
A new approach for biomarker
detection using fusion networks

Master thesis
Bioinformatics

Mona Rams

June 15, 2016

Department Mathematik und Informatik

Freie Universität Berlin

2

Statutory Declaration

I declare that I completed this work on my own and that information which has been
directly or indirectly taken from other sources has been noted as such. Neither this, nor
a similar work, has been published or presented to an examination committee.

Place, date Mona Rams

3

Contents

1. Abstract 5

2. Introduction 6

3. Machine learning methods for biomarker detection 8
3.1. Methods . 8
3.2. Downsides of ML based biomarker detection 13

4. A new network approach for biomarker detection 14
4.1. The algorithm . 14
4.2. Postprocessing . 19
4.3. Simulation studies . 20

5. A new fusion network approach for biomarker detection 28
5.1. Algorithm adjustments towards a fusion approach 28
5.2. Postprocessing . 29
5.3. Simulation studies . 30

6. Application to real world biological data 38
6.1. Data . 38
6.2. Machine learning based biomarker detection for single source data 46
6.3. Biomarker detection with the single data network approach 48
6.4. Machine learning based biomarker detection for fusion data 60
6.5. Biomarker detection with the fusion network approach 62

7. Discussion 69

8. Conclusion and outlook 71

A. Appendix 80

4

1. Abstract

In this thesis we propose a new approach for biomarker detection using single source
and fusion networks. Our algorithm detects metastable regions with similar and high
weights in networks.

Standard methods for biomarker detection analyse the differentially expression, or
other biological measurement, of genes, without taking any further biological knowledge
into account. Network approaches include further insight into the analysis, nevertheless
most of them are limited to the examination of one data type.

With our fusion network algorithm we introduce a new and promising approach. We
analyse breast cancer gene expression and methylation data using our fusion network
approach. The proposed method detects known and novel biomarkers, which are highly
supported by breast cancer literature, biological pathways, and classification power.

5

2. Introduction

Biomarker1 discovery for complex diseases derived from molecular data is a widely used
strategy to gain deeper insights into disease pathogenesis. Their presence as primary
endpoints in clinical studies is widely accepted. In a complex disease such as cancer, mul-
tiple biomarkers are relevant, resulting in a disease module. Module based biomarkers
achieve greater predictive power and reproducibility compared to single gene biomarkers
[49]. In this thesis, we propose a new algorithm to identify disease relevant modules in
a fusion network (network with multiple integrated data measurements).

Commonly applied approaches for the selection of relevant disease biomarkers are
extensive feature selection methods, such as support vector machine [16], elastic net [90],
and random forest [11]. These methods are applied to classify individual observations
into distinct classes, which results in a model with rankings of features. The most
important features are considered as biomarkers. We introduce these feature selection
methods in §4 and apply them on real world biological data.

It has been observed that biomarkers from different studies often have only few overlap
[26]. A reason for this is that often many features have similar discriminatory power,
each method selects from with a different approach. Furthermore, these methods select
on mathematical background only and hence do not give a (biological) interpretation for
the weighting of features. Hence, the crucial step of disease relevant biomarker discovery
is, to obtain biomarkers with a reasonable biological argumentation.

Studies applying these standard methods investigate experimental measurements only.
They assume that the significant differential expression of a gene, or another biological
measurement, between two conditions is sufficient enough to classify it to be pathogenic
[18, 62, 87]. This assumption neglects the fact that impacts of individually altered
proteins can often be balanced, whereas alterations of interacting proteins often lead to
major consequences [7, 12]. Hence, in this thesis we suggest taking a network approach
which includes biological knowledge into the analysis (§4).

Clustering approaches for the detection of interesting regions in a network often con-
sider the topology of the network only [33, 43, 53, 89]. These approaches do not include
the analysis of experimental measurements for the observed disease. Our network algo-
rithm is a continuous time random walk based approach, to identify regions (metastable
sets) of interacting, high weight nodes in a network. The weight of a node (gene/ pro-
tein) corresponds to its change in disease, compared to a control group. Hence, our
algorithm incorporates network connectivity and experimental measurements. We test
our algorithm in simulation studies, and apply it on real world biological data.

