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Abstract
Markov state models (MSMs) and Master equation models are popular approaches to approximate

molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space

discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been

introduced, the variational approach of conformation dynamics (VAC) and its special case the time-

lagged independent component analysis (TICA), which allow us to approximate molecular kinetics

and reaction coordinates by linear combinations of smooth basis functions or order parameters.

While MSMs can be learned from trajectories whose starting points are not sampled from an

equilibrium ensemble, TICA and VAC have as yet not enjoyed this property, and thus previous

TICA/VAC estimates have been strongly biased when used with ensembles of short trajectories.

Here, we employ Koopman operator theory and ideas from dynamic mode decomposition (DMD)

to show how TICA/VAC can be used to estimate the unbiased equilibrium distribution from short-

trajectory data and further this result in order to construct unbiased estimators for expectations,

covariance matrices, TICA/VAC eigenvectors, relaxation timescales, and reaction coordinates.
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I. INTRODUCTION

With the ability to generate extensive and high-throughput molecular dynamics (MD)

simulations [1–9], the spontaneous sampling of rare-events such as protein folding, conforma-

tional changes and protein-ligand association have become accessible [10–17]. Markov state

models (MSMs) [18–25], Master-equation models [26–28] and closely related approaches

[29–33] have emerged as powerful frameworks for the analysis of extensive MD simulation

data, as they approximate the true kinetics without requiring strong prior definition of rel-

evant reaction coordinates [23, 34], allow a large variety of mechanistic information to be

extracted [10, 35, 36], experimental observables to be computed and structurally interpreted

[12, 28, 37–40]. They provide a direct approximation of the dynamic modes describing the

slow conformational changes that are identical or closely related to the so-called reaction

coordinates, depending on which notion of that term is employed [41–45]. An especially

powerful feature of MSMs and similar approaches is that they can be estimated from non-

equilibrium data – more specifically, the MSM transition probabilities pij(τ), i.e. the prob-

ability that the trajectory is found in a set Aj a time lag τ after it has been found in a set

Ai,

pij(τ) = Prob [x(t+ τ) ∈ Aj | x(t) ∈ Ai] ,

is a conditional transition probability. pij(τ) can be estimated without bias even if the

trajectory is not initiated from a global, but only a local equilibrium distribution [23]. Con-

sequently, given cij(τ) transition events between states i and j at lag time τ , the maximum

likelihood estimator of the transition probability can be easily shown to be

pij(τ) =
cij(τ)∑
k cik(τ)

, (1)

i.e. the fraction of the number of transitions to j conditioned on starting in i. This con-

ditionality is a key reason why MSMs have become popular to analyze short distributed

simulations that are started from arbitrary configurations whose relationship to the equilib-

rium distribution is initially unknown.

However, when estimating (1) from simulation data, one does not generally obtain a time-

reversible estimate, i.e. the stationary probabilities of the transition matrix, πi, will usually

not fulfill the detailed balance equations πipij = πjpji, even if the underlying dynamics are

microscopically time-reversible. Compared to a reversible transition matrix, a transition ma-
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trix with independent estimates of pij and pji has more free parameters, resulting in larger

statistical uncertainties, and moreover may possess complex-valued eigenvalues and eigen-

vectors, which exclude or exacerbate various analyses [46]. Since most molecular dynamics

simulations are in thermal equilibrium and thus fulfill at least a generalized microscopic

reversibility (Appendix B in [47]), it is desirable to force pij to fulfill detailed balance, which

both reduces statistical uncertainty and enforces a real-valued spectrum [46, 48]. In old

studies, the pragmatic solution to this problem was often to symmetrize the count matrix,

i.e. to simply set csymij = cij + cji, which is equivalent to evaluating the simulation trajectory

forward and backward, and which leads to a transition matrix with detailed balance when

inserted into (1). However, it has been known since at least 2008 that this estimator is

strongly biased, and therefore reversible maximum likelihood and Bayesian estimators have

been developed [22, 23, 28, 46, 48, 49]. These algorithms formulate the estimation prob-

lem as an optimization or sampling problem of the transition matrix constrained to fulfill

detailed balance. The idea of these algorithms becomes clear when writing the reversible

maximum likelihood estimator in two subsequent steps, as demonstrated in [46]:

1. Reweighting : Estimate the stationary distribution πi given all transition counts cij

and a reversible Markov model.

2. Estimation: Insert πi and cij into an equation for the transition matrix to obtain a

maximum likelihood estimate of pij with detailed balance.

Recently, a powerful extension to the Markov modeling framework has been introduced:

the variational approach of conformation dynamics (VAC) [50–52]. It has been known for

many years that Markov state models are good approximations to molecular kinetics if their

largest eigenvalues and eigenvectors approximate the eigenvalues and eigenfunctions of the

Markov operator governing the full-phase space dynamics [18, 34, 53], moreover the first

few eigenvalues and eigenvectors are sufficient to compute almost all stationary and kinetic

quantities of interest [37, 38, 54–56]. The VAC has generalized this idea beyond discrete

states and formulated the approximation problem of molecular kinetics in terms of an ap-

proach that is similar to the variational approach in quantum mechanics [50–52]. It is based

on the following variational principle: If we are given a set of n orthogonal functions of state

space, and evaluate the autocorrelation of the molecular dynamics in these functions at lag

time τ , these will give us lower bounds to the true eigenvalues λ1(τ), ..., λn(τ) of the Markov
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operator, equivalent to an (under)estimate of relaxation timescales and an (over)estimate of

relaxation rates. Only if the n functions used are the eigenfunctions themselves, then their

autocorrelations will be maximal and identical to the true eigenvalues λ1(τ), ..., λn(τ). This

principle allows to formulate variational optimization algorithms to approximate the eigen-

values and eigenfunctions of the Markov operator. The linear variational approach proceeds

as follows:

1. Fix an arbitrary basis set χ = [χ1(x), ..., χn(x)] and evaluate the values of all basis

functions for all sampled MD configurations x.

2. Estimate two covariance matrices, the instantaneous (PCA) covariance matrix C(0),

and the time-lagged covariance matrix C(τ) from the basis-set-transformed data.

