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Introduction

Since the pioneering papers of Fichera [55] and Stampacchia [113] in the
early sixties, variational inequalities have proved extremely useful for the
formulation of a wide range of problems from mechanics, physical and bi-
ological science, metallurgy, soil mechanics, etc. A characteristic feature of
most of these applications is the presence of a free or moving boundary divid-
ing the computational domain into different phases with different physical
properties.

An important subclass of such problems can be rewritten in the form
J(u) + ¢(u) = min.

Obstacle problems or time—discretized two—phase Stefan problems are typi-
cal examples. While the usual quadratic energy functional 7 has all the nice
properties of a parabola, the additional convex functional ¢ defined by

o) = [ @(u(@) da

has only some of them. In particular, ¢ does not need to be differentiable.
A free boundary separates the regions in which ®(u) is smooth.

In these notes, we will try to work out some of the consequences originating
from this additional functional ¢. Our reasoning will be guided by the ques-
tions whether there is a solution, how we can compute it, and what it is good
for. This pragmatic approach will lead us from a bit of physical modelling
to the roots of functional analysis, from the convergence of finite element
approximations to the convergence rates of multigrid methods, and, finally,
to some practical computations which will leave us with more questions than
answers.

In the beginning, the reader should be familiar with elementary facts on
Hilbert spaces. Some basic notions of convex analysis will be introduced in
the first chapter, where we summarize well-known existence and uniqueness
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results and outline the convergence analysis of a finite element discretiza-
tion. In doing so, we never strive for generality, but for a clear presentation
of basic concepts. However, this introductory chapter could be used as a
starting point for a more advanced course in nonlinear functional analysis
or optimization.

The unified view on multigrid methods and domain (or space) decomposi-
tion has caused a breakthrough in the understanding of adaptive multilevel
methods for selfadjoint elliptic problems. We recommend the fundamental
monograph of Hackbusch [65] and refer to Bramble [31], Dryja and Wid-
lund [47], Xu [122] or Yserentant [126] for recent developments. With this
background, the main part of these notes is devoted to the construction of
fast solvers for the finite element analogue of our continuous minimization
problem.

Standard relaxation methods (cf. e.g. Glowinski [61]) are globally conver-
gent, but usually suffer from rapidly deteriorating convergence rates with
increasing refinement. We first explain how to incorporate a certain redun-
dancy in these methods which is intended to increase the convergence speed.
It turns out that monotonically decreasing energy J + ¢ is crucial for the
global convergence of the resulting extended relaxation schemes. This prop-
erty is preserved by suitable perturbations and will be the essential feature
of monotone multigrid methods.

Constructing a multigrid method for a (discrete) free boundary problem,
one always has to answer the question how to represent the free boundary
on the coarse grids. Our answer is that there is no such representation. As a
consequence, the coarse grid correction must not change the actual guess of
the free boundary (resulting from fine grid smoothing). This condition ap-
plies locally to each correction from each coarse grid node and, for theoretical
purposes, can be regarded as a local damping of the coarse grid correction.
However, the invariance of the actual free boundary may exclude a large
number of coarse grid nodes from contributing to the correction and this
may again deteriorate the speed of convergence. A possible remedy is to
adapt the underlying space decomposition to the actual free boundary. In
this way, we obtain so—called truncated monotone multigrid methods in con-
trast to the standard version introduced above. For both methods, we will
derive upper bounds for the asymptotic convergence rates depending on-
ly logarithmically on the minimal stepsize. The existence of related global
bounds is still an open question.
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Introduction 11

In the special case of obstacle problems, our standard monotone multigrid
method reduces to the algorithm of Mandel [92, 93] and the truncated vari-
ant can be regarded as a further development of well-known heuristic ap-
proaches (cf. Brandt and Cryer [33], Hackbusch and Mittelmann [66]), see
Kornhuber [82] for details. Other multigrid methods have been derived for
other special cases, such as semi-discrete Stefan problems (see e.g. Hoppe [72]
or Hoppe and Kornhuber [73]). For a comparison, we refer to Kornhuber [83].

There should be no confusion with the monotone multigrid methods intro-
duced by Zou [129] and improved by other authors (cf. Bésler and T6rnig [16]
and Voller [120]). These methods are designed for nonlinear systems involv-
ing (generalized) M-functions and provide converging sequences of sub— and
supersolutions.

In order to provide a hierarchy of grids together with an efficient finite ele-
ment approximation, the underlying triangulation should be selected adap-
tively on the basis of efficient and reliable a posteriori error estimates. As we
are dealing with a minimization problem, it is natural to control the error
in the corresponding energy norm. Then, hierarchical error estimates pro-
vide a unifying framework for the construction of a posteriori estimates for
linear selfadjoint problems (cf. Deuflhard, Leinen and Yserentant [45], Bank
and Smith [10], Bornemann, Erdmann, and Kornhuber [28]). Chapter 4 con-
tains some steps towards the extension of this concept to the non—-smooth
minimization problem under consideration.

In the final chapter, finite element discretization, iterative solution and a
posteriori error estimation are assembled to an adaptive multilevel method.
Using this algorithm as some sort of black box method, we consider four
examples of different nature, ranging from pure model problems to quite
realistic situations. In all our experiments, we observed a similar efficiency
and reliability of our adaptive multilevel algorithm as for related elliptic
selfadjoint problems. Nevertheless, the results of the numerical computations
are in turn a source of challenging theoretical and algorithmical questions
which we hope will stimulate future research.
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1 Nonlinear Variational Problems

In this introductory chapter, we briefly address the mathematical modelling,
the mathematical analysis and the discretization of certain free boundary
problems. Though all material to be presented is well-known from sever-
al monographs, we mostly include the proofs. One reason is to make the
presentation as self-contained as possible and the other is to illustrate the
intimate relation of mathematical physics, functional analysis and, last but
not least, numerics.

1.1 Free and Moving Boundary Problems

Non—smooth minimization problems, elliptic variational inequalities and
variational inclusions have proved to be essential in a wide range of problems
from physics and engineering, particularly those with a free boundary. For
an overview, we refer to the monographs of Crank [41], Duvaut and Lions
[48], Elliott and Ockendon [51], Friedman [57], Friedman and Spruck [58],
Glowinski [61], Glowinski, Lions and Trémolieres [62], Hlavacek, Haslinger,
Necas and LoviSek [68], Rodrigues [105] and the literature cited therein.

In order to motivate the abstract setting of our subsequent considerations,
we will now take a closer look at three typical examples: an obstacle problem,
a time—discretized Stefan problem and a time-discretized porous medium
equation.

The latter two examples originate from the application of Rothe’s method
(cf. Rothe [108]) to degenerate parabolic problems. Basic existence, unique-
ness, and regularity results for the Stefan problem are presented in the
monographs of Rubinstein [109], Jerome [78] and Meirmanov [96], see al-
so the earlier work of Oleinik [101], Kamenomostskaya [79] and Friedman
[56]. Important contributions to the porous medium equation were made
by Oleinik et al. [102], Caffarelli and Friedman [37], Alt and Luckhaus [2]
and others. We refer to the surveys of Aronson [3] and Vazquez [116] for
further information. Optimal error estimates for the semi—discretization in
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time were given very recently by Rulla and Walkington [110], improving
previous results of Jerome [78].

Rothe’s method is not only a well-established way of showing existence
and uniqueness [78] but also provides a powerful numerical approach. In
the light of the fundamental work of Bornemann [23, 24, 25] on the linear
parabolic case, the efficient numerical treatment of the spatial problems
is a crucial step towards a fast adaptive algorithm for the original time—
dependent problem.

1.1.1 Deformation of a Membrane with a Rigid Obstacle

In classical elasticity theory, a membrane is a thin plate offering no resistance
to bending. Let us consider a membrane with uniform tension attached to the
boundary 92 of a domain 2 C R?. The membrane is subjected to the action
of a vertical force with density f and, in addition, must lie below a given
rigid obstacle with height . We are interested in the vertical displacement
u corresponding to the equilibrium position. A one-dimensional analogue is
shown in Figure 1.1.

Figure 1.1 Membrane with upper obstacle ¢

It is clear that the above conditions can be written as
u<g in§, u=0 on Jf. (1.1)

Among all admissible states of the membrane, the equilibrium is attained
at the state with minimal total energy. For a given displacement v, the total
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14 1 Nonlinear Variational Problems

energy J(v) consists of two contributions reflecting the tension and the
displacement of the membrane respectively.

The contribution J;(v) associated with the tension is proportional to the
increase of area resulting from the deformation,

jl(v):a/ﬂ(,/l +02, +v2, —1)dr, o>0. (1.2)

Limiting our considerations to small strains, we neglect the higher—order
terms in (1.2) to obtain

Ji(v) = %/QQ\VU\Q dx. (1.3)

The second contribution J>(v) associated with the displacement (subject to
the force density f) is given by

To(v) = — /Q fo dz. (1.4)
In the light of (1.3) and (1.4), the total energy J(v) turns out to be

J(v) = 3a(v,v) — £(v), (1.5)
where the bilinear form a(-,-) and the linear functional ¢ are defined by

a(v,w) = /QaVv -Vw dez, l(v) = /va dx. (1.6)

The set K of admissible displacements
K={veH(Q)|v<ypae inQ v=0ondN} (1.7)

consists of all v with finite energy satisfying the conditions (1.1). Assuming
that ¢ is smooth enough (i.e. p € H*(2)) and non-negative on 99, we will
see later on that K is a non-empty, closed, convex subset of HE(Q).

Finally, the displacement wu representing the equilibrium position of the
membrane must be a solution of the following minimization problem

vek: Ju)<JWw), Yvek. (1.8)

Note that (1.8) can be regarded as an extension of the classical Dirichlet
principle. Indeed, if no obstacle is present, we clearly have K = H} () and
u satisfies Euler’s equation associated with (1.8) which turns out to be the
weak form of Poisson’s equation Au = f/a with homogeneous Dirichlet
boundary conditions.
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1.1 Free and Moving Boundary Problems 15

1.1.2 A Semi—Discrete Stefan Problem

We consider the melting and solidification of some stationary substance
occupying the domain Q C R? during the time interval [0,7]. We assume
that the phase change takes place at the fixed temperature 6,. Then the
temperature 6 satisfies § > 6, in the liquid fraction Q4 (¢) and 6 < 6, in
the solid fraction Q_(t), t € [0,T], respectively. Both phases are separated
by a free boundary I'(t), t € [0,7]. We assume for the moment that I" is a
smooth manifold with normal nr pointing in the outward direction of €
(see Figure 1.2).

nr
0 <0,
0 >0,

Figure 1.2 Heat flow with phase transition

Let £ denote the specific internal energy or heat content, ¥ describes the
heat flur and F stands for a body heating term. Then the conservation of
energy implies that

pg/ E(x,t) dx + (z,t)-n'do= | Fdz (1.9)
ot Jor L% o

holds for each fixed subset ' C Q with outward normal n’. For simplicity,
we only consider constant density p. Selecting subsets Q' C Q4 or Q' C Q_
and assuming sufficient regularity, we can apply the divergence theorem to
derive the pointwise equation

0
PtV T=F inQuQ. (1.10)

If Q' intersects the free boundary T'(¢), then the derivation in time no longer
commutes with the integration and the divergence theorem has to be applied
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16 1 Nonlinear Variational Problems

separately in the two phases. The resulting boundary terms give rise to the
well-known Stefan condition (cf. Stefan [114])

pl€7 Ve = [0]Tnr onT. (1.11)

The Stefan condition relates the velocity Vr of the free boundary in normal
direction nr with the jumps of £ and ¢ at the interface. The jumps are
defined by

= i - i . 1.12
o—tita, 1 7 V) (142

In order to express the heat content £ in terms of the temperature 0, we
assume the thermodynamic relation

0 0 if 0<0,
£(9) :/ c(9) di + s(0), s(0) =1 [0,I] if 6=, , (1.13)
* L if 6> 6,

introducing the heat capacity c¢(f) and the latent heat L > 0. Note that the
enthalpy function £(f) is set—valued at the phase change temperature 6,.

The heat flux ¢ is given by Fourier’s law
U= —k(0)V0, (1.14)

where k() denotes the thermal conductivity.

We assume that the heat capacity ¢(f) and the thermal conductivity x(6)
have positive constant values ¢y, c— and k4, k_ over the two phases 2,
Q_, respectively.

Inserting (1.13) and (1.14) in (1.10) and (1.11), we obtain the classical for-
mulation of the two—phase Stefan problem

pc(0)0: — V(k(0)V(9)) = F in QUQ_
(1.15)
0 = 0., pLVr = [k(0)VOInr  onT

which has to be completed by suitable initial and boundary conditions. As

a rule, either the temperature or the heat flux is prescribed at the boundary
of € and the temperature is assumed to be given at the initial time instant.

Kornhuber 31 Jan 2006 10:03



1.1 Free and Moving Boundary Problems 17

The classical formulation (1.15) is extended to distributions in D'(Q), Q =
Q2 x (0,T) by using generalized derivatives in space and time. Additionally,
we drop the assumption that the free boundary must be a smooth manifold.
Recall that £(0) is set—valued on the transition zone I" which now may have
non-zero measure in R?. By definition, 0 is a generalized solution of the
two—phase Stefan problem, if

p%W —V(k(O)VO) =F, W &), (1.16)

holds in the sense of distributions in D/(Q).

The generalized formulation (1.16) of the two—phase Stefan problem contains
(1.15) as a special case. In particular, a solution 6 of (1.16) which is sufficient-
ly regular and admits a classical smooth free boundary satisfies the Stefan
condition (1.11). This follows from Green’s formula and the representation
of the normal velocity Vr = N./||Nt| by the normal vector Ny, = (Np, Ny)
on the 2-dimensional manifold ¥ = {(z,t) | 6(z,t) = 6.} C Q oriented in
the direction of the solid phase.

Introducing a normalized temperature U = K (6) and a normalized enthalpy
H(U) = p£(K~Y(U)) via the standard Kirchhoff transformation

0 k(6 —6,) if 6<0,
U—K@—/fWM“—hmegﬁaza’

we transform the doubly nonlinear problem (1.16) into a differential inclu-
sion of the form

%W—AU:R W e H(U), (1.17)

where the normalized enthalpy H becomes
p—=U if U<0
HU) = [0,pL] if U=0. (1.18)
p%U + L if U>0

Observe that we have to prescribe boundary conditions and an initial en-
thalpy H|i—o rather than an initial temperature to ensure uniqueness.
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18 1 Nonlinear Variational Problems

Figure 1.3 The normalized enthalpy H

We now discretize (1.17) in time, using the backward Euler scheme with
respect to a given grid

O=to<ti <...<ty=T (1.19)

with step size 7; = t; — t;_1. Then we have to solve an elliptic differential
inclusion

TZ‘F(-,ti) + W1 +1;AU; € 'H(UZ) (1.20)

in each time step. The unknown U; is an approximation of U(-,t;) and
Wi—1 € H(U;—1) is a selection of the enthalpy from the preceding time step.

For simplicity, we only consider homogeneous Dirichlet boundary conditions.
Using the bilinear form a(-,-) and the linear functional ¢ defined by

a(v,w) = /QTZ'V’U-VU}dx, l(v) = /va dz, (1.21)

with f = 7, F (-, t;)+W;_1, a weak form of the spatial problem (1.20) is given
by the elliptic variational inclusion

uwe H: [Lv)—a(u,v) € (H(u),v)r2q), VYveH, (1.22)
where we have set u = U;, H = H}(Q), and

(H(u),v)r2(0) = {(w,v)12¢0) | w € H(u) ae. in Q}. (1.23)
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1.1 Free and Moving Boundary Problems 19

1.1.3 The Semi—Discrete Porous Medium Equation

We consider a homogeneous gas flowing through a homogeneous porous
medium occupying a domain Q C R? during the time interval [0,7]. We
assume that Q. (t) C  is saturated with gas at the time ¢, while no gas
is present in the remaining part of 2. The (free) boundary I'(¢) of Q4 (),
t € (0,71, is supposed to be smooth and has the outward normal nr (cf.
Figure 1.4).

Figure 1.4 Gas flow through a porous medium

The conservation of mass implies that

9 Ip(x,t) dx —i—/ p(z,t)d(z,t) - n'do =0 (1.24)
ot Jar o

holds for each subset €' C Q with outward normal n’. The porosity 9 repre-
sents the portion of the area of ' which is available for the flow and p is the
density of the gas. Assuming sufficient regularity, (1.24) can be interpreted
as the differential equation (cf. (1.10))

0

Observe that the mass flux pv is continuous across I

We suppose that the flow is governed by Darcy’s law (cf. Darcy [42])
g=_k
Uv=—, Vp, (1.26)

where k is the capillarity of the porous medium, p is the viscosity and p is
the pressure of the gas.
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20 1 Nonlinear Variational Problems

As both the porous medium and the gas are homogeneous, ¥, k, and p are
positive constants. In order to relate the density to the pressure, we suppose
that the equation of state

p=(pop)"" Y, p=>0, (1.27)

holds with real constants py > 0, m > 2. If the flow is isothermic, then
m = 2, while m > 2 holds for an adiabatic process.

Inserting (1.26) and (1.27) in (1.25), we obtain the classical formulation of
the porous medium equation

)
=0 =ABp™) in €2
ot ' (1.28)

p=0, BVp"|inr =0 onT

denoting 3 = k(m — 1)/upom > 0. The jump [BVp™]T of the (scaled) mass
flux across I' is defined according to (1.12). For m = 2, (1.28) is known
as the Boussinesq equation modelling for example the unsteady flow in a
phreatic aquifer (see e.g. Bear [18]).

In addition, we have to prescribe the initial density and suitable bound-
ary conditions for ¢ > 0. The resulting initial boundary value problem is
parabolic for p > 0 but degenerates when p = 0. The most striking mani-
festation of the degeneracy of this equation is that the free boundary I' is
propagating with finite speed.

Before we derive a weak formulation of (1.28), we formally extend (1.28) to
negative densities by substituting p™ by p'",

p+ = max{0, p}.

Other extensions are possible (cf. [2, 78]). The resulting differential equation

P
50P = ABT) (1.29)

has to be understood in the sense of distributions on D'(Q), @ = Q x
(0,7). In this way, the interface conditions appearing in (1.28) are implicitly
incorporated in (1.29).
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1.1 Free and Moving Boundary Problems 21

In analogy to the preceding section, we introduce the Kirchhoff-type trans-
formation

10 i U
U= K(p) = Bp} Kl“nz{ﬁf;)%Uig'

Denoting P(U) = K~1(U), we can rewrite the differential equation (1.29)
as the differential inclusion

%W:AM W e P(U). (1.30)

We emphasize that the degeneracy of the problem is now represented by the
fact that P is not Lipschitz.

Figure 1.5 The inverse Kirchhoff transformation P

The implicit time discretization by the backward Euler scheme with respect

to a given grid (1.19) with step size 7; = t;—t;_1 leads to the spatial problems
Wi_1 + miAU; € P(Us), (1.31)

where W;_1 € P(U;—1) is an appropriate selection and U; approximates

U(-t;),i=1,...,1. Observe that discretizing (1.29) directly in time would

lead to quasilinear spatial problems instead of the semilinear elliptic differ-
ential inclusions (1.31).
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22 1 Nonlinear Variational Problems

A weak form of (1.31) is given by the elliptic variational inclusion
uwe H: [((v)—a(uv) € (Pu),v)gq), YveEH, (1.32)

where we have set u = U; and H = H{(Q) incorporates homogeneous Dirich-
let boundary conditions. The bilinear form a(-,-) and the linear functional
¢ are taken from (1.21) and the set (P(u),v)r2(q) is defined in analogy to
(1.23).

Observe that the semi-discrete porous medium equation (1.32) and the
semi-discrete two—phase Stefan problem (1.22) formally coincide. Howev-
er, in (1.32), the set—valued function P is no longer piecewise linear but
piecewise smooth.

1.2 Convex Minimization

In this section, we introduce a non—smooth minimization problem which
will turn out to contain the three examples given above as special cases.
After a precise definition of the problem and a discussion of the basic as-
sumptions, we consider the existence and uniqueness of solutions. For this
reason, we give a brief introduction to convex analysis, presenting only the
very basic results which are needed here. For further reading, we refer to the
monographs of Aubin [4], Clarke [40], Deimling [43] or Ekeland and Temam
[49]. Applications to elliptic variational inclusions can be found in the work
of Barbu [15], Brézis [34, 35] or Jerome [78]. We do not address the ques-
tion of regularity of solutions, but recommend the monographs of Baiocchi
and Capelo [7], Kinderlehrer and Stampacchia [81], Rodriguez [105] and the
literature cited therein.

1.2.1 The Continuous Problem

Let © be a bounded, polygonal domain in the Euclidean space R?. If a
result cannot be generalized to three dimensions, this will be pointed out
explicitely. We consider the minimization problem

ueH: Ju)+¢u) <Jw)+¢v), YveH, (2.33)
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1.2 Convex Minimization 23

on a closed subspace H C H'(f2). The quadratic functional 7,
J(v) = a(v,v) — £(v), (2.34)

is induced by a continuous, symmetric and H-elliptic bilinear form a(-,-)
and a bounded, linear functional ¢ on H. Recall that a(-,-) is H —elliptic if

allvlfn gy < a(v,v), Vv e H, (2.35)

holds with a generic constant « > 0. By virtue of the assumptions on the
bilinear form a(-,-), the energy norm

loll = a(v,v)'/? (2.36)

is equivalent to the usual Sobolev norm on the solution space H. For simplic-
ity, we select H = H}(Q) corresponding to homogeneous Dirichlet boundary
conditions. Other boundary conditions of Neumann or mixed type can be
treated in the usual way.

The functional ¢ has the form

o(v) :/ O (v(x)) dx. (2.37)
Q
We impose the following conditions on the scalar function ®.
(V1) @ :R — RU {400} is convex, i.e.
P(wz+ (1 —w)2) <wd(z)+ (1 —w)®(Z), Ywe[0,1], Vz,2/ €R.
(V2) K ={z € R| ®(z) < +o0} is a closed interval with 0 € K.

The subset K = dom @ is the domain of ®. It follows from the convexity
that @ is locally Lipschitz on the interior of K (see e.g. Aubin [4]). We
require the stronger condition that

(V3) |®(2) — (2| < G(|z| +|2'D|z = 7|, 2,72 € K,

holds with a scalar, affine function G. In particular, the condition (V3)
implies that ® : K — R is continuous.

In the following chapters, we will mainly concentrate on the case where ®
is piecewise quadratic,
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(V?))’ (I)(Z) = %bizz—fiz—}—ci, 0; <z<0;y1, 1=0,...,N,
on a partition
infK =0 <0, <...<0ny <0Ony1=supK

of the interval K. It is easily seen that (V3)’ implies (V3), but, for example,
1

®(2) = 21w, m > 1, satisfies (V3) on K = [0, +00) and is not quadratic.

Observe that the obstacle problem (1.8) is a (very simple) special case of
our minimization problem (2.33). Indeed, after a suitable transformation of
u, (1.8) can be rewritten in the form (2.33) with ® = 0 on K = (—o00,0].
The bilinear form a(-,-) defined in (1.6) is clearly elliptic on H = H}(€2)
and the corresponding linear functional ¢ is bounded for sufficiently regular
f (eg. f € L*Q)).

We will now state some properties of the functional ¢ as resulting from the
properties (V1)—(V3) of ®. First, let us recollect some standard notation
from convex analysis. The functional ¢ defined on H is convex if

dlwv+ (1 —w)v') <wd(v) + (1 —w)p(v'), Yw € [0,1], Vv,v' € H.

A subset K C H is convex if the indicator functional xic, given by xx(v) = 0,
Vv € K, and xx(v) = oo, Yu ¢ K, is convex. ¢ is called lower semicontinuous
if the convergence vy, — v, k — 00, in H implies liminfy . ¢(vg) > ¢(v).
We say that ¢ is proper if ¢(v) > —oo, Vv € H, and ¢ # oo. Finally, the
subset dom¢ = {v € H | ¢(v) < 400} C H is the domain of ¢. As usual, a
sequence (vg)k>o is said to converge weakly to v € H, i.e. v — v, k — o0,
if a(vg, w) — a(v,w), k — oo, holds for all w € H.

Proposition 1.1 The functional ¢ : H — RU{+00} is convez, lower semi-
continuous and proper.

The domain of ¢ is given by the non—empty, closed, and convex set
K={veH|v(zx) e K ae. inQ} (2.38)
and ¢ : I — R is continuous. Moreover, we have

v = v,k —o00 = likminf o(v) > o(v) (2.39)

for all (vi)g>0 C H and v € H.

Kornhuber 31 Jan 2006 10:03
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Proof. Let us first investigate the set K. K is non—empty, because 0 € K (see
(V2)) provides 0 € K . K is convex, because K is an interval and therefore
convex. We now show that K is weakly closed and thus closed. Without loss
of generality, let K = (—o00,0] and consider a sequence (vg)g>0 C K such
that vy — v, k — oo. Using the compact embedding of H in L?(f2), we
obtain vy — v, k — oo, in L?(Q2). We assume that v ¢ K. Then we can
find a subset Q' with positive measure such that v(z) > 0, z € @/, giving
[v]|r2(ry > 0. Using vy, € K, we get v(z) — vg(r) > v(z), a. e. in Q. This
leads to

v —vkllL2) > lv — vkllp2@ry = vllp2@@y >0, Vk >0,

in contradiction to vy — v in L2(Q).

In the next step, we show K = dom ¢. Let us first state that
1G22 < cllvll2@) +C, Yo e L2(Q), (2.40)

holds with G(v)(z) = G(v(x)), € Q, where G is the affine function from
(V3). The constants ¢, C' depend only on G and the (finite) measure of €.
Now let v € K. Then ¢(v) € R follows from

()] < Jo [(v(2))ldz < Jo(12(0)] + G(jo(x)])|v(z)])de

< QO] + [G(|vDll 2 @) 0l 20y < o0,

where (V3), the Cauchy—Schwarz inequality and (2.40) have been applied.
It is clear that ¢(v) = oo if v € K so that K = dom ¢.