1The term biomarker refers to a medical response (substance, structure, or process) that can be
measured objectively, accurately, and reproducibly in the body or its products, representing an
indicator of a medical state in a biological system [15, 55, 80].

6

Approaches for biomarker detection in biological networks that analyse more than
only the network topology, often evaluate topological features of weighted biological
networks without additional data, or by a combination of network and one data type
[45, 83, 85]. These approaches do not make use of data fusion. With the term fusion, we
refer to an approach that integrates more than one data type of experimental measure-
ments. Results obtained from any single omic approach, however, should be interpreted
cautiously [27], because single source analysis is not sufficient for an understanding of
complex biological processes, and because omics data often contains lots of noise [35].
Firstly, real life biological systems contain more than one component, and should thus
be analysed based on multiple data types. Secondly, if one of several measurements of
the same sample is corrupted by noise, then integrating them can help to detect and
discard the noise.

In recent years, the availability of high throughput datasets has increased considerably,
quantifying thousands of cellular components. This is a great advantage for the field
of systems biology, as it allows for a comprehensive analysis of molecular and clinical
datasets. Methods integrating omics data, thus making use of the available diversity of
data, are required to improve predictive capabilities of computational models [10].

Xia et al. [84] propose a fusion network analysis algorithm for the identification of
candidate genes in a biological network. They define a selection of ‘seed proteins’ around
which a network is built as the first main task. This method is often applied in big data
analysis [40, 71]. Indeed, it makes data analysis easier because it reduces the problem,
but it adds a strong bias to the problem [20]. An algorithm for network based biomarker
detection, going beyond one dimensional approaches and not making use of initial data
restriction, is a progress compared to these methods. We therefore adjust our single
source network algorithm to a fusion network algorithm presented in §5, which we test
in simulation studies and apply on real world biological data. In §6, we identify and
compare breast cancer gene expression and methylation biomarkers from four different
approaches:

• Machine learning based biomarker detection for single source data

• Biomarker detection with our single data network approach

• Machine learning based biomarker detection for fusion data

• Biomarker detection with our fusion network approach

Breast cancer is one of the most common cancers and one of the leading cause of
cancer related death among women worldwide [67]. The Cancer Genome Atlas (TCGA)
[46] data repository provides a comprehensive characterisation of breast cancer including
the genomic and epigenetic level.

Our fusion network approach reveals biomarkers which are highly supported by breast
cancer literature, biological pathways, and classification power.

7

3. Machine learning methods for
biomarker detection

Machine learning based feature selection is a widely applied approach in biomarker
detection [44, 56, 69].

Multiple methods are relevant in this context. In biological analysis data is usually of
the format number of features >> number of samples. Features can be genes, proteins,
or other biological entities. We describe three of the most common methods which are
suited for such data sets: Support vector machine (SVM), random forest, and elastic
net.

A detailed explanation of all the three methods would go beyond the scope of this
thesis. We explain the SVM method in detail, because it is nowadays more often applied
than the other methods (on Google Scholar, citations since 2012 using SVM are three
times more frequent than citations using the other two methods) and give a brief overview
of elastic net and random forest.

3.1. Methods

Supervised machine learning approaches are classification (discrete/ categorical out-
put variable), or regression (continuous output variable) problems. In classification
approaches, the aim is to identify, which class a new observation belongs to, on the basis
of a set of training data observations, with known class label. The result is a model con-
sisting of scored features. The features with the highest scores are selected in a machine
learning based feature selection.

The input to a classification is a matrix of the format samples × features, and a
class label yi for each sample. A vector ~xi ∈ Rm, m >> 1 the number of features, of all
feature values for one sample is one data point. Each method observes this data matrix
to detect the feature relevance for the classification of each point.