3. Solve a generalized eigenvalue problem involving both C(0) and C(τ), and obtain

estimates for the eigenvalues λi(τ) and expansion coefficients bi. The estimate for the

i-th eigenfunction is then given by

ψi(x) =
∑
j

bijχj(x). (2)

This approach provides the optimal linear representation (2). Note that the functions χ can

be arbitrary nonlinear functions in the original coordinates x, which allows complex nonlin-

ear dynamics to be encoded even within this linear optimization framework. The variational

approach has spawned a variety of follow-up works, for example it has been shown that the

algorithm called blind source separation, time-lagged or time-structure based independent

component analysis (TICA) established in signal processing and machine learning [57–59] is

a special case of the VAC [51]. TICA is now widely used in order to reduce the dimension-

ality of MD data sets to a few slow collective coordinates, in which MSMs and other kinetic

models can be built efficiently [51, 60, 61]. The VAC has been used to generate and improve

guesses of collective reaction coordinates [62, 63]. A VAC-based metric has been defined

which transforms the VAC estimates into a space in which Euclidean distance corresponds

to kinetic distance [64, 65]. A kernel version of TICA/VAC has been proposed in [66], and it

has been suggested to use the VAC eigenvalues in order to perform kinetic model selection

by means of cross-validation [67]. A tensor-based approach to find the representation of

eigenfunctions in terms of products of simple one-coordinate functions has been formulated

[68], and basis sets for peptide dynamics have been proposed [69].
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Despite the popularity of VAC and TICA, their estimation from MD data is still in the

stage that MSMs had been about a decade ago: A direct estimation of covariance matrices

will generally provide a non-symmetric C(τ) matrix and complex eigenvalues/eigenfunction

estimates that are not consistent with reversible molecular dynamics. In order to avoid this

problem, the current state of the art is to enforce the symmetrization of covariance matrices

directly [51, 60, 66]. This approach – which is analogous to symmetrizing count matrices in

MSM estimation – introduces a strong bias when the simulation data are not in equilibrium.

In lack of a better estimator, this approach is currently used also with short distribution MD

simulations despite the fact that the resulting timescales and eigenfunctions may be biased

or even misleading. This problem is addressed in the present paper.

For reversible dynamics, TICA and VAC are identical to dynamic mode decomposi-

tion (DMD) [70–73] and extended dynamic mode decomposition (EDMD) [74], respectively.

However DMD and EDMD have been developed in the context of dynamical systems and

fluid mechanics where data is often nonreversible and non-stationary. Thus, the theory upon

which DMD/EDMD are based [75] can be used in order to formulate estimators for TICA

and VAC that are also unbiased in the presence of short non-equilibrium simulations. First

it is shown that the direct estimate of covariance matrices provides an unbiased TICA/VAC

estimator for nonreversible dynamics. Then an unbiased estimator for reversible dynamics

is derived, which involves two steps analogously to optimal reversible MSM estimation:

1. Reweighting : Estimate a reweighting vector ui with an entry for each basis function

given the empirical covariance matrices C(0) and C(τ).

2. Estimation: Insert ui and C(0), C(τ) into an equation for the equilibrium estimates

of C(0) and C(τ) in order to obtain an unbiased reversible estimate for computing

eigenvalues and eigenfunctions.

In addition to this result, the reweighting vector ui allows us to approximate any equilibrium

estimate in terms of a linear combination of our basis functions from off-equilibrium data.

Thus, we obtain a generalized estimator for equilibrium stationary and kinetic quantities

without the need to compute clusters and to construct a Markov state model. The new

methods are illustrated on toy examples with stochastic dynamics and a benchmark protein-

ligand binding problem. All analyses in this paper were made using the PyEMMA program

version 2.2 (www.pyemma.org) [76].
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II. VARIATIONAL APPROACH OF CONFORMATION DYNAMICS (VAC)

A. Variational principle of conformation dynamics

For simulations of molecular dynamics (MD), it is natural to model simulation trajectories

of a molecular system as an ergodic and time-reversible Markov process {xt} living in a phase

space Ω by defining xt as a collection of all variables that can determine the conformational

progression after time t (e.g., positions and velocities of all atoms). Ergodicity implies that

the probability density pt of system state xt at time t tends to a unique stationary density

µ (x) as t→∞, and reversibility can be described by the detailed balance condition

p (x,y; τ)µ (x) = p (y,x; τ)µ (y) , ∀x,y ∈ Ω, (3)

where p (x,y; τ) denotes the transition density from x to y with lag time τ , i.e., the con-

ditional probability density of xt+τ = y given xt = x. Under these conditions, the time

evolution of the ensemble of the molecular system can be decomposed into a set of relax-

ation processes as

pt+τ (x) =
∞∑
i=1

e
− τ
ti µ (x)ψi (x) 〈ψi, pt〉 , (4)

where ti are relaxation timescales sorted in decreasing order, ψi are eigenfunctions of the

transfer operator or Koopman operator of {xt} with eigenvalues λi (τ) = e
− τ
ti (see Section

IIIA). Inner products 〈ψi, pt〉 =
∫

dx ψi (x) pt (x) measure projections of pt onto the corre-

sponding eigenspace. The first spectral component is given by the constant eigenfunction

ψ1 (x) = 1 (x) ≡ 1 and and infinite timescale t1 = ∞ > t2 corresponding to the stationary

state of the system. Obviously, the long-term temporal behavior of a molecular system can

be modeled by only a few dominant spectral components of the system dynamics associated

with leading eigenvalues since the remaining part decays quickly with τ .

The eigenvalues and eigenfunctions can also be formulated by the following variational

principle [50, 52]: For any m ≥ 1, the first m eigenfunctions ψ1, . . . , ψm are the solution of

the following optimization problem

max
f1,...,fm

m∑
i=1

Eµ [fi (xt) fi (xt+τ )] , (5)

s.t. Eµ
[
fi (xt)

2] = 1,

Eµ [fi (xt) fj (xt+τ )] = 0, for i 6= j,
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and the maximum value is the sum of λ1, . . . , λm, where Eµ [·] denotes the expected value

with xt sampled from the stationary density µ. Notice that each term Eµ [fi (xt) fi (xt+τ )]

in the objective function can be interpreted as a Rayleigh quotient of the transfer operator

or Koopman operator and the conclusion is identical to the Rayleigh-Ritz principle [50].

Therefore, for every other set of functions that aims at approximating the true eigenfunc-

tions, the eigenvalues will be underestimated, and we can use this variational principle in

order to search for the best approximation of eigenfunctions and eigenvalues.

According to this formulation, the eigenfunctions ψ1, . . . , ψm can be interpreted asm slow

coordinates, that are related or possibly equivalent to what are commonly called “reaction

coordinates” that satisfy the following properties:

• They are uncorrelated.

• They describe the directions of the slow kinetics with the maximal autocorrelations

Eµ [ψi (xt)ψi (xt+τ )] = λi (τ).

• Population changes along these coordinates decay exponentially with λi (τ) = e
− τ
ti .

Thus, the dominant spectral components are key to the analysis and understanding of con-

formation dynamics of molecular systems, where eigenvalues characterize timescales of con-

formation dynamics and eigenfunctions are an ideal choice of reaction coordinates. In what

follows, we will investigate how to approximate the spectral components from MD simulation

data.

B. Linear variational approach

In this paper, we focus on the finite-dimensional approximation of spectral components

of conformation dynamics, which approximates each eigenfunction by a linear combination

of real-valued conformational basis functions χ = (χ1, . . . , χm)>

ψ̂i(x) =
∑
j

bijχj(x) = b>i χ(x) (6)

with expansion coefficients bij.

A common way to get such approximations for analysis of MD simulations is the varia-

tional approach of conformation dynamics (VAC) [50, 52], which is based on the variational
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formulation (5) of spectral components.

