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The dune-functions Dune module introduces a new programmer interface for
discrete and non-discrete functions. Unlike the previous interfaces considered in the
existing Dune modules, it is based on overloading operator(), and returning val-
ues by-value. This makes user code much more readable, and allows the incorpora-
tion of newer C++ features such as lambda expressions. Run-time polymorphism is
implemented not by inheritance, but by type erasure, generalizing the ideas of the
std::function class from the C++11 standard library. We describe the new inter-
face, show its possibilities, and measure the performance impact of type erasure and
return-by-value.

1 Introduction

Ever since its early days, Dune [2, 1] has had a programmer interface for functions. This interface
was based on the class Function, which basically looked like

1 template <class Domain , class Range >

2 class Function

3 {

4 public:

5 void evaluate(const Domain& x, Range& y) const;

6 };

and is located in the file dune/common/function.hh. This class was to serve as a model for duck
typing, i.e., any object with its interface would be called a function. A main feature was that the
result of a function evaluation was not returned as a return value. Rather, it was returned using
a by-reference argument of the evaluate method. The motivation for this design decision was
run-time efficiency. It was believed that returning objects by value would, in practice, lead to too
many unnecessary temporary objects and copying operations.

Unfortunately, the old interface lead to user code that was difficult to read in practice. For
example, to evaluate the n-th Chebycheff polynomial T (x) = cos(n arccos(x)) using user methods
my_cos and my_arccos would take several lines of code:
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1 double tmp1 ,result;

2 my_arccos.evaluate(x,tmp1);

3 my_cos.evaluate(n*tmp1 , result);

Additionally, C++ compilers have implemented return-value optimization (which can return val-
ues by-value without any copying) for a long time, and these implementations have continuously
improved in quality. Today, the speed gain obtained by returning result values in a by-reference
argument is therefore not worth the clumsy syntax anymore (we demonstrate this in Section 4).
We therefore propose a new interface based on operator() and returning objects by value. With
this new syntax, the Chebycheff example takes the much more readable form

1 double result = my_cos(n*my_arccos(x));

To implement dynamic polymorphism, the old functions interface uses virtual inheritance.
There is an abstract base class

1 template <class Domain , class Range >

2 class VirtualFunction :

3 public Function <const Domain&, Range&>

4 {

5 public:

6 virtual void evaluate(const Domain& x, Range& y) const = 0;

7 };

in the file dune/common/function.hh. User functions that want to make use of run-time polymor-
phism have to derive from this base class. Calling such a function would incur a small performance
penalty [3], which may possibly be avoided by compiler devirtualization [5].

The C++ standard library, however, has opted for a different approach. Instead of deriving
different function objects from a common base class, no inheritance is used at all. Instead, any
object that implements operator() not returning void qualifies as a function by duck typing. If
a function is passed to another class, the C++ type of the function is a template parameter of
the receiving class. If the type is not known at compile time, then the dedicated wrapper class

1 namespace std

2 {

3 template < class Range , class ... Args >

4 class function <Range(Args ...) >;

5 }

is used. This class uses type erasure to allow to handle function objects of different C++ types
through a common interface. There is a performance penalty for calling functions hidden within
a std::function, comparable to the penalty for calling virtual functions.

The dune-functions module [4] picks up these ideas and extends them. The class template
std::function works nicely for functions that support only pointwise evaluation. However, in a
finite element context, a few additional features are needed. First of all, functions frequently need
to supply derivatives as well. Also, for functions defined on a finite element grid, there is typically
no single coordinate system of the domain space. Function evaluation in global coordinates
is possible, but expensive; such functions are usually evaluated in local coordinates of a given
element. dune-functions solves this by introducing LocalFunction objects, which can be bound
to grid elements. When bound to a particular element, they behave just like a std::function,
but using the local coordinate system of that element.

The paper is structured as follows. The main building blocks for the proposed function in-
terfaces, viz. callables, concept checks, and type erasure, are introduced in Section 2. Those
techniques are then applied to implement the extended interfaces for differentiable functions and
grid functions in Section 3. Finally, we present comparative measurements for the current and the
proposed interface in Section 4. The results demonstrate that the increased simplicity, flexibility,
and expressiveness do not have a negative performance impact.

