmos. In the idealized ZGB model catalytic activity is defined
as the number of CO2 molecules produced per reactant impingement [61].

4. Performance and scaling in practice

4.1. ZGB model

We demonstrate the performance and scaling behavior of
kmos using a range of kMC models, and start with the seminal
model by Ziff, Gulari, and Barshad (ZGB) [61], that has evolved
into an influential reference for the development of stochastic
approaches to surface catalytic processes. The original ZGB model
generically considers CO oxidation at a simple cubic lattice,
featuring one active site and only three elementary reactions:
irreversible unimolecular adsorption of CO with rate constant
yCO, irreversible dissociative adsorption of O2 at two neighboring
sites with rate constant 1 − yCO, and instantaneous CO oxidation
reaction of directly neighboring adsorbed CO and O. The only
free parameter of the model is thus yCO, which is varied in the
range [0, 1] a.u. In the context of numerical kMC simulations
we realize this model by approximating the instantaneous CO
oxidation reaction with an exceeding rate constant of 1015 a.u.,
and adding unimolecular CO and associative oxygen desorption
reactions with negligible rate constants of 10−13 a.u. to mimic
the irreversible adsorption. Especially the latter is necessary to
prevent the system from getting trapped in completely oxygen
or CO poisoned configurations, but we validated that neither
the obtained results nor runtime performance depends on the
particular choice of the finite rate constants chosen for these
processes. Fig. 7 shows the resulting lattice occupations and CO2
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Fig. 8. Single-core CPU times required to execute one million kMC steps for the
CO oxidation at RuO2(110) model (solid line) and the CO oxidation at the PdO(101)
film model (dashed line) as a function of the simulated lattice size (in numbers of
unit cells). For bothmodels the kmos performance is essentially independent of the
lattice size in the size range relevant for catalytic applications. The simulation time
is instead primarily determined by the model complexity. The benchmarks were
carried out on a 3.4 GHz Intel Core i7 processor with 16 GB RAM.

TOF in the relevant range of yCO, perfectly reproducing the two
critical yCO values of y1 = 0.389 and y2 = 0.527 that delimit
the O and CO coexistence at the surface and the concomitant
catalytic activity [61]. The simulations were performed on a lattice
containing (200 × 200) sites, and for this benchmark system
kmos executed 2.15 million kMC steps per second on a 3.4 GHz
Intel Core i7 processor with 16 GB RAM. Given that the simulated
elapsed time per kMC step varies with every configuration, the
corresponding CPU time per million kMC steps (0.47 s) is the
only transferable benchmarkproperty across implementations and
somewhat even across models of similar complexity (vide infra).

4.2. Literature first-principles kMC models

As representative examples for modern first-principles based
kMC models we consider the CO oxidation model at RuO2(110) as
put forward by Reuter and Scheffler [3,33] and the CO oxidation
model at a thin PdO(101) film on top of Pd(100) as put forward
by Rogal, Reuter and Scheffler [34,35]. The prior model does not
include lateral interactions, while the latter model does include
pairwise nearest-neighbor lateral interactions at an otherwise
comparable number of inequivalent elementary reactions. The
comparison of the two models therefore provides first insight
into the performance dependence of kmos on the number of
Conditions. Specifically, the CO oxidation at RuO2(110) model
includes two different active sites per surface unit cell, and a
total of 26 inequivalent elementary processes (unimolecular CO
adsorption and desorption, dissociative adsorption and associative
desorption of O2, CO and O diffusion, as well as CO oxidation
and CO2 decomposition) [3,33]. The PdO(101) model includes the
same types of elementary reactions and also two different active
sites per unit cell. In addition, it accounts for nearest-neighbor
lateral interactions that modify the rate constants of all diffusion,
desorption and reaction steps.

Fig. 8 shows the CPU time required to execute 1 million kMC
steps for both models, again calculated on the 3.4 GHz Intel
Core i7 with 16 GB RAM benchmark system. Summarized is the
scaling up to a maximum system size comprising 105 lattice
sites, which is already much larger than the 102–103 lattice sites
on which these models were reliably evaluated in the original
publications. In both cases the runtime is practically independent
of the lattice size, confirming the scaling considerations made in
Section 2.3. The moderate increase is presumably due to a less
efficient utilization of the processor cache. Memory limitations
eventually also determine the maximum system sizes that kmos
can currently handle (outside the size range shown). The runtime
is instead critically determined by the system complexity, and in
particular by the number of Conditions implied by the model.
Even though the RuO2(110) model contains a larger number of
elementary reactions than the ZGBmodel, the CPU time permillion
kMC steps is thus almost the same (0.5 s). In contrast, the pairwise
lateral interactions in the PdO(101) model and the concomitant
number of Conditions increase this CPU time by a factor of ∼25.