Within the linear expansion (6), the optimal approximation of eigenvalues λi and eigen-

functions ψi according to (5) are the solutions of the generalized eigenvalue problem [50]

C (τ) B = C (0) BΛ, (7)

with Λ = diag (λ1, . . . , λm) and B = (b1, . . . ,bm). Here,

C (0) = Eµ
[
χ (xt)χ (xt)

>
]
, (8)

C (τ) = Eµ
[
χ (xt)χ (xt+τ )

>
]

(9)

are correlation matrix and time-lagged correlation matrix of the basis functions in the equi-

librium ensemble. This conclusion suggests the following approximation procedure:

1. Estimate correlation matrices C (0) and C (τ) from data.

2. Solve the generalized eigenvalue problem (7).

3. Output estimated eigenvalues λ̂i and eigenfunctions ψ̂i. The latter can be used in

order to define reaction coordinates between the metastable states of the system, or

as essential kinetic coordinates in order to reduce the dimensionality of the problem

and interpret the molecular events occurring with slow rates [51, 60].

The VAC provides a general framework for the finite-dimensional approximation of spectral

components of conformation dynamics, and two widely used analysis methods, time-lagged

independent component analysis (TICA) [51, 57, 60] and Markov state models (MSMs) [23],

are both special cases of VAC.

TICA: In TICA, basis functions are mean-free molecular coordinates (internal or Cartesian)

or order parameters (e.g. contact maps), χ = r − Eµ[r], where r contains the selected

coordinates and Eµ[r] are the means. Then the resulting estimates ψ of eigenfunctions can

be viewed as a set of linearly independent components (ICs) with autocorrelations λi(τ).

The dominant ICs can be used to reduce the dimension of the molecular system.

Notice that using mean free coordinates is equivalent to removing the stationary spec-

tral component (λ1, ψ1) ≡ (1,1), thus TICA will only contain the dynamical components,

starting from (λ2, ψ2).
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MSM: The MSM is a special case of the VAC while using the indicator functions as basis

set:

χi (x) =

 1, for x ∈ Ai,

0, for x /∈ Ai,
(10)

where A1, . . . , Am form a partition of the phase space Ω. With such basis functions, the

correlation matrix C (0) is a diagonal matrix with [C (0)]ii = Pr (xt ∈ Ai) being the equi-

librium probability of Ai, and the (i, j)-th element [C (τ)]ij = Pr (xt ∈ Ai,xt+τ ∈ Aj) of the

time-lagged correlation matrix C (τ) is equal to the equilibrium frequency of the transition

from Ai to Aj. Thus, a piecewise-constant approximation of eigenfunctions

ψj (x) = [B]ij , for x ∈ Ai, (11)

and the corresponding eigenvalues are given by the generalized eigenvalue problem (7), which

can be equivalently transferred into an eigenvalue problem as

C (τ) B = C (0) BΛ ⇒ P (τ) B = BΛ (12)

if the equilibrium probability of each Ai is positive, where P (τ) = C (0)−1 C (τ) is the

transition matrix of the MSM with [P (τ)]ij = Pr (xt+τ ∈ Aj|xt ∈ Ai). This is consistent

with the conclusion obtained in the literature on MSMs [34].

The choice of more general basis functions for the VAC is beyond the scope of this paper,

and some related work can be found in [52, 68, 69].

C. Estimation of correlation matrices

The remaining problem is how to obtain estimates of C (0) and C (τ). For convenience, we

introduce the following notation: we take all sampled coordinates xt of a trajectory, evaluate

their basis function values χ1 (xt) , ..., χm (xt), and define the following two matrices:

X =


χ1 (x1) · · · χm (x1)

...
...

χ1 (xT−τ ) · · · χm (xT−τ )

 ∈ RN×m, (13)

Y =


χ1 (xτ+1) · · · χm (xτ+1)

...
...

χ1 (xT ) · · · χm (xT )

 ∈ RN×m. (14)
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where each row corresponds to one stored timestep. Thus, X contains the first N = T − τ

time steps and Y contains the lastN = T−τ time steps. Assuming that {xt} is ergodic, C (0)

and C (τ) can be directly estimated by time averages of χ (xt)χ (xt)
> and χ (xt)χ (xt+τ )

>

over the trajectory:

Ĉ (0) =
1

N
X>X, (15)

Ĉ (τ) =
1

N
X>Y. (16)

For the purpose of solving the eigenvalue problem (7), the factor 1/N may be ignored.

Furthermore, multiple trajectories k = 1, ..., K are trivially handled by adding up their

contributions, e.g. Ĉ (0) = 1∑
k Nk

∑
k X>k Xk, etc.

Due to statistical noise or non-equilibrium starting points, the time-lagged correlation

matrix Ĉ (τ) estimated by this method is generally not symmetric, even if the underly-

ing dynamics are time-reversible. Thus, the eigenvalue problem (7) may yield complex

eigenvalues and eigenvectors, which are undesirable in analysis of statistically reversible

MD simulations. The relaxation timescales ti can be computed from complex eigenvalues as

ti = −τ/ ln |λi (τ)| by using the norm of eigenvalues, but it is a priori unclear how to perform

component analysis and dimension reduction as in TICA based on complex eigenfunctions.

In order to avoid the problem of complex estimates, a symmetric estimator is often

used in applications, which approximates C (0) and C (τ) by empirically averaging over all

transition pairs (xt,xt+τ ) and their reverses (xt+τ ,xt), which is equivalent to averaging the

time-forward and the time-inverted trajectory:

Ĉsym (0) ≈ 1

2N

(
X>X + Y>Y

)
, (17)

Ĉsym (τ) ≈ 1

2N

(
X>Y + Y>X

)
, (18)

so that the estimate of C (τ) is always symmetric and the generalized eigenvalue problem

(7) has real-valued solutions.

For equilibrium simulations, i.e. if the simulation starting points are sampled from the

global equilibrium, or the simulations are much longer than the slowest relaxation times,

Eqs. (17) and (18) are unbiased estimates of Cµ (0) and Cµ (τ) and can also be derived

from the maximum likelihood estimation by assuming a multivariate normal distribution of

(xt,xt+τ ) [66]. The major difficulty of this approach arises from non-equilibrium data, i.e.

simulations whose starting points are not drawn from the equilibrium distribution and are
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not long enough to reach that equilibrium during the simulation. In this situation, (17) and

(18) are biased estimates, i.e. they do not converge to the true covariance matrices and

provide biased VAC/TICA results even in the limit of infinitely many trajectories.

The difference between the direct estimation and symmetric estimation methods of corre-

lation matrices becomes clear when considering the MSM special case. Since the transition

matrix is P = C(0)−1C(τ), as shown in Section II B, transition matrices of MSMs given by

the two estimators are

[P]ij =
cij(τ)∑m
k=1 cik(τ)

, (direct estimation) (19)

[P]ij =
cij(τ) + cji(τ)∑m
k=1 cik(τ) + ckj(τ)

, (symmetric estimation) (20)

respectively. If the transition dynamics between discrete states A1, . . . , Am are exactly

Markovian, the direct estimator converges to the true transition matrix in the large-data

limit for non-equilibrium or even nonreversible, whereas the symmetric estimator does

not. However, the direct estimator may give a nonreversible transition matrix with com-

plex eigenvalues, which is why the symmetric estimator has been frequently used before

2008 until it has been replaced by reversible maximum likelihood and Bayesian estimators

[22, 23, 28, 46, 48, 49]. How do we resolve this problem in the more general case of VAC (or

more specifically, TICA) estimation? Below, we will introduce a solution based on Koopman

operator theory and dynamic mode decomposition (DMD).