2
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Figure 1: Diagram of the various function interfaces

2 Building blocks for function interfaces

The programmer interface for global functions is given as a set of model classes. These form a
conceptual hierarchy (shown in Figure 1), even though no inheritance is involved at all. Imple-
mentors of the interface need to write classes that have all the methods and behavior specified by
the model classes. This approach results in flexible code. Concept checking is used to produce
readable error messages. The following sections explain the individual ideas in detail.

2.1 Callables and functions

The C++ language proposes a standard way to implement functions. A language construct is
called a callable if it provides an operator(). In the following we will denote a callable as function
if that operator() does not return void. In other words, a function foo is anything that can
appear in an expression of the form

1 auto y = foo(x);

for an argument x of suitable type. Examples of such constructs are free functions

1 double sinSquared(double x)

2 {

3 return std::sin(x) * std::sin(x);

4 }

lambda expressions

1 auto sinSquaredLambda = []( double x){return std::sin(x) * std::sin(x);

};

function objects

1 struct SinSquared

2 {

3 double operator ()(double x)

4 {

5 return std::sin(x) * std::sin(x);

6 }

7 };

and other things like pointers to member functions, and bind expressions.
All three examples are callable, i.e., they can be called:
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1 double a = sinSquared(M_PI); // free function

2 double b = sinSquaredLambda(M_PI); // lambda expression

3 SinSquared sinSquaredObject;

4 double c = sinSquaredObject(M_PI); // function object

Argument and return value do not have to be double at all, any type is possible. They can be
scalar or vector types, floating point or integer, and even more exotic data like matrices, tensors,
and strings.

To pass a function as an argument to a C++ method, the type of that argument must be a
template parameter.

1 template <typename F>

2 foo(F&& f)

3 {

4 std::cout << "Value of f(42): " << f(42) << std::endl;

5 }

Any of the example functions from above can be used as an argument of the method foo:

1 foo(sinSquared); // call with a free function

2 foo(sinSquaredLambda); // call with a lambda expression

3 foo(sinSquaredObject); // call with a function object

2.2 Concept checks

The calls to F are fast, because the function calls can be inlined. On the other hand, it is not clear
from the interface of foo what the signature of F should be. What’s worse is that if a callable
type with the wrong signature is passed, the compiler error will not occur at the call to foo

but only where F is used, which may be less helpful. To prevent this, dune-functions provides
light-weight concept checks for the concepts it introduces. For example, the following alternative
implementation of foo checks whether F is indeed a function in the sense given above

1 template <class F>

2 void foo(F&& f)

3 {

4 using namespace Dune;

5 using namespace Dune:: Functions;

6

7 // Get a nice compiler error for inappropriate F

8 static_assert(models <Concept ::Function <Range(Domain)>, F>(),

9 "Type does not model function concept");

10

11 std::cout << "Value of f(42): " << f(42) << std::endl;

12 }

If foo is instantiated with a type that is not a function, say, an int, then a readable error message
is produced. For example, for the code

1 foo(1); // The integer 1 is not a callable

GCC-4.9.2 prints the error message (file paths and line numbers removed)

1 In instantiation of ’void foo(F&&) [with F = int]’:

2 required from here

3 error: static assertion failed: Type does not model function concept

4 static_assert(models <Function <Range(Domain)>, F>(),

5 ^

The provided concept checking facility is based on a list of expressions that a type must support
to model a concept. The implementation is based on the techniques proposed by E. Niebler [8]
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and implemented in the range-v3 library [7]. While the definitions of the function concepts are
contained in the dune-functions module, the models() function that allows to check if a type
models the concept is provided by the module dune-common.

2.3 Type erasure and std::function

Sometimes, the precise type of a function is not known at compile-time but selected depending
on run-time information. This behavior is commonly referred to as dynamic dispatch. The classic
way to implement this is virtual inheritance: All functions must inherit from a virtual base class,
and a pointer to this class is then passed around instead of the function itself.

This approach has a few disadvantages. For example, all function objects must live on the
heap, and a heap allocation is needed for each function construction. Secondly, in a derived class,
the return value of operator() must match the return value used in the base class. However,
it is frequently convenient to also allow return values that are convertible to the return value of
the base class. This is not possible in C++. As a third disadvantage, interfaces can only be
implemented intrusively, and having one class implement more than a single interface is quite
complicated.