In order to demonstrate that ¢ is continuous on IC, we establish the stronger
result

(k20 C Ky v — v, k=00 = o(ur) = 6(v), k— o0, (2.41)

Let (vg)k>0 C K and vy, — v, k — oo. We already know that K is weakly
closed so that v € K. Again, we get the convergence vy — v, k — 00, in
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L?() from the compact embedding of H. Now (V3), the Cauchy-Schwarz
inequality and (2.40) yield

() — ()] < Jo [P(vk(2)) — P(v(2))| dz
< Jo Gllve(@)] + [o())]or(2) — v(2)] da

< NG okl + [oDll 2@ lox = vllz2(@) — 0,

since the norms |[vg||z2(q), k > 0, are uniformly bounded.

We now prove (2.39). Let vy — v, k — oo. Assume that for each ky € N,
there is an index k > kg such that v, € K. Then we can find a subsequence
(vg,)i>0 C K still converging weakly to v. Hence, v € K and (2.41) yields
d(vg) — ¢(v), k — oo. In the remaining case, vy, &€ K, Vk > ko, holds with
some fixed kg > 0. Then we clearly have liminfy ., ¢(vg) = 00 > ¢(v).
Finally, it follows from (V1), (2.39) and ¢(v) € RU{+o0}, Vv € H, together
with £ = dom ¢ # () that ¢ is convex, lower semicontinuous and proper.
This concludes the proof. O

We will only need ¢ be convex, lower semicontinuous and proper in order to
ensure existence and uniqueness of the solution of our minimization problem
(2.33). The additional results stated in Proposition 1.1 will be useful for the
analysis of the finite element discretization later on.

1.2.2 Variational Inequalities

Throughout this section, we only assume that H is a Hilbert space with
scalar product a(-,-) and that the functional ¢ : H — R U {oco} is convex,
lower semicontinuous, and proper. In particular, all results to be derived in
the sequel can be directly applied to the finite element discretization of the
minimization problem (2.33).

The epigraph epi ¢ of ¢ is defined by
epi¢ ={(v,s) € HxR | p(v) <s} C HxR. (2.42)
On the product space H x R, we introduce the canonical scalar product
(v,w) =a(v,w)+st, v=(v,s), w=(wt)eHxR,

and the corresponding norm || v | = (v,v )2
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epi ¢

dom ¢ 1 H

Figure 1.6 The epigraph epi¢

Lemma 1.2 The epigraph epi¢ is convexr and closed in H x R.

Proof. To see that epi ¢ is convex, choose w € [0, 1] and (v, s), (w,t) € epi¢.
Then

w(v,s) + (1 —w)(w,t) = (wv+ (1 —w)w,ws + (1 —w)t) € epi @,

because ¢(wv + (1 —w)w) < ws + (1 — w)t follows from the convexity of ¢.

Consider a sequence vy = (vk, sk) € epi @, k > 0, converging to v = (v, s) in
H x R. Then, we have v; — v and s — s, k — 00, so that we obtain

s= lim s > lign inf ¢p(vi) > ¢(v),

k—o0

because ¢ is lower semicontinuous. 0O

Vice versa, ¢ is convex and lower semicontinuous if epi ¢ is convex and closed
in H x R (see e.g. Aubin [4]).

Let us recall a well-known result on best approximation in Hilbert spaces.
Lemma 1.3 Let vg € H x R. Then the minimization problem

weepigp: |w—vo| <|v—wvo|, Vv€Eepigp, (2.43)
has a unique solution w. Moreover, w satisfies the variational inequality

(w—vy,w—v) <0, VYVov€epip. (2.44)
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Proof. In the first step, we show that (2.43) has a unique solution. Observe
that epi¢ # 0, because ¢ is proper. Let (wg)g>0 C epi¢ be a minimizing
sequence, i.e.

|wg —vo| — inf |v—vo]|=7>0, k— occ.
vEepi P

Inserting v = vg — w; and w = vy — wy, in the so—called median formula
2 2 2 2
lvtw |+ |v-—w|”=2]v|"+2|w]|",
and using the convexity of epi ¢, we get
| wi —wy |* < 2 w; —vo |*+2 | wi —vo | =447,
As the right-hand side tends to zero, (wg)r>o is a Cauchy sequence and
therefore convergent in H X R. The limit w* € H x R is contained in epi ¢,
because epi ¢ is closed. Hence, we have

v<wt—wvo | < Jw' —wp [+ wp —vol| =y, k= oo,

so that w = w™ is a solution of (2.43). It is straightforward to see that this
solution is unique.

Let w € (0,1] and v € epi¢. Then w+w(v —w) € epi¢ and (2.43) yields
| w—wo|* < | w+w(v—w) —vo |
= |w—vg |*+2w (w—vg, v —w) +w? | v—w|?
so that we get
(w—vo,w—v)—-% |w—v|*<o0.

Inserting w = 0, we obtain (2.44). This completes the proof. O

Note that the variational inequality (2.44) is even equivalent to the mini-
mization problem (2.43). We will present a more general result later on.

The following proposition is a key result of this section.
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Proposition 1.4 For eachvg € H x R, with vy & epi ¢, there is an element
wy € H xR and € > 0, such that

(wo,v) < (wop,vp) —¢, Vv € epig. (2.45)

Proof. Let vg € H xR, with vy € epi¢. According to Lemma 1.3, we
can find w € epi¢ satisfying the variational inequality (2.44). Denoting
wy = vy — w, we can rewrite (2.44) as

(wo,v) < (wo,w) = (wo,v0) — |w—wvo|? Vveepig.

Hence, the assertion follows with & = ||w —wvg |* > 0. D

There is also a nice geometrical interpretation of Proposition 1.4. For each
point vy in the complement of epi ¢, we can find a hyperplane

G={ve HxR | (wp,v)=c}

which separates vy from epi ¢ as illustrated in Figure 1.7.

R

epi¢

.’UO

dom ¢ 1 H

Figure 1.7 Separation of epi ¢ and wvo

The first separation theorems are due to Minkowski. The generalization
of these theorems to Banach spaces gave rise to the problem of extending
continuous linear forms which was finally settled by the celebrated Hahn—
Banach theorem.

We now state an important consequence of Proposition 1.4, namely that
the functional ¢ has an affine minorant. As we will see later, this provides
a uniform lower bound for J + ¢.
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Proposition 1.5 There are constants ag, By such that

d(v) > ap — Bollvl, Vv e H. (2.46)

Proof. Let vy € dom ¢ and sy < ¢(vg) so that vg = (vo, so) & epi¢. Accord-
ing to Proposition 1.4, we can find wy = (wp,ty) € H x R and € > 0 such
that

(wo,v) < (wop,vp) —¢, Vv € epig. (2.47)

In the first step, we show that ¢y < 0. Inserting v = (vg, ¢(v) + s) € epi ¢,
s >0, in (2.47), we obtain

sty < (¢p(vo) + so)to — & < 0.

If tg > 0, we can let s — 0o to get a contradiction, and tg = 0 would imply
¢ < 0. Hence, we have shown 5 < 0.

Of course, (2.46) is trivial for v ¢ dom ¢. For arbitrary v € dom ¢, we insert
v = (v,¢(v)) € epi¢ in (2.47) and divide by ¢y to obtain

p(v) > 5! (a(wo, vo) + soto — €) — ty ' a(wo, v).

Now the assertion follows from the Cauchy—Schwarz inequality. O

We are ready to state the main result of this section

Theorem 1.6 The minimization problem (2.33) has a unique solution u
and is equivalent to the variational inequality

ueH: alu,v—u)+¢(v) —d(u) >Ll(v—u), Yve H (2.48)

Proof. First, we show the equivalence of (2.33) and the variational inequality
(2.48). Let uw € H be a solution of the minimization problem (2.33). Then,
for arbitrary v € H, we insert u + w(v — u) with w € (0,1] in (2.33) and use
the convexity of ¢ to obtain
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0<w HJT(u+wwv—u)+du+wv—u)—T(u) — du))
<w ' (5llu 4w —w)|? = §llul®) + 6(v) = d(u) — (v —u)
=a(u,v —u) + ¢(v) — Pp(u) — (v —u) + %va — .

Now (2.48) follows as w — 0.

Let u € H be a solution of the variational inequality (2.48). Using the
estimate

0 < Za(v—u,v—u) = 1a(v,v) — a(u,v) + La(u, u),

the inequality (2.48) then leads to

J () + ¢(v) = (T () + ¢(u))
— La(v.) ~ ba(uu) + 6v) — 6(u) — (v — )
> a(u,v —u) + ¢(v) — p(u) — (v —u) >0, Yve H.

Hence, u is a solution of (2.33).

In order to prove existence and uniqueness, we start by showing that J + ¢
has a uniform lower bound. This follows immediately from the estimate
(2.46) in Proposition 1.5, giving

T () + é(v) = gllvl* = lellllv]l + a0 — Folloll, Vv € H.

As in the proof of Lemma 1.3, we now show that a minimizing sequence
(vg)k>0 of T + ¢, i.e. a sequence with the property

T (vk) + ¢(vk) — inf (T (v) +(v)) =7 > 00, k= o0,

converges to a solution of (2.33). Using the median formula

Uit Ve

lo: = vel* = 2lfoil|* + 2[lvil|* - 4ll=——

)
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it follows from straightforward computation that

tllvi —vel? = T (vi) + d(vi) — v + T (vi) + (ve) — v

+2 (7= g (24) + o))
+2 ((55) — L((v:) + dlu)) )

< J (i) + o(vi) =7+ T (k) + d(or) =7,

because 7 is the infimum of J+¢ and ¢ is convex. By construction, the right—
hand side tends to zero as i,k — oo. Hence, (vg)r>0 is a Cauchy sequence
and therefore convergent to some u* € H. To show that v = v* € H is a
solution of (2.33), observe that the lower semicontinuity of ¢ yields

7 < J () +¢(u”) < Hminf(F (ve) + ¢(vk)) =7

Assume that there is another solution u/. Then u and v must satisfy the
variational inequality (2.48). Inserting v = «’ in the inequality for u and
vice versa, we can sum up the resulting two estimates to obtain

0 <a(u,v —u)+a(u,u—u)=—|lu—u|>

This completes the proof. O

The variational inequality (2.48) is a generalization of the linear variational
problem a(u,v) = £(v), Yv € H. The inequality is the price we have to
pay for circumventing the differentiation of the non—smooth functional ¢.
A different way of obtaining a variational formulation of the minimization
problem (2.33) will be presented in the following section.

1.2.3 Subdifferentials

A bounded linear functional g on H with the property

o(v) — P(vg) > (g, v — vo), Yv € H, (2.49)

is called a subgradient of ¢ at vg € H. The subdifferential Op(vg) at vy is
the set of all subgradients of ¢ at vy. As a consequence, d¢ can be regarded

Kornhuber 31 Jan 2006 10:03



1.2 Convex Minimization 33

as a multivalued function, or briefly a multifunction, which is defined on
domd¢ = {v € H | dp(v) # 0} C H and takes values in the set of subsets
of the dual space H*. It is easy to see that dom d¢ C dom ¢.

R

epi¢

Vo

dom ¢ 1 H

Figure 1.8 Supporting hyperplanes of epi ¢ at vo

Observe that each subgradient g € d¢(vg) defines a supporting hyperplane
G = {(U,t) € HxR | - (g,’U> +t= —<9,U0> —|—¢(U0)}

to the epigraph of ¢ at vo = (vg, ¢(vg)) (see Figure 1.8). If ¢ is differentiable
at vg, then the only supporting hyperplane at vq is spanned by (¢'(vg), 1).
Hence, we have 0¢(vg) = {¢'(vo)} in this case, illustrating that the subdif-
ferential is an extension of the usual derivative.

It follows immediately from the definition (2.49) that the multifunction d¢
is monotone in the sense that

(g—g,v—20)>0, Vgedp(v), Vg € dp('),

holds for all vg,v), € domdp. As ¢ is lower semicontinuous, there is no
monotone extension of d¢, i.e.

(g—g,v—1)>0, VYgedp(v), Yve domdg,

implies v" € domd¢ and ¢’ € dp(v') (see e.g. Deimling [43]). Such multi-
functions are called mazimal monotone.

An immediate consequence of the above considerations is the following
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Proposition 1.7 The minimization problem (2.33) is equivalent to the
variational inclusion

ue H: 0¢€a(u,v)—L(v)+ 0p(u)(v), Vv e H, (2.50)
which has a unique solution u € H.

Proof. As J is differentiable on H, it is easily checked that
(T + ¢)(vg)(v) = a(vy,v) — £(v) + dp(vo)(v), Vv € H, (2.51)

holds for all vy € dom d¢. If u € H solves the minimization problem (2.33),
then we clearly have

T () + ¢(v) = (T (u) + ¢(u)) = 0, Vv € H,

so that 0 € 9(J +¢)(u) by definition. The other direction follows in a similar
way. Finally, we know from Theorem 1.6 that (2.33) is uniquely solvable so
that the same holds true for the variational inclusion (2.50). O

Observe that (2.50) contains the linear variational problem a(u,v) = £(v),
Yv € H, as a special case.

Proposition 1.7 motivates a further investigation of the subdifferential d¢.
For this reason, let us define the subdifferential O® of the scalar function ®
in the same way as above. Then it is straightforward to see that

(0@(vo), ) p2(0) C 99(vo), (2.52)

where the notation 0®(vg) = {w € L*(Q) | w(z) € ®(vo(x)) a.e. on Q}
should not lead to confusion with the scalar multifunction 9®. As a conse-
quence of (2.52), each solution of

ueH: 0€a(u,v)—L(v)+(0P(u),v)r2(), YveH, (2.53)
is a solution of the minimization problem (2.33), while the converse is not
immediately clear. The following existence result was stated by Jerome [78],
Proposition 3.2.1, p. 93, in a much more general form (see also Barbu [15]

or Brézis [34, 35]).

Proposition 1.8 The variational inclusion (2.53) has a solution.
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As a consequence of Propositions 1.7 and 1.8, the semi—discrete Stefan prob-
lem (1.22) has a unique solution which can be equivalently computed from
the minimization problem (2.33) or from the variational inequality (2.48). In
this case, the scalar function @ is a primitive of the enthalpy H, i.e. 0® = H,
having the properties (V1), (V2), and (V3)’. The same holds true for the
semi-discrete porous medium equation (1.28), because ® can be chosen such

that 0® = P and (V1), (V2), and (V3) are valid.

Let us collect some further properties of scalar subdifferentials. Due to the
conditions (V1)—(V3), we have

dom 9P = dom ¢ = K.

In fact, functions like ®(z) = z'/2, 2 > 0, are excluded by (V3). Recall that
the subdifferential OF of a convex, lower semicontinuous, and proper scalar
function F' : R — R U +00 is maximal monotone. Conversely, each scalar
maximal monotone multifunction is a subdifferential (see e.g. Barbu [15],
p. 60). In general, the subdifferential of a sum of functions is not the sum
of subdifferentials (see e.g. Deimling [43], p. 282). But assuming that F},
F5 : R — R U —+o00 are convex, lower semicontinuous, and proper functions,
which are continuous on their domain, we get

OF| + 0Fy = 3(F1 + FQ). (2.54)
The following location principle will be useful later on.

Lemma 1.9 Assume that F': R — R U 400 is convex, lower semicontinu-
ous, and proper. Let zg, z1 € R such that

20 +inf OF (29) <0 if zo € domOF, zp <infdomdF else,

0 <z +supdF(z1) if z1 € domIF, 2z >supdomOF else.

Then there is a unique £ € dom OF, such that zg < < z1 and 0 € E+0F(§).

Proof. Using scalar versions of Theorem 1.6 and Proposition 1.7, the exis-
tence of a solution & € dom JF with 0 € £ + 0F (&) is immediately clear.

If zg, 21 € dom OF, then zy < & < z; follows from the monotonicity of OF.

If dom OF is bounded from above, i.e. if we have sup dom dF = Z < oo, then
lim,_zsup OF(z) = co. Otherwise, there would be a monotone extension of
OF. Similarly, we get lim,_,, inf 0F (2) = —oo, if infdomdF = z > —oc.
Using these observations, the remaining cases can be treated as above. O
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1.3 Finite Element Discretization

We present a finite element discretization of the continuous minimization
problem (2.33) introduced in Section 1.2.1. The solution space H is replaced
by the discrete space of piecewise linear finite elements and the functional ¢
is approximated by a quadrature formula in order to separate the unknowns.
The existence and uniqueness of discrete solutions follows from the gener-
al results in Section 1.2.2. Adapting the techniques presented by Glowinski
[61] to the actual situation, we prove convergence in H. Error estimates are
available for various special cases. For an extensive overview of the obstacle
problem, we refer to Ciarlet [39], Section 23. Finite elements of higher or-
der are also considered there. Error estimates for the semi—discrete Stefan
problem are given by Elliott [50].

1.3.1 The Discrete Problem

Let 7; be a given partition of €2 in triangles ¢ € 7; with minimal diameter
of order O(277). The sets of interior vertices and edges of 7; are called N
and &, respectively. We assume that each triangulation 7; is regular in the
sense that the intersection of two triangles ¢, t' € 7; consists of a common
edge, a common vertex or is empty. A forbidden situation is illustrated in
Figure 1.9

Figure 1.9 Forbidden irregular vertex

The finite element space §; C H consists of all continuous functions v € H
which are linear on each triangle ¢t € 7;. §; is spanned by the nodal basis

A=Y pe ;).

whose elements /\éj) € §; are characterized by AI(,j)(q) = 0pq> VD, q € Nj,
(Kronecker delta).
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We approximate the integral occurring in the definition of the functional ¢
in (2.37) by the quadrature formula resulting from the S;-interpolation of
the integrand ®(v) to obtain the discrete functional ¢; : S; — R U {+00},

¢j(v) = D ®(v(p)) hy, (3.55)

peEN;

with weights h,, defined by

h:/w de.
P Qp(x)x

Observe that the domain of ¢; is given by the non-empty, closed and convex
set ,Cj C Sj,

Kj={veS;|vip) €K, VpeN;}, (3.56)

and that ¢; is continuous on ;.

Replacing the infinite-dimensional space H by S; and the functional ¢ by
¢j, we end up with the discrete minimization problem

uj €S0 J(uy) + ¢i(uy) < T () + ¢(v), VveS;. (3.57)

Let us consider the existence and uniqueness of a discrete solution u; of
(3.57). It is easily seen that the discrete functional ¢; is still convex, lower
semicontinuous and proper. In the light of Section 1.2.2, we get the following
discrete analogue of Theorem 1.6.

Theorem 1.10 The discrete minimization problem (3.57) is equivalent to
the discrete variational inequality

uj €S aluj,v—1uj) + ¢j(v) — ¢i(uj) > (v —u;), Yo € S; (3.58)

and has a unique solution u; € S;.
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As in the continuous case, we can rewrite (3.58) as a discrete variational
inclusion

uj €S 0€aluj,v) —L(v)+ 0pj(uj)(v), YveS;. (3.59)

However, we now have dom d¢; = dom ¢; together with the representation
formula

90j(vo)(v) = D 0®(vo(p))v(p) hp, — YW ES;, (3.60)
PEN;

which holds for all vy € dom 0¢;.

1.3.2 Convergence Results

Let 7y, 71,...,7; be a sequence of triangulations with decreasing mesh size

hj = max diam ¢t — 0, j — oo.
te7;

In addition, we assume that the sequence (7;);j>o is shape regular in the
sense that the minimal interior angle of all occurring triangles is uniformly
bounded from below.

The consistency of the discrete functionals ¢;, j > 0, is the subject of the
next lemma. A variant of the density result is given by Glowinski [61], p. 36.

Lemma 1.11 The subset C§°(Q2) N K is dense in K.
Let v € C§°(2) and define v; = Is;v € S; by piecewise linear interpolation.
Then

vi—v and @j(v;) — o(v), J— 0. (3.61)

Proof. We first show that C§°(©2) N K is dense in K. Let v € K C H. By
definition of H = H} (), v is the limit of a sequence (vg)k>0 C C§O(£2), but it
is not self-evident that we can also ensure vy € K, Vk > 0. The construction
of such a sequence can be carried out as follows. Let ¢ € C§°(R?) be a

Kornhuber 31 Jan 2006 10:03



1.3 Finite Element Discretization 39

mollifier, i.e. p(z) > 0, [p2 ¢(x)dz =1, and supp ¢ C {z € R? | |z] < 1}.
Then we extend v by zero to v € H'(R?), choose ¢ > 0, and define

-8

3

we(z) =2 / , v(€)e( ) d€, Vr € R2,

It is well-known (cf. e.g. Adams [1], p. 29) that w. € C§°(R?) and w. — v
as € — 0. Moreover, it is straightforward to see that

inf K < inf v(¢) < w.(z) <supv(€) <supK, VzeR?
£eq £eq

and supp w. C Q. = {r € R? | dist(z,) < &}.
In the next step, we introduce v. € C§°(2) N K by

ve(x) = we(T2(x)), Vz € Q,

using an infinitely derivable transformation 7. : Q — R? with Q. C 7.(Q),
T.(z) = x if dist(z, 0) > e, and

0<c<|Tz)|<C <00, Ve, >0.

Such a transformation can be easily constructed in the one-dimensional case
and is then extended to Q C R?, taking into account that €2 has a polygonal
boundary. It follows from the properties of T, that w. —v. — 0 as ¢ — 0,

giving Cg°(Q) N K = K.

From now on, let v € C§°(2) and v; = Is;v, j > 0. It is well-known that
vj — v, j — oo (see e.g. Ciarlet [39]). Note that the shape regularity of
(7;);j>0 comes in here.

We show that ¢;j(v;) — ¢(v), j — oo. Assume first that ¢(v) = oco. Then
we can find an open subset Q' C Q with v(z) ¢ K, z € . As h; — 0, it
is clear that A; N €Y # () holds for all j > jo with a suitable jo > 0. Hence,
In the remaining case, we have ¢(v) < oo or, equivalently, v € K. As v
has compact support in Q with values in K and & is continuous on K, the
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composition ®(v(-)) is uniformly continuous on Q. Let py, p2, p3 € N denote
the vertices of t € 7;. Then

3
6) =o)<Y [ (Z A @)@ (v() - @(v(m))\) d

teT; i=1

=1 o ~ 0 |
- Hxéeg{ﬂlﬁz{ﬂﬁha}‘ (v() (@) =0, j—oo

0

In addition to Lemma 1.11, we will need the following stability results.
Lemma 1.12 There are constants o, By such that

¢j(vj) > ag — Bollvsll, Yvj €85, Vji>0. (3.62)
Letv; € S5, V5 >0, and v € H. Then

vj =v, j—oo = liminfg;(vj) > ¢(v). (3.63)
j—00

Proof. The convexity of the scalar function ® implies
¢j(vj) = ¢(vj),  Vuj €Sj, Vj=0. (3.64)

Now the assertions are an immediate consequence of Propositions 1.1
and 1.5. O

We are ready to state the main result of this section.

Theorem 1.13 The solutions u; of the discrete minimization problem
(8.57) converge to the solution u of (2.33) in the sense that

uj —u and ¢;j(uj) — ¢(u), Jj — oo. (3.65)
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Proof. The proof is carried out in three steps.

First, we will show that (u;);>0 is bounded. Let v € C§°(2) N K and define
vj = Is;v € Sj, j > 0, by interpolation. Since u; satisfies the variational
inequality (3.58), we have

luj|1* = aluj,ui) < alug,v;) + ¢ (v;) — dj(uy) — £(v; — uy).

We get uniform upper bounds for ||v;|| and |¢;(v;)| from Lemma 1.11 and
have the uniform lower estimate (3.62) for ¢;(u;). This leads to

Jujl? < alug, vy) + ¢5(v5) — ¢ (uz) — £(v; — uy)
< lugllllojll + 165 ()| + laol + [Bolllwsll + 1€l (lvs ] + [lus )
< ¢lu;|l + C.

As a consequence, (u;);>0 must be bounded.

In the next step, we show the weak convergence u; — u, j — oo, in H.
As (u;)j>0 is bounded, there is a subsequence (uj, )r>0 and u* € H, such

that u;, — u*, k — oo, in H. In order to prove u* = u, we show that
*

u* is a solution of the variational inequality (2.48). Let v € C§°(©2) and
vj = Is;v € §j, V5 > 0. Inserting v; in the discrete variational inequality
(3.58), we obtain

a(uj, ,uj, ) + 05, (uj,) < aluj,,v5,) + ¢4, (v5,.) — £(vj, —uj,).
The consistency (3.61) of ¢; and the weak convergence of uj, imply
lilgr_l)gf(a(un,ujk) + ¢, (uj,.)) < a(u*,v) + ¢(v) — (v —u*). (3.66)
Utilizing
0 < a(uj, —u*,uj;, —u*) = alu*,u") — 2a(uj,, u*) + a(uj,, u;,)

and the weak convergence of u;, , we deduce

a(u*,u") <liminf a(uj, , u;, ).
k—oo
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In connection with Lemma 1.12, this leads to

a(u”, u”) + ¢(u”) < liminf (a(uj,, uj,) + &5 () (3.67)
Combining the estimates (3.66) and (3.67), we have shown

a(u* ;v —u*) + ¢(v) — p(u*) > (v —u*), Yve CFR). (3.68)

We will use a density argument to extend (3.68) to all v € H. Assume that
we can find a v € H such that (3.68) is wrong. Then we get ¢(v) < oo,
because ¢(u*) < oo is clear from (3.68). Hence, v € K. According to Lemma
1.11, there is a sequence (vg)r>0 C C§°(2) N K converging to v. As ¢ is
continuous on K (cf. Proposition 1.1), we also have ¢(vi) — ¢(v), k — oo.
Now the contradiction follows in the usual way. Hence, u* = u is the unique
solution of the variational inequality (2.48) and we obtain u; — u, j — oo.

Finally, we will prove the strong convergence of (u;);>o. Again, consider
some fixed v € C§°(2) and let v; = Is;v € Sj, Vj > 0. Using the discrete
variational inequality (3.58), we compute

lw = wjl|? 4+ bj(uy) < alu,u) — 2a(u, uj) + aluj, u;) + ¢;(u;)
(3.69)
< a(u,u) — 2a(u, uj) + aluj,v;) + ¢j(v;) — £(v; — uj ).

The right-hand side of (3.69) converges to a(u,v — u) + ¢(v) — £(v — u) as
j — o0. Hence, we obtain

liminf ¢;(u;) < liminf <||u —uj|* + ¢](u]))
0 j—00

]—)

< limsup (Hu —uj® + ¢j(u]~)) (3.70)
j—oo

<a(u,v —u) + ¢(v) — (v —u), Yve 5 N).