III. DYNAMIC MODE DECOMPOSITION (DMD)

A. Koopman operator description of conformation dynamics

According to the Koopman operator theory [75], the dynamics of a dynamical system

that is Markovian in phase space can be fully described by an integral operator Kτ , called

Koopman operator, which maps an observable quantity f (xt) at time t, to its expectation

at time t+ τ as

Kτf (x) = E [f (xt+τ ) |xt = x]

=

∫
dy p (x,y; τ) f (y) . (21)
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If the dynamics fulfill detailed balance, the spectral components {(λi, ψi)} discussed above

are in fact the eigenvalues and eigenfunctions of the Koopman operator:

Kτψi = λiψi (22)

under the detailed balance condition. Notice that the operator description and decompo-

sition of molecular kinetics can also be equivalently provided by the transfer operator, or

backward propagator and the forward propagator [23], which propagate ensemble densities

instead of observables. We exploit the Koopman operator in this paper because it is the

only one of these operators that can be reliably approximated from non-equilibrium data in

general. See Section III B and Appendix A for a more detailed analysis.

Eq. (22) suggests the following way for spectral estimation: We can first approximate the

Koopman operator from data, and then extract the spectral components from the estimated

operator.

B. (Extended) dynamic mode decomposition

Like in the VAC, we can also approximate the Koopman operator Kτ by its projection

Kproj
τ onto the subspace spanned by basis function χ which satisfies

Kτf ≈ Kproj
τ f ∈ span{χ1, . . . , χm} (23)

for any function f in the space spanned by χ. As the Koopman operator is linear, even if

the dynamics are nonlinear, it can be approximated by a matrix K = (k1, . . . ,km) ∈ Rm×m

as

Kproj
τ

(
m∑
i=1

ciχi

)
=

m∑
i=1

cik
>
i χ, (24)

with

k>i χ = Kproj
τ χi ≈ Kτχi (25)

representing a finite-dimensional approximation of Kτχi. After a few algebraic steps [74],

it can be shown that eigenfunctions of Kproj
τ also have the form ψi = b>i χ, and eigenvalues

and eigenfunctions of Kproj
τ can also be calculated by the eigenvalue problem

KB = BΛ, (26)

where definitions of Λ,B are the same as in (7).
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A mathematically equivalent formulation of this approach was introduced in the fluid

mechanics field as Dynamic Mode Decomposition (DMD) in [70, 72], and it was found to

approximate the Koopman operator in [71]. Further extensions are discussed e.g. in [73].

An Extended Dynamic Mode Decomposition (EDMD) using general basis functions was

described in [74].

Considering that

E [χi (xt+τ ) |xt] = Kτχi (xt) ≈ k>i χ (xt) (27)

for each transition pair (xt,xt+τ ) in simulations, the matrix K can be determined via mini-

mizing the mean square error between k>i χ (xt) and χi (xt+τ ) as

K = arg min
K

1

N

T−τ∑
t=1

m∑
i=1

∥∥k>i χi (xt)− χi (xt+τ )∥∥2
= arg min

K

1

N
‖XK−Y‖2

= Ĉ (0)−1 Ĉ (τ) , (28)

With covariance matrices given by their direct estimates (15-16). Here ‖·‖ denotes the

Frobenius norm of matrices, and the basis functions are assumed to be linearly independent

on the simulation data so that Ĉ (0) is invertible. In applications, the linear indpendence

can be achieved by decorrelation of basis functions (see Section IVA). Thus, EDMD is

algorithmically equivalent to the linear variational approach (7) with a direct estimation of

the covariance matrix (15-16).

If the simulation is reversible and in equilibrium, and statistics are such that the estimate

of Ĉ (τ) is symmetric, then this is also equal to the symmetrized estimation. However, for off-

equilibrium data the difference of the empirical covariance matrices Ĉsym (0) and Ĉsym (τ) to

the true expectations is large and in this case the symmetric estimator involves a large bias.

In contrast, suppose that the ensemble of {x1, . . . ,xT−τ} follows a probability distribution

ρ (x), then Ĉ (0) and Ĉ (τ) are unbiased estimates of non-equilibrium correlation matrices

Eρ
[
χ (xt)χ (xt)

>
]
and Eρ

[
χ (xt)χ (xt+τ )

>
]
instead of C (0) and C (τ), and the matrix K

given by (28) minimizes the error (see Appendix B)∑
i

〈
k>i χ−Kτχi,k>i χ−Kτχi

〉
ρ
, (29)

where 〈·, ·〉ρ denotes the the inner product defined by 〈f, g〉ρ =
∫

dx ρ (x) f (x) g (x). There-

fore, K is still a finite-dimensional approximation of Kτ even if ρ 6= µ because of the non-
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equilibrium of simulation data, which implies that EDMD is applicable to non-equilibrium

data without the assumption of reversibility and is equivalent to the direct VAC estimate.

At this point, EDMD and the VAC with nonreversible covariance matrix estimate are

algorithmically identical and only differ by the way they were derived - see [77] for a math-

ematical analysis. However, we can use DMD theory in order to go further and formulate

an unbiased reversible estimator.

C. Estimation of the equilibrium distribution

Not only is EDMD robust when using non-equilibrium data, we can also utilize the

Koopman matrix K to recover the equilibrium properties of the molecular system. The

principle of importance sampling [78] states that the equilibrium ensemble average of an

observable f (xt) can be unbiasedly estimated by the weighted mean

Eµ [f (xt)] ≈
1

N

T−τ∑
t=1

µ (xt)

ρ (xt)
f (xt) , (30)

As analytical expressions of µ and ρ are generally unavailable, we approximate the ratio

between them by a linear combination of basis functions χ as

µ (x)

ρ (x)
≈ u>χ (x) (31)

From the invariance condition Eµ [χ (xt+τ )] = Eµ [χ (xt)] and the normalization condition∫
dx µ (x) = 1 on the stationary distribution µ, we can show following algebraic constraints

on u:

u>Ĉ (0) KĈ (0)−1 = u>, (32)

u>Ĉ (0) v = 1 (33)

in the limit of large statistics (see Appendix C for proof). Here, v is the vector that combines

the basis functions to represent the constant 1 function, i.e.

v>χ = 1, (34)

and as shown in the algorithms below, we can use the following trick to end up with a known

v: (1) “Whiten” the data by orthogonalizing it, and then normalizing each data column to

14



have a variance of 1, (2) add the constant function to the basis set by adding a column of

1’s to the input data matrices X and Y.