The C++ standard library has therefore chosen type erasure over virtual inheritance to im-
plement run-time polymorphism. Starting with C++11, the standard library contains a class [6,
20.8.11]

1 namespace std

2 {

3 template < class Range , class ... Args >

4 class function <Range(Args ...)>

5 }

that wraps all functions that map a type Domain to a type (convertible to) Range behind a single
C++ type. A much simplified implementation looks like the following:

1 template <class Range , class Domain >

2 struct function <Range(Domain)>

3 {

4 template <class F>

5 function(F&& f) :

6 f_(new FunctionWrapper <Range <Domain >, F>(f))

7 {}

8

9 Range operator () (Domain x) const

10 {

11 return f_ ->operator ()(x);

12 }

13

14 FunctionWrapperBase <Range <Domain >>* f_;

15 };

The classes FunctionWrapper and FunctionWrapperBase look like this:

1 template <class Range , class Domain >

2 struct FunctionWrapperBase <Range(Domain)>

3 {

4 virtual Range operator () (Domain x) const =0;

5 };

6

7 template <class Range , class Domain , class F>

8 struct FunctionWrapper <Range(Domain), F> :

9 public FunctionWrapperBase <Range(Domain)>

5
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10 {

11 FunctionWrapper(const F& f) : f_(f) {}

12

13 virtual Range operator () (Domain x) const

14 {

15 return f_(x);

16 }

17

18 F f_;

19 };

Given two types Domain and Range, any function object whose operator() accepts a Domain and
returns something convertible to Range can be stored in a std::function<Range(Domain)>. For
example, reusing the three implementations of sin2(x) from Section 2.1, one can write

1 std::function <double(double)> polymorphicF;

2 polymorphicF = sinSquared; // assign a free function

3 polymorphicF = sinSquaredLambda; // assign a lambda expression

4 polymorphicF = SinSquared (); // assign a function object

5 double a = polymorphicF (0.5* M_PI); // evaluate

Note how different C++ constructs are all assigned to the same object. One can even use

1 polymorphicF = []( double x) -> int { return floor(x); };

2 // okay: int can be converted to double

but not

1 polymorphicF = []( double x) -> std::complex <double >

2 { return std::complex <double >(x,0); };

3 // error: std::complex <double > cannot be converted to double

Looking at the implementation of std::function, one can see that virtual inheritance is used
internally, but it is completely hidden to the outside. The copy constructor accepts any type as ar-
gument. In a full implementation the same is true for the move constructor, and the copy and move
assignment operators. For each function type F, an object of type FunctionWrapper<Range(Domain),F>
is constructed, which inherits from the abstract base class FunctionWrapperBase<Range(Domain)>.

Considering the implementation of std::function as described here, one may not expect any
run-time gains for type erasure over virtual inheritance. While std::function itself does not
have any virtual methods, each call to operator() does get routed through a virtual function.
Additionally, each call to the copy constructor or assignment operator invokes a heap allocation.
The virtual function call is the price for run-time polymorphism. It can only be avoided in some
cases using smart compiler devirtualization.

To alleviate the cost of the heap allocation, std::function implements a technique called small
object optimization. In addition to the pointer to FunctionWrapper, a std::function stores a
small amount of raw memory. If the function is small enough to fit into this memory, it is stored
there. Only in the case that more memory is needed, a heap allocation is performed. Small object
optimization is therefore a trade-off between run-time and space requirements. std::function

needs more memory with it, but is faster for small objects.
Small object optimization is not restricted to type erasure, and can in principle be used wher-

ever heap allocations are involved. However, with a virtual inheritance approach this nontrivial
optimization would have to be exposed to the user code, while all its details are hidden from the
user in a type erasure context.

While we rely on std::function as a type erasure class for global functions, this is not suffi-
cient to represent extended function interfaces as discussed below. To this end dune-functions

provides utility functionality to implement new type erasure classes with minimal effort, hiding,
e.g., the details of small objects optimization. This can be used to implement type erasure for

6
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extended function interfaces that go beyond the ones provided by dune-functions. Since these
utilities are not function-specific, they can also support the implementation of type-erased inter-
faces in other contexts. Similar functionality is, e.g., provided by the poly library (which is part
of the Adobe Source Libraries [9]), and the boost type erasure library [10].