We apply the same density argument as above to extend (3.70) to all v € H.
Inserting v = w in (3.70) and using (3.63), we get

$(u) < liminf ¢ (u;) < limsup ([lu— u;| + é5(u)) < 6(u).

Jj—00 j—00

This provides the convergence results (3.65). O
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Error estimates are known for various special cases. For obstacle problems,
we get ||lu—u;| = O(h;), if the data are sufficiently regular. Even for smooth
data, the regularity of the solution is limited by u € W*P(Q), s < 2+ 1/p,
1 < p < 00, so that piecewise quadratic finite elements only give O(h?/ 275),
e > 0, (cf. Brezzi, Hager and Raviart [36]). Optimal error estimates for the
spatial problems arising from a time-discretized Stefan problem were given
by Elliott [50].

The following chapters will be devoted to the fast solution of the discrete
problem (3.57) and to the construction of a suitable triangulation. It will
turn out that both problems are closely related.
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In the previous chapter, we analyzed the convex minimization problem
(1.2.33) and derived a convergent finite element approximation. Basic as-
sumptions and notations are stated in Sections 1.2.1 and 1.3.1. Now we will
focus on the iterative solution of the resulting discrete minimization prob-
lem (1.3.57). Throughout the remainder of this work, we assume that the
scalar function ® generating the functional ¢; is piecewise quadratic, i.e.
we require the sharper condition (V3)’ in Section 1.2.1, p. 23, instead of
(V3). This is not essential for the basic convergence results to be presented
in this chapter, but it will simplify the construction of monotone multigrid
methods later on.

Relaxation methods of nonlinear Gaufi—Seidel type have been well under-
stood since the early eighties (see e.g. Glowinski [61]). In particular, it is
well-known that such single grid relaxations are globally convergent for the
class of problems under consideration.

In the framework of successive subspace correction methods (cf. Xu [122]),
Gaufi-Seidel relaxations are generated by the direct splitting of the un-
derlying finite element space S; in the one-dimensional subspaces spanned

by the high—frequency nodal basis functions )\g ) ¢ A;. This explains their
unsatisfactory convergence rates caused by a bad representation of the low—
frequency contributions of the error. Fast solvers, such as multigrid methods,
can be derived by extending the splitting induced by A; by additional sub-
spaces spanned by suitable functions with large support.

In the case of linear selfadjoint elliptic problems, this point of view led to a
new type of convergence proofs for multigrid methods. For an introduction
to this field, we refer to the basic surveys of Bramble [31], Xu [122] and
Yserentant [126]. See also the monographs of Griebel [63] and Oswald [104]
in this series.

Here, the above reasoning motivates the introduction of extended relaxation
methods (cf. Kornhuber [82, 83]) for the iterative solution of (1.3.57). Ex-
tended relaxation methods can be regarded as special variants of nonlinear
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successive subspace correction methods or multilevel projection schemes (cf.
McCormick [95]).

It will turn out that only approximate versions can be implemented with op-
timal numerical complexity. The global convergence of extended relaxations
is preserved by local monotone approrimations, as introduced in Section
2.2. In the final section of this chapter, we will give sufficient criteria for the
asymptotic invariance of the discrete phases and we will show that quasiopti-
mal monotone approximations asymptotically provide the same convergence
rates as the original scheme.

2.1 Basic Convergence Results

The basic idea of relaxation methods is to decompose the global minimiza-
tion problem (1.3.57) in a number of local subproblems. The convergence
speed of the resulting iterative scheme depends heavily on the choice of the
underlying decomposition of S;. After a brief introduction to well-known
convergence results on single grid relaxations of Gaufl—Seidel type, we will
introduce extended relaxation methods. Such schemes preserve the global
convergence and on the other hand give much more flexibility in the choice
of the decomposition of S;.

2.1.1 Gauf3—Seidel Relaxation

The (nonlinear) Gaufi—Seidel relazation method results from the successive

optimization of the energy functional J + ¢; in the direction of )\I(f ) e A;.
Recall that

Aj = AW AW

S N

is the nodal basis of the finite element space S;. Observe that the nodal

basis functions )\I(,j ), p € Nj, are high-frequency functions.

To give a precise formulation, we introduce the splitting

nj
S;=>_Vi, Vi=span{AP)}, (1.1)
=1
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A

b

Figure 2.1 High—frequency nodal basis function )\g) €A

of §; in the one-dimensional subspaces V; C §;. Then, starting with a given
iterate wy = uj € Sj, v > 0, we compute a sequence of intermediate iterates
wy from the n; local subproblems

oy €Vie J(wiy +17) + (w4 +77)

(1.2)
< J(wy 4y +v)+ ¢j(w;_; +v), YveV,
setting wy = w;_; + 9/, 1 =1,...,n;. Finally, the next iterate u;+1 is given
by
n;
u;{+1 = M;(uj) = wy,, = uj + Zz‘;l" (1.3)
=1

Note that the possible acceleration of the convergence speed by multiplying
the corrections with additional relaxation factors is not considered here. For
notational convenience, the index v will frequently be skipped in the sequel.

In the light of Theorem 1.6, each of the local subproblems (1.2) is uniquely
solvable and can be equivalently rewritten as the variational inequality

eV alv,v—1)+ ¢j(w-_1+v)— ¢j(w_1 + 1)

1.4)
> v —1) —alw_1,v—1), YveV.
By construction, we have monotonically decreasing energy,
T (wi) + ¢j(w) < T (wi—1) + 5(wi—1),  1=1,...,ny, (1.5)
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and the uniqueness of the correction v; implies that equality holds if and
only if w; = w;_1. This leads to

T (Mj(w)) + ¢j(Mj(w)) = T (w) + ¢j(w) & Mj(w)=w. (1.6)

Observe that for arbitrary initial iterate u? € §; the first iterate ujl has finite
energy or, equivalently,

/\/lj(w) S ’C]’ = dom ®j, Yw € Sj. (1.7)
We will see later on that the iteration operator M; is continuous, i.e.
wy —w = M;(wg) = M;(w), k— oo, (1.8)

holds for every convergent sequence (wy)g>0 C Sj.

Now we are ready to prove the global convergence of the Gaufl—Seidel relax-
ation.

Theorem 2.1 For any initial iterate u? € §j, the sequence of iterates
(u7)v>0 provided by the Gaufi-Seidel relazation method (1.3) converges to
the solution u; of the discrete problem (1.8.57).

Proof. The proof is divided into three steps. In the beginning, we show the

sequence of iterates (uj),>o is bounded. As ¢; has an affine minorant (cf.

Lemma 1.12), we have
T )+ ¢3(v) = glvl* = cllo] - C, Vv eS;, (1.9)

so that v — oo implies J (v) +@;(v) — oo. Hence, (u}), >0 must be bounded,
because

T (W) + ¢(uf) < T (uj) + dj(uj) < oo, Vv>1.

Let (u}*)r>0 be an arbitrary, convergent subsequence of (u}),>o,

u —ut €S, k— oo

Such a subsequence exists, because (uj),>o is bounded and S; has finite
dimension. Moreover, we have u* € K;, because u]'/k € K;, Vk > 1, and K;
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is a closed subset of &;. We now prove that u* must be a fixed point of
M. For notational convenience, we use the abbreviation J = J + ¢;. The
monotonicity (1.5) implies

Tty = j(./\/(j(u;"“)) < j(u;jk), Yk > 0.

J

From (1.5), we also have

T (@) < J(*), vk =0

By virtue of the continuity of M; and the continuity of J on K;, this leads
to

T (M;(u)) = T (u"), (1.10)

and we conclude from (1.6) that M, (u*) = u*.

In the final step, we show that u; is the only fixed point of M. Let M, (u*) =
u*. Then it is sufficient to prove

a(u*,v; —u*) + ¢(vj) — ¢j(u*) > L(v; —u*), Yov; €Sj, (1.11)

because we know from Theorem 1.10 that u; is the unique solution of this
variational inequality. Exploiting the special structure of the functional ¢;,

n
¢j(v) = Z q)(v(pl)) hp,, Vv e Sj?
=1
each of the local variational inequalities (1.4) takes the form
a(vy,v = vp) + (w1 (pr) + v(pe)hp, = (wia (pr) + 0 (1)) hp,

>l(v—1) —alw_1,v—1), YveEW.

As v* is a fixed point of M, all local corrections ¥; of u* must be zero so
that

a(u* ) + D (pr) + () o, — B(u” (p1)) o, > £(0) (1.12)
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holds for allv € V; and [ = 1,...,n;. Now consider some arbitrary but fixed
v; € §;. Inserting the interpolation

v =Ty (v; —u") = (v;(p0) — () AY) € Vi

in (1.12), we obtain
a(u®, Iy, (v; — u®)) + @ (vj(p)) hp, — @(u* (1) Ry, > Iy, (v — u™))

for [ =1,...,n;. Adding up all these local inequalities we get (1.11). This
proves u* = u;.

We have shown that each convergent subsequence of (u]”) »>0 converges to u;.
Hence, the whole sequence must converge to u;. This completes the proof.
0

Observe that the proof makes strong use of the fact that the unknowns are
decoupled with respect to ¢;. In fact, there are simple counterexamples (see
e.g. Glowinski [61]) showing that this decoupling is necessary for the global
convergence of relaxation methods of Gau3—Seidel type.

Up till now, we have not made use of condition (V3)’ from Section 1.2.1,
p. 23, stating that the functional ¢; is piecewise quadratic. Now we will
exploit this property in order to derive an explicit formula for the corrections
v;. In the light of Proposition 1.7, each of the local minimization problems
(1.2) is equivalent to the variational inclusion

eV 0€a(v,v)— (W) —a(w_1,v))

(1.13)
+0¢j(wi—1 +v;)(v), YveV.

It is clear that v, € V} = span{AI(,{)} can be written as
U = zl)\;()]l)

introducing the unknown correction factor z; € R. Hence, (1.13) can be
reformulated as the scalar inclusion

ZeR: O0€ayz—r + 6(1)1(21), (1.14)
where we have used the definitions

ay = a(AP AP, = E(AI(,{)) — a(w_1, AQ)) (1.15)

PPl p1
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and the multifunction ®; is the subdifferential of the scalar convex function
O(2) = dj(wi—1 + 225, Vz € R. (1.16)
Observe that the subdifferential 0®; is given by
0P;(z) = 0®(wi—1(p1) + 2) hp,, Yz € dom0P;. (1.17)
As @ is piecewise quadratic according to condition (V3)’, p. 23, we have
O(:) = 3bi — frb e Bi<z<p i=0...N,
on a partition
infK =0 <60, <...<0ny <0Ony1=supK

of the interval K (cf. condition (V2), p. 23). Hence, the subdifferential 0®
takes the form

B biz—fi if 0i<z<0i+1,i:0,...,N
8<I>(z)_{[5 5] if z2=0;, i=1,...,N’

1%

(1.18)

where we used the abbreviations
s; =bi_10; — fii1 < b, — f;=s, i=1,...,N.

Note that the interval [s; ,s;] represents the jump of the derivative ® at

i 0%
the transition point ¢;. We introduce the partition

Oy <OF < ... <97 <O <. <y <96 (1.19)

of the real axis R. With the exception of ¥, = —oo and 19} 41 = +0oo, the
grid points ¥;, 19;" are given by
¥, = ap,0; +s; 19;' :apl9¢+sz+, 1=0,...,N+1,

7

where we have set ap, = aj;/hp,. Once we have determined an interval of the
partition (1.19) containing the modified residual r,, = (r;+aygwi—1(p1))/hyp,,
the solution z; of (1.14) is obtained from

0s, i Ty, < 19?

z = —wi-1(p) + 192; = P (1.20)
(Tpl + fi)/(apl + bi)v 0@' < Tpy < 79@'-1—1

Observe that the right-hand side of (1.20) is a continuous function of w;_j.
This proves the continuity (1.8) of M;.
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2.1.2 Extended Relaxation Methods

Though the Gau3—Seidel relaxation method is globally convergent, it usu-
ally provides unsatisfactory convergence rates for decreasing meshsize. To
improve the speed of convergence, we now extend the set A; by additional
search directions.

Let (M"),>0 be a given sequence of ordered subsets M" = (uY, ..., k) of
Sj, Vv > 0. We assume that the leading elements of M" are the nodal basis
functions,

(M1) MV:(Aé{),,,.,)\éj,gj,uzjﬂ,...,ufny), Vv > 0.

The elements of the extension M} = (/‘Zﬁ—l’ ..., pp,») are intended to play
the role of coarse grid functions with large support, in contrast to the fine
grid functions contained in A;. Note that the case pf = pjj, I # U, is not
excluded so that the same function may appear several times in each subset
MY.

Figure 2.2 Low—frequency function u; € M"

The extended relazation method induced by (M"),>o results from the suc-
cessive minimization of the energy J + ¢; in the direction of p; € M" for
v=20,1,....

In order to describe one iteration step in detail, we assume that u is given

for some fixed v > 0. Then M"Y gives rise to the splitting

mY

8§ =YV, VY =span{uf}. (1.21)
=1
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of §; in one-dimensional subspaces V" C §;. Starting with wg = u,

compute a sequence of intermediate iterates w; from the m” local subprob-
lems

we

o € V¥ J(wyy + 1)) + di(wiy + 7))

(1.22)
< j(w;/—l + 1)) + (bj(w;/—l + U)v Vv eV,
setting wy = wy_; + v}, l =1,...,m”. Then the next iterate is given by
ml/
v+1 v v —U
uj+ = W = uj + Zvl . (1.23)

=1

To simplify the notation, the index v will frequently be suppressed.

Extended relaxation methods can be equivalently characterized as a special
type of nonlinear successive subspace correction method generated by one—
dimensional splittings of the form (1.21). Observe that M? may change in
each iteration step, so that (1.21) can be iteratively adapted to the discrete
phases of the finite element approximation wu;.

The local corrections 7; in direction of AI(,{) € Aj and py € M, are called fine
grid corrections and coarse grid corrections, respectively. Observe that the
leading fine grid corrections correspond to a Gaufi—Seidel relaxation step.

The resulting intermediate iterate is called smoothed iterate uj = wy, . We

have seen above that j(ﬂ?) + qﬁj(ﬂ?) < 00, Vu? € §;. This leads to
0 €domej(wy+-), Yi>n; Yv>0, (1.24)

so that the translated functional ¢;(w;_ ; + ) : V; = RU {400} is convex,
lower semicontinuous, and proper for all l = 1,...,m" and all v > 0. Now it
follows in the usual way that each of the local subproblems (1.22) is uniquely
solvable.

By construction, the extended relaxation is locally monotone in the sense
that

j(wl)—i—qﬁj(wl) < j(wlfl) —i—(ﬁj(wl,l), | = 1,...,m”. (1.25)

1%
ja
, of an

We now introduce a damped version of (1.23). For a given iterate wy = u
v > 0, the intermediate iterates w; = w; | +v/, Il = 1,...,m"

Kornhuber 31 Jan 2006 10:03



2.1 Basic Convergence Results 53

extended underrelazation induced by (M"),>o result from the exact fine grid
corrections

v =17, l=1,...,n4, (1.26)
and from the damped coarse grid corrections
v =wjv), wy €[0,1], l=n;+1,...,m". (1.27)

Each of the optimal corrections v} is computed from (1.22). The next iterate

uj” +1 of the extended underrelaxation is given by

wtt =, = uf + va (1.28)

Again, we will mostly skip the index v.

The leading fine grid corrections are evaluated exactly. In particular, we still
have dom ¢;(w;—1 + -) # 0 so that the local corrections v; are well-defined.

Due to the convexity of J + ¢;, the monotonicity (1.25) is preserved by the
damping (1.27). As a consequence, the global convergence is inherited from
the nonlinear Gau3—Seidel scheme.

Theorem 2.2 For any initial iterate u? € §; and any sequence of damping
parameters (wy')y>0 occurring in (1.27), the sequence of iterates (uj),>o
produced by the extended underrelazation (1.28) converges to the solution
uj € S; of the finite element discretization (1.3.57).

Proof. We proceed in the same way as in the convergence proof for the Gaufl—
Seidel relaxation. Again, we use the abbreviation J = J + ¢,. Exploiting

J(u) < j(ﬂ?) < oo, Yv>1,

together with (1.9), we conclude that (u}),>o is bounded.

Hence, we can find a convergent subsequence (ug’“)kzo

u —u* €K, k— oo,
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Vi

Here, we used that (uj Jk>1 C K and that £; is closed. In the next step, we
show that u* is a fixed point of M. In fact, each step of an extended under-
relaxation starts with a single grid relaxation, so that the local monotonicity
(1.25) implies

T W) < Tt < F(M; ) < T (), vk >0,

J

and the continuity of M, together with the continuity of J on K; yield
T (M;(u")) = T (u"). (1.29)

Using (1.6), we deduce M;(u*) = u*.

We already know that w; is the only fixed point of M; (cf. Theorem 2.1)
so that u* = u;. As (U]yk)kzo was an arbitrary convergent subsequence, the
whole sequence of iterates must converge to u;. This completes the proof. O

Later on, we will also need the convergence of the intermediate iterates wy.

Corollary 2.3 For any initial iterate u? € S; and any sequence of damping
parameters (w}'),>0 occurring in (1.27), the sequence of intermediate iterates
(w})u>0 produced by the extended underrelazation (1.28) converges to the
solution u; € S; of the finite element discretization (1.3.57).

Proof. Assume that there is a subsequence wy = wa’ Vk > 0, which is not
converging to u;. Then we first conclude as above that (wy,)r>0 is bounded.
Therefore, we can find a further subsequence, still denoted by (wy,)x>0, which
is converging to some w* € §;. We can additionally assume that

T (") < J(wg) < T (uf*),  Vk =0, (1.30)

because the wy are intermediate iterates. We clearly have u;/'“ sw, € Ky, Vk >
1, and J is continuous on K;. Hence, (1.30) implies that J(w*) = J (u;).
As u; is the unique solution of the minimization problem (1.3.57), we get

w* = u;. This completes the proof. [

Extended underrelaxations provide a general framework for the acceleration
of convergent single grid relaxations by additional (coarse grid) corrections.
The essential point is that the additional corrections must not increase the
energy. As the convergence of nonlinear GaufB—Seidel relaxations is not re-
stricted to the special situation considered here, Theorem 2.2 is open to
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various generalizations. For example, only the explicit formula (1.20) for
the fine grid correction factors requires that the scalar function ® (generat-
ing ¢; by (1.3.64)) is piecewise quadratic. Moreover, ® can be replaced by
a family of different functions ®,, Vp € N;. Piecewise linear finite elements
are also not essential. We will consider piecewise quadratic approximations
in connection with a posteriori error estimates later on.

2.2 Monotone Approximations

While the leading fine grid corrections are given explicitly, the exact evalu-
ation of the coarse grid corrections turns out to be too expensive in prac-
tical calculations. On the other hand, a suitable approximation of the local
subproblems (1.22) should preserve the global convergence of the original
extended relaxation method. In this section, we will introduce monotone
approximations which have this property. The key observation is that mono-
tone approximations provide an (implicit) damping of the exact coarse grid
corrections.

Let w;—1 € S, 1 > nj, be an intermediate iterate. Using the same arguments
as in Section 2.1.1, we can compute the next coarse grid correction

v =z €V
from the scalar inclusion

ZeER: 0€ayz —r+0¥(z). (2.31)
Here, we have generalized the definition (1.15) of a; and r; according to

ay = a(p, ), = L(4u) — alw—1, W), (2.32)
and ®; is now defined by

Qi(2) = pj(wi—1 + z), Vz e R. (2.33)

Recall that w;_; has finite energy or, equivalently, 0 € dom ¢;(w;—1 +-) (see
(1.7)). Hence, @, is convex, lower semicontinuous, and proper so that the
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subdifferential 0®; is maximal monotone. Using the representation (1.3.55)
of ¢;, we obtain

O(2) = Y P(wi1(p) + zu(p)) hp, V2 €R. (2.34)
PEN;

As @ is continuous on dom ® = K, the subdifferential of the sum can be
taken elementwise (see (1.2.54)). Hence, we can write 0®; in the form

0P(z) = Z pi(p) 0P (wi—1(p) + zpi(p)) hp, Vz € dom0P;. (2.35)
PEN;

In principle, we can evaluate the solution of the scalar inclusion (2.31) in
a similar way as in Section 2.1.1. However, the situation now is more com-
plicated. The main reason is that the number of transition points of 0®; is
no longer fixed, but grows with the number of nodes which are contained in
the support of ;. Recall that supp u; is assumed to be large for p; € M..

This motivates the approximation of the subdifferential 0®] occurring in
(2.31) by a suitable maximal monotone multifunction 0W¥}. Recall that a
maximal monotone multifunction 0¥} is always the subdifferential of a con-
vex, lower semicontinuous, and proper functional ¥} : R — R U {4o00}. As
usual, we will mostly skip the index v.

Definition 2.4 A scalar mazimal monotone multifunction OV, is called a
monotone approximation of d®;, if

0 € dom 0¥; C dom 09, (2.36)
and if the following estimates hold for all z € dom 0¥y,

sup OV (z) > sup 0Pi(z), =z>0,
(2.37)
inf 0V (z) <inf 0P;(z), =z<0.

In particular, we have 0®;(0) C 9¥;(0). Note that the above conditions are
trivially satisfied for 0U; = 0V, given by 0¥+ (0) = R on dom 0¥, = {0}.

The approximation 0¥; of 9P, gives rise to the approximate subproblem

z1€R: 0€auzy—r+ 8\111(2’1). (2.38)
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3\111(2) 8@1(2)

Figure 2.3 Monotone approximation 0¥,

It is clear from the assumptions on O¥; that (2.38) admits a unique solution
z; € dom 9¥,;. The resulting approximate coarse grid correction is given by

v =z € Vi

We are now going to clarify how the monotone approximation of d®; affects
the exact local corrections 7.

Proposition 2.5 Assume that 0V, is a monotone approximation of 0.
Then the corrections v; and vy, computed from (2.31) and (2.38) respectively
are related by

v =W, wp € [0, 1]. (2.39)

Proof. Assume that the solution z; of (2.31) is non—negative. Then we set
20 =0, 21 = z;, and F(z) = (V;—r;)/ay in order to apply Lemma 1.9. Using
these definitions together with (2.36) and (2.37), we obtain 0 < z; = ¢ < Z.
The remaining case can be treated in a symmetrical way. 0O

Proposition 2.5 gives rise to the following definition.
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3@1(2) 8@1(2)

/

Zl Zl z

Ty —anz

Figure 2.4 Implicit local damping

Definition 2.6 Let (0¥]),>0 be a sequence of monotone approzimations,
where we have formally set

ov; = 097, l=1,...,n;, VYv>0.

Then, for given u? € S, the extended underrelaxation induced by (M"),>¢
and the monotone approximations (0V}),>o provides the iterates

mY

v+l _ v v
u; —uj—{—Zvl, Vv >0,
=1

where the local corrections vy are computed from the (approximate) local
problems (2.38).

As a consequence of Proposition 2.5, we can apply Theorem 2.2 to show that
the approximate iterative scheme introduced in Definition 2.6 is globally
convergent. Corollary 2.3 implies that the sequence of intermediate iterates
also converges to u;. Note that the (local) relaxation parameters w; are only
used in the analysis and do not appear in actual computations.

Though the original extended relaxation method and the approximate ver-
sion are both globally convergent, the convergence rates of the approximate
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version may be considerably worse. In particular, we have to exclude the
trivial monotone approximation 0V ., which brings back the simple Gauf3—
Seidel relaxation. In the next section, we will give sufficient criteria providing
the same asymptotic convergence behavior of the monotone approximation
and of the original scheme.

2.3 Asymptotic Properties: The Linear Reduced
Problem

The discrete phases ./\/jz(v) C N of some fixed v € S; are given by

./\/;(v) ={peN;|v(p) € (0:;,0i11)}, 1=0,...,N, (3.40)
and we define N7 (v) = N ./\/']Z(v) In the remaining critical nodes N7 (v),
N3 () = NG\ NS (0), (3.41)
the values of v are taken from the set {0y, 61,...,0n,0N11} of transition
points.
0P (2)

/ 92 U(p) 9i+1 z

Figure 2.5 Discrete phases: p € N} (v)

In the case of a discrete obstacle problem, J\/j‘(v) is equal to the discrete
coincidence set v. For discrete versions of the semi—discrete Stefan problem
(1.1.22), we have a discrete ice and a discrete water phase. The critical set
N7 (v) then consists of all nodes p where v(p) = 0.
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In this section, we will first prove the convergence of the discrete phases
of the (intermediate) iterates produced by extended underrelaxations. This
will allow us to clarify further the asymptotic behavior of extended under-
relaxations induced by monotone approximations (cf. Definitions 2.4, 2.6).

In advance, let us state some further conditions on the sequence (M"),>
of search directions. We will require that (M"),>¢ is positive and bounded
in the sense that there are constants ¢, C', not depending on v, such that

(M2) 0<c<pf(p) <C, Vpe intsupp pf NN;, Yuy € MY, Vv > 0.

Note that (M2) may be regarded as a stability condition on (M"),>q. Some
sort of consistency is expressed by the condition that there is a sequence
M* = (u3,..., u5+), not depending on v, such that

(M3) J\/]'(ﬂ]”) = /\/j'(uj) = MY=M*

holds for all ¥ > 0. Recall that the smoothed iterate ﬂ;’ results from the
leading Gaufi—Seidel relaxation step applied to uj.

The discrete problem (1.3.57) is called non-degenerate, if

p €N (uy) = EAY)) —a(u;, AY)) € int 0 (u;)(AD). (3.42)
This condition describes the stability of the critical nodes J\/j‘(uj) with re-
spect to small perturbations of u;. In the continuous case, related conditions
are frequently used in the analysis of the regularity of the free boundary.