Thus, we can compute a vector proportional to u as the left eigenvector of Ĉ (0) KĈ (0)−1

with eigenvalue 1 and normalize it by dividing by u>Ĉ (0) v in order to satisfy (33).

Besides equilibrium ensemble averages in the form of (30), we can also approximate time-

lagged cross correlations between observable quantities at equilibrium. For two observables

f1 = c>1 χ and f2 = c>2 χ in span{χ1, . . . , χm}, we have

Eµ [f1 (xt) f2 (xt+kτ )] = Eµ
[
f1 (xt) · Kkτf2 (xt)

]
≈ c>1 Ĉeq (0) Kkc2. (35)

Here,

Ĉeq (0) =
1

N

T−τ∑
t=1

(
u>χ(xt)

)
χ(xt)χ(xt)

> (36)

=
1

N
X>diag (Xu) X (37)

is the estimate of C (0) = Eµ
[
χ (xt)χ (xt)

>
]
given by the reweighting and Ĉeq (0) Kk is the

corresponding estimate of time-lagged correlation matrix C (kτ).

D. Reversible EDMD

If {xt} satisfies the detailed balance condition (3), the time-lagged cross correlation be-

tween two arbitrary observable quantities f1 (xt) and f2 (xt) at equilibrium is symmetric in

the sense of Eµ [f1 (xt) f2 (xt+kτ )] = Eµ [f2 (xt) f1 (xt+kτ )] and C (kτ) is a symmetric matrix.

Therefore, we can symmetrize the EDMD estimate of C (τ) as

Ĉeq (τ) ≈ 1

2

(
Ĉeq (0) K + K>Ĉeq (0)

)
(38)

and modify the matrix K as

K̃ =
1

2
Ĉeq (0)−1

(
Ĉeq (0) K + K>Ĉeq (0)

)
≈ C (0)−1 C (τ) . (39)

In the case of reversible dynamics, the reversible EDMD given by (39) may be desirable

because it yields real-valued spectral components even in the existence of statistical noise

and modeling error. In addition, it can be shown that (32) holds after replacing K by K̃,

i.e., the reweighting vector u remains fixed for the reversible EDMD. (See Appendix D for

more detailed analysis.) Unlike the symmetric estimation for VAC, the symmetrization in

(38) does not affect the unbiasedness of the estimate.
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IV. ALGORITHMS

A. Decorrelation of basis functions

In Section III B, the basis functions χ are assumed to be linearly independent on the

sampled data so that Ĉ (0) is invertible and the matrix K given in (28) is well defined. In

some publications, e.g. [74], K is calculated as K = Ĉ (0)† Ĉ (τ) by using the pseudoinverse

Ĉ (0)† of Ĉ (0), however this approach cannot completely avoid numerical instabilities. In

this paper, we utilize principal component analysis (PCA) [79] to explicitly reduce correla-

tions between basis functions as

χ =

 PCA [χo|ρ]

1

 . (40)

Here, χo denotes the original basis functions which may be linearly dependent, PCA [χo|ρ]

denotes the PCA whitening transformation of the original basis functions χo according to

the empirical distribution ρ of (x1, ..., xT−τ ). Whitening means: (i) transform the data into

all available principal components and (ii) scale coordinates to have a variance of 1. The

dimension of PCA [χo|ρ] is equal to the number of positive eigenvalues of the covariance

matrix of χo which is larger than a small numerical cutoff ε0 > 0 (see Appendix E for the

implementation details of the PCA transformation). The last basis function is set to be 1

in (40) so that v>χ = 1 with v = (0, . . . , 0, 1)>.

Similarly, the estimate Ĉeq(0) of the equilibrium correlation matrix C (0) given by (36)

may yield numerical singularities for reversible EDMD estimation if it is not positive definite

(see (39) and Appendix D). In order to overcome this problem, we can further decorrelate

basis functions χ according to the estimated equilibrium distribution µ (x) = u>χ (x) ·ρ (x)

to get a set of new basis functions χs as

χs =

 PCA [χ|µ]

1

 . (41)

It can be easily verified that the equilibrium correlation matrix of χs at lag time zero is an

identity matrix, so the Koopman matrix within the subspace of χs is

Ks = Eµ
[
χs (xt)χs (xt+τ )

>
]

=
1

N

T−τ∑
t=1

(
u>χ (xt)

)
χs (xt)χs (xt)

> (42)
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and the corresponding reversible estimation is given by

K̃s =
1

2

(
Ks + K>s

)
. (43)

The relationships between χo, χ, χs and K, Ks can be briefly summarized as follows: χ

is a linearly independent basis of χo based on the empirical distribution ρ and χs forms a

basis of χ based on the equilibrium distribution µ. K and Ks are approximations of the

Koopman operator with respect to χ and χs, and they yield the equivalent approximations

if the matrix Ĉeq (0) is positive definite. In practice, K can be used for estimation of spectral

components and equilibrium distributions without the constraint of reversibility, whereas Ks

can achieve reversible estimates in a numerically stable way.

B. Algorithms

Based on all the above discussions, a general analysis procedure for MD data with given

conformational basis functions χo can be summarized by the following algorithms:

Algorithm 1: Nonreversible VAC / TICA

1. Perform the decorrelation (40) to obtain a set of linearly independent basis functions

χ.

2. Compute the matrix K by (28) and solve the eigenvalue problem KB = BΛ.

3. Output spectral components: Eigenvalues λ̂i and eigenfunctions ψ̂i. Both may have

imaginary components that are either due to statistical noise or due to real nonre-

versible processes if the true dynamics are nonreversible.

Algorithm 2: Estimation of equilibrium properties

1. Compute K as in Algorithm 1.

2. Compute u as a left eigenvector of K satisfying u>K = u> and u>v = 1, where

v = (0, . . . , 0, 1)>. (Note that Ĉ (0) is an identity matrix after the decorrelation in

Step 1.)

3. Compute the matrix Ĉeq (0) by (36) as the unbiased estimate of C(0).

4. Output:
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(a) Equilibrium expectations: Eµ [f (xt)] = 1
N

∑T−τ
t=1

(
u>χ (xt)

)
f (xt) for a given

observable f .

(b) Equilibrium time-lagged correlations: Eµ [f1 (xt) f2 (xt+kτ )] = c>1 Ĉeq (0) Kkc2 for

f1 = c>1 χ and f2 = c>2 χ.

Algorithm 3: Reversible VAC / TICA

1. Compute K and Ĉeq (0) as in Algorithms 1 and 2.

2. Perform the decorrelation of χ by (41) according to the equilibrium distribution to

get basis functions χs.

3. Compute Ks by (42).

4. Perform the reversibility modification K̃s = 1
2

(
Ks + K>s

)
and solve the eigenvalue

problem K̃sBs = BsΛs of K̃s.

5. Output spectral components: Eigenvalues λ̂i and eigenfunctions ψ̂i. These eigenvalues

and eigenfunctions are real-valued. The dimensionality of the data can be trivially

reduced by discarding the eigenfunctions with small eigenvalues.