3 Extended function interfaces

The techniques discussed until now allow to model functions

f : D → R (1)

between a domain D and a range R by interfaces using either static or dynamic dispatch. In
addition to this, numerical applications often require to model further properties of a function
like differentiability or the fact that it is naturally defined locally on grid elements. In this section
we describe how this is achieved in the dune-functions module using the techniques described
above.

3.1 Differentiable functions

The extension of the concept for a function (1) to a differentiable function requires to also provide
access to its derivative

Df : D → L(D,R) (2)

where, in the simplest case, L(D,R) is the set of linear maps from the affine hull of D to R. To do
this, the dune-functions module extends the ideas from the previous section in a natural way.
A C++ construct is a differentiable function if, in addition to having operator() as described
above, there is a free method derivative that returns a function that implements the derivative.
The typical way to do this will be a friend member method as illustrated in the class template
Polynomial:

1 template <class K>

2 class Polynomial

3 {

4 public:

5

6 Polynomial () = default;

7 Polynomial(const Polynomial& other) = default;

8 Polynomial(Polynomial && other) = default;

9

10 Polynomial(std:: initializer_list <double > coefficients) :

11 coefficients_(coefficients) {}

12

13 Polynomial(std::vector <K>&& coefficients) :

14 coefficients_(std::move(coefficients)) {}

15

16 Polynomial(const std::vector <K>& coefficients) :

17 coefficients_(coefficients) {}

18

19 const std::vector <K>& coefficients () const

20 { return coefficients_; }

21

22 K operator () (const K& x) const

23 {

24 auto y = K(0);

25 for (size_t i=0; i<coefficients_.size(); ++i)
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26 y += coefficients_[i] * std::pow(x, i);

27 return y;

28 }

29

30 friend Polynomial derivative(const Polynomial& p)

31 {

32 std::vector <K> dpCoefficients(p.coefficients ().size() -1);

33 for (size_t i=1; i<p.coefficients_.size(); ++i)

34 dpCoefficients[i-1] = p.coefficients ()[i]*i;

35 return Polynomial(std::move(dpCoefficients));

36 }

37

38 private:

39 std::vector <K> coefficients_;

40 };

To use this class, write

1 auto f = Polynomial <double >({1, 2, 3});

2 double a = f(0.5* M_PI);

3 double b = derivative(f)(0.5* M_PI);

Note, however, that the derivative method may be expensive, because it needs to compute the
entire derivative function. It is therefore usually preferable to call it only once and to store the
derivative function separately.

1 auto df = derivative(f);

2 double b = df (0.5* M_PI);

Functions supporting these operations are described by Concept::DifferentiableFunction,
provided in the dune-functions module.

When combining differentiable functions and dynamic polymorphism, the std::function class
cannot be used as is, because it does not provide access to the derivative method. However, it
can serve as inspiration for more general type erasure wrappers. The dune-functions module
provides the class

1 template <class Signature ,

2 template <class > class DerivativeTraits=DefaultDerivativeTraits ,

3 size_t bufferSize =56>

4 class DifferentiableFunction;

in the file dune/functions/common/differentiablefunction.hh. Partially, it is a reimplemen-
tation of std::function. The first template argument of DifferentiableFunction is equivalent
to the template argument Range(Args...) of std::function, and DifferentiableFunction

implements a method

1 Range operator () (const Domain& x) const;

This method works essentially like the one in std::function, despite the fact that its argu-
ment type is fixed to const Domain& instead of Domain, because arguments of a “mathematical
function” are always immutable. Besides this, it also implements a free method

1 friend DerivativeInterface derivative(const DifferentiableFunction& t);

that wraps the corresponding method of the function implementation. It allows to call the
derivative method for objects whose precise type is determined only at run-time:

1 DifferentiableFunction <double(double)> polymorphicF;

2 polymorphicF = Polynomial <double >({1, 2, 3});

3 double a = polymorphicF (0.5* M_PI);

4 auto polymorphicDF = derivative(polymorphicF);