Proposition 2.7 Assume that the discrete problem (1.3.57) is non—dege-
nerate and that (M"),>o satisfies the conditions (M1), cf. p. 51, and (M2).
Then the phases of the intermediate iterates (wy),>o resulting from the ea-
tended underrelazation (1.28) induced by (M"),>o converge to the phases of
uj € S; in the sense that

Ni(wy) = Ni(uy),  Vi=0,...,N,

(3.43)
wy' (p) = u;(p), Vp € N} (uj),

holds for all 1 =1,...,m" and all v > vy with a suitable vy > 0.
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Proof. The convergence of the intermediate iterates (wj),>o follows from
Corollary 2.3. This implies that there is a v; > 0 with the property

Nj(u;) C Nj(wy), Vi=0,...,N, Yv>u. (3.44)

Using again the convergence of (w}),>o and (3.44), it is sufficient to show
that N7 (u;) C N7 (wy) holds for large v.

In the first step, we derive the extended non—degeneracy condition
() — alug, 1) € I C int () (), Vv >0, (3.45)

for all yf € M" with the property int supp py N N7 (u;) # 0. The closed
intervals I; C R are defined by

I = {z € Bl |2 — (¢(u}) — aluy, u}))| < <}

and ¢ > 0 is independent of | or v. Indeed, as a consequence of the non—
degeneracy condition (3.42), we can find an €; > 0 such that (3.45) holds

for all pj = )\1()]1) € A;. Taking the constant ¢ from (M2), we can easily check
that (3.45) is valid for all pj € MY, if € satisfies 0 < e < ce;.

Let us consider the fine grid correction in some fixed node p; € ./\/'j'(uj) with
u;j(p;) = ;. Utilizing (3.45) and the convergence of (w}),>0, we can find a
threshold v5 > 11 such that

LAY — a(w), A\D) € int dg;(u;)(AF)), Vv >, (3.46)

holds for all p; € J\G‘(u]) Recall that w} results from the fine grid correction

associated with /\ﬁ,{). This property can be rewritten as
L)) = alwt', A7) € 00wl N). (3.47)

Using the representation (1.2.49) of d¢;,

06 (wi_1)(A)) = 0@ (wf_y (1)) by,

together with the monotonicity of 9®, we deduce from (3.46) and (3.47)
that wy (p1) = u;(pr) = 6;.
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Hence, the fine grid correction makes sure that, for large v, each critical
point of u; is a critical point of the smoothed iterate u}. We still have to
show that these critical points are not affected by the subsequent coarse grid
correction, i.e. that

int supp pf N7 (u) #0 =0, =0, Yy € M, Yv2>uvs, (3.48)
holds with a suitable v3 > vp. Let py € MY and int supp pf NN (u;) # 0.
By virtue of (M1), we can assume inductively that the values of w; ; in
p € int supp uf ﬂ./\/j'(uj) have been fixed by the leading fine grid correc-

tions and have not been changed by subsequent coarse grid corrections. The
convergence of (w}'), >0 together with the upper bound in (M2) implies that

CL(ZU;/“M;/) - a(u]’lu’;/) - 0’ vV — oQ.
Hence, we can use (3.45), the representation (1.2.49) of ¢,

O(wi_) (i) = ZN O (wi1(p)) i (p) Py,

the upper bound in (M2), and the continuity of the derivative 0®(z) = ®’(2)
inz€int K\ {6y,...,0n} to find a v3 > vy such that

(') — alwi_y, pi) € 0dj(wi_y) (i), Vv = vs. (3.49)

Using the “scalar” notation introduced in (2.32) and (2.33), the inclusion
(3.49) can be rewritten as r; € 909;(0), giving z; = 0. O

Once the phases J\/J’(uj) of the exact solution u; are known, we can define
the bilinear form by, (v, w),

N
by )= S balphelp) by, (3.50)
and the functional f,;(v),

N
Ju; (v) = Z Z fiv(p) hy (3.51)

i=0 pei(u,)
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on the finite element space S;. Denoting
(0, w) = a(v,w) + by, (v, w), Ly, (v) = £(v) + fu; (v), (3.52)
we can easily check that u; = uj is the solution of the reduced linear problem
uj €87 ay;(uj,v) =Ly (v), VveES], (3.53)

where 8§ = {v € S; | v(p) = u;(p), Yp € N} (u;)} and the reduced subspace
§7 C §; is defined by

S;={veS;|v(p) =0, Vpe N (uj)}. (3.54)
Consider M* = (u3, ..., u,+) from (M3). Then the reduced set
M°=M*NS;,

induces a linear extended relaxation method

*

+3 4 (3.55)
1

3

l{+1:u

1%
u; J

o~

for the iterative solution of (3.53). The corrections v; € V; in the direction
of puf € M° are computed from the linear local subproblems

v €V ay(U,v) = Ly (v) —a(w—1,v), YveW. (3.56)

Assuming that the original discrete problem (1.3.57) is non—degenerate,
one can show that an extended relaxation induced by a sequence (M"),>
with the properties (M1)—(M3) reduces asymptotically to the linear scheme
(3.55). In order to obtain a related result for extended underrelaxations
induced by a sequence of monotone approximations (0V¥}),>o, we have to
impose further restrictions on the multifunctions 0Wy.

Definition 2.8 The monotone approximations (0¥} ),>0 of (0®]),>0 are
called quasioptimal if the convergence of the intermediate iterates (wy'),>o
and of their phases implies that there is an index vg > 0 and an open interval
I C R, independent of v and l, such that 0 € I and

oV (z) =09/(z), Vzel, Yv>u, (3.57)

holds if pj (p) = 0 for all p € N} (u;), Il =1,...,m".
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Now we are ready to state the main result of this chapter.

Theorem 2.9 Assume that the discrete problem (1.3.57) is non—degenerate
(cf. (3.42)) and that the sequence of search directions (MV),>o satisfies
the conditions (M1)-(M3). Then the extended underrelaxation induced by
(M")y>0 and quasioptimal approzimations (0] ),>o is globally convergent
and 1s reducing to the linear extended relaxation (3.55) for v > vy with
suitable vy > 0.

Proof. The global convergence is clear from Theorem 2.2. It follows from
Proposition 2.7 together with (M3) that N7 (wy) = N} (u;) and M" = M*
hold for all v > v; with some suitable 11 > 0. Hence, the local corrections
vy corresponding to pj ¢ §j satisty v/ = v/ =0, Vv > 11. In the remaining
case i € 87, the exact local corrections vy = z/y; tend to zero. Hence, we
can find a vy > vy such that 2/ € I, Vv > 1. Then it follows from (3.57)

that z; = 2/, Vv > 1. This completes the proof. O

Assuming that (1.3.57) is non-degenerate, Theorem 2.9 states that the
choice of different quasioptimal approximations does not change the asymp-
totic convergence properties of the resulting different iterative schemes. In
particular, we obtain the same asymptotic convergence rates as for the ex-
tended relaxation method itself. For reasonable initial iterates, the asymp-
totic behavior may dominate the whole iteration process (cf. Kornhuber

82, 83]).
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In the preceding chapter, we introduced extended relaxation methods for the
iterative solution of the discrete minimization problem (1.3.57). An extend-
ed relaxation method is characterized by the selection of a certain sequence
of search directions for the successive minimization of the energy function-
al J + ¢;j. Theorem 2.9 states that the global convergence together with
the asymptotic convergence rates are preserved by quasioptimal monotone
approximations of the local subproblems.

Extended relaxation methods were motivated by well-known multigrid
methods for elliptic selfadjoint problems. In particular, the classical multi-
grid method with a Gau3—Seidel smoother can be regarded as an extended
relaxation method induced by the multilevel nodal basis Ags.

Monotone multigrid methods, based on the successive local minimization of
energy, are intended to be a permanent extension of this classical approach
to non-smooth minimization problems of the form (1.3.57). A monotone
multigrid method should be globally convergent with asymptotic multigrid
convergence rates and should allow an implementation as a usual V—cycle,
requiring O(n;) operations for each iteration step.

From the above considerations, the extended relaxation method induced by
the multilevel nodal basis Ags is a natural candidate for a monotone multigrid
method. However, for the nonlinear problem (1.3.57), this method can no
longer be implemented with optimal numerical complexity.

As a consequence, we will derive a suitable linearization of the local sub-
problems. The basic idea of monotone multigrid methods is first to find
out a neighborhood of the actual iterate in which the actual linearization is
valid and then to constrain the coarse grid correction to this neighborhood.
In this way, we end up with a sequence of local obstacle problems for the
approximate corrections.

The resulting standard monotone multigrid method can be regarded as an
extended underrelaxation induced by As and certain quasioptimal mono-
tone approximations. Hence, it is globally convergent (cf. Theorem 2.9).
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However, the underlying search directions taken from the multilevel nodal
basis may be not well-suited to the phases of u;. The resulting poor coarse
grid transport usually causes unsatisfactory asymptotic convergence rates.
By adapting the elements of Ag to the actual guess of the discrete phas-
es in each iteration step, we obtain so—called truncated monotone multigrid
methods with improved convergence properties. Note that similar ideas can
be applied to selfadjoint elliptic problems with rapidly varying coefficients
or complicated geometries. First steps in this direction were made by Korn-
huber and Yserentant [88]. Truncations of the hierarchical basis were intro-
duced by Hoppe and Kornhuber [75] in connection with obstacle problems.
Related techniques were derived by Bank and Xu [12] and Hackbusch and
Sauter [67] for the appropriate coarsening of a given mesh.

In the light of Theorem 2.9, both variants of the monotone multigrid method
reduce asymptotically to a linear iteration on a reduced space. Hence, we can
derive asymptotic estimates of the convergence rates by a suitable extension
of the well-known linear theory.

Both the standard and the truncated monotone multigrid method can be
implemented as a slight modification of the usual V—cycle. Some algorithmic
remarks are made in the Sections 3.1.4 and 3.2.3 (see also Kornhuber [85]).

3.1 Standard Monotone Multigrid Methods

3.1.1 The Multilevel Nodal Basis

Let 7y be a triangulation of the polygonal domain §2. The triangulation 7y
is refined several times providing a sequence of triangulations 7y, 71, ..., 7;.
A triangle ¢ € 7p is refined either by subdividing it into four congruent
subtriangles or by connecting one of its vertices with the midpoint of the
opposite side. The first case is called regular (red) refinement and the result-
ing triangles are regular as well as the triangles of the initial triangulation
7o. The second case is called irreqular (green) refinement and results in two
irregular triangles.

We say that the triangulations 7y, ..., 7; are nested, if the global refinement
process satisfies the following conditions (T1)—(T3).

Because new points should be generated only by regular refinement, we
introduce the rule
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Figure 3.1 Regular refinement and irregular closure

(T1) Each vertex of 7y that does not belong to 7y, is a vertex of a regular
triangle.

Note that irregular refinement is potentially dangerous, because the interior
angles are reduced. Hence we add the rule

(T2) Irregular triangles must not be further refined.

We say that a refined triangle is the father of the resulting triangles, which
in turn are called sons. We define the depth of a given triangle ¢ € [} _, 7k
as the number of ancestors of ¢. Of course, the depth of all triangles ¢t € Tj,
is bounded by k. We have the final rule

(T3) Only triangles t € T of depth k& may be refined for the construction
0f77<:+1, 0< ]CS]

As a consequence of (T3), the whole sequence 7y, 71, ..., 7; can be uniquely
reconstructed from the initial triangulation 7y and the final triangulation 7;
alone. Note that the shape regularity of 7; is inherited from the shape regu-
larity of 7. The conditions (T1)—(T3) are meanwhile standard in the field of
multilevel methods (see e.g. Bank, Dupont and Yserentant [9], Bornemann,
Erdmann and Kornhuber [27], Deuflhard, Leinen and Yserentant [45]).

The construction of the triangulations should be based on some adaptive
strategy. Note that the sequence 7p,...,7; does not necessarily reflect the
underlying dynamic refinement process. We will come back to this point in
Chapter 4.
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A sequence 7o, ...,7; of nested triangulations gives rise to a sequence of
nested finite element spaces

S()CSlC...CSj.

Let Ay = {/\ﬁ,’“)\ p € Ni} denote the set of nodal basis functions in Sy,
k=0,...,7. Collecting the mg = ng elements of Ay and the mj; new basis
functions on each level, we define the multilevel nodal basis As with mg =
mo + ...+ m; elements by

J
As=AoU U Ay \Akfl.
k=1

Figure 3.2 Low frequency multilevel nodal basis function /\1(70) € As

We use the canonical ordering of Ag, which follows the refinement levels,

As = G AZ AT A AR ). (1.1)
In the case of elliptic selfadjoint problems, the classical multigrid V—cycle
with Gaufi—-Seidel smoother and canonical restrictions and prolongations
can be regarded as a linear extended relaxation method induced by the
constant sequence As of search directions (cf. e.g. Xu [122]). Hence, the
nonlinear extended relaxation method induced by Ag is a natural extension
to nonlinear problems of the form (1.3.57).

However, in the case of non—uniform refinement, as considered here, the
canonical ordering (1.1) of As contradicts the condition (M1) that each se-

quence of search directions should start with the elements )\I(f ) of the fine grid
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nodal basis A; (see Section 2.1.2, p. 51). Hence, we consider the extended
relaxation method induced by

MY =A=(AjAs) =AY N ), Y > 00 (1.2)

P10 Py
The enumeration of the constant extension
M! =As = ()\nj+1 e Am), Y >0,

with m = n; + mg, follows the canonical ordering (1.1). It is clear that A
also satisfies the conditions (M2) and (M3) stated in Section 2.3, p. 60.

Recall that the leading fine grid corrections in direction of A, ,... ,)\pnj
can be evaluated exactly by (2.1.20). Let A\; € As NS with & < j. Then
the corresponding coarse grid correction ¥; cannot be computed without
evaluating the intermediate iterate w;_q at all nodes p € int supp A;, because
the subdifferential 0¢;(w;—1+v) is nonlinear with respect to w;_. This leads
to (at least) one additional prolongation for each local coarse grid correction.
As a consequence, the number of operations for a global iteration step is no
longer bounded by O(n;). To preserve the optimal numerical complexity of
the classical V—cycle, we will derive suitable approximations of the coarse
grid problems. For simplicity, the fine grid corrections corresponding to A\; €
A; N As will not be treated separately.

3.1.2 Quasioptimal Approximations

Linear functions on subspaces S C S; can be represented by their values
on the coarse grid basis functions )\;(,k) € Aj. This property gives rise to the
canonical restrictions of the residual and of the stiffness matrix occurring
in the implementation of linear subspace correction methods as a classical

V—cycle.

Assume that the smoothed iterate @ has been computed from a given iterate
u? by the leading Gaufi-Seidel relaxation. To take advantage of the simple
representation of linear functions on the coarse grid spaces, we want to
restrict the subsequent intermediate iterates wy, | = n; +1,...,m, to a
neighborhood of uj, on which the subdifferential 0¢;(w) is an affine function
of w. In doing so, we will exploit that ¢; is generated by a piecewise quadratic
function ® (see condition (V3)’ stated in Section 1.2.1).
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We define the closed, convex subset Kﬂju_ CS;j,
Kay = {v € 8| ¢(p) < v(p) < B (p), ¥p € N},

where the obstacles g}.’ ,pj € S; are given by

@4(p) = b3, P(p) = i, if @j(p) € (6i,0i11)
(1.3)

eip) =%j(p)=0;, if  @j(p) =0

for i =0,...,N+1 and all p € Nj. As usual, the index v will frequently be
skipped in the sequel.

0P (2)

e 6o B0 -

Figure 3.3 Local linearization

By construction of the obstacles ®; and P;, the functional ¢; on Ky; can be
rewritten in the form

oj(w) = %bﬂj(w,w) — fa;(w) + const., Vw € Ky, (1.4)
giving
0¢j(w)(v) = by;(w,v) — fz,;(v), Ywe Ky, YveES;. (1.5)

The bilinear form by, (-, -) and the functional fz, on S; are defined by (2.3.50)
and (2.3.51), respectively, replacing u; by ;. Observe that the underlying
approximation of the discrete phases

N
Nj = N3 (@) U | Nj(ay) (1.6)
=0
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is fixed by the fine grid relaxation. For the definition of discrete phases, we
refer to (2.3.40) and (2.3.41).

It is trivial that u; € Kg;. As the local linearization (1.5) is only valid in
the neighborhood Ky, of 4, we impose the condition

v eDCV, Vi=nj+1,...,m, (1.7)
on the subsequent corrections v;'. The subsets Dj,
Df ={veVilg,p) —wi-1(p) < v(p) <B;(p) — wi-1(p), ¥p € Nj},

are chosen in such a way that w; € Kg;, [ =nj+1,...,m. Equivalently, the
coarse grid corrections must not cause a change of phase. In particular, the
values at the critical points p € N(4;) remain invariant.

To satisfy the condition (1.7), we approximate the local subproblems (2.1.22)
by the constrained minimization problems

Ul* € Dl* : j(wl,l + Ul*) + qﬁj(wl,l + Ul*)

(1.8)
< J(wp—1 +v) + ¢j(wl,1 +v), Yo e Dy.

By virtue of the representation (1.5), the local obstacle problems (1.8) can
be reformulated as the variational inequalities

vf €Df 1 ag,(vf,v — o)) "
> Ly, (v — vf) — ag;(wi—1,v —v7), Vv €Dy,

where the bilinear form ag, (-, -) and the functional /3, are defined in analogy
to (2.3.52).

It will follow from a later result that the approximate subproblems (1.9)
correspond to certain quasioptimal approximations. However, the solution
of (1.9) still cannot be obtained in an efficient way, because the definition
of the constraints D makes use of the values w;_;(p), p € Nj. Recall that
the evaluation of wy(p) for all p € Nj and all | = nj +1,...,m spoils the
optimal numerical complexity.

Hence, the subproblems (1.9) are replaced by further approximations

v €D ag,(v,v—1
“J( ) (1.10)
> Ly, (v —v) — ag; (wi—1,v —v), Yo € Dy,
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where the closed, convex subsets D; C V],

Dy = {veVi|¥,p) <vlp) <ii(p), ¥p € Nj},

are intended to approximate the constraints D;. Consequently, the local
obstacles 1, ¥, € V; should approximate the defect obstacles $; w1 and

© — wj_1, respectively. Observe that the condition yl,% € V; allows us to
check the constraints without visiting the fine grid.

To give a reinterpretation of the approximate subproblems (1.10) in terms of
quasioptimal approximations (cf. Definition 2.8), we will reformulate (1.10)
as variational inclusions of the form (2.2.38). For this reason, we define the
scalar, convex functions ¥; for all [ =n; +1,...,m by

\I/l(z) = (bj(wl,1 + Z)\l) + Xl(z), Vz € R, (1.11)

where x; denotes the characteristic function of I; = {z € R | z\; € D;} C R.
Then it is easily checked that (1.10) can be rewritten as

z1 €1 : 0O€ayz—r + 8\111(2’1) (1.12)

and v; = z;\;. Recall the notation a; = a(\;, \;) and r; = €(N\) —a(w;—1, Ap).

The local obstacles (¢}),>0, (] )u>0, are called quasioptimal, if (9TY),>0
is a quasioptimal approximation of (0®]),>o. The following lemma gives
sufficient criteria for the quasioptimality.

Lemma 3.1 Assume that for alll =mn; +1,...,m and all v > 0 the local
obstacles gl” and ¢;j are continuous functions of w,‘;j, co W,

¥ =Wy (wy,

e Wily), P = El(wzj, ce W),

which are monotone in the sense that w’,’bj, cwl € ]Ca;{ implies

¢Y(p) —wi 1 (p) U7 (p) SO <P (p) <F7(p) —wi4(p)  (1.13)

for all p € int supp A;.
Assume further that for 1 =n;+1,....m the functions ¢7 = ¥, (uj, ..., u;)
and E? = El(uj, ..., uj) satisfy

¥r(p) <0<y (p), Vp € int supp A, (1.14)
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if \i(p) = 0 holds for all p € N} (uy).
Then the local obstacles (¢})v>0, (V] )u>0 are quasioptimal.

Proof. Consider some fixed [ = n;+1,...,m. It is clear from u; = wy; € Ky,
and (1.13) that 0 € I;. Now the monotonicity (2.1.25) follows from

U(2) = @1(2) + xi(2), VzeR, (1.15)

and simple arguments from convex analysis.

Assume that the intermediate iterates (w;),>o and their phases are conver-
gent in the sense of (2.3.43). Choose vy > 0 such that N7 (wy') = N7 (u;)

holds for all / =1,...,m and all v > vy. As ¢/, E;j depend continuously on

Wn,, - -+, Wy, the convergence of (w})y>0 implies
¢ (p) — ¥r(p), ¥ () =% (p), v— o0 (1.16)
The convergence is uniform with respect tol =n;+1,...,m and p € N. It

is easily seen that the inequalities in (1.14) also hold uniformly with respect
to [ and p. Hence, we can find a positive number € > 0 and an index v1 > vy
such that

Y/(p) < —e<0<e< ¥ (p), Vp € N;Nint supp A, (1.17)

is valid for all v > vy, if \; is vanishing on N7 (u;). Setting I = (—¢,¢), we
clearly have 0 € I C I; and

V] (z) = 09/(z), Vzel, Yv>uy, (1.18)

if Ai(p) = 0 holds for all p € N} (u;). This completes the proof. O

We emphasize that no particular properties of the multilevel nodal basis
entered our preceding considerations. In fact, the construction of quasiopti-
mal approximations by suitable obstacle problems of the form (1.10) can be
generalized to any regular sequence (M"),>¢ of search directions.
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3.1.3 Quasioptimal Restrictions

To complete the construction of a monotone multigrid method, we now
derive quasioptimal local obstacles ¥, and ¢; for I = n; + 1,...,m. For

symmetry reasons, it is sufficient to consider only the upper obstacles ;.
The construction relies on suitable successive restrictions of the upper defect
obstacles p; — wy'.

We say that \; € A is on level k, if \; € Ay. To identify the supporting
points and the levels of \; € Ag, we will use the notation

A, o= AP i=1,...,mp k=0,...,7
Then the correction

o =B 4 4 k)

( &) (1.19)

(k)

is the sum of all local corrections v;,, = vp,” in direction of the basis functions

Ay = )\gf) on level k. Recall that the local corrections v; are obtained from
the local obstacle problems (1.10).

Lemma 3.2 Assume that the mappings R]Ierl 2 Spy1 — Sk, k=35—-1,...,0,
are continuous and that the conditions

RE o(p) <v(p),  ¥p € Nis1, (1.20)
and
min{v(q) | ¢ € Ng4+1 N int supp )\gg)} < Ry 1v(p), Vp € Ny, (1.21)

hold for all non-negative v € Siy1. Then, for a given iterate uy and the

initial defect obstacle E(j) = — uy, the recursive restriction

—(k —(k+1 .
o™ = R, @GV — oty k=10, (1.22)
inductively provides quasioptimal local obstacles 1, € V; by the definition

(k)

O =9 (AP, i=1 o my, k=j-1,...,0. (1.23)

Kornhuber 31 Jan 2006 10:03



3.1 Standard Monotone Multigrid Methods 75

Proof. Observe that we have
PO — ) = 7, — (uf + o)y >0,

because p; — uf > 0 holds by construction of p;, and this property is
preserved by the subsequent local fine grid corrections computed from the
local obstacle problems (1.8).

Now we can inductively apply the condition (1.20) to show the monotonicity
(1.13) of the local upper obstacles 1; defined in (1.23). The property (1.14)
follows in a similar way from the condition (1.21), and the definition of P,
together with the continuity of the restrictions R’,z 41 implies that the local
obstacles are continuous functions of the preceding intermediate iterates. O

We are left with the problem of constructing quasioptimal restriction oper-
ators Rl]:—kl : Sg11 — Sk satisfying the assumptions of Lemma 3.2.

It is easily seen that the restrictions r,’§+1 2 Ski1 — Sk, k=0,...,5—1,

i qv(p) = min{v(q) | ¢ € Nj1 N int supp )\I()k)}, Vp € Nk, (1.24)

proposed by Mandel [93, 92], are quasioptimal in this sense. Though the
definition (1.24) looks quite natural in the light of condition (1.21), it does
not take advantage of the fact that the arguments v € Sgyq of r,’f; 41 are
piecewise linear on 7. As a consequence, the resulting local constraints are
too pessimistic as compared to the quasioptimal restrictions R,’z 41 Which we
will derive now.

For some fixed k, 0 < k < j — 1, let &, C & denote the subset of bisected
edges, and p. € Njy41 is the midpoint of e € &. Selecting a certain order
&, = (e1,...,es), we define the restriction operator RQH D Skr1 — Sk
according to

R v=1Is 0R. 0...0R. . (1.25)

Here Is, denotes the Sp—interpolation, and for each e € & the operator
Re @ Sgy1 — Sgy1 is of the form

Rov=v+ vl)\gﬁl) + vg)\l(,’;H), (1.26)
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b1 Pe P2

Figure 3.4 Local monotone restriction

with p1,p2 € N denoting the vertices of e = (p1,p2) € &}. The scalars
v1,v2 € R in (1.26) are chosen such that

Rev(p) <v(p), p=Pp1,PesD2.

In particular, we set v1 = 0, if v(p1) < v(pe) or if 3(v(p1) + v(p2)) < v(pe).
In the remaining case, v; is determined by

o {2v<pe> —v(p1) = v(pa), if v(p2) < v(pe) < v(p1)
' v(pe) = v(p1), i v(pe) < minf{v(p1), v(pa)}

The value of vy is obtained in a symmetrical way.

It can be checked by elementary considerations that, for any enumeration of

", the definition (1.25) provides a quasioptimal restriction operator RY 1
Moreover, decomposing 7“,]: 41 in local restriction operators re, e € &L, in
analogy to (1.25), it can be shown that

rhv < REv (1.27)

holds for all non—negative v € Si41. This is illustrated in Figure 3.4. Hence,
using R’,z 41 instead of r’,j 41, we can expect less damping of the coarse-grid
corrections, providing faster convergence of the corresponding algorithm. On
the other hand, if the underlying problem is non—degenerate, then we know
from the preceding chapter that the asymptotic behavior of both methods
must be the same. This partly heuristic reasoning is strengthened by nu-
merical experiments (cf. Kornhuber [82, 83]).
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3.1.4 A Standard Multigrid V-Cycle

The extended underrelaxation provided by the local subproblems (1.10) with
upper local obstacles (E/)VZO generated according to Lemma 3.2 by the
quasioptimal upper restrictions RZ 41 = Rﬁ 41 and with lower local obsta-
cles (%’ )u>0 generated in a similar way by the lower counterparts E]]z 4118
called the standard monotone multigrid method induced by A. Other stan-
dard monotone multigrid methods are characterized by other constant se-
quences of search directions which contain the multilevel nodal basis Ag and
start with the nodal basis A; (cf. condition (M1), p. 51).