V. APPLICATIONS

In this section, we apply three different estimators of VAC (or TICA) for spectral esti-

mation to the same data sets: the symmetric estimator with symmetrization of time-lagged

correlation matrices, the direct estimator which is also equivalent to the estimator derived

by EDMD, and the reversible estimator proposed in Section 39. In addition, we compare the

estimated equilibrium distribution provided by the direct estimator and that calculated by

histogram counting in order to demonstrate the validity of the proposed reweighting method.

A. One-dimensional diffusion process

As a first example, we consider a one-dimensional diffusion process {xt} in a double-well

potential with phase space [0, 2] as shown in Fig. 1A. In order to validate the robustness

of different estimators, we start all simulations far from equilibrium, in the region [0, 0.2]
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(Fig. 1C). The set of basis functions for estimators is constructed by using 100 Gaussian

functions with random parameters. For more details on the simulation model and experi-

mental setup, see Appendix F 1.

Fig. 1B shows estimates of the slowest relaxation timescale ITS2 based on 500 independent

short simulation trajectories with length 0.2 time units. The largest relaxation timescale

t2 is computed from λ2 as t2 = −τ/ ln |λ2 (τ)| and is a constant independent of lag time

according to (4). For such non-equilibrium data, the symmetric estimator significantly

underestimates the relaxation timescale for such non-equilibrium data and gives even worse

results with longer lag times. The direct and reversible estimators, on the other hand,

converge quickly to the true timescale before τ = 0.01. The equilibrium distribution density

of {xt} computed from Algorithm 2 with lag time 0.01 is shown in Fig. 1C. In contrast to

the empirical histogram density given by direct counting, the direct estimator effectively

recovers the equilibrium property of the process from non-equilibrium data.

Fig. 1D summarizes the empirical probability of the potential well I and the estimate

given by the direct estimator with different simulation trajectory lengths, where the lag

time for EDMD is still 0.01 and the accumulated simulation time is kept fixed to be 100.

Due to the ergodicity of the process, the empirical probability converges to the true value

as the trajectory length increases. The convergence rate, however, is very slow as shown in

Fig. 1D, and empirical probability is close to the true value only for trajectories longer than

2. When using the reweighting method proposed here, the estimated probability is robust

with respect to changes in trajectory length, and unbiased even for very short trajectories.

B. Two-dimensional diffusion process

We now discuss an example of a two-dimensional diffusion process {(xt, yt)} which has

three potential wells as shown in Fig. 2A, where all simulations are initialized with (x0, y0) ∈

[−2,−1.5]× [−1.5, 2.5], and the set of basis functions for spectral estimation consists of 100

Gaussian functions with random parameters (see Appendix F 2 for details).

We generate 8000 short simulation trajectories with length 1.25 and show the empirical

free energy of the simulation data in Fig. 2B. Comparing Fig. 2B and Fig. 2A, it can be seen

that most of the simulation data are distributed in the area x ≤ 0 and simulations are very

far away from the equilibrium state. Therefore, the symmetric estimator cannot capture
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Figure 1. Estimation results of a one-dimensional diffusion process. (A) Dimensionless energy

U (x), where the dashed line represents the border of the two potential wells I and II. The shaded

area denotes the region where initial states are drawn for simulations. (B) The slowest relaxation

timescale estimated by the previously used symmetric estimator, the direct estimator and the

present reversible estimator with different lag times. (C) Stationary density of states obtained from

equilibrium probabilities of 100 uniform bins, where the probabilities are estimated from the direct

estimator and direct counting. (D) Estimates of the equilibrium probability of the potential well

I given by the direct estimator and direct counting with different simulation trajectory lengths.

In (B-D), solid lines and shaded regions indicate mean values and one standard derivation error

intervals obtained from 30 independent experiments.
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the spectral components of the process as illustrated in Fig. 2D, whereas the direct and

the present reversible estimator can still provide accurate eigenvalues and the equilibrium

density (see Figs. 2C and 2D). Note that the two slowest relaxation timescales plotted in

Fig. 2D are computed from λ2 and λ3, respectively.

For such a two-dimensional process, it is also interesting to investigate the slowest modes

predicted by TICA. Fig. 2A displays the slowest modes computed from the exact equilibrium

distribution with lag time τ = 0.01. Notice that the slowest mode is parallel to x-axis, which

is related to transitions between potential wells I and II, and the second IC is parallel to

the y-axis, which is related to transitions between {I,II} and III. However, if we extract ICs

from simulation data by using the previous symmetric estimator, the result is significantly

different as shown in Fig. 2B, where the first IC characterizes transitions between I and III.

The ICs given by the direct and reversible estimators suggested in this work can be seen in

Fig. 2C. They are still different from those in Fig. 2A because the equilibrium distribution

is difficult to approximate with only linear basis functions, but much more accurate than

the estimates obtained by the previously used symmetric estimator in Fig. 2B.

Fig. 2E summarizes the estimation errors of estimated equilibrium distribution obtained

by using simulations with different trajectory lengths, where the accumulated simulation

time is kept fixed to be 104, the lag time for estimators is τ = 0.005, and the error is

evaluated as the total variation distance between the estimated probability distributions

of the three potential wells and the true reference. Fig. 2F shows angles of linear ICs

approximated from the same simulation data with lag time τ = 0.01. Both of the figures

clearly demonstrate the superiority of the direct and reversible estimators suggested here.

C. Protein-Ligand Binding

We revisit the the binding process of benzamidine to trypsin which was studied previously

in Refs. [11, 76]. The data set consists of 52 trajectories of 2µs and four trajectories of 1µs

simulation time, resulting in a total simulation time of 108µs. From the simulations, we

extract a feature set of 223 nearest neighbor heavy-atom contacts between all trypsin residues

and the ligand. We then perform TICA using the symmetrized estimate (previous standard),

the direct estimate and the reversible estimate discussed in Sec. IIID. In order to obtain

uncertainties, we compute 100 bootstrapping estimates. In Figure 3 A-C, we show the three
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Figure 2. Estimation results of a two-dimensional diffusion process. (A) Free energy of the process,

where the dashed line represents the border of potential wells I, II, and III. The shaded area denotes

the region where initial states are drawn for simulations, and the two linear ICs obtained from TICA

with exact statistics. (B, C) Free energies computed from the equilibrium density estimated via

direct counting and the direct estimator. Solid arrows in C and D indicate directions of estimated

ICs given by the symmetric and direct estimators respectively, and dashed arrows indicate that

given by the reversible estimator. (D) Estimates of the two slowest relaxation timescales. (E)

Estimation errors of equilibrium distributions. (F) Angles of estimated ICs. In (D–F), solid lines

and shaded regions indicate mean values and one standard derivation error intervals obtained from

30 independent experiments.

slowest implied timescales as estimated by the three approaches discussed above. We observe

that both the direct and the reversible estimator provide a larger slowest implied timescale

than the symmetric estimator. The slowest timescale estimated by the reversible estimator

only converges with increasing lag time if extremely high estimates from the bootstrapping

are discarded. This instability is likely due to the simple choice of the basis function used here

– it is known that the trypsin-benzamidin binding kinetics involves internal conformational
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changes of trypsin [16]. In Fig. 3D–F, we display the projection of the data onto the first

two TICA components for all three estimates (the first TICA components of the direct

estimate are coincidentally purely real here). The eigenvectors used for the dimensionality

reduction were estimated at lag time τ = 100 ns. The projections are qualitatively similar,

revealing three minima of the landscape, labeled 1, 2, and 3. In all three cases, these centers

correspond to the same macro-states of the system, shown underneath in Figure 3 G-H.