5 double b = polymorphicDF (0.5* M_PI);

8
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While the domain of a derivative is D, the same as the one of the original function, its range
is L(D,R). Unfortunately, it is not feasible to always infer the best C++ type for objects from
L(D,R). To deal with this, dune-functions offers the DerivativeTraits mechanism that maps
the signature of a function to the range type of its derivative. The line

1 using DerivativeRange = DerivativeTraits <Range(Domain) >::Range;

shows how to access the type that should be used to represent elements of L(D,R). The template
DefaultDerivativeTraits is specialized for common combinations of Dune matrix and vector
types, and provides reasonable defaults for the derivative ranges. However, it is also possible to
change this by passing a custom DerivativeTraits template to the interface classes, e.g., to
allow optimized application-specific matrix and vector types or use suitable representations for
other or generalized derivative concepts.

Currently the design of DifferentiableFunction differs from std:function in that it only
considers a single argument, but this can be vector valued.

3.2 GridView functions and local functions

A very important class of functions in any finite element application are discrete functions, i.e.,
functions that are defined piecewisely with respect to a given grid. Such functions are typically
too expensive to evaluate in global coordinates. Luckily this is hardly ever necessary. Instead, the
arguments for such functions are a grid element together with local coordinates of that element.
Formally, this means that we have localized versions

fe = f ◦ Φe : ê→ R, e is element of the grid,

of f , where Φe : ê→ e is a parametrization of a grid element e ⊂ D over a reference element ê.
To support this kind of function evaluation, Dune has provided interfaces in the style of

1 void evaluateLocal(Codim <0>:: Entity element ,

2 const LocalCoordinates& x,

3 Range& y);

Given an element element and a local coordinate x, such a method would evaluate the function at
the given position, and return the result in the third argument y. This approach is currently used,
e.g., in the grid function interfaces of the discretization modules dune-pdelab and dune-fufem.

There are several disadvantages to this approach. First, we have argued earlier that return-by-
value is preferable to return-by-reference. Hence, an obvious improvement would be to use

1 Range operator ()(Codim <0>:: Entity element , cost LocalCoordinates& x);

instead of the evaluateLocal method. However, there is a second disadvantage. In a typical
access pattern in a finite element implementation, a function evaluation on a given element is likely
to be followed by evaluations on the same element. For example, think of a quadrature loop that
evaluates a coefficient function at all quadrature points of a given element. Function evaluation in
local coordinates of an element can involve some setup code that depends on the element but not
on the local coordinate x. This could be, e.g., pre-fetching of those coefficient vector entries that
are needed to evaluate a finite element function on the given element, or retrieving the associated
shape functions.

In the approaches described so far in this section, this setup code is executed again and again
for each evaluation on the same element. To avoid this we propose the following usage pattern
instead:

1 auto localF = localFunction(f);

2 localF.bind(element);

3 auto y = localF(xLocal); // evaluate f in element -local

coordinates

9
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Here we first obtain a local function, which represents the restriction of f to a single element.
This function is then bound to a specific element using the method

1 void bind(Codim <0>:: Entity element);

This is the place for the function to perform any required setup procedures. Afterwards the local
function can be evaluated using the interface described above, but now using local coordinates
with respect to the element that the local function is bound to. The same localized function object
can be used for other elements by calling bind with a different argument. Functions supporting
these operations are called grid view functions, and described by Concept::GridViewFunction

The local functions are described by Concept::LocalFunction. Both concepts are provided in
the dune-functions module.

Since functions in a finite element context are usually at least piecewise differentiable, grid view
functions as well as local functions provid the full interface of differentiable functions as outlined
in Section 3.1. To completely grasp the semantics of the interface, observe that strictly speaking
localization does not commute with taking the derivative. Formally, a localized version of the
derivative is given by

(Df)e : ê→ L(D,R), (Df)e = (Df) ◦ Φe. (3)

In contrast, the derivative of a localized function is given by

D(fe) : ê→ L(ê,R), D(fe) = ((Df) ◦ Φe) ·DΦe.