The standard monotone multigrid method induced by A can be implemented
as a classical V—cycle.

Algorithm 3.1 (Standard Monotone Multigrid Method)
gwen iterate: uj

fine grid smoothing: u} := M;(u})
local linearization: agy = a+ bﬂ]y, &;Ju, =0+ faju,
coarse grid correction:
initialize:
bilinear form and residual: al9) := agy, r0) = 6 v — Qg (af,-)
defect obstacles: ¢(j) = go”, —uf, E(j) =9 - ﬂ]”
global correction: vj :=0
for k=7—1 step —1 until 0 do
canonical restrictions: af) 1= a(k+1)|5kxgk, rk) = 7“(”“+1)|$,c

quasioptimal restrictions: Q,Z)(k) = Rk Q,Z)(k+1), ¢(k k+17/) (L)

coarse grid smoothing: v®) := My (a®), r*) w(k E ))(0)
update:
residual: v = r®) — q(F) (p(k) )
defect obstacles: g(k) = y(k) — k), E(k) = E(k) — k)
for k=0 step 1 until j — 1 do

canonical interpolation: v¥

J
1/+1
J

= v;’ + v(k)

new iterate: u; = u + v
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Recall that M; stands for one step of the nonlinear Gaufi-Seidel relax-
ation (2.1.3). The resulting smoothed iterate 4} determines the actual fine
grid obstacles gj’f and 7 according to (1.3). These constraints define the
neighborhood ICaJu of @¥ in which the local linearization (1.5) is valid. The

bilinear form a¥)(,-) and the actual residual 7(*) can be applied directly to
the elements of the subspaces S which gives the canonical restriction. In
(1.25), we have just defined the (quasioptimal) restriction RZ 41 of the upper

defect obstacle @(k). The restriction ﬁﬁ 41 of the lower counterpart y(k) is
performed in a symmetrical way.

The evaluation of the correction v(®) (see 1.19) from the approximate local
coarse grid problems (1.10) can be rewritten as a projected Gaufi—Seidel it-
eration on level k. For given bilinear form a, right—hand side r, and obstacles
P, 1, the corresponding iteration operator is denoted by My(a,r, P ,E)

The implementation of Algorithm 3.1 requires its reformulation in terms of
vectors and matrices. To this end, each of the nodal basis functions )\ék)
is identified with a unit vector of the corresponding Euclidean space. In
the linear selfadjoint case, the resulting transformation of the algorithm
is described for example by Hackbusch [65] or Braess [30]. A corresponding
linear multigrid code can be extended to an implementation of Algorithm 3.1
simply by using nonlinear or projected Gaufi—Seidel smoothers and adding

the quasioptimal restrictions.

As a consequence of Theorem 2.9, we have the following

Proposition 3.3 The standard monotone multigrid method induced by A
is globally convergent. If the discrete problem (1.3.57) is non—degenerate in
the sense of (2.5.42), then the standard monotone multigrid method reduces
asymptotically to the linear extended relazation method induced by A°,

A°=ANSS, (1.28)

for the corresponding linear reduced problem (2.3.53). The ordering of the
subset A° C A is inherited from A.

Observe that all elements A; € A with \; € A°, i.e. with the property
int supp A\; N ./\/j'(uj) # (), asymptotically do not contribute to the coarse
grid correction. This leads to deteriorated asymptotic convergence rates as
compared to classical linear multigrid methods.
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3.2 Truncated Monotone Multigrid Methods

In the special case of obstacle problems, the standard monotone multigrid
method presented above reduces to a variant of the multigrid method of
Mandel [93, 92]. It turned out in numerical experiments that this method
usually converges not as fast as the algorithm of Brandt and Cryer [33].
However, for the latter method there is no convergence proof. It was shown
in a recent paper by Kornhuber [82] that the combination of satisfying theo-
retical and numerical properties can be achieved by adapting the multilevel
nodal basis to the discrete phases by suitable truncation.

3.2.1 Truncation of the Multilevel Nodal Basis

The overall convergence of a monotone multigrid method is frequently dom-
inated by the asymptotic convergence rates (cf. Kornhuber [82, 83]). To
improve the asymptotic convergence by improved coarse—grid transport, we
will now extend the set A° by suitable truncation of the multilevel nodal
basis functions \; € Ag.

Assume that a smoothed iterate u¥ has been computed by the fine grid
relaxation, providing the set of critical nodes N (u). We define

AR =1 AB | vp e NG, (2.29)
using the truncation operators T;jk, k=0,...,7,

Here Isv : S; — Sf denotes the S}/-interpolation and the spaces S;/ C Sy,
S ={veS|vp)=0,Vpe N/} C Sk, (2.31)

are the reduced subspaces with respect to N? = N, ﬁ./\/j'(ﬁ;f), k=0,...,7.
A truncated nodal basis functions may have a rather strange shape. In par-
ticular, their support does not need to be connected. For a one—dimensional
analogue this is illustrated in Figure 3.5 where the two critical nodes are
marked by dots.

Note that we have

5\1(,]“) =0, VpeN.
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Figure 3.5 Truncated nodal basis function :\1(,0) € /~\§

The ordering of the remaining functions S\Zk = 5\1(,]?, pi € N \ N/, is
inherited from Ag providing the variable extension

MY = A5 =Ny 15 M), Y0 >0 (2.32)

Ag is called truncated multilevel nodal basis. The extension (2.32) leads to
MY = A" = (Aj,A%), Yv>0. (2.33)

Because there is only a finite number of possible truncations on a fixed grid
7;, the sequence (A“ )u>0 satisfies condition (M2) stated in Section 2.3, p.
60. Obviously, A¥ depends only on the actual set of critical nodes ./\/]'(ﬁ;’ ) so
that condition (M3) is also fulfilled. In particular, the reduced set A° C S5
is determined by ./\/J’(uj) It is easily checked that

AR = Ak Ak e e,

so that A° C A°. Hence, we can hope for improved asymptotic convergence
rates of the extended relaxation method induced by (A”),>¢ as compared
to the standard case.
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3.2.2 Quasioptimal Approximations and Restrictions

It follows by the same reasoning as above that the extended relaxation

method induced by (A”),>o cannot be implemented with optimal numerical
complexity.

Hence, we replace the exact local subproblems (2.1.22) for the intermediate
iterates w; by obstacle problems of the form

v €Dy ag, (v, v—1
uj( ) (2.34)
> Ly; (v —v) — ag; (wi—1,v —v), Yo € Dy,

with closed, convex subsets D; C V; = span {5\1},

Dy ={veVi|¢,(p) <v(p) <i(p), ¥p € Nj},

based on the local obstacles 1, P, €V, 1= n;+1,...,m.

Again, the subproblems (2.34) correspond to quasioptimal approximations if
the local obstacles 1, and t; are properly chosen. In particular, Lemma 3.1
can be literally extended to the actual case of truncated search directions.

Utilizing a corresponding variant of Lemma 3.2, we can derive quasioptimal
upper obstacles v; by recursive restriction,

El = Rl]:::-l—l(g(k—’—l) - U(k+1))7 k :j - 17 s 707 (235)

of the initial upper defect obstacle 1 (j) = ®; — uf and the definition

— —(k), \% . ‘
G, =P E)AB =1, my, k=5 —1,...,0. (2.36)
Appropriate restriction operators f?’ljﬂ $Skr1 — Sk, k=7—1,...,0, are

obtained by a slight modification of the restrictions R,’z 41- More precisely,
we set

R jv=1Is0Re,0...0R,v. (2.37)

To obtain the local restriction operator R, for each e € &L, we formally
set v(pe) = oo if pe € Nj,; and then compute the coefficients v1 and v
appearing in (1.26) in the same way as before.

Quasioptimal lower obstacles % l=mn;+1,...,m, can be derived by sym-
metry arguments.
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3.2.3 A Truncated Multigrid V-Cycle

The extended underrelaxation provided by the local subproblems (2.34) with
upper local obstacles (Ely)uzo generated according to (2.36) by the qua-
sioptimal restriction operators Rﬁ 41 defined in (2.37) and with lower local
obstacles (g;’ )u>0 generated in a symmetrical way is called the truncated
monotone multigrid method induced by (/NX”),,ZO. Other truncated monotone
multigrid methods result from the truncation of other constant sequences
of search directions which contain the multilevel nodal basis Ag and start
with the nodal basis A; (cf. condition (M1), p. 51).

Truncated monotone multigrid methods can be implemented as a slight mod-
ification of the related standard version. In fact, we only have to modify the
restriction of the stiffness matrix, of the residual and of the defect obstacles
in such a way that there is no contribution from values at the actual critical
nodes p € N7 (u4). Recall the definition of N} () in (2.3.41).

Modifications of Algorithm 3.1 (Truncated Monotone Multigrid Method)

modified restrictions of the stiffness matrix and of the residual:

v

¥) to zero

set all entries from the actual critical nodes ./\/']'(ﬂ
modified quasioptimal restrictions of the upper (lower) defect obstacle:

set all entries from the actual critical nodes N} (u}) to oo (—00)
modified prolongations of the corrections:

set all prolongations to the actual critical nodes ./\/]’(ﬁ;’) to zero
For the residual (but not for the stiffness matrix) such modified restric-

tions have been used for quite a while in connection with obstacle problems
(cf. Brandt and Cryer [33], Hackbusch and Mittelmann [66]).

The following convergence result is a special case of Theorem 2.9.

Proposition 3.4 The truncated monotone multigrid method induced by the
sequence (11”),,20 is globally convergent. If the discrete problem (1.3.57) is
non—degenerate in the sense of (2.53.42), then the truncated monotone multi-
grid method reduces asymptotically to the linear extended relaxation method
induced by A° for the corresponding linear reduced problem (2.3.53).
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3.3 Asymptotic Convergence Rates

In this section, we will derive asymptotic estimates of the convergence rates
of some standard and truncated monotone multigrid methods. By virtue
of the asymptotic properties stated in Proposition 3.3 and Proposition 3.4,
we only have to consider related successive subspace correction methods for
linear reduced problems of the form (2.3.53). Observe that we cannot expect
that the reduced computational domain 2° C €2,

Q° = U int supp )\éj), (3.38)
PENT (uy)

is resolved by the initial grid 7g. This causes some difficulties concerning the
construction of stable splittings of the solution space Sj. In particular, we
have to modify the usual interpolation operator to obtain a counterpart of
the well-known hierarchical splitting due to Yserentant [123, 125].

Using the stability of a modified interpolation operator (cf. Hoppe and Korn-
huber [75], Kornhuber and Yserentant [88]) and basic results on successive
subspace correction methods (cf. Griebel and Oswald [64], Xu [122], and
Yserentant [126]), we are able to show that the asymptotic convergence rates
of monotone multigrid methods deteriorate at most logarithmically for de-
creasing meshsize. We emphasize that no additional regularity assumptions
on the (free) boundary of the reduced domain Q° enter our considerations.
On the other hand, the results are restricted to two space dimensions.

Stable decompositions in arbitrary space dimensions can be obtained by Lo—
like projections (cf. Xu [122], Yserentant [126]). However, the stability then
relies on certain regularity properties of Q2°. For example, it is sufficient to
assume that the “critical region” Q \ Q° is large enough in a certain sense.
We will not discuss this subject here, but refer to Kornhuber and Yserentant
[88] and Oswald [103] for further information.

3.3.1 A Modified Hierarchical Splitting

For a given subset ./\/j’(uj) C N, a nested sequence of reduced subspaces

SC...CS5
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is given by
Sp={veS|vlp) =0, YpecN(u)}, k=0,...,].

To derive a hierarchical splitting of the solution space S} in subspaces Vi, C
Sp, k =0,...,7, we will make use of the family of modified interpolation
operators Iy, : S; — Sy, defined by

ey (k) o
I _Jup), it N7 €Sy ‘ .
(Lxv)(p) { 0, otherwise ’ p € Ny (3.39)

For all v € S7 we have the decomposition
J
v = Igv + Z(Ikv — I_1v) (3.40)
k=1
so that the space S} is the direct sum of Vy = §; and of the subspaces Vj,

Vk = {Ikv—fk,lv\v GS;} CS]?. (341)

We will make use of the H'-norm ||v|); = [v][ 11020y given by

1/2
ol = (Jof? + 0l13)

where | - |; and | - ||o denote the H'-seminorm and the L?-norm on °,
respectively, and we frequently write

[vllse = vl e, [vl1e = |v]g (e

for the (semi)norms on a triangle . If not otherwise stated, the various
constants ¢, ¢y, .. ., depend only on the initial triangulation 7y and may have
different values at different occurrences.

The following lemma is a variant of the famous discrete L*°—embedding of
Yserentant [123].
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Lemma 3.5 There exists a constant C' depending only on the shape regu-
larity of the triangles t € T;, such that

[v(z) —v(y)| < CVj—k+1|v]1; (3.42)

holds for all functions v € §; and all points x,y € t.

Proof. We consider the situation as transformed to the usual reference tri-
angle T'. From Lemma 2.1 of Yserentant [123], we have

v(z)| <evi—k+1|vlir, VzeT,

and Poincaré’s inequality takes the form

ol r < geloftr +21 [ o) dal.
Using the above estimates, we obtain

(@) —v(y)| = [w(x) —wy)| < evi—k+1|vhr, VryeT,

where w = v — a has vanishing mean value on T. Now the assertion follows
from the shape regularity and the scaling properties of the H'-seminorm in
two dimensions. O

We emphasize that the estimate (3.42) and following stability estimates are
restricted to two space dimensions.

Lemma 3.6 There exists a constant C depending only on the shape regu-
larity of the triangles in 71y such that

|Ikv|1 <CVj—k+1 |U|1 (3.43)

holds for all functions v € S5.
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Proof. We estimate |Ikv|it for a fixed v € §7 and all triangles t € 7j,. Two
cases have to be distinguished.

In the first case, we assume that ¢ is an “interior” triangle of 2°, i.e. that

the basis functions AI(,k) associated with all three vertices p of ¢ belong to S;..

Then the restriction of Ixv to t is simply the linear interpolant of v at the
vertices of t. Therefore, the estimate

|Ik’U|1,t < 01\/j —k+1 |U|17t (344)

follows from Lemma 3.6 by a simple scaling argument.

If there is a vertex p of ¢ such that )\I(,k) & Sp, then the situation is slightly
more complicated. In this case, there exists at least one triangle ¢ with vertex
p that contains a point Z ¢ Q°. Using v(Z) = 0, we get

lv(@)| < o(x) —ov(p)] + [v(p) — v(T)]
<

cVj—k+1 (ol +vlg)

for all x € t. In a similar way as above, this yields the estimate

[Iwvl1e < cov/j —k+1 ([ole+vlig)- (3.45)
As each triangle in 7j intersects only a finite number of other triangles in
T, the assertion follows from (3.44) and (3.45). O

The functions vy in the space Vj satisfy the estimate
Ao [§ < eloil} (3.46)

with a constant ¢ depending again only on the shape regularity of the trian-
gles under consideration. This estimate relies on the observation that every
node p € Nj has a neighbor ¢ € N}, of first or second degree at which the
functions in V}, vanish.

The following stability result is an immediate consequence of Lemma 3.6
and of (3.46) (cf. Yserentant [123, 124]).
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Proposition 3.7 There exists a constant C' depending only on the initial
triangulation Ty such that

J
Tl + 3 ¥ 1w — T yo]3 < CG + 120 (3.47)
k=1

holds for all functions v € S5.

We emphasize that the constant C' appearing in (3.47) does not depend on
the reduced domain €2°. Observe that in our application the boundary of €2°
reflects the discrete free boundary separating the different phases and the
critical nodes.

3.3.2 Final Convergence Results for the Standard Version

The estimate of the asymptotic convergence rates of the standard monotone
multigrid method induced by A relies on the decomposition

S; = Z Vn, Vi =span {\}, (3.48)
AEA°

of the solution space in the one-dimensional subspaces V). The following
lemma is a corollary of Proposition 3.7.

Lemma 3.8 For every v € S; there is a decomposition

V= Z vy, U\ E Vi, (3.49)
AEA°

with the property

>y (vr,02) < (G + 1), (v,0). (3.50)
AEA°

The constant ¢ depends only on the ellipticity of a(-,-), on the mazimal

coefficient b;, i =0,...,N, of ® (cf. condition (V3)” in Section 1.2.1, p. 23)
and on the initial triangulation Tg.
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Proof. Consider some fixed v € S7 and let v = Zi:o v be the hierarchical
splitting (3.40) with Vj, defined in (3.41). Let Ay, C Ax N A° be the nodal
basis of Vi, k =0, ..., . Using the interpolation Iy, : S — V) = span{\},
we define

UA:IVAUIW )\EAvk, kJZO,...,j,

and vy = 0 for all remaining A € A°. This leads to the decomposition

v:ivk:i Z ’UAZZU)\. (3.51)
k=0

k=0 A€Ay, AEA®

We will show that the splitting (3.51) satisfies (3.50). To this end, we use
Proposition 3.7, the estimate

& 2 1t lon(@)I” < 2 [luxll3,

teTy, pEL

the well-known inverse inequality
2 k 2
[oAlf < ed¥[luallo,
and the equivalence of norms on Sy, to obtain

Y loali <G+ 1%l (3.52)
AEA°

Now the assertion follows from the equivalence
¢ ay;(v,v) < lv|2 < Cay,(v,v), (3.53)

with constants ¢, C' depending only on the ellipticity of a(-,-) and on the
maximal coefficient b;, ¢ =0,..., N, of ®. O

The following lemma is an immediate consequence of a strengthened Cauchy-
Schwarz inequality (see e.g. Bornemann [24] or Zhang [127]).
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Lemma 3.9 Assume that v € S; is decomposed according to

J
v = Z vs, v € span AP,
k=0

denoting A©) = Ag and A®) = A\ Ap_1, k=1,...,j. Then the estimate

J
Wi <CY ol (3.54)
k=0

holds with a constant C depending only on the initial triangulation Ty.

Recall that the discrete phases of some v € §; are defined in Section 2.3
where also the non—degeneracy condition (2.3.42) is stated. The piecewise
quadratic function ® generates the functional ¢; (cf. (1.3.55)), and we as-
sume that ® satisfies the conditions (V1), (V2), and (V3)’ from Section
1.2.1), p. 23. Now we are ready to state the final convergence theorem for
our standard multigrid method.

Theorem 3.10 The standard monotone multigrid method induced by A is
globally convergent.

Assume that the discrete problem (1.3.57) is non—degenerate. Then the dis-

crete phases of the iterates (u]'{)uzo converge to the discrete phases of u;,

and there is a vy = vp(j) > 0 such that we have the error estimate
ey —wy ™I < (1= e+ D7y —ugll, Vv >, (3.55)

with respect to the asymptotic energy norm ||| - ||| = ay, (-, Y2, The positive
constant ¢ < 1 depends only on the ellipticity of a(-,-), on the maximal
coefficient b;, i = 0,...,N, from (V3)’ and on the initial triangulation Ty.

Proof. The global convergence follows from Proposition 3.3 and, in the non—
degenerate case, the iteration reduces asymptotically to the successive sub-
space correction method characterized by the splitting (3.48).

Note that the number J = #A° of one-dimensional subspaces V), satisfies

J<cd. (3.56)

Kornhuber 31 Jan 2006 10:03



90 3 Monotone Multigrid Methods

Following Griebel and Oswald [64], we introduce the norm | - |,

2 .
[v]*= inf &V =3, o 02} Z au; (U, VN )-
AEA°

As a consequence of Lemma 3.8, we have the lower estimate
Jvl? < eG +1)%au; (v,0), Vv e S, (3.57)

with a suitable constant c¢. Using Lemma 3.9, the equivalence (3.53) and
a simple coloring argument (cf. e.g. Bornemann [24] or Zhang [127]), we
obtain the converse upper estimate

ay,(v,0) < Cv|?, YweS;. (3.58)

By virtue of (3.56), (3.57) and (3.58), the assertion follows from Theorem 4
by Griebel and Oswald [64]. O

We emphasize that the estimate (3.55) describes the worst case. Absolutely
no regularity assumptions on the continuous or discrete free boundary enter
the constant ¢. In addition, we have considered the most simple variant of
standard monotone multigrid methods.

By repeating the successive (approximate) minimization in the direction of

the basis functions )\ék) on each level k = j,---, 0 in reversed order, we obtain
a standard monotone multigrid method with symmetric smoother. For this
variant, we get a O(j2(log 7)?) estimate.

Together with the stability (3.43) of the modified interpolation operators
I, all these results are restricted to two space dimensions. In the higher
dimensional case, we have to work with modified L?-projections. In contrast
to the interpolation technique, this requires a certain regularity of the (free)
boundary of the reduced computational domain Q°. For example, exclud-
ing “poor” critical regions Q \ Q°, such as lines or points, Kornhuber and
Yserentant [88] proved an O(j) estimate. Mesh—independent convergence
rates in arbitrary space dimensions were stated by Oswald [103] under very
similar conditions.

Upper bounds for the global convergence rates which deteriorate exponen-
tially with the number of refinement levels j can be obtained from the work
of Tai [115]. However, these results are much too pessimistic as compared to
our numerical experiments where we usually found uniform upper bounds
for the global convergence rates. A theoretical justification of these obser-
vations is still an open problem.
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3.3.3 Final Convergence Results for the Truncated Version

We state an analogue of Theorem 3.10 for the corresponding truncated
multigrid method.

Theorem 3.11 The truncated monotone multigrid method induced by (INX”)I,ZO
1s globally convergent.

Assume that the discrete problem (1.3.57) is non—degenerate. Then the dis-
crete phases of the iterates (u;f)l,zo converge to the discrete phases of u;,
and there is a vy = v9(j) > 0 such that we have the error estimate

lluj —wi < (=G + D)7 lluy —uflll, Vv = v, (3.59)
with respect to the asymptotic energy norm ||| - ||| = ay, (-, Y2, The positive
constant ¢ < 1 depends only on the ellipticity of a(-,-), on the maximal
coefficient b;, i = 0,...,N, from (V3)’ and on the initial triangulation Ty.

Proof. We only have to show the asymptotic error estimate (3.59). By virtue
of Proposition 3.4, the iteration reduces asymptotically to the successive
subspace correction method characterized by the splitting

S; = Z Vi, vy =span {\}. (3.60)
AeAe

In analogy to the standard case, this splitting gives rise to the norm

2 .
[v]*= inf &V =3, zo 02} Z au; (Vx, VN )-
AEA°

In order to apply the results of Griebel and Oswald [64], we again have
to provide a lower and an upper estimate of the form (3.57) and (3.58),
respectively. As a consequence of A° C A°, the lower estimate is trivial.

For the upper estimate, we cannot apply Lemma 3.9, because truncations of

(k)

the basis functions )\pk
triangle inequality and the Cauchy—Schwarz inequality, we can show that

€ Ay are in general not contained in Si. Using the

J
wi<c@+1) Y |ol? (3.61)
k=0
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holds for all decompositions v = 09 + ...+ 9; of v € S; in fine grid functions
Uy € S;, k =0,...,j. Replacing (3.54) by this more pessimistic estimate,
we get the upper estimate

ay, (v,0) <c(j+1) |v]? YweS;. (3.62)

Now the assertion (3.59) follows again from Theorem 4 in [64]. O

Again the pessimistic bound (3.59) can be improved for more sophisticated
variants. In analogy to the standard case, we can define a truncated mono-
tone multigrid method with symmetric smoother. For this method, we can
prove an O(j%) estimate in a similar way as above (see e.g. Theorem 4.5).

Nevertheless, these asymptotic estimates seem to contradict our intention to
improve the convergence rates by suitable truncation. The reason is that the
present theory is not elaborated enough to work out the possible benefits of
such unconventional extensions for the lower estimate. On the other hand,
the resulting problems for the upper estimate are felt immediately.

In several numerical experiments, we found a very similar asymptotic be-
havior with respect to j both of standard and truncated methods. This was
usually better than predicted by (3.55) and (3.59), respectively. However,
the convergence of truncated methods was always much faster than the
convergence of the corresponding standard variant. For uniformly refined
triangulations, we refer to the recent papers of Kornhuber [82, 83] and Ko-
rnhuber and Yserentant [88]. Non—uniform refinements will be considered
in Chapter 5.
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4 A Posteriori Error Estimates and
Adaptive Refinement

In many practical computations, we want to approximate the solution u of
the continuous minimization problem (1.2.33) up to a prescribed tolerance
TOL. In this case, the discretization (1.3.57) has to be chosen in such a way
that we can compute an approximation 4; € S of the exact finite element
solution uy € Sy with the property

llu — diy]| < TOLL

Adaptive methods are intended to produce a triangulation 7; which pro-
vides the desired accuracy with a minimal number of nodes. This involves the
(approximate) solution of a nonlinear approximation problem (cf. Oswald
[104]). Adaptive multilevel methods, to be considered in this chapter, pro-
vide a well-established framework for such algorithms which can be briefly
described as follows.

Assume that an intentionally coarse initial triangulation 7; is available.
Though the actual construction of such a 75 may be a non-trivial task, we
will not discuss this problem here (see for example Kornhuber and Roitzsch
[87, 106]).

Starting with 7y, a sequence of successively refined triangulations is pro-
duced in the following way. We discretize the continuous problem with re-
spect to the actual triangulation 7; and solve the resulting discrete problem
up to a certain accuracy, to obtain the actual approximation ;. If the global
accuracy condition |[u — @;|| < TOL is satisfied, then the approximation a;
is accepted and the computation is stopped. Otherwise we adapt 7; by local
refinement of suitably selected triangles and repeat the same cycle on the
next refinement level.

In this way, we simultaneously get an increasing sequence of nested trian-
gulations Ty, ..., T}, j < J, which can be directly used for the fast solution
of the corresponding discrete problems by monotone multigrid methods (cf.
Chapter 3). This is not the case for related strategies based on a complete
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remeshing of the computational domain (see for example Nochetto, Paolini,
and Verdi [98, 99]). Moreover, successive local refinement extends without
difficulties to three (or more) space dimensions (cf. e.g. Bénsch [13], Bey
[22], Bornemann, Erdmann, and Kornhuber [27]). In this case, remeshing
becomes considerably more time-consuming.