Center 1 corresponds to the ligand being either unbound or loosely attached to the protein.

The other two states are different conformational arrangements of the bound state of the

ligand.

VI. CONCLUSION

Using dynamic mode decomposition theory, we have shown that the variational approach

of conformation dynamics and the time-lagged independent component analysis can be made

without bias even if just empirical out-of-equilibrium estimates of the covariance matrices

are available, i.e. they can be applied to ensembles of short MD simulations starting from ar-

bitrary starting point. The crucial point is that the forceful symmetrization of the empirical

covariances practiced in previous studies must be avoided.

In order to facilitate an unbiased symmetric estimate of covariance matrices, we have

proposed a reweighting technique in which the weights of sampled configurations can be

estimated using a first pass of VAC/TICA, and be applied in order to turn the empirical (out-

of-equilibrium) estimates of covariance matrices into estimates of the equilibrium covariance

matrices. These matrices can then be symmetrized without introducing a bias from the

empirical distribution, resulting in real-valued eigenvalue and eigenfunction estimates.

With these algorithms, VAC and TICA inherit the same benefits that MSMs have enjoyed

since nearly a decade: we can generate optimal and unbiased reversible and nonreversible

estimate from either long equilibrium trajectories or swarms of short trajectories not started

from equilibrium.

An additional result shown in this paper is the computation of the reweighting factors of

sampled configurations that turn the biased empirical distribution into an unbiased estimate

of the equilibrium distribution. This provides a conceptual novelty: We can compute varia-

tionally optimal estimates of equilibrium properties (expectation values, distributions) from
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Figure 3. Results for MD simulations of the trypsin-benzamidine binding process. A–C: Three

slowest implied timescales as a function of the lag time estimated by the previously used symmetric

estimator (A), the direct estimator (B) and the reversible estimator suggested here (C). D–F: Pro-

jections of the data into the two-dimensional space of slowest dynamical eigenvectors for the three

estimation methods. In all cases, we can discern three minima of the landscape, labeled 1–3. For

all three methods, minima 1-3 correspond to the same macro-states of the system. Representative

structures of these states are shown in G-I. State 1 represents the ligand being unbound or loosely

attached to the protein. States 2 and 3 are different conformational arrangements of the bound

state, in particular of the binding loop including Trp 215 [16].
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out-of-equilibrium data using an approach that involves arbitrary sets of basis functions

and computing covariance matrices between them. However, the viability of this approach

critically depends on the suitability of the basis functions employed, and this aspect will be

investigated in future studies.

Appendix A: Dynamical operators

Besides the Koopman operator Kτ , the conformation dynamics of a molecular system

can also be described by the forward operator Pτ and transfer operator, or called backward

operator, Tτ [23], which describe the evolution of ensemble densities as

pt+τ (x) = Pτpt (x)

=

∫
dy p (y,x; τ) pt (y) (A1)

and

ut+τ (x) = Tτut (x)

=

∫
dy

µ (y)

µ (x)
p (y,x; τ)ut (y) , (A2)

where pt (x) denotes the probability density of xt and ut (x) = µ (x)−1 pt (x) denotes the

density weighted by the inverse of the stationary density. The relationship between the

three operators can be summarized as follows:

1. Kτ is adjoint to Tτ in the sense of

〈Kτf1, f2〉µ = 〈f1, Tτf2〉µ (A3)

for any f1, f2 ∈ L2
µ. If {xt} is reversible, Kτ and Tτ are self-adjoint with respect to

〈·, ·〉µ, i.e., Kτ = Tτ .

2. Defining the multiplication operatorMµ : L2
µ 7→ L2

µ−1 asMµf (x) = µ (x) · f (x), the

Markov propagator Pτ can be expressed as

Pτ =MµTτM−1
µ . (A4)

Under the detailed balance condition, Pτ is self-adjoint with respect to 〈·, ·〉µ−1 .
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We can also find the finite-dimensional approximation Pτχi ≈ p>i χ and Tτχi ≈ t>i χ of Pτ
and Tτ by minimizing errors

∑
i

〈
p>i χ− Pτχi,p>i χ− Pτχi

〉
w
and

∑
i

〈
t>i χ− Tτχi, t>i χ− Tτχi

〉
w

for some weight function w (x). However, it is still unknown how to select the weight func-

tions so that the approximation errors can be easily computed from simulation data as in

the approximation of Kτ . For example, if we select w (x) = ρ (x)−1, the approximation error

of Pτ is

∑
i

〈
p>i χ− Pτχi,p>i χ− Pτχi

〉
ρ−1 =

∑
i

〈
p>i χ,p

>
i χ
〉
ρ−1 − 2

∑
i

〈
p>i χ,Pτχi

〉
ρ−1

+
∑
i

〈Pτχi,Pτχi〉ρ−1

=
∑
i

Eρ

[
p>i χ (xt)χ (xt)

> pi

ρ (xt)
2

]

−2
∑
i

Eρ
[

p>i χ (xt+τ )χi (xt)

ρ (xt+τ ) ρ (xt)

]
+
∑
i

〈Pτχi,Pτχi〉ρ−1 (A5)

where the last term on the right hand side is a constant independent of pi, and the com-

putation of the first two terms is infeasible for unknown ρ. For Tτ , the weight function is

generally set to be w = ρ, and the corresponding approximation error is then

∑
i

〈
t>i χ− Tτχi, t>i χ− Tτχi

〉
ρ

=
∑
i

〈
t>i χ, t

>
i χ
〉
ρ
− 2

∑
i

〈
t>i χ, Tτχi

〉
ρ

+
∑
i

〈Tτχi, Tτχi〉ρ

=
∑
i

Eρ
[
t>i χ (xt)χ (xt)

> ti

]
−2
∑
i

Eρ
[
ρ (xt+τ )µ (xt)

µ (xt+τ ) ρ (xt)
· t>i χ (xt+τ )χi (xt)

]
+
∑
i

〈Tτχi, Tτχi〉ρ (A6)

which is difficult to estimate unless the empirical distribution ρ is consistent with µ or the

system is reversible. (For reversible systems, Kτ = Tτ and the finite-dimensional approxi-

mation of Kτ is therefore also that of Tτ .) In general cases, only the Koopman operator can

be reliably estimated from the non-equilibrium data.
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Appendix B: Limit of the EDMD approximation error

The mean square error of the EDMD approximation is

MSE =
1

N

T−τ∑
t=1

m∑
i=1

∥∥k>i χi (xt)− χi (xt+τ )∥∥2 (B1)

Under the condition N →∞, we have

MSE =
m∑
i=1

∫
dx ρ (x)

(
k>i χ−Kτχi

)> (
k>i χ−Kτχi

)
=

m∑
i=1

〈
k>i χ−Kτχi,k>i χ−Kτχi

〉
ρ

Appendix C: Proof of (32) and (33)

Here, we define

Cρ (0) = Eρ
[
χ (xt)χ (xt)

>
]
. (C1)

Obviously, Ĉ (0) is an unbiased estimate of Cρ (0) with Ĉ (0)→ Cρ (0) as N →∞.