However, in the dune-functions implementation, the derivative of a local function does by con-
vention always return values in global coordinates. Hence, the functions dfe1 and dfe2 obtained
by

1 auto de = derivative(f);

2 auto dfe1 = localFunction(df);

3 dfe1.bind(element);

4

5 auto fe = localFunction(f);

6 fe.bind(element);

7 auto dfe2 = derivative(fe);

both behave the same, implementing (Df)e as in (3). This is motivated by the fact that D(fe)
is hardly ever used in applications, whereas (Df)e is needed frequently. To express this mild
inconsistency in the interface, a local function uses a special DerivativeTraits implementation
that forwards the derivative range to the one of the corresponding global function.

Again, type erasure classes allow to use grid view and local functions in a polymorphic way.
The class

1 template <class Signature ,

2 class GridView ,

3 template <class > class DerivativeTraits=DefaultDerivativeTraits ,

4 size_t bufferSize =56>

5 class GridViewFunction;

stores any function that models the GridViewFunction concept with given signature and grid
view type. Similarly, functions modeling the LocalFunction concept can be stored in the class

1 template <class Signature ,

2 class Element ,

3 template <class > class DerivativeTraits=DefaultDerivativeTraits ,

4 size_t bufferSize =56>

5 class LocalFunction;

These type erasure classes can be used in combination:

10
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1 GridViewFunction <double(GlobalCoordinate), GridView > polymorphicF;

2 polymorphicF = f;

3 auto polymorphicLocalF = localFunction(polymorphicF);

4 polymorphicLocalF.bind(element);

5 LocalCoordinate xLocal = ... ;

6 auto y = polymorphicLocalF(xLocal);

Notice that, as described above, the DerivativeTraits used in polymorphicLocalF are not the
same as the ones used by polymorphicF. Instead, they are a special implementation forwarding
to the global derivative range even for the domain type LocalCoordinate.

4 Performance measurements

In this last chapter we investigate how the interface design for functions in Dune influence the
run-time efficiency. Two particular design choices are expected to be critical regarding execution
speed: (i) returning the results of function evaluations by value involves temporary objects and
copying unless the compiler is smart enough to remove those using return-value-optimization. In
the old interface, such copying could not occur by construction, (ii) using type erasure instead of
virtual inheritance for dynamic polymorphism. While there are fewer reasons to believe that this
may cause changes in execution time, it is still worthwhile to check empirically.

As a benchmark we have implemented a small C++ program that computes the integral

I(f) :=

∫ 1

0
f(x) dx

for different integrands, using a standard composite mid-point rule. We chose this problem because
it is very simple, but still an actual numerical algorithm. More importantly, most of the time is
spent evaluating the integrand function. Finally, hardly any main memory is needed, and hence
memory bandwidth limitations will not influence the measurements.

The example code is a pure C++11 implementation with no reference to Dune. The relevant
interfaces from Dune are so short that it was considered preferable to copy them into the bench-
mark code to allow easier building. The code is available in a single file attached to this pdf
document, via the icon in the margin.

To check the influence of return types with different size we used integrands of the form

f : R→ RN , f(x)i = x + i− 1, i = 1, . . . , N,

for various sizes N . This special choice was made to keep the computational work done inside
of the function to a minimum while avoiding compiler optimizations that replace the function
call by a compile-time expression. The test was performed with n = b108/Nc subintervals for
the composite mid-point rule leading to n function evaluations, such that the timings are directly
comparable for different values of N .

For the test we implemented four variants of function evaluation:

(a) Return-by-value with static dispatch using plain operator(),

(b) Return via reference with static dispatch using evaluate(),

(c) Return-by-value with dynamic dispatch using std::function::operator(),

(d) Return via reference with dynamic dispatch using VirtualFunction::evaluate(), as in
the introduction.
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// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-

// vi: set et ts=4 sw=2 sts=2:



#include <memory>

#include <iostream>

#include <iomanip>

#include <array>

#include <chrono>

#include <functional>





template<class K, std::size_t N>

class StaticVector : public std::array<K, N>

{

public:



  StaticVector()

  {

    auto& self = *this;

    for (std::size_t i=0; i<N; ++i)

      self[i] = 0;

  }



  StaticVector(const K& k)

  {

    auto& self = *this;

    for (std::size_t i=0; i<N; ++i)

      self[i] = k;