Using the general approach described above, we will derive a posteriori esti-
mates for the approzimation error |ju — i |, a refinement strategy based on
local error indicators and stopping criteria for the complete adaptive algo-
rithm. As a discrete counterpart, we will provide a posteriori estimates for
the algebraic error |uj — ;|| together with stopping criteria for the iterative
solution on each refinement level.

4.1 A Posteriori Estimates of the Approximation
Error

Let u € H = H} () denote the exact solution of the continuous minimiza-
tion problem (1.2.33), u; € S; the exact solution of the approximate discrete
problem (1.3.57) and 4; € S; an approximate solution of (1.3.57). Usually,
u; results from a certain number of steps of some iterative solver. As only
@ is available in actual computations, we will concentrate on reliable and
efficient a posteriori estimates providing upper and lower bounds of the ap-
prozimation error ||u—1;||. Related estimates of the algebraic error ||u; —a;l|
will be derived in the final section of this chapter.

The construction of error estimates will be carried out in two steps.

e Discretize the defect problem with respect to an enlarged space.

e Localize the resulting discrete defect problem.

In the case of elliptic selfadjoint problems, the resulting hierarchic error es-
timates were introduced by Zienkiewicz, Gago and Kelly [128]. The intimate
relation of error estimation and preconditioning first appeared explicitly in
a paper of Deuflhard, Leinen and Yserentant [45]. Replacing the piecewise
quadratic functions by other extensions of the original space S, the hier-
archical approach allows a unified view on a variety of apparently different
concepts (cf. Bornemann, Erdmann and Kornhuber [28] and Verfiirth [118]).
A slightly modified extension is of particular interest in the case of three
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space dimensions [28]. For a comprehensive overview on other approaches
to a posteriori error estimation, we refer to the monograph of Verfiirth [119]
in this series.

Using Newton type linearization, Bank and Smith [10] have extended hi-
erarchical error estimates from the elliptic selfadjoint case to differentiable
nonlinear problems. As we cannot use Newton’s method for our non—smooth
minimization problem, we will apply the hierarchical concept directly. This
requires some care in the localization of the discrete defect problem. A
straightforward approach was applied successfully to a special obstacle
problem arising from semiconductor device simulation (cf. Kornhuber and
Roitzsch [86, 87]). However, it turned out in the subsequent analysis that
the resulting error estimator is not robust (cf. Hoppe and Kornhuber [75]).
In particular, the localization step may produce a vanishing error estimate
even though the solution of the original discrete defect problem is not zero.

It will turn out that this problem can be remedied by a diagonal scaling
of the discrete defect problem. In this way, the original global problem is
decomposed in a number of one-dimensional subproblems. The constants
describing the quality of the error estimates are independent of the refine-
ment level j, if the discrete error is a high—frequency function. Recall similar
properties of cascadic iterations (cf. Deuflhard [44], Shaidurov [112] and
Bornemann and Deuflhard [26]). This heuristic assumption can be justified
under severe restrictions on the discrete defect problem. There is numerical
evidence indicating that these conditions may be relaxed. We refer to Ko-
rnhuber [84, 85] and to the numerical results presented in the final chapter.

A more robust (and unfortunately more expensive) a posteriori error esti-
mate is based on nonlinear iteration. In this case we get uniform constants
under (slightly) less restrictive conditions. An extension of these results to
more realistic situations is very closely related to optimal global bounds for
the convergence rates of monotone multigrid methods. Recall that this is an
open problem.

4.1.1 A Discrete Defect Problem

For a given u; € S; the desired correction e = u —1; € H is the solution of
the defect problem

ec H: %a(e, e) —r(e) +v(e)

(1.1)
a(v,v) —r(v) +¢¥(v), YvéE H,

<

D=
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where we have used the translated functional ¢ : H — R U {400},

00) = 6y +v) = [ (@ +0) da.
and the bounded linear functional r : H — R,
r(v) = £(v) — a(a;,v).

In order to discretize the continuous defect problem (1.1), we introduce the
space Q; C H of continuous, piecewise quadratic functions, spanned by the
nodal basis

A2 ={\2|peNo},

where Ng = N; UNg and Ng consists of the midpoints of the interior edges
e € &;. Interpolating ®(@; + v) by piecewise quadratic finite elements, we
obtain the approximation ¢g : Q; — R U {400},

bo) = ¥ @(islp) +0(p)) [ AP@)da,

pENg

of the functional . Then eg is the unique solution of the discrete defect
problem

cQ € Qj:  zaleg,eq) —r(eg) + to(co) 12)
< 2a(v,v) —r(v) + Po(v), Vv € Q. .

In the light of Theorem 1.6 and Proposition 1.7, the minimization problem
(1.2) can be reformulated as the variational inequality

eg € Qj:  aleg,v—eg) +9Po(v) —oleg) (L3)
>r(v—eg), YveQj, .

or as the variational inclusion
eg € Qj: 0€aleg,v) —r(v) +0vgleg)(v), Vve Q. (1.4)

Using Green’s formula, the local residuals r()\pQ), p € Ng, can be reformu-
lated in terms of local consistency errors and jumps of the normal fluzes
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of u;. This representation is frequently used in other residual based error
estimates (cf. e.g. Verfiirth [119]).

Correcting @; by eg, we obtain the piecewise quadratic approximation
ug = uj +eg € Q;
which is the unique solution of the minimization problem
g€ Q;i Jlug) +dolug) < J() +dolv), WweQ; (15)
where the approximation ¢g : Q; — RU {oo} of ¢ is defined by
$o(ttj +v) = tho(v).
The condition

(S) lu = uoll < Bllu —u;ll, B <1,

states that (1.5) provides a better approzimation ug € Q; of u than the
given function @; € S;.

Proposition 4.1 Assume that the condition (S) is satisfied and let eg be
the solution of the discrete defect problem (1.2). Then we have the estimates

(1+8) " leall < llu— a5 < (1 = B)"leall- (1.6)

Proof. We only show the lower bound for ||u— ;|| which immediately follows
from (S) and the triangle inequality

lu = [l = flug =yl = [lu = ugll

0

The crucial condition (S) with = §s/(1 — 8,) < 1 is a consequence of the
saturation assumption

Ju—uoll < Byllu—wll, B <1, (L.7)

and of the algebraic accuracy assumption

luj = ;]| < Ballu —wsll, Ba <1-—Ps. (1.8)

Kornhuber 31 Jan 2006 10:03



98 4 A Posteriori Error Estimates and Adaptive Refinement

The saturation assumption (1.7) states that the larger finite element space
Q,; provides a better approximation than the original space ;. For suf-
ficiently regular problems, the piecewise quadratic solution ug is even an
approximation of higher order (cf. e.g. Brezzi, Hager, and Raviart [36]). In
this case, (1.7) clearly holds for sufficiently fine triangulations. On the oth-
er hand, there are simple examples showing that (1.7) may be violated, if
the mesh is not properly chosen. In this sense, reliable a posteriori error
estimates still involve a certain amount of a priori information.

The algorithmic realization of the algebraic accuracy assumption (1.8) will
be discussed in the final chapter.

In the case of elliptic selfadjoint problems, (1.8) is not needed and the sat-
uration assumption (1.7) is even equivalent to the upper estimate in (1.6)
with 8 = (. We refer to Bornemann, Erdmann and Kornhuber [28] for
details.

4.1.2 An Error Estimate Based on Preconditioning

In general, the solution of the discrete defect problem (1.2) is not available at
reasonable computational cost. Hence, we consider further approximations
of (1.2) which should preserve lower and upper bounds of the form (1.6).

Extending well-known results from the elliptic selfadjoint case (cf. Deufl-
hard, Leinen and Yserentant [45], Bornemann, Erdmann and Kornhuber
[28], and Bank and Smith [10]), we will now investigate the effect of pre-
conditioning on the solution eg of (1.3). For this reason, we consider the
variational inequality

eg € Qj: alég,v—eég)+vo(v) —1o(ég) (19)
>r(v—eég), YveQgj, .

with some symmetric and positive definite bilinear form a(-,-) on Q;. Ob-
serve that the preconditioned defect problem (1.9) is uniquely solvable and
that the preconditioner a(-,-) induces the norm | - | = a(-,-)/ on Q;.

Proposition 4.2 Assume that the norm equivalence

Yoa(v,v) < a(v,v) < ma(v,v), Yov € span{eg,éo}, (1.10)
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holds with positive constants vg,v1. Then we have the estimates

coleol” < llegl* < e1léaf? (1.11)
with cg = (g '+ 271 (L+ 1) 7" and e1 = v + 275 (1 + 7).
Proof. By symmetry arguments it is sufficient to establish only the right

inequality in (1.11). Inserting v = ég in the original discrete defect problem
(1.3), we obtain

leal” < a(eq,é0) + ¥o(éo) — ¥oleq) +r(eq — &g).
Now the inequality 2a(eg,ég) < |legl|® + ||Eg|* and (1.10) yield

leall® < mleal® +2(va(Eo) — taleq) +r(eg — €))- (1.12)
It remains to show that

¥o(Eg) —taleg) +r(eg — &) <7y ' (m +1)[egl” (1.13)
Inserting v = eg in (1.9) and using the Cauchy—Schwarz inequality, we get

Yo(ég) —voleg) +r(eg — ég) < |églleg — éq
so that (1.13) follows from

leo — ol <7 (1+m1)léql. (1.14)
In order to prove (1.14), we again insert v = ég in (1.3) and v = eg in

the preconditioned problem (1.9). Adding the two resulting inequalities, we
obtain

aleg,€g —eg) +a(ég,eq — €g) > 0
which can be reformulated as
~ 2 ~ o~ ~fn o~
|éo —eql” < a(ég,ég —eg) —a(ég,ég — eg).

The assertion now follows from the Cauchy—Schwarz inequality and (1.10).
0
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In the light of Proposition 4.2, we are left with the problem of selecting
a preconditioner a(-,-) which combines reasonable constants -, 71 with a
cheap evaluation of ég. In analogy to the linear selfadjoint case, one might
be tempted to construct a preconditioner based on the hierarchical splitting

Q=SaV (1.15)

where the difference space V = span{)\pQ | p € N¢} consists of the quadrat-
ic bubble functions associated with the edges £ (cf. e.g. Deuflhard, Leinen
and Yserentant [45], Bornemann, Erdmann and Kornhuber [27], Bank and
Smith [10]). However, in contrast to the linear case, the unknowns now be-
come coupled with respect to the functional ¥ as soon as the hierarchical
representation is used (cf. Hoppe and Kornhuber[75], Erdmann, Frei, Hoppe,
Kornhuber and Wiest [52], and Erdmann, Hoppe and Kornhuber [53]). Even
in simple cases, this coupling cannot be ignored without losing the reliabil-
ity of the resulting error estimate (cf. Hoppe and Kornhuber [75]). On the
other hand, the coupled preconditioned problem is still not solvable with
reasonable computational cost.

To find a way out of this dilemma, observe that the constants ~y, 71 ap-
pearing in the crucial estimate (1.11) depend only on the local quality of
the preconditioner a(-,-) on the subspace span {eg, g} C Q;. As a conse-
quence, we can expect good results even from very simple preconditioners
like the diagonal scaling

i w) = 3 vpwpa(d, ), (1.16)
peENg
if eg and ég are high frequency functions.

In addition, the preconditioned defect equation (1.9) resulting from the di-
agonal scaling (1.16) consists of the independent local subproblems

ep € span {)\pQ} : o 0€alep, )\pQ) - T(APQ) + 8¢Q(ep)()\pg), (1.17)

for p € Ng. Exploiting that ® is piecewise quadratic in the sense of condition
(V3)" (cf. Section 1.2.1, p. 23), we can solve all these sub—problems explic-
itly. We refer to similar results in Section 2.1.1. Finally, the approximate
correction

o= > & (1.18)

pENg
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provides the local error estimate |ég|.

From the Propositions 4.1 and 4.2, we immediately get a (quite pessimistic)
upper bound for the effectivity index x = |ég|/|le|] of the resulting error
estimate which increases exponentially with the refinement level. However,
the localization at least preserves a non-vanishing error estimate |ég| # 0,
if eg is not zero. Recall that related previous error estimates do not have
this property (cf. Hoppe and Kornhuber [75]).

The heuristic assumption that span{eg, ég} consists of high—frequency func-
tions can be justified theoretically, if the following conditions are fulfilled.

P1

:z

J

(
(
(P3) The subdifferentials d¢;(u;), Opg(u;) coincide on S‘? C S;.
(

)

P2) The discrete phases of uj, u; + €g and ug coincide.
)
)

P4

The reduced subspace S; is contained in the reduced subspace Q7.

Recall the definition of discrete phases in Section 2.3. Here, the discrete
phases of v € Q; are given by

No(w) ={peNg |vp) € (0;,0i41)}, i=0,...,N,
and the reduced space Qj C Q,
N N
Q2 ={ve Q;|u(p)=0,YpeN&}, N&=No\ |JNj(ug),
=0

is defined in analogy to 7 C S; (cf. (2.3.54) in Section 2.3).

Theorem 4.3 Assume that the conditions (P1)-(P4) are satisfied. Then
we have the equivalence

clég| < [leell < Clégl- (1.19)
The constants ¢, C depend only on the ellipticity of a(-,-), on the mazi-

mal coefficient b;, i = 0,...,N, from (V3)  on p. 23, and on the initial
triangulation 7.
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Proof. As a consequence of (P1) and (P2), the correction eg is the unique
solution of the variational equality

eg € Q; : a(eg,v) + bUQ(eQav)

(1.20)
= (1) + fug(v) — buo (uz,v), Vv € Q2

where the bilinear form by, (-, -) and the functional f,, are defined in analogy
to (2.3.50) and (2.3.51). In particular, we have

O0pg(ug)(v) = bug (ug,v) — fug(v), Vv € Q5.
Using (P2) and (P3), we also obtain
00;(uj)(v) = bug (uj,v) — fug(v), Yo €S;. (1.21)

Hence, being the exact solution of the discrete problem (1.3.57), u; satisfies
the variational equality

a(ug,v) + bug (uj,v) = £(v) + fug(v), Vv €S;. (1.22)

Exploiting (P2), we can show in a similar way as (1.20) that ég is the unique
solution of the variational equality

éQ c Q; : d(ég,?}) + bug(ég,v)
=7(V) + fuo (V) = bug (uj,v), Yv e Q5.

(1.23)
Introducing the bilinear forms

Qug (Ua U)) = G(U7 ’U}) + bug (Ua w)7 aug (U, ’U}) = &(v, U)) + bug (Ua U))
and the residual

Tug (V) = 7(V) + fug (V) = bug (uj,v)

on QF, we can rewrite the linear variational problems (1.20) and (1.23) as

€Q € Q(j) : auQ(eQ7v) = TUQ(U)7 Vv € Q;a (1.24)
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and
€0 € Qf 1 Gug(Eg,v) =Tug(v), Vve Qj. (1.25)

Observe that (1.22) can be rewritten as ryq(v) =0, Yo € Sj.

Using (P1)—(P3), we have traced back our original nonlinear defect prob-
lems to the corresponding linear case. Following Deuflhard, Leinen and
Yserentant [45] p. 16, we now introduce the hierarchical splitting

Q;ZS;@VQ

with Vg C Vg = span {)\pQ | p € Ng}. Here, we made use of condition
(P4). The hierarchical splitting gives rise to a corresponding decomposition
of both global problems (1.24) and (1.25) on Q7 in subproblems on S} and
Vg, respectively. Now the assertion follows from a slight modification of the
arguments in [45]. We refer to Kornhuber [84] for details. O

Of course, the conditions (P1)—(P4) are fulfilled if ¢ = 0, but can be hardly
expected to hold for reasonable nonlinear problems. Nevertheless, we found
very satisfying effectivity rates in our numerical calculations reported below
(see also Kornhuber [84, 85]). A theoretical explanation of these observations
will be the subject of future research.

4.1.3 An Error Estimate Based on Nonlinear Iteration

In order to increase the robustness of the error estimate, we will now incor-
porate additional low—frequency contributions in the localization step. For
this reason, we consider a general nonlinear iterative scheme

et = 4 B(e¥), v=01,..., (1.26)

which is intended to play the role of a (nonlinear) preconditioner. Of course,
the evaluation of B should have optimal numerical complexity.

One step of the iteration (1.26) applied to the initial iterate 0 provides the
approximation

éo = B(0). (1.27)

The following proposition is an immediate consequence of the triangle in-
equality.

Kornhuber 31 Jan 2006 10:03



104 4 A Posteriori Error Estimates and Adaptive Refinement

Proposition 4.4 Assume that the iteration (1.26) is convergent with con-
vergence rates bounded by p, 0 < p < 1. Then we have the estimates

(1+p) " leall < lleall < (1= p) " llEall- (1.28)

As a consequence of Propositions 4.1 and 4.4, a convergent iterative solver
for the discrete defect equation (1.2) provides lower and upper bounds of
the approximation error. The quality of the error estimate relies heavily on
the convergence rates. This motivates the extension of monotone multigrid
methods to the piecewise quadratic case.

Let us briefly consider extended underrelaxations for the discrete minimiza-
tion problem (1.2) based on piecewise quadratic finite elements. Assume that
each sequence of search directions (M"),>o C Q; starts with the quadrat-
ic nodal basis AJ-Q (cf. condition (M1), p. 51). Then extended relaxations
and underrelaxations induced by (M"),>¢ are defined in analogy to (2.1.23)
and (2.1.28), respectively. Convergence results can be derived by the same
arguments as used in the proofs of Theorems 2.1 and 2.2.

Extending the quadratic nodal basis AJ-Q by the multilevel nodal basis Ag
for all v > 0, we obtain the constant sequence M" = Ag,

Ag = (A7, As),

of search directions. Replacing A by Ag, we can derive globally convergent
standard and truncated monotone multigrid methods almost literally in the
same way as in the previous chapter. In particular, the definition of quasiop-
timal monotone restrictions can be left unchanged. Note that this approach
leads to nonlinear versions of well-known defect—correction schemes (cf. e.g.
Aunzinger and Stetter [5] and Hackbusch [65]).

Assume that an implementation of monotone multigrid methods is available
for piecewise linear finite elements. Then we only have to add a fine grid
smoother on Q; in order to get related solvers for the piecewise quadratic
case. The evaluation of the stiffness matrix and the right—hand side can be
partly performed by interpolation of the related piecewise linear data which
have been already computed.

We apply one step of a truncated monotone multigrid method with symmetric
smoother to (1.2) with the initial iterate wg = 0 in order to compute the
intermediate iterates w;, l = 1,...,mg, and the final approximate correction

o = B(0) = wyng.
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In order to apply our results on upper bounds for the asymptotic convergence
rates (cf. Theorems 3.10, 3.11), we require the invariance of the discrete
phases.

(I) The discrete phases of all intermediate iterates @; + w;, | = 0,...,mg,
coincide with the discrete phases of ug.

Compare the similar condition (P2) stated in the previous section.

Theorem 4.5 Assume that the condition (I) is satisfied. Then we have the
estimates

sléall < lleall < C(j +2)*[1Egll- (1.29)

The constant C' depends only on the ellipticity of a(-,-), on the mazimal coef-
ficient b;, i =0,..., N, from (V3)” on p. 23, and on the initial triangulation
To.

Proof. As a consequence of condition (I), the nonlinear multigrid method re-
duces to a linear iteration for the variational equality (1.24) with u; replaced
by @;. Hence, we can apply the general convergence theory for successive
subspace corrections as condensed by Yserentant [126] to derive an upper
bound for the asymptotic convergence rate of this scheme.

Symmetric point GauB3—Seidel smoothing is successively applied on the sub-
spaces Wo = Q;? and

Wi = span {TQ,;C)\gC) |lpe N}, k=0,...,].
Here, the truncation operators Tg j, : Q; — QF are defined by
TQ,k = Igilsé,k . I’SOQ,O’

where IQ;; 1 Q; — Q; and Igé . Q; — S&k denote the interpolation to Q;?
and Sék, respectively. The reduced spaces Sék are defined by

Sos = {v € Sk [ v(p) =0, ¥p € N NNE}

with ./\/’é introduced on p. 101. Observe the analogy to the definition (3.2.30)
of the truncation operators 17
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The symmetric Gau3—Seidel smoothing on Wg and Wy, k= 0,..., , is rep-
resented by the scalar products bg(+,-) and bg(-,-), k =0,...,j, respectively.
The modified interpolation operator Ig : Q; — Sj,

ey () °
(Igv)(p) = { W) H A € &y
0, otherwise,

generates the direct splitting

Q] =Vs® Vg (1.30)
into the subspaces Vs = IgQ; C S; and Vg = (id — Ig)Q; C Wq. It can be
shown by suitable scaling arguments (cf. Xu [122], Yserentant [126]) that

the two-level splitting v = vs + vg with vs € Vs and vg € Vg is stable in
the sense that

¢ (Ilvsl? + bo(va,v0)) < vl < C (Ilusl + bo(vo, o)) (1.31)

holds for all v € Q;. The hierarchical splitting

J
Vs=@ Ve, Vi CWi k=0,....j,
k=0

of Vs C §; is generated by modified interpolation operators as defined in
(3.3.39).

Using Proposition 3.7, we get the estimate
J J
ST AFold < e+ DY wkl® Yo € Vi, k=0,...,5. (1.32)
k=0 k=0

Here, the L2-norm || - |jo on the reduced domain is defined in analogy to
Section 3.3.1, p. 84. It is well-known (cf. e.g. Yserentant [126], p. 298) that
we have

clbk(vk,vk) < 4kHka3 < Clbk(vk,vk), Yo, € Vi, k=0,... R (1.33)
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for the bilinear forms induced by symmetric point Gaufi—Seidel smoothing.
The combination with (1.32) and (1.31) yields

J J
> bi(vi, vk) + ba(ve,v0) < e(j +2)2 Y vk + vall, (1.34)
k=0 k=0

for all vy € Vi, k=0,...,7, and all vg € Vg.

On the other hand, a strengthened Cauchy—Schwarz inequality and an in-
verse inequality lead to

J J
IS wll> <C> " 4*ol§, Yok € Ve, k=0,... 4.
k=0 k=0

Similar arguments are used for example by Bornemann and Yserentant [29]
or Yserentant [126]. Together with (1.33) and (1.31), this implies the upper
estimate

J J
1> ok +val* < C Y bi(vk, vi) + ba(ve, vo),
k=0 k=1

for all vp € Vi, k=0,...,7, and all vg € Vg.

Now the upper bound
p=1—c(j+2)2<1

for the asymptotic convergence rate follows from Theorem 5.4 in the overview
of Yserentant [126], and the assertion then is an immediate consequence of
Proposition 4.4. O

Again, the exponent of j can be improved in more regular situations. The
condition (I) is less restrictive than (P1)-(P4), indicating that error esti-
mates based on monotone multigrid methods are more robust than the error
estimate based on diagonal scaling. However, in comparison with the evalu-
ation of (1.18), one step of a multigrid method is about twice as expensive.
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4.2 A Stopping Criterion for the Adaptive
Algorithm

Assume that we have computed an a posteriori error estimate | ég ||, where
| - || either stands for the diagonal scaling | - | (cf. Theorem 4.3) or for the
energy norm | - || (cf. Theorem 4.5). We will now use this estimate to pro-
vide a stopping criterion for the complete adaptive algorithm. In order to
compensate a possible underestimation of the true approximation error, we
introduce a safety factor o4y, with 0 < o4y, < 1. The adaptive algorithm is
stopped if the condition

| éo|l < 0appTOL (2.35)

is satisfied. If a relative tolerance, say TOL = ¢lju, is prescribed, then the
unknown norm ||u|| is replaced by the actual approximation ||a;||.

The efficiency and reliability of the whole adaptive algorithm may depend
heavily on the choice of the safety factor o,;,,. While a lot of computational
work is wasted, if o4y, is chosen too small, the desired accuracy may be
missed in the opposite case. Up till now, there is no sound mathematical
insight how this parameter should be determined. We will select o4y, = 1.
in our numerical experiments which will turn out to be a reasonable choice
for well-behaved problems but might be dangerous in other situations. As
a consequence, the quality of the numerical solution of real-life problems is
usually checked by additional heuristic criteria based on the special physical
situation. This is beyond the scope of our general discussion.

4.3 Error Indicators and Local Refinement

We want to refine the triangulation in such a way that the discretization
error ||ju — ;|| is efficiently reduced. This strategy simultaneously provides
an approximation of the phases of the solution u, provided that the accu-
racy deteriorates in the neighborhood of the free boundary. Due to a loss
of regularity, this is frequently the case. However, the adaptive strategy
to be presented should be modified if a highly accurate approximation of
the different phases is the main issue of the computation. In this case, we
may additionally refine all triangles neighboring the free boundary in each
refinement step.
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We assume that the algebraic error is small enough. Based on the global
estimate || ég | of the approximation error, local error indicators to control
the adaptive refinement process are selected as follows.

Consider the hierarchical splitting Q; = §; ® Vg with
Ve = span {(AZ | p € Nt}.

Note that Ve consists of the quadratic bubble functions associated with the
midpoints of the interior edges £;. We decompose ég according to

€g = €s + €¢

with s € §; and ég € Vg. Here, és and ég represent the low— and high—
frequency parts of €g, respectively. It is easily checked that we have

~ 12 ~ ~ 2 ~ 12 ~
c(lesl’+leel?) <léal® < ¢ (les I +leel?) (3.36)
where
el = > mp, e =ée(p)’ a2 AT, pENe. (3.37)
peENe

We want to refine the given triangulation in such regions where the high—
frequency contributions deteriorate the overall accuracy. Assuming that the
high frequency part of the discretization error |u — u;||* is represented by
|é|?, the local contributions np, p € Ng, are used as local error indicators.

A triangle t € 7; is marked for refinement, if at least one of the indicators
np associated with the edges of ¢ exceeds a certain threshold o.;7. Here
71 is a guess of the maximal local error arising on the next level in case
of uniform refinement and o,.; < 1 is a safety factor. In the numerical
examples reported below, 7 is computed by local extrapolation (cf. Babuska
and Rheinboldt [6]) and we chose o,.f = 0.5. In the case of linear selfadjoint
problems, a theoretical justification of a similar approach was recently given
by Dorfler [46].