Since

Eµ [χ (xt+τ )] = Eµ [Kτχ (xt)]

= Eµ
[
K>χ (xt)

]
=

∫
dx u>χ (x) · ρ (x) ·K>χ (x)

= K>
(∫

dx ρ (x)χ (x)χ (x)>
)

u

= K>Cρ (0) u (C2)

and

Eµ [χ (xt)] =

∫
dx u>χ (x) · ρ (x) · χ (x)

= Cρ (0) u, (C3)

we can obtain from Eµ [χ (xt+τ )] = Eµ [χ (xt)] that

u>Cρ (0) K = u>Cρ (0) . (C4)
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In addition, the integral of µ (x) over all phase space can be expressed as

∫
dx µ (x) =

∫
dx µ (x)χ (x)> v

=

∫
dx u>χ (x)χ (x)> v

= u>Cρ (0) v (C5)

Therefore,

u>Cρ (0) v = 1. (C6)

Appendix D: Analysis of the reversible estimator

Considering that

Ĉeq (0) v =
1

N
X>diag (Xu) Xv

=
1

N
X>diag (Xu) 1

=
1

N
X>Xu

= Ĉ (0) u (D1)

and

Kv = Ĉ (0)−1 Ĉ (τ) v

= Ĉ (0)−1
(

1

N
X>Yv

)
= Ĉ (0)−1

(
1

N
X>Xv

)
= Ĉ (0)−1 Ĉ (0) v

= v
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where 1 denotes a column vector of ones of appropriate size, thenthe modified matrix K̃

given by (39) satisfies

u>Ĉ (0) K̃ =
1

2

(
u>Ĉ (0) K + u>Ĉ (0) Ĉeq (0)−1 K>Ĉeq (0)

)
=

1

2

(
u>Ĉ (0) + v>Ĉeq (0) Ĉeq (0)−1 K>Ĉeq (0)

)
=

1

2

(
u>Ĉ (0) + Ĉeq (0)

)
= u>Ĉ (0) = u>Ĉ (0) K (D2)

K̃v =
1

2

(
Kv + Ĉeq (0)−1 K>Ĉeq (0) v

)
=

1

2

(
v + Ĉeq (0)−1 K>Ĉ (0) u

)
=

1

2

(
v + Ĉeq (0)−1 Ĉ (0) u

)
=

1

2

(
v + Ĉeq (0)−1 Ĉeq (0) v

)
= v = Kv. (D3)

So the reweighting vector u remains fixed after the modification, and the estimated eigen-

function with eigenvalue 1 is still v>χ = 1.

In addition, if Ĉeq (0) is positive-definite, the matrix

Ĉeq (0)
1
2 K̃Ĉeq (0)−

1
2 =

1

2

(
Ĉeq (0)

1
2 KĈeq (0)−

1
2 + Ĉeq (0)−

1
2 K>Ĉeq (0)

1
2

)
(D4)

is symmetric, which implies that the eigenvalues of K̃ are real.

Appendix E: Detailed decorrelation procedure of basis functions

Suppose that v>o χo = 1, then the mean value and covariance matrix of {χo (x1) , . . . ,χo (xT−τ )}

can be computed as

1

N

T−τ∑
t=1

χo (xt) = Ĉo (0) vo (E1)

1

N

T−τ∑
t=1

(
χo (xt)− Ĉo (0) vo

)(
χo (xt)− Ĉo (0) vo

)>
= Ĉo (0)− Ĉo (0) vov

>
o Ĉo (0) ,(E2)

where

Ĉo (0) =
1

N

T−τ∑
t=1

χo (xt)χo (xt)
> . (E3)
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Suppose the truncated eigendecomposition of the covariance matrix is

Ĉo (0)− Ĉo (0) vov
>
o Ĉo (0) ≈ Q>d SdQd, (E4)

where the diagonal of matrix Sd contains all positive eigenvalues that are larger than ε0

and absolute values of all negative eigenvalues (ε0 = 10−10 in our applications). Then the

decorrelation can be implemented as

χ =

Q>d S
1
2
d

(
χ− Ĉo (0) vo

)
1


=

Q>d S
1
2
d

(
I− Ĉo (0) vov

>
o

)
v>o

χo
= R>

Ĉo(0),vo
χo, (E5)

with

R>
Ĉo(0),vo

=

Q>d S
1
2
d

(
I− Ĉo (0) vov

>
o

)
v>o

 . (E6)

Similarly, the decorrelation of χ according to the equilibrium distribution can also be

implemented as

χs = R>
Ĉeq(0),v

χ. (E7)

Appendix F: Simulation models and experimental setups

1. One-dimensional diffusion process

The diffusion processes in Section VA is driven by the Brownian dynamics

dxt = −∇U(xt)dt+
√

2β−1dWt (F1)

where β = 0.3, sample interval is 0.002, x0 is uniformly drawn in [0, 0.2], and the potential

function is given by

U (x) =

∑5
i=1 (|x− ci|+ 0.001)−2 ui∑5
i=1 (|x− ci|+ 0.001)−2

(F2)

with c1:5 = (−0.3, 0.5, 1, 1.5, 2.3). Simulations are implemented by a reversibility preserving

numerical discretization scheme proposed in [? ] with bin size 0.02. The basis functions for

estimators are chosen to be

χi (x) = exp
(
− (wix+ bi)

2) , (F3)
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where wi and bi are randomly drawn in [−1, 1] and [0, 1].

2. Two-dimensional diffusion process

The dynamics of the two-dimensional diffusion process in Section VB has the same

form as (F1), where β = 0.5, sample interval is 0.05, x0 = (x0, y0) is uniformly drawn

in [−2,−1.5]× [−1.5, 2.5], and the potential function is chosen as in [80] by

U (x, y) = 3 exp

(
−x2 −

(
y − 1

3

)2
)

−3 exp

(
−x2 −

(
y − 5

3

)2
)

−5 exp
(
− (x− 1)2 − y2

)
−5 exp

(
− (x+ 1)2 − y2

)
+

1

5
x4 +

1

5

(
y − 1

3

)4

. (F4)

Simulations are implemented by the same algorithm as in Appendix F 1 with bin size 0.2×0.2.

The basis functions for estimators are also Gaussian functions

χi (x) = exp
(
−
(
w>i x + bi

)2)
, (F5)

with random weights wi ∈ [−1, 1]× [−1, 1] and bi ∈ [0, 1].
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