  }



  void axpy(const K& k, const StaticVector& other)

  {

    auto& self = *this;

    for (std::size_t i=0; i<N; ++i)

      self[i] += k*other[i];

  }



  void operator*=(const K& k)

  {

    auto& self = *this;

    for (std::size_t i=0; i<N; ++i)

      self[i] *= k;

  }

};



template <class K, std::size_t N>

inline std::ostream& operator<< (std::ostream& s, const StaticVector<K,N>& v)

{

  s << "[";

  for (std::size_t i=0; i<N-1; i++)

    s << v[i] << ",";

    s << v[N-1] << "]";

  return s;

}



template<class Domain, class Range, class F>

Range integrateOverInterval(const F& f, Domain a, Domain b, int n)

{

  Domain h = (b-a)/n;

  Range result = 0.0;



  std::array<std::pair<double,double>,1> quadRule = {{ {0.5, 1} }};



  Range localResult = 0.0;

  for (std::size_t i=0; i<n; ++i)

  {

    for (auto&& quadPoint : quadRule)

//      localResult.axpy(quadPoint.second, f(a + (i+quadPoint.first)*h));

      result.axpy(quadPoint.second, f(a + (i+quadPoint.first)*h));

//    result.axpy(h, localResult);

  }

  result *= h;

  return result;

}







template<class Domain, class Range, class F>

Range integrateOverInterval_Evaluate(const F& f, Domain a, Domain b, int n)

{

  Domain h = (b-a)/n;

  Range result = 0.0;



  std::array<std::pair<double,double>,1> quadRule = {{ {0.5, 1} }};



  Range temp;



  Range localResult = 0.0;

  for (std::size_t i=0; i<n; ++i)

  {

    for (auto&& quadPoint : quadRule)

    {

      f.evaluate(a + (i+quadPoint.first)*h, temp);

//      localResult.axpy(quadPoint.second, temp);

      result.axpy(quadPoint.second, temp);

    }

//    result.axpy(h, localResult);

  }

  result *= h;

  return result;

}









class Timer

{

  using TimeStamp = decltype(std::chrono::high_resolution_clock::now());



  TimeStamp start_;

public:



  Timer () :

    start_(std::chrono::high_resolution_clock::now())

  {}



  double msElapsed() const

  {

    std::chrono::duration<double, std::milli> elapsed

      = std::chrono::high_resolution_clock::now()-start_;

    return elapsed.count();

  }

};







template<class D, class R>

class VirtualFunction

{

public:

  using Domain = D;

  using Range = R;

  virtual void evaluate(const Domain&, Range&) const = 0;

};



template<class D, class R>

class Function

{

public:

  using Domain = D;

  using Range = R;

};













template<class Base>

class F : public Base

{

public:

  using Range = typename Base::Range;

  using Domain = typename Base::Domain;



  void imp(const Domain& x, Range& y) const

  {

    for(std::size_t i=0; i<y.size(); ++i)

    {

//      y[i] = x*x;

      y[i] = x+i;

//      y[i] = x*x + i;

    }

  }

  void evaluate(const Domain& x, Range& y) const

  {

    imp(x,y);

  }



  Range operator()(const Domain& x) const

  {

    Range y;

    imp(x, y);

    return y;

  }

};







template<std::size_t blockSize>

void testWithVectorSize(std::size_t n)

{

  double a = 0;

  double b = 1;



  using Range = StaticVector<double,blockSize>;

  using Domain = double;



  std::array<double, 4> timing;

  std::array<Range, 4> result;



  std::size_t N = n/blockSize;



  // For each test do one warump run with N-1 before.