Now assume that a subset ’Z_} C 7; of triangles has been marked for refine-
ment. To preserve the shape regularity of the initial triangulation, irregu-
lar triangles must not be refined further. Hence, all green refinements are
skipped replacing the irregular triangles contained in ’j} by their fathers. Af-
ter the regular refinement of all ¢ € ’Z_} there may exist triangles with edges
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which are refined twice or with two or more bisected edges. Regular refine-
ment is continued until no such triangles are left. The remaining irregular
vertices are remedied by green closure.

In general, this dynamic refinement process will not produce a nested se-
quence of triangulations in the sense of the conditions (T1)—(T3) stated in
Section 3.1.1. However, a nested sequence 7, ..., 7; can be uniquely recon-
structed from the initial triangulation 7y and the actual triangulation 7;
(with refinement depth j) alone. We emphasize that this is possible without
additional computational effort, if the underlying data structures are prop-
erly chosen. We refer to Bank [8], Leinen [90], Beck, Erdmann and Roitzsch
[19], Bastian [17], and others. Note that the (non-negative) difference of
refinement level and refinement depth can be used to judge the quality of
the underlying refinement strategy.

4.4 A Stopping Criterion for the Iterative Solver

The iterative solution of the discrete problem (1.3.57) should be stopped as
soon as the algebraic error |[u; —uY|| is small enough. Recall for example the
accuracy condition (1.8).

We start with the observation that the corrections resulting from a good
iterative method provide good a posteriori estimates for the algebraic error.
Similarly, preconditioned residuals are frequently used in the linear self-
adjoint case (cf. eg. Deuflhard, Leinen and Yserentant [45], Bornemann,
Erdmann and Kornhuber [27] or Becker, Johnson and Rannacher [20]).

Theorem 4.6 Assume that the discrete problem (1.3.57) is non—degenerate
in the sense of (2.3.42) and that the iterates (uf),>o, are computed by a
monotone multigrid method. Then the a posteriori estimate

gl ™ =l < luy = ufl| < O+ 1) uf™ =[], v > vy, (4.38)
holds for sufficiently large vy > 0. We have s = 4 for the standard monotone
multigrid method induced by A and s = 6 for the corresponding truncated
version. The constant C' depends only on the ellipticity of a(-,-), on the
mazximal coefficient by, i =0,..., N, from (V3)’ on p. 23, and on the initial
triangulation 7.
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Proof. Using Theorem 3.10 or Theorem 3.11, we can find a 19 > 0 and a
suitable positive constant ¢ such that the error estimate

v+1 . —
luj = < (1= (G + 1))y — uf

i Vv >, (4.39)

holds with s = 4 or s = 6, respectively. Now the assertion follows by the
triangle inequality in the same way as Proposition 4.4. O

In the light of Theorem 4.6, the corrections HugJrl — uf|| provided by mono-

tone multigrid methods will be used as a posteriori estimates for the alge-
braic error. Good initial iterates, as required in the proof of the asymptotic
estimate (4.38), are usually obtained by interpolating the final iterate from
the preceding level. Other values of s in (4.38) can be obtained by other
variants of the asymptotic error estimate (4.39) (cf. Section 3.3).

Based on the above considerations, we now give a stopping criterion for the
iterative solver. Recall that we want to solve the given continuous problem
up to a prescribed tolerance TOL. With some safety factor ¢ < 1, the
requirement

Juj — ;] <oTOL, Vj=0,...,J, (4.40)

guarantees that the overall accuracy on the final triangulation 7; is not
deteriorated by the algebraic error. On the preceding coarser levels j =
0,...,J — 1 the criterion (4.40) is intended to provide a sufficient damping
of the low frequencies of the initial iterates U?H = ;.

Such cascadic iterations have been introduced by Deuflhard [44], who dis-
covered that stopping criteria of the form (4.40) lead to a considerable sta-
bilization of the iterative solver. For the linear selfadjoint case, a theoretical
analysis was given by Shaidurov [112] and Bornemann and Deuflhard [26].
In particular, it was shown in [26] that, under suitable assumptions, the
stopping criterion (4.40) gives usual single grid smoothers a multigrid speed
of convergence.

Recall that our adaptive refinement strategy relies on the fact that the
high—frequency contributions of the approximate correction ég reflect the
behavior of the discretization error and are not caused by insufficient al-
gebraic approximation. This is an additional motivation for the restrictive
accuracy assumptions (4.40).

Ignoring constants, let us assume for the moment that our estimates are rep-
resenting the algebraic and the approximation error exactly. Then the above
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stopping criterion for the algebraic solver implies that the algebraic accuracy
condition (1.8) holds with 3, = o/(1 — o), provided that the approximation
error is greater than TOL, i.e. that the final level is not yet reached. On the
final level, (1.8) still holds with 3, = 0/(3 — o), if the approximation error
has not been reduced by more than a factor of 2 in the final refinement step.
This is a reasonable assumption, because asymptotically the discretization
error is well-known to decrease at most linearly with the maximal stepsize

which in turn can be only halved in each refinement step.

In practical computations, we have to approximate the algebraic error ap-
pearing in (4.40) by an a posteriori estimate: The iterate @; = u}-’o—H is
accepted as soon as the stopping criterion

lij — u}|| < Tatgoapy TOL. (4.41)
is fulfilled. The new safety factor o4, < 1 is intended to compensate the

approximation of the true algebraic error. We chose 0,4 = 0.1 for our nu-
merical computations.
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5 Numerical Results

In the preceding two chapters, we have constructed the building blocks of
an adaptive multilevel method for our non—smooth minimization problem
(1.2.33): iterative solvers, stopping criteria based on a posteriori error esti-
mates and an adaptive refinement strategy. Apart from the accuracy TOL,
the whole algorithm contains only three parameters: the safety factors oy,
and o4 for the approximation error and for the algebraic solution, respec-
tively, and a safety factor o,y involved in the refinement strategy.

In the following numerical examples, we will always prescribe a relative
tolerance of 5%. Hence, the algorithm stops as soon as || ég | < 0.050 4y ||t ||
is satisfied (cf. Section 4.2). Recall that || €g || is an a posteriori error estimate
for the actual approximation @; of the solution u (see Section 4.1). On each
refinement level j, the iterative solution of the discrete problems is continued
until ||u?Jrl —uj|| < 0.050050app|uy]l is fulfilled (cf. Section 4.4). We will
use the same default values o4pp = 1., 04y = 0.1, and o,y = 0.5 in all the
numerical examples to be reported in this chapter.

The implementation was carried out at the Konrad—Zuse-Center in Berlin
in the framework of a recent C+4 version of the finite element toolbox
KASKADE developed by Beck, Erdmann and Roitzsch [19].

For further numerical results including comparisons with previous multigrid
approaches, we refer to Kornhuber [82, 83, 85].

5.1 Deformation of a Membrane with a Rigid
Obstacle

In our first example, we compute the vertical displacement u of a planar
membrane ) which is exposed to a force density f and constrained by a
rigid upper obstacle ¢. We know from Section 1.1.1 that u is the solution of
the convex minimization problem (1.1.8).
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Multigrid methods for such obstacle problems have been derived by Brandt
and Cryer [33], Hackbusch and Mittelmann [66], Hoppe [69, 70, 71], Man-
del [92, 93], and others. Roughly speaking, truncated monotone multigrid
methods combine the global convergence of Mandel’s method with the fast
convergence speed of Brandt and Cryer’s scheme. We refer to Kornhuber [82]
for details. A complete adaptive multilevel method for obstacle problems was
recently proposed by Hoppe and Kornhuber [75]. In contrast to the algo-
rithm presented here, their iterative solver is based on active set strategies
and the a posteriori error estimator is slightly different.

Recall that the obstacle problem (1.1.8) is a special case of our reference
problem (1.2.33), or (for variable obstacle) can be transformed to such a
problem (with constant obstacle) by a simple translation. We will apply our
algorithm directly to (1.1.8), using the data

olz)=4r)? =1, r=((0.5—z1)+ (05— z3)%)"2,

a =1, and f =0 on the unit square Q = (0,1) x (0,1).

5.1.1 The Adaptive Multilevel Method

We now employ our adaptive multilevel algorithm, using the truncated mono-
tone multigrid method (cf. Theorem 3.11) and the local a posteriori error
estimator (cf. Theorem 4.3). The initial triangulation is shown in Figure 5.1.

Figure 5.1 Initial triangulation 7o
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Figure 5.2 Final triangulation 7g and final approximation s

Starting with 7g, the algorithm generates a sequence of adaptively refined
triangulations 71,...,7g and of corresponding approximations g, ..., Us.
Disregarding our preceding notation, the subscripts from now on denote the
number of refinement steps. The final triangulation 7g is depicted in the
left picture of Figure 5.2. The right picture shows the level curves of the
corresponding final approximation @g. The (free) boundary of the coinci-
dence set is represented by a bold line. Observe that the refinement mainly
concentrates on the resolution of the contact region with special emphasis
on the free boundary.

Level | Depth | Nodes | Iterations | Error %
0 0 1 2 57.7
1 1 5 2 37.7
2 2 25 3 78.7
3 3 41 3 37.1
4 4 169 4 18.0
5 5 533 3 10.1
6 6 1273 3 6.6
7 6 1665 2 5.6
8 7 3869 2 3.9

Table 5.1 Approximation history
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The complete approximation history is reported in Table 5.1. On the first
levels, the triangulation might be too coarse to guarantee the saturation
assumption (4.1.7). Hence, the resulting error estimates should be handled
with care. Nevertheless, the corresponding refinement indicators seem to
work well. The a posteriori error estimates on the subsequent levels suggest
that the error behaves like (’)(nj_l/ 2). This is in agreement with well-known
O(h) error estimates (see e.g. Ciarlet [39]) and illustrates that the sequence
of triangulations can be regarded as quasioptimal in the sense that it repro-
duces the optimal order of approximation.

The number of iterations stays moderate throughout the approximation.
Note that we always need one additional iteration to control the algebraic
error. More information on the behavior of the monotone multigrid methods
will be given in the next section.

5.1.2 The Monotone Multigrid Methods

Let us apply our multigrid methods to the discrete obstacle problem on
7Tg, using the hierarchy of triangulations 7y, ..., 7s. The standard monotone
multigrid method (cf. Theorem 3.10) and the truncated version (cf. Theorem
3.11) will be denoted by STDKH and TRCKH, respectively.

In our first experiment, we investigate the convergence behavior on the fixed
refinement level j = 8, starting with the initial iterate u? = 0. Figure 5.3
shows the decrease of the algebraic errors in course of the iteration. The
overall convergence behavior can be divided into a transient phase, dom-
inated by the search for the (discrete) free boundary, and an asymptotic
phase, corresponding to the iterative solution of the reduced linear problem.

This observation supports the analysis contained in Section 2.3.

As compared to STDKH, the truncated version TRCKH exhibits a tremen-
dous improvement of the asymptotic convergence rates giving a numerical
justification for using truncated nodal basis functions. It is interesting that
the transient convergence properties remain almost the same.

To provide a more realistic situation, the artificial initial iterate zero is now
replaced by the interpolated solution from the previous level. In this way,
the transient phase is completely eliminated from the convergence history
as can be seen in Figure 5.4. In the beginning, STDKH and TRCKH are
comparable in eliminating the high—frequency contributions of the error, but
only TRCKH keeps this convergence speed throughout the whole iteration.
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Figure 5.3 Iteration history: Initial iterate u? =0
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To study the convergence properties for increasing j, we introduce the

asymptotic efficiency rates p;,

pi= /0000, j=0,....21,

(1.1)

where 07 denotes the algebraic error after v iteration steps and the triangu-

lations 7y, ..

., 51 are obtained by further adaptive refinement. We choose

vy such that 5}-’0 < 10.7'2. The results are shown in Figure 5.5. Observe
the fast increase of the asymptotic efficiency rates of STDKH on level 4,
reflecting the poor representation of the low—frequency contributions of the

error.
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Figure 5.5 Asymptotic efficiency rates

However, the asymptotic efficiency rates of both multigrid methods seem
to saturate with increasing j. It is not astonishing that our asymptotic es-
timates contained in the Theorems 3.10 and 3.11 are too pessimistic as
compared with these calculations, because the regularity of the actual prob-
lem did not enter our theoretical considerations. Starting with u? = 0, the
number of transient iteration steps becomes larger with increasing j. How-
ever, the transient convergence rates also seem to be uniformly bounded,
suggesting the existence of global bounds for the convergence rates. A theo-
retical verification of these experimental results will be the subject of future
research.

5.1.3 The A Posteriori Error Estimates

We now give a comparison of the local error estimate (cf. Theorem 4.3),
as used above, and of an error estimate based on nonlinear iteration (cf.
Theorem 4.5). As a nonlinear iteration, we chose the truncated monotone
multigrid method with symmetric smoother (cf. Section 4.1.3).

The quality of the a posteriori error estimates | ég | of the approximation
error ||u — @;|| on refinement level j is measured by the effectivity indices

rj=leal/llw—all, 5=1,....8. (1.2)

We will replace the exact solution u appearing in (1.2) by the approximation
4 resulting from two uniform refinements of the final triangulation 7g.
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Figure 5.6 Effectivity indices of the approximation error estimates

Figure 5.6 shows the effectivity indices for the local and the iterative er-
ror estimate, denoted by LOCAL and ITERATIVE, respectively. Both a
posteriori error estimators work satisfactory throughout the approximation.
Hence, in this example, the additional computational effort for the itera-
tive error estimate does not pay off. Note that the local error indicators
derived from the iterative estimate also provide almost the same sequence
of triangulations as obtained above.

We finally check the stopping criterion for the iterative solution based on
the estimate [|a; — u}®|, @; = u}-’OH, of the algebraic error [ju; — u}°|. The
performance of this error estimate relies heavily on the quality of the applied
iterative solver (cf. Theorem 4.6). In the light of the fast convergence of
the truncated monotone multigrid method, the resulting algebraic effectivity

indices
rj = ||t — w|/lluj — i, j=0,...,8, (1.3)

can be expected to be close to 1. In fact, we found x; ranging from 0.91 to
1.0. Using the standard version, we sometimes observed a slight underesti-
mation of the true error with x; taking values from 0.39 to 1.0. Note that an
underestimation of [lu; — u;°[| can still be compensated by the final correc-
tion. In this example, we found that, for both monotone multigrid methods,
the algebraic error of the resulting final iterate u; = ! was always less

J
than the desired tolerance 0.050 410 appllu; |-
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5.2 A Strongly Reverse Biased p-n Junction

Though the membrane problem is very popular as an introductory example,
it scarcely occurs in real-life applications. In order to illustrate the impor-
tance of obstacle problems from a more practical point of view, we now turn
to a problem from semiconductor device simulation.

We consider a device occupying the domain  C R? whose stationary be-
havior can be described by the well-known drift—diffusion equations (see e.g.
van Roosbroeck [107])

—V - (eVu) = q(N —n +p),
V- J, =qR, Jn = q(DpnVn — ppnVu), (2.4)
V.- Jp=—qR, Jp = —q(DpVp — pppVu),

where usually the electric potential u and the carrier concentrations n and
p for electrons and holes are unknown, while the permittivity ¢, the doping
profile IV, the elementary charge ¢, the electron and hole diffusivities D,
and D, the electron and hole mobilities p, and p,, and the generation—
recombination rate R are given parameters of the problem. The boundary
0) consists of (ohmic) contacts 0Qp = 082, U 9, and insulating segments
0. This is reflected by Dirichlet boundary conditions for u, n, and p on
0f1p and vanishing electric field —Vu and current densities J,,, J, on 0Qy.
There is a vast literature on the merits and limits of this model. We refer for
example to Selberherr [111] or Markowich, Ringhofer and Schmeiser [94]. It
will turn out that the nonlinear system (2.4) can be considerably simplified
under strongly reverse bias conditions.

Let us consider a p-n junction separating a p-region (where N < 0) from
a n-region (where N > 0) as shown for example in Figure 5.7. For the
moment, we ignore the insulating oxide region on the top of the device.
Assume that the reverse voltage —u, is applied at the anode, while the
voltage at the cathode is kept zero. Then the carriers are driven away from
the neighborhood of the p-n junction leaving a depletion area g, where
ideally no carriers are present. In €2; the potential v is bounded by the
applied voltage so that we have

n=p=0, —u,<u<0 in Qg. (2.5)
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cathode 09,

Figure 5.7 A reverse biased p-n junction

The depletion area separates the remaining parts 2, and €. of the silicon
where u is equal to —u, and 0, respectively. For large u, the total depletion
assumption

n=0, p=-N, Vu=0 in Qg,

(2.6)
n=N, p=0, Vu=20 in Q,

holds. Inserting (2.5) and (2.6) in the drift—diffusion equations (2.4), we
obtain

U= —Ugq in Qg,
-V . (eVu) =¢gN in Qg, (2.7)
u=0 in Q.

It is reasonable to assume that the potential v and the electric displacement
—eVu are continuous across the interior (free) boundaries I', = Q, Ny and
. =Q.NQ,, giving

U= —Ug, Vu-np,=0 on I'y,
(2.8)
u =0, Vu-nr, =0 on I'.,
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with np, and nr, denoting normals on €2, and €., respectively. Because there
are no carriers in the oxide anyway, we only have to require the continuity of
u and —eVu across the interface in order to extend this model to the whole
device. Finally, © must satisfy the boundary conditions mentioned above.

We have derived the classical formulation of a double obstacle problem for
the linear elliptic operator —V - (¢V-) with the constant obstacles —u, and
0 (see e.g. Rodrigues [105]). The corresponding weak formulation is given
by our reference problem (1.2.33) setting

a(v,w) :/EVU-Vw dz, 6(1}):q/ Nv dz,
Q Q

and ® = x[_,, q is the characteristic function of the interval [—uq,0]. The
solution space is given by H = {v € HY(Q) | v|oq, = Ua, v|oa, = 0}.

This simplified model was proposed by Hunt and Nassif [76]. Using an ap-
propriate scaling, the drift—diffusion equations (2.4) become singularly per-
turbed as u, — oo. Then the simplified model is recovered as the correspond-
ing reduced problem. We refer to Markowich, Ringhofer and Schmeiser [94]
for further information.

Large peaks of the electric field may cause impact ionization which in turn
leads to an avalanche breakdown in the device. In order to improve the block-
ing capability, high voltage p-n junctions are often equipped with multistep
field—plates (see e.g. Feiler and Gerlach [54]). The most time-consuming
part in the optimal geometrical design of such field—plates is the numeri-
cal solution of the obstacle problem. This motivates the application of fast
solvers. As the electric field —Vu and not w itself is of primary interest in
this application, mixed methods might be an interesting subject of future
research (see e.g. Wohlmut [121] for the linear selfadjoint case).

In the following numerical example, we will concentrate on the geometry
depicted in Figure 5.7. The height of the device is 160um and we apply
a reverse voltage of —u, = —800V at 0€2,. The doping concentration has
the values N = —107e¢m ™2 in the p-region and N = 8- 102em ™3 in the
n-region, respectively. ¢ = 1.602 - 10712 As is the elementary charge. The
permittivity is given by ¢ = go&, with g = 8.854 - 10714 As/Vem and we
have e, = 11.7 in the silicon and ¢, = 3.9 in the oxide, respectively. Note
that in most real-life applications the p-region is about ten times thinner
and the steps of the field plate are much lower. We will come back to this
point later on.
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5.2.1 The Adaptive Multilevel Method

We employ the same adaptive algorithm as in the previous example, using
the truncated monotone multigrid method and the local a posteriori error
estimate. The initial triangulation is depicted in Figure 5.8.

After 9 adaptive refinement steps, the algorithm has produced the final trian-
gulation 7g which is shown in the left picture of Figure 5.9. The right picture
illustrates the final solution 7g. Again the free boundaries are marked by

Figure 5.8 Initial triangulation 7o

ik

Figure 5.9 Final triangulation 79 and final approximation g

bold lines. Observe that the level curves of g reflect the jump of the electric
field resulting from the jumping permittivity across the silicon/oxide inter-
face. The refinement concentrates on the peak of the electric field at the end
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of the p-region while the free boundaries are only roughly approximated.
This is in accordance with the construction of the error indicators which
are intended to provide an efficient reduction of the energy error. In this ex-
ample, such behavior is desired from the physical point of view. While the
peaks of the electric field give some information on the breakdown voltage
and thus have to be resolved properly, the actual free boundary is of minor
interest. This may be different in other examples and we will come back to
this point later on.

Level | Depth | Nodes | Iterations | Error %
0 0 21 8 32.3
1 1 74 4 21.3
2 2 178 4 16.0
3 3 311 3 13.3
4 4 424 3 10.7
5 ) 870 3 7.9
6 6 1193 2 6.7
7 7 1538 2 5.8
8 7 2193 2 5.1
9 7 2796 2 3.2

Table 5.2 Approximation history

The complete approximation history is reported in Table 5.2. On the first
refinement levels, we need some more iterations because the nonlinear Gauf3—
Seidel method is no longer an exact solver on the initial grid. Later on
(where each step is 100 times more expensive), the number of iterations is
as moderate as in our first example. Again the estimated approximation
error seems to behave like (’)(nﬁl/ 2). Only in the beginning and on the final
level do we get a slightly faster reduction than expected.

5.2.2 The Monotone Multigrid Methods

As in our previous example, we first apply the truncated monotone multi-
grid method (TRCKH) and the standard version (STDKH) to the discrete
problem arising on the final level j = 9.

The iteration history corresponding to the initial iterate u? = ( is shown in
Figure 5.10. For both methods, the asymptotic convergence speed is almost
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Figure 5.10 Iteration history: Initial iterate u; = 0
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Figure 5.11 Iteration history: Interpolated initial iterate

4 times slower than above (cf. Figure 5.3). Starting with the interpolated
initial iterate from the previous refinement level, we obtain the iteration
history depicted in Figure 5.11. After a fast reduction of the high—frequency
contributions, the iterations enter the asymptotic phase directly.

In order to illustrate the convergence behavior for increasing refinement, we
consider the asymptotic efficiency rates p;, j = 0,...,24, defined accord-
ing to (1.1). The results are shown in Figure 5.12. This time, the effect of
truncating the search directions is not as drastic as in our first example
(cf. Figure 5.5). Again the asymptotic efficiency rates seem to saturate with
increasing j.

All together, the constraints seem to be of minor importance for the whole
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Figure 5.12 Asymptotic efficiency rates

iterative solution process. In fact, neglecting the obstacles and using a stan-
dard linear multigrid method with an exact solver on the coarse grid, we
observed similar unsatisfying convergence rates. The reason is the geometry
of Q. To resolve the flat p—region, we either have to accept a large number
of triangles in 7y or bad aspect ratios. Both properties are well-known to
deteriorate the convergence speed of multigrid methods even in the linear
selfadjoint case. We cannot expect monotone multigrid methods to do bet-
ter. It should be mentioned that the p—region is usually much thinner and
the resulting geometric difficulties are more severe. A possible remedy is
blue refinement (cf. Kornhuber and Roitzsch [86, 87]) in connection with a
special type of grid generator (cf. Roitzsch and Kornhuber [106]).

Similar situations frequently occur in other practical applications, motivat-
ing the adaptive resolution of the computational domain (cf. e.g. Kornhuber
and Yserentant [88]) or the coarsening of a given fine mesh (cf. e.g. Bank
and Xu [11], Chan and Smith [38], or Hackbusch and Sauter [67]). In this
context, algebraic approaches also have become very popular. All these ad-
vanced multigrid techniques for selfadjoint linear problems can be combined
with the nonlinear techniques developed above.

5.2.3 The A Posteriori Error Estimates

As in the previous example, we compare the local error estimate with the
iterative error estimate generated by the truncated monotone multigrid
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method with symmetric smoother. Again, the quality is measured by (ap-
proximations of) the efficiency indices ; (see p. 118). The results depicted in
Figure 5.13 are better than one might have expected. Neither the (moderate)
jump in the coefficients nor the aspect ratios have affected the performance
of the error estimators. Moreover, the initial grid is fine enough to provide
excellent estimates throughout the approximation. Again, we did not take
advantage of the robustness of the iterative error estimate.

Fe—4—%k LOCAL

10 (O—5—O ITERATIVE

effectivity index
o

T T T T T
1 10 102 103 104

number of unknowns

Figure 5.13 Effectivity indices of the approximation error estimates

In order to check the reliability of the stopping criterion for the iterative
solution, we again consider the algebraic effectivity indices introduced in
(1.3). As compared to the previous example, the slower convergence of the
truncated monotone multigrid method leads to less accurate estimates of
the algebraic error. The algebraic effectivity indices range from 0.37 to 0.55.
However, on the last three levels, this underestimation is still compensated
by the final correction step. We got similar results for the standard version.

5.3 Continuous Casting

Continuous casting is used in the steel industry for the rapid production of
ingots. The essential features of the process are illustrated in Figure 5.14.
The molten steel runs from a ladle into a water—cooled mold. After sufficient
solidification at the surface, the product enters a secondary cooling region
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where it is further cooled down by water sprays. After complete solidifica-
tion, the ingot is cut off at a certain distance.

spray cooling @ @

solid
HMONO,

Figure 5.14 Schematic representation of continuous casting

Proper control of the cooling conditions in the mold and in the spray region
is crucial for the whole process. Insufficient cooling may leave a liquid kernel
at the cut—off point and cause a lot of damage. On the other hand, too much
cooling may lead to cracks in the material and this may be even worse. Tests
of suitable configurations on a production machine are extremely costly,
motivating the numerical simulation of the whole process.

For given cooling conditions, we are interested in the stationary temper-
ature distribution 6(x1,x9,x3). The coordinates x1, xo describe the cross
section §2 of the bar and x3 measures the distance from the beginning of
the mold. Assuming constant casting speed veqst, we introduce the Lagrange
coordinates

x(t) = (1’1,1’2,1’3(t)), 1’3(15) = Vcastt-

Neglecting the heat conduction in the withdrawel direction x3, the temper-
ature 0 = 6(x(t),t) then satisfies the heat equation

p%f:(e) LV (ROVO) =0  inQ (3.9)
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for all 3. With reference to Section 1.1.2, p denotes the density, £ is the
specific internal energy, and & is the thermal conductivity of the steel. Recall
that £ may be set—valued. In this formulation, the time ¢t = v_, 423 is nothing
but a scaled space. Hence, the solution 6(z1,x2,t) of (3.9) can be interpret-
ed as the desired stationary temperature distribution (1, z2, v 23) with

respect to fixed spatial coordinates.