4.3. Random models

To further investigate the performance dependence on the
model complexity we finally consider random models with
varying number of active sites per unit cell, number of possible
reaction intermediates (species), number of Conditions per
elementary reaction, and number of elementary reactions using
the moderate-code-size generator. That is, first Nsites sites are
initialized (site1, site2, . . . ). Next, Nspecies are initialized
(species1, species2,..). Using these ingredients we construct
Nreact times a pair of elementary reactions: A forward reaction
which consists of NCondition Conditions with the default species
empty on NConditions random sites within a finite cut-off radius
and corresponding Actions on these same sites with random
species. The corresponding backward reaction uses the Actions
of the forward reaction as Conditions and uses empty on these
same sites as Conditions. By creating all elementary reactions
in such pairs we automatically prevent dead-lock configurations
in which no events are available. All elementary reactions have
the same constant rate constant, and in all cases, the simulated
lattice size was (20 × 20) unit cells, as the preceding sections
have shown that the performance scaling with model complexity
is independent of the system size.

Using each combination of Nsites ∈ [1, 5, 10], Nspecies ∈

[2, 5, 10], NCondition ∈ [1, 2, . . . , 10], and Nreact ∈ [1, 5, 10], we
evaluate the single CPU time to execute 1 million kMC steps as
in the preceding subsections. Fig. 9 compiles the obtained results,
i.e. the dependence on each model dimension. To further analyze
the obtained dependences the obtained runtimes are fitted to

t ∝ (Nsites)
a
× (Nspecies)

b
× (Nreact)

c
× (NCondition)

d,

yielding a ≈ −0.99, b ≈ −0.07, c ≈ 1.24, and d ≈ 2.00.
This shows empirically that the runtime depends approximately
quadratically on the number of Conditions per elementary step.
Furthermore it demonstrates that the runtime is basically inde-
pendent of Nspecies and slightly above linear with Nreact, confirming
the observations made above with the first-principles kMC mod-
els. Last, it reveals the seemingly paradoxical result that the run-
time decreases with Nsites. This can be rationalized by the fact that
for a fixed number of elementary reactions Nreact the probability
that different events enable or disable each other shrink with in-
creasing content in the unit-cell. This leads on average to fewer add
or delete operations to the set of available events and concomi-
tantly to decreasing runtimes. We stress though that this depen-
dence is of little relevance for physically motivated kMC models,
since there the number of elementary reactions Nreact is expected
to grow at least linearly with the number of different active sites
Nsites. In practice, kMC models will also exhibit a different number
of Conditions for each elementary reaction. As such, the bench-
mark results obtained for the random models should not be taken
too literally. Nevertheless, they should convey a useful rough ori-
entation for the to-be-expected runtimes of real kMC models fea-
turing corresponding numbers of sites, species, and elementary
reactions, as well as average number of Conditions per reaction.

Most centrally, the results obtained with the random mod-
els underscore that the number of Conditions is the most crit-
ical property in terms of runtime. This is not critical for model
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Fig. 9. Single-core CPU times required to execute one million kMC steps for various randommodels on the standard 3.4 GHz Intel Core i7 benchmark processor with 16 GB
RAM. Each panel shows the dependence along one model parameter (Nsites,Nspecies,NCondition and Nreact). Continuous lines connect simulation results obtained for random
models in which all other parameters are identical, i.e. in the Nreact panel each line represents the runtime dependence on Nreact for a constant set of Nsites,Nspecies and
NCondition .
complexities currently addressed, in particular in the context of
first-principles kMC simulations of surface catalysis. Notwith-
standing, if eventually more than 5–6 reaction intermediates over
multiple active sites andwith extensive lateral interactions need to
be handled, this will change—and the current moderate_code_size
code generating algorithmmight also reach the capabilities of cur-
rent compilers. Long-term systematic improvements of kmos and
its efficiency are therefore best spent on this aspect and in partic-
ular the binary decision tree to group the queries checking on the
interdependences between different Conditions.

5. Summary

We have presented the open source [62] package kmos, which
offers a versatile software framework for efficient lattice kMC
simulations, in particular in surface catalysis.kmos canhandle site-
specific reaction networks of arbitrary complexity in one- to three-
dimensional lattice systems, involving multiple active sites in
periodic or aperiodic arrangements, as well as site-resolved pair-
wise and higher-order lateral interactions. For the kMC model
definition kmos offers an extended application programming in-
terface. On the basis of this model definition, a code generator cre-
ates an optimized low-level implementation of themain efficiency
driver of a VSSM-based kMC code, the local update procedure that
determines the disabled and enabled events after the execution of
each kMC step. Together with a well designed data structure, this
leads to an efficient kMC solver the runtime performance of which
is essentially independent of the lattice size. Instead, the runtime
sensitively depends on the model complexity and there in partic-
ular on the number of Conditions implied by the elementary
reactions. For the complexity of reaction networks currently per-
ceivable in the surface catalytic context this is not critical. Should
higher efficiency eventually be required, improvements to this end
and the code generation algorithm either through improved binary
decision trees or parallelization strategies could become of inter-
est.

Next to the efficiency, kmos other core objective is a most user-
friendly implementation, execution, and evaluation of lattice kMC
simulations. For this the API allows to control all runtime aspects
interactively, through scripts or via a basic graphical user interface.
Enhancing the reproducibility and reusability of the kMC models
through a standard file format, kmos is thus hoped to contribute
to a further, wide-spread use of the kMC approach by an extending
user community.
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