  {

    using Interface = Function<Domain, Range>;

    auto f = F<Interface>();

    for (int k=N-1; k<=N; ++k)

    {

      Timer t;

      result[0] = integrateOverInterval<Domain, Range>(f, a, b, k);

      timing[0] = t.msElapsed();

    }

  }



  {

    using Interface = Function<Domain, Range>;

    auto f = F<Interface>();

    for (int k=N-1; k<=N; ++k)

    {

      Timer t;

      result[1] = integrateOverInterval_Evaluate<Domain, Range>(f, a, b, k);

      timing[1] = t.msElapsed();

    }

  }





  {

    using Interface = Function<Domain, Range>;

    auto f = F<Interface>();

    for (int k=N-1; k<=N; ++k)

    {

      Timer t;

      result[2] = integrateOverInterval<Domain, Range>(std::function<Range(Domain)>(f), a, b, k);

      timing[2] = t.msElapsed();

    }

  }



  {

    using Interface = VirtualFunction<Domain, Range>;

    std::shared_ptr<Interface> f = std::make_shared<F<Interface>>();

    Interface& fBase = *f;

    for (int k=N-1; k<=N; ++k)

    {

      Timer t;

      result[3] = integrateOverInterval_Evaluate<Domain, Range, Interface>(fBase, a, b, k);

      timing[3] = t.msElapsed();

    }

  }



  std::cout << std::setw(3) << blockSize << "   ";

  for(int i=0; i<4; ++i)

    std::cout << std::setw(14) << (int)(timing[i]);

  for(int i=1; i<4; ++i)

    if (result[0]!=result[i])

      std::cout << " error";

  std::cout << std::endl;

}





int main(int argc, char** argv)

{



  std::size_t n = 100000000;



  std::cout << "size      operator()    evaluate() std::function  v evaluate()" << std::endl;

  testWithVectorSize<1>(n);

  testWithVectorSize<2>(n);

  testWithVectorSize<3>(n);

  testWithVectorSize<4>(n);

  testWithVectorSize<5>(n);

  testWithVectorSize<6>(n);

  testWithVectorSize<7>(n);

  testWithVectorSize<8>(n);

  testWithVectorSize<9>(n);

  testWithVectorSize<10>(n);

  testWithVectorSize<11>(n);

  testWithVectorSize<12>(n);

  testWithVectorSize<13>(n);

  testWithVectorSize<14>(n);

  testWithVectorSize<15>(n);

  testWithVectorSize<16>(n);



  return 0;

}
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The test was performed with N = 1, . . . , 16 components for the function range, using double

to implement the components. We used GCC-4.9.2 and Clang-3.6 as compilers, as provided by
the Linux distribution Ubuntu 15.04. To avoid cache effects and to eliminate outliers we did a
warm-up run before each measured test run and selected the minimum of four subsequent runs
for all presented values.

Figure 2.A shows the execution time in milliseconds over N when compiling with GCC-4.9
and the compiler options -std=c++11 -O3 -funroll-loops. One can observe that the execution
time is the same for variants (a) and (b) and all values of N . We conclude that for static dispatch
there is no run-time overhead when using return-by-value, or, more precisely, that the compiler is
able to optimize away any overhead. Comparing the dynamic dispatch variants (c) and (d) we see
that for small values of N there is an overhead for return-by-value with type erasure compared
to classic virtual inheritance. This is somewhat surprising since pure return-by-value does not
impose an overhead, and dynamic dispatch happens for both variants.

Guessing that the compiler is not able to optimize the nested function calls in the type erasure
interface class std::function to full extent, we repeated the tests using profile guided optimiza-
tion. To this end the code was first compiled using the additional option -fprofile-generate.
When running the obtained program once, it generates statistics on method calls that are used by
subsequent compilations with the additional option -fprofile-use to guide the optimizer. The
results depicted in Figure 2.B show that the compiler is now able to generate code that performs
equally well for variant (c) and (d). In fact variant (c) is sometime even slightly faster.

Finally, Figure 2.C shows results for Clang-3.6 and the compiler options -std=c++11 -O3

-funroll-loops. Again variants (a) and (b) show identical results. In contrast, variant (c)
using std::function is now clearly superior compared to variant (d). Note that we only used
general-purpose optimization options and that this result did not require fine-tuning with more
specialized compiler flags.

5 Conclusion

We have presented a new interface for functions in Dune, which is implemented in the new
dune-functions module. The interface follows the ideas of callables and std::function from
the C++ standard library, and generalises these concepts to allow for differentiable functions and
discrete grid functions. For run-time polymorphism we offer corresponding type erasure classes
similar to std::function. The performance of these new interfaces was compared to existing
interfaces in Dune. When using the optimization features of modern compilers, the proposed
new interfaces are at least as efficient as the old ones, while being much easier to read and use.
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