In the mold and in the spray region, heat is extracted by convection and
conduction, giving rise to the Cauchy boundary conditions

—5(0) 20 = Geoot(0 — Oeool) on 99, (3.10)

where n denotes the outward normal on 9€2. The heat transfer coefficient
Qeool Can be directly related to the rate of cooling water in the mold and
in the sprays, respectively (cf. Laitinen and Neitaanméki [89]) and 6.0
is the outward temperature. For the optimal control of g..., we refer to
Neitaanmaéki and Tiba [97] and literature cited therein. After the spray re-
gion, cooling takes place by radiation according to the Stefan—Boltzmann
law. This leads to an additional piecewise smooth nonlinearity in the prob-
lem. We will not discuss this additional difficulty here, but refer to a related
situation occurring in the final example.

Following Section 1.1.2, we now apply a standard Kirchhoff transformation
U = K(#) and a time discretization by the implicit Euler method to the
parabolic problem (3.9). A weak formulation of the resulting spatial prob-
lems is given by

U; € Hl(Q) : (Wz;l,v)LQ(Q) — TZ'(VUZ‘,VU)L2(Q) €
(H(UZ)7 U)LQ(Q) + Ti(Qcool(K_l(Ui) - Hcool)’ U)LQ((?Q)a Vv € Hl(Q)a

where H = p&£(K~1(-)) is the normalized enthalpy, U; ~ U(t;) approximates
the solution at time ¢;, 7; denotes the actual step size, and W;_; € H(U;_1)
is a selection from the preceding time level.

As an outcome of the Cauchy boundary conditions, the spatial problems
contain the additional nonlinearity K ~1(U;). Assuming that (6) is piecewise
constant, the inverse Kirchhoff transformation K ! is a piecewise linear
function. As the thermal conductivity is known to vary only moderately
with 0, it is reasonable to use the explicit linearization

C(Ui_l) + b(Ui_l)Ui ~ K_l(UZ’) = C(UZ) + b(UZ)UZ
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This leads to spatial problems of the form
uwe H: L) —a(u,v) € (H(u),v)2), YveEH, (3.11)
where we have set u = U;, H = H*(Q), and

a(v,w) = 7i(Vv, Vw) r2(0) + Ti(Geootd(Ui-1)v, w) 12 (00),
() = (Wie1,9)12(0) — Ti(Geoot (c(Ui-1) = Ocool), V) £2(562)-

Multigrid methods for the efficient solution of discrete analogues of (3.11)
have been proposed by Hoppe and Kornhuber [73, 74] and Hoppe [72]. In
their algorithms, the coarse grid correction is performed separately in each
phase, leading to a poor coarse grid transport in comparison with truncated
monotone multigrid methods (see Kornhuber [83]). Adaptive techniques for
the two—phase Stefan problem have been developed by Nochetto, Paolini,
and Verdi [98, 99]. Their local error indicators concentrate exclusively on
the efficient resolution of the moving boundary. The resulting refinement
strategy contains a considerable number of parameters.

Recall that (3.11) can be regarded as a special case of the reference prob-
lem (1.2.33). We emphasize that the completely implicit treatment of the
nonlinearity K ~(U;) leads to a straightforward extension of our approach
to convex functionals of the form ¢(v) = [ ®1(v)dr + [5q P2(v)do. This
would also include problems of Signorini type.

In our numerical simulation, we consider a production machine with a mold
of length 0.60 m, spray cooling takes place for further 6.00 m, and the cross
section 2 of the ingot is shown in the left picture of Figure 5.15. The length of
the horizontal edges of €2 is 0.1 m and the casting speed is veqst = 0.05 m/s.

We consider the production of steel with carbon content 0.12%. Following
[117], the density is given by p = 7.3-103kg/m? and the volumetric enthalpy
pE(0) is shown in the right picture of Figure 5.15. Observe that p& exhibits
a large jump at the melting temperature 6, = 1500 °C, but there are also
small jumps occurring at 1470 °C' and 1480 °C, respectively. This leads to a
multiphase Stefan problem. For simplicity, we use the constant thermal con-
ductivity k = 0.175 kW /m °C in the liquidus 6 > 6, and k = 0.05 kW /m °C
in the solidus 8 < 6..

The cooling conditions are described by qeor = 1.5 kW/m?2 °C, Oppe =
80 °C' in the mold region and qeoe; = 1.0 kW/m? °C, 0.0 = 27 °C' in the
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Figure 5.15 Cross section €2 and enthalpy p€

spray region. Of course, one could also use more sophisticated functions geeo;
(cf. e.g. Laitinen and Neitaanmaki [89]).

We start our computation at ¢ = 0, i.e. at the beginning of the mold, as-
suming the constant initial temperature 6(z,0) = 1501 °C. Our simulation
ends at T' = 132s, corresponding to the end of the spray region. We choose
the step size 7, = 1s in the mold and 7; = 3s in the spray region, respec-
tively. Of course, 7; should be selected automatically based on a posteriori
error estimates (see e.g. Bornemann [23, 24, 25]). This is a subject of current
research.

5.3.1 The Adaptive Multilevel Method

The solution of the spatial problems (3.11) is carried out by the same adap-
tive algorithm as in the preceding examples, using the truncated monotone
multigrid method (cf. Theorem 3.11) and the local a posteriori error es-
timate (cf. Theorem 4.3). Starting with the initial triangulation depicted
in Figure 5.1, we successively approximate the curved boundary of € by
moving the midpoints of all refined edges that lie on the approximating
polygonal boundary to the exact boundary arc 9€2. It is known for the lin-
ear self-adjoint case that such a modification does not affect the quality of
the multigrid convergence rates (cf. Bramble and Pasciak [32]).

Collecting the results from all spatial problems, we can compose the three—
dimensional stationary temperature distribution in the ingot. The profile
along a diagonal is shown in Figure 5.16. The initial temperature of 1501 °C
is cooled down to 1203 °C' in the interior and to 512 °C at the vertices.
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Observe that complete solidification takes place just before the end of our
simulation. Particularly in the spray region, a more accurate resolution of
the solid/liquid interface can be obtained by smaller time steps.

Figure 5.16 Stationary temperature distribution in the ingot

In order to illustrate the behavior of our adaptive algorithm, we consider
the time level t15 = 12s (at the end of the mold) and the last time level
tso = 132s (at the end of the spray region) in more detail. The resulting final
triangulations 714 and 7g together with the level curves of the corresponding
final approximations 414 and g are depicted in Figure 5.17 and Figure 5.18,
respectively. Recall that, in this chapter, the subscripts denote the number
of refinement steps.

At the end of the mold, the width of the solid region is almost lem. The
refinement concentrates on the three interfaces, reflecting the jumps of p&,
and on the boundary 92, where the cooling takes place. These are the two
essential features of the whole process. In the liquid region, the approximate
solution is almost constant. Hence, there is as little refinement as possible.

At the end of the spray region, the solid region covers the whole cross section
Q) so that the last spatial problem reduces to a linear variational equality.
The adaptive algorithm produces an almost uniformly refined final triangu-
lation 7g.

We now compare the approximation histories shown in Table 5.3 and Ta-
ble 5.4, respectively. At first sight, we observe a much larger number of
refinement steps in the nonlinear case. One could easily reduce this addi-
tional computational effort for the adaptive location of the interfaces by
simple heuristics. We will come back to this point in the final example.

Kornhuber 31 Jan 2006 10:03



5.3 Continuous Casting 133

-

Figure 5.17 Final triangulation 716 and final approximation @16 at the end of the mold

8

Figure 5.18 Final triangulation 7g and final approximation s at the end of the sprays

The spatial problems (3.11) are singularly perturbed with respect to the
time step size 7; so that it may be dangerous to measure the spatial error
in the energy norm. This explains the severe overestimation of the true
approximation error on the first refinement levels. Following Bornemann

[23, 24, 25] it is more appropriate to measure the error in a scaled norm
of the form |v| = (Flr(UW)LQ(Q) + 1+LTa(v,v))1/2 which makes sense for
7 — 0 and 7 — oco. A posteriori error estimates in such norms follow directly

from the results in Chapter 4.
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Level | Depth | Nodes | Iterations | Error %
0 0 5 2 16577.7
1 1 13 2 6455.0
2 2 37 2 1374.1
3 3 121 2 349.1
4 4 305 2 117.1
5 5 373 2 81.4
6 6 468 3 62.8
7 6 879 3 42.0
8 6 1077 3 30.7
9 7 1416 3 22.2
10 7 1798 3 17.0
11 7 2493 3 13.3
12 8 3149 2 10.0
13 8 4141 2 8.3
14 8 5857 2 6.7
15 9 8313 2 5.5
16 9 10185 2 4.7

Table 5.3 Approximation History at the end of the mold

Level | Depth | Nodes | Iterations | Error %
0 0 5 2 1503.3
1 1 13 2 412.3
2 2 37 2 102.5
3 3 125 2 29.5
4 4 337 2 13.4
5 ) 709 2 8.2
6 6 873 2 6.6
7 7 1311 2 5.4
8 7 1689 2 4.6

Table 5.4 Approximation History at the end of the sprays

As in the previous example, we observe an asymptotic error reduction of at
least O(ngl/ 2) for both spatial problems. There is also not much difference
concerning the number of iterations, which can hardly be reduced.
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5.3.2 The Monotone Multigrid Methods

In order to compare the standard and the truncated version of our monotone
multigrid methods, we consider the discrete spatial problem arising on time
level t15 = 12s (at the end of the mold) in more detail.
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number of iterations
Figure 5.19 Iteration history: Initial iterate u? =0
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104 G-6-OsToKH

algebraic error
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number of iterations

Figure 5.20 Iteration history: Interpolated initial iterate

As in the preceding examples, we first apply both methods to the discrete
problem on the final refinement level j = 16, choosing the initial iterate

u? = 0. The resulting iteration history, depicted in Figure 5.19, reminds us

Kornhuber 31 Jan 2006 10:03



136 5 Numerical Results

of the related experiment for the membrane problem (cf. Figure 5.3). As
usual, we observe a leading transient phase reflecting the nonlinearity of
the problem, followed by an asymptotic phase corresponding to the reduced
linear case. Again, the asymptotic convergence rate of the standard version
(STDKH) suffers from poor coarse grid transport as compared with the
truncated monotone multigrid method (TRCKH).

Starting with the interpolated solution from the previous level, we obtain
the iteration history illustrated in Figure 5.20. In this case, the transient
phase is completely skipped.
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Figure 5.21 Asymptotic efficiency rates

To illustrate the convergence behavior for increasing refinement, we consider
the asymptotic efficiency rates p;, j =1,...,16, defined according to (1.1).

\ [ ti=1s | ts =65 | tio =125 | t30 =725 | t50 = 1325 |
TRCKH [ 019 | 0.20 0.19 0.11 0.08
STDKH | 045 | 053 0.51 0.32 0.08

Table 5.5 Asymptotic Efficiency rates on various time levels

The results are shown in Figure 5.21. The efficiency rates of STDKH and
TRCKH are the same for 57 = 0,1,2,3, because on these grids the solid
region is not yet resolved. Then, STDKH exhibits a slow but steady increase
of p; while for TRCKH the efficiency rates seem to saturate at about 0.3.
Table 5.5 displays the asymptotic efficiency rates for various time levels g
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and the corresponding final triangulations. The number of nodes decreases
from almost 3 - 10* for #; = 1s to about 4 - 10° on the last time level. For
the remaining spatial problems, we obtained similar results.

5.3.3 The A Posteriori Error Estimates

Again, we consider the spatial problem arising at ;5 = 12s. This time,
we compare the local error estimate (cf. Theorem 4.3) with the iterative
error estimate generated by the truncated monotone multigrid method with
symmetric smoother (cf. Theorem 4.5).

*—#—% LOCAL

104 G—E—O ITERATIVE

effectivity index

T
1 10 102 103 104

number of unknowns

Figure 5.22 Effectivity indices of the approximation error estimates

The corresponding (approximate) effectivity indices are computed in the
same way as before (see p. 118) and the results are shown in Figure 5.22.
As already mentioned above, the local error estimator considerably overesti-
mates the true error on the leading coarse triangulations. However, we obtain
much better results on higher levels. The second error estimator based on
nonlinear iteration is much more robust. This approach benefits from the
more careful decoupling of the discrete defect problems using also the off—
diagonal elements of the stiffness matrix. We observed very similar results
on the other time levels, particularly for the linear problem at t50 = 132s.

As a consequence of the very fast convergence of the monotone multigrid
methods, we found very satisfying algebraic effectivity rates, ranging from
0.79 to 1.0 for the truncated monotone multigrid method and from 0.67 to
1.0 for the standard variant.
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5.4 The Porous Medium Equation

In our final example, we consider the degenerate parabolic differential equa-
tion

0 .
Sp=ABA o, (4.12)

describing the adiabatic flow of a homogeneous gas with density p through
a porous medium (cf. Section 1.1.3). Elliptic—parabolic problems arising for
example in nonstationary filtration can be treated in a similar way.

As outlined in Section 1.1.3, we first use the Kirchhoff-type transformation
p = P(U) to reformulate (4.12) as the differential inclusion (1.1.30) which is
then discretized by an implicit Euler scheme providing the spatial problems

we H: L) —a(u,v) € (Pu),v)2), YveH, (4.13)

where u = U; approximates the solution on the time level ¢;, the solution
space H incorporates the essential boundary conditions, and we have set

a(v,w) = TZ‘/ Vu-Vwdz, ((v) :/ Wi_jv dz
Q )

with 7; denoting the time step size and W;_; being a selection of the nor-
malized enthalpy from the preceding time level.

Choosing ® in such a way that 0® = P, we have to solve a minimization
problem of the form (1.2.33) in each time step. However, in contrast to the
preceding examples, such a function ® is not piecewise quadratic so that we
cannot apply our monotone multigrid methods directly. One possible remedy
is the piecewise linear approrimation Pyr of P which should be performed
in such a way that the finite speed of the free boundary is preserved.

To derive such an approximation Pps, we introduce the grid points 6; =
(e—=1) /M), i=1,...,M. For z > 6, the values Pys(z) are obtained by
piecewise linear interpolation of P(6;), ¢ = 2,..., M. In the initial interval
(01,02), we use the linear extrapolation from (62, 03), giving a positive value
Hy > 0 at #; = 0 as illustrated in Figure 5.23. This leads to the approxima-
tion Ppr(0) = [Hy, —o0) D P(0) = [0,00) at the singularity z = 0, which is
crucial for the finite speed of the discrete free boundary.
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//V e

0,0, 05 63 0, U

Figure 5.23 Approximation Pys of P

The accuracy of this approximation was checked numerically for a two—
dimensional analogue of the Barenblatt solution (cf. e.g. Jager and Kacur
[77]). Moreover, in most situations of practical interest, the crucial function
P itself can be determined only approximately, for example by the fitting
of experimental data. Hence, using Pjs instead of P can be justified from
a practical point of view. Nevertheless, a tempting alternative to this a
priori linearization is to extend monotone multigrid methods to functionals
¢ which are not piecewise quadratic but piecewise smooth. This will be the
subject of a forthcoming paper.

Other discretizations of (4.12) were studied by Berger, Brézis and Rogers [21],
Magenes, Nochetto and Verdi [91], and Nochetto and Verdi [100]. Such linear
schemes do not preserve the finite speed of propagation of perturbations. As
a consequence, sharp layers occurring in the exact solution may be smeared
out in course of the approximation. This problem was remedied by Jéger
and Kacur [77] at the expense of an additional fixed point iteration for each
nodal point. We refer to Bénsch [14] for numerical experiments. Damped
Newton-like linearizations in connection with regularization techniques and
a multigrid solution of the linear sub—problems have been proposed by
Fuhrmann [59, 60].

In our numerical experiment, we choose m = 2, § = 1, and the initial
condition

1/2

po(z1,29) = [0.4 —r¥(1+ O.5sin(14ap))} .
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Figure 5.24 Initial density distribution po

with 7 = (234 23)"/? and ¢ = atan(zy/z1). The level curves of py are shown
in Figure 5.24. We consider the spatial domain €2 = (0,1) x (0,1) and the
time interval (0,7') = (0,0.05), using the uniform time step size 7 = 1/800.
Homogeneous Dirichlet conditions are prescribed at 1 = 1, xo = 1 and
we impose homogeneous Neumann conditions at x; = 0, z9 = 0. For the
approximation Pys of P, we choose M = 100.

5.4.1 The Adaptive Multilevel Method

The spatial problems (4.13), with P replaced by Py, are now solved ap-
proximately by our adaptive algorithm. Due to the a priori linearization,
these problems involve a very large number of phases.

As the optimal resolution of the free boundary is of prominent importance
for the proper approximation of the density p, we additionally refine all
triangles satisfying 0 < @j(p) < 1075 for at least one vertex p. As our
discretization provides discrete solutions with compact support, there will be
no refinement in the unsaturated phase. In order to limit the computational
costs, we prescribe the maximal refinement depth dye, = 8.

Apart from these modifications, we use the same adaptive multilevel algo-
rithm as in the preceding examples incorporating the truncated monotone
multigrid method and the local a posteriori error estimate. The initial tri-
angulation 7 is taken from our first example (see Figure 5.1).
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Figure 5.25 Final triangulation 7g and final approximation ig for the first time step

N A

AN

Figure 5.26 Final triangulation 7s and final approximation ug for the last time step

In order to illustrate the behavior of the adaptive algorithm, we consider the
first lime level ¢1 and the last time level t49 in some detail. The final trian-
gulations and the corresponding final approximations are shown in Figures
5.25 and 5.26, respectively. As intended, the nodal points are concentrated
in the neighborhood of the approximate free boundary. The triangulations
reflect the smoothness of the solution in the saturated phase. Both grids are
as coarse as possible where the density is zero. Observe that the discretiza-
tion preserves steep gradients at the interface while the interface itself is
smoothed.
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The corresponding approximation histories are shown in Table 5.6 and Ta-
ble 5.7, respectively. Recall from the previous example that the semi—discrete
problems (4.13) may become singularly perturbed for small time steps.
Hence, it is not astonishing that the approximation error is again heavi-
ly overestimated on the first levels. This motivates error estimates in other
norms such as the L?-norm or the scaled norm introduced above (cf. p. 133).
As adaptive refinement is now based on local error indicators and additional
heuristic criteria, we can no longer expect an O(n;) behavior of the approxi-
mation error. In fact, the error is reduced very slowly with increasing refine-

Level | Depth | Nodes | Iterations | Error %
0 0 2 1 11225.0
1 1 8 2 8660.3
2 2 29 3 1542.7
3 3 104 3 206.4
4 4 349 3 77.8
5 5 850 4 36.1
6 6 1976 4 27.1
7 7 3996 3 25.7
8 8 8143 3 22.9

Table 5.6 Approximation history for the first time step

Level | Depth | Nodes | Iterations | Error %
0 0 2 2 14071.2
1 1 8 2 2687.0
2 2 32 2 371.4
3 3 116 2 66.8
4 4 298 2 66.2
5 ) 660 2 48.4
6 6 1325 2 32.2
7 7 25b5 2 24.0
8 8 5113 2 19.8

Table 5.7 Approximation history for the last time step

ment so that the prescribed accuracy of 5.% is not reached within the max-
imal number of d,,.; = 8 steps. In spite of the strong nonlinearity of the
problem, the number of iterations still remains very moderate. This illus-
trates the robustness of our multigrid approach.
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5.4.2 The Monotone Multigrid Methods

We perform the same experiments as above (with very similar results). Let

Fr—Ak—*k TRCKH
104 (O—6—6 STDKH
107
g
@
-5 107
5
)
&
o
107
107"
] 5 10 5 20 25 30
number of iterations
Figure 5.27 Iteration history: Initial iterate u? =0
Fr—Ak—*k TRCKH
104 (O—6—6 STDKH

algebraic error

0 5 10 15 20 25 EY
number of iterations

Figure 5.28 Iteration history: Interpolated initial iterate

us consider the discrete spatial problem arising in the first time step on
the final refinement level j = 8. Starting with the initial iterate u? = 0,
we obtain the iteration history depicted in Figure 5.27. As compared to the
Stefan problem, the much larger number of phases causes a larger number of
leading transient steps but does not affect the rapid asymptotic convergence
of the truncated version. Figure 5.28 shows the performance of the multigrid
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algorithms in case of the interpolated initial iterate. In contrast to the pre-
ceding examples, the transient phase does not vanish completely. However,
even the transient convergence is considerably faster taking advantage of
the fast reduction of the high frequencies and of the small time step. For
larger time steps, we observed similar asymptotic convergence rates as in
the previous example.

To illustrate the convergence behavior for increasing j, we computed the
asymptotic efficiency rates p; according to (1.2). The results are shown in
Figure 5.29. The increasing efficiency rates of the truncated version reflect
the increasing number of transient iteration steps. Again, this can be ex-
plained by the large number of phases. Table 5.8 displays the asymptotic

F—#—k TRCKH

1 G—6—O STDKH
0.9
0.8
0.7
0.6
05
0.4
0.3

0.2

asymptotic efficiency rate

0.1

T T
1 10 102 103 104 108

number of unknowns

Figure 5.29 Asymptotic efficiency rates

efficiency rates for other times ¢, and the final refinement level j = 8. Similar
results were obtained for the remaining time steps.

\ [ ts =0.01 | t16=0.02 | to4 = 0.03 | t30 = 0.04 | t4o = 0.05 |
TRCKH || 0.10 0.14 0.11 0.08 0.09
STDKH || 0.43 0.37 0.35 0.34 0.35

Table 5.8 Asymptotic efficiency rates for various time steps

5.4.3 The A Posteriori Error Estimates

We briefly discuss the behavior of the error estimates for the first time step
which again is typical for the remaining spatial problems. The (approxi-
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mate) effectivity indices (cf. p. 118) of our local and iterative estimates of
the approximation error are shown in Figure 5.30. As already mentioned

Fe—ske—k LOCAL

10 (O—G—O ITERATIVE

effectivity index
T
o

T
1 10 102 103 10

number of unknowns

Figure 5.30 Approximation error estimates

above, the local error estimate should be used carefully on coarse trian-
gulations, but has very satisfying asymptotic properties. Again, the (more
expensive) iterative error estimate provides much better results throughout
the approximation.

For the truncated monotone multigrid method, the algebraic effectivity in-
dices are varying from 0.68 to 1.1 and we observed similar results for the
standard version.
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Notation
c,C,e1,Ch,. ..

R

x = (x1,22)
Q, 00
L*()

|- 1lz2 @)
0;, V

HY(Q)

generic positive constants, usually not the same at different
occurences

real numbers
elements of R2
polygonal domain 2 € R? with boundary 9

Hilbert space of measurable, square integrable functions on
the domain

norm on L(Q): ||v||2) = fov* dz

generalized partial derivative 9; with respect to z; and gra-

dient Vv = (91v, d20)

Hilbert space of functions in v € L?(2) with first order
derivatives 9;v € L2(Q2), i = 1,2.

norm in f'(9): [0l g1 )= (HUH%2(Q)+Zi=1,2 HaiUH%2(Q))1/2

convergence in H if not otherwise stated

space of infinitely differentiable functions with compact
support in €2

closure of C§°(9) in H(Q)

solution u and solution space H of the minimization prob-
lem (1.2.33), p. 22

elliptic bilinear form a(v,v) and energy norm |[v||, p. 22
quadratic energy functional, p. 22

scalar convex function with properties (V1), (V2) and (V3)
or (V3), p. 23

non—-smooth convex functional generated by &, p. 22



8o, OB
Tj, Nj, &
N

?;

Aj’ )‘I(7j)
uj

uj

P

Notation 157

subdifferentials, p. 32
triangulation 7; with interior nodes N; and edges &;, p. 37

space of piecewise linear finite elements with respect to the
triangulation 7, p. 37

approximation of ¢ with respect to S, p. 37

nodal basis A; of §; with elements )\éj), p- 37

solution of the discrete minimization problem (1.3.57),
p. 37

smoothed iterate, p. 52

sequence of search directions (M"),>o with elements pf,
see conditions (M1), p. 51, and (M2), (M3), p. 60

subdifferential of ¢; in direction of y, p. 50, 55
monotone approximation of 9®;, p. 56

discrete phase J\/]’(v) and critical nodes N7 (v) of v € S},
p- 99

reduced subspace of S;, p. 63

multilevel nodal basis As in §; and corresponding search
directions A = (A, As), p. 69

local linearization of ¢; at ;, p. 62, 70

bounds for the neighborhood of %; in which the local lin-
earization is valid, p. 70

lower and upper bounds for the local corrections, p. 72

monotone restrictions, p. 74

truncated nodal basis Ag of S; with elements Xé,j ), p. 79

space of piecewise quadratic finite elements with respect to
the triangulation 7;, p. 96

nodal basis Ag of Q; with elements )\pQ, p- 96
solution of the discrete defect problem (4.1.2), p. 96

Kornhuber 31 Jan 2006 10:03



Index

accuracy assumption 97
algebraic effectivity index 119
asymptotic
convergence rates 89, 91
reduced problem 63
cascadic iterations 111
coarse grid correction 52
convex 23, 24
critical nodes 59
depth 67
discrete phases 59
effectivity index 118
efficiency rates 117
energy 13
conservation of 15
functional 45
norm 23
total 13
epigraph 26
error
algebraic 94
approximation 94
discretization 108
extended underrelaxations 53, 58
finite elements 36
indicator functional 24
Kirchhoff transformation 17, 21
local
correction 46, 50, 52, 53
damping 53, 58
error indicator 109
obstacle 72
subproblem 46, 52

158

lower semicontinuous 24
maximal monotone 33
monotone
approximations 56
multigrid methods 77, 82
multifunction 32
nodal basis 36
non—degeneracy 60
preconditioner 98
proper 24
quasioptimal
local obstacles 72
monotone approximation 63
restrictions 75, 81
refinement 66, 108
saturation assumption 97
separation theorem 29
smoothed iterate 52
subgradient 32
variational
inclusion 18, 21, 34
inequality 30
triangulation
nested 110
regular 36
shape regular 38