For the application of the methods, we use the R package caret with functions
svmRadial, rf, and glmnet and 10-fold cross validation with 5 repeats. The train
function in caret includes optimisation of method parameters.

3.1.1 Support vector machines

SVM is a binary linear classifier that can deal with linear and non-linear separation
problems.

8

It separates points of different classes by means of a separating hyperplane. The
hyperplane is obtained by a maximisation of the margins, which are the distances of
the hyperplane to its closest training data points. These data points are called support
vectors.

The hyperplane can be parametrised by a vector ~ω and a scalar b. All points ~x on the
hyperplane satisfy ~ωT~x = −b, where b is the intercept term and ~ω, the normal vector to
the hyperplane.

Figure 3.1.: Main terms in SVM notation

SVM for linearly separable data

For a set of training data points ~xi and corresponding class label yi ∈ {−1, 1}, we want
to classify the points using

f(~x) = sign(~ωT~x+ b) , (3.1)

that returns class labels.
As depicted above, we want to minimize the margin of the hyperplane to the support

vectors. The functional margin for a training example (~xi, yi) is yi(~ω
T~xi + b).

Figure 3.2.: Smallest distance di of xi to hyperplane

The minimal distance of each point xi of the data set to the hyperplane, is the distance
between xi and a point zi on the hyperplane closest to xi. ~ω/|~ω| is the unit length vector,
pointing in the same direction as ~ω (which is orthogonal to the hyperplane). Therefore

9

zi = ~xi − yidi~ω/|~ω|, where di is the distance between xi and zi. We know that zi lies
on the hyperplane, so it holds ~ωT ~zi+b = ~ωT

(
~x−yidi~ω/|~ω|

)
+b = 0, and solving for d yields

di =
~ωT ~xi + b

yi|~ω|
. (3.2)

Now we want to find the hyperplane that maximises the functional margin of the data
set. We add the constraint

yi(~ω
T~xi + b) ≥ 1 , (3.3)

so that the problem is of a form that can be solved efficiently.
Because ~xi is a support vector, ~ωT ~xi = 1. Further, yi ∈ {−1, 1}. It follows that

the margin of the hyperplane (which is equal to twice the minimum distance of the
support vectors to the hyperplane) is 2/|~ω|, which shall be maximised. This is equal to
minimising |~ω|/2. Hence, the optimisation problem can be denoted as:

min(
1

2
|~ω|) ,

s.t.
yi(~ω

T~xi + b) ≥ 1, i = 1...m . (3.4)

SVM for non-linearly separable data

Data is usually not linearly separable. We therefore allow for misclassification. For this
purpose, a slack variable ξi for each training point ~xi is introduced. Via inclusion of the
slack variable into our optimisation problem, we penalise misclassification. It enables a
trade-off between misclassification and overfitting.

The minimisation term in (3.4) is adjusted to:

min(
1

2
|~ω|+ C

m∑
i=1

ξi) ,

s.t.
yi(~ω

T~xi + b) ≥ 1− ξi, i = 1...m, ξi ≥ 0 , (3.5)

where C is a regularisation constant, which allows to control overfitting. The larger the
C, the more the error is penalized.

SVM multiclass separation

Several options for multiclass separation with SVM exist. A standard approach is to
build as many SVMs as classes, and each SVM trains for one class versus the other

10

classes. This is often called one-versus-all (OVA) classification. The class is assigned
according to the SVM with the highest function value, as defined in (3.1).

In the one-versus-one approach, SVMs for every pair of classes are trained. Each SVM
classifies a data point. The point is assigned the class label, that results most frequently.

Support Vector Machines with Radial Basis Function Kernel

Often, non-linear separation yields better results than a linear separation. With the
kernel function, the data is implicitly mapped into a high dimensional feature space in
which linear separation can be applied. In the implicit mapping, the kernel function,
which encodes the dot product in the high dimensional space, is simply evaluated on all
pairs of data points (in low dimension).

The radial basis function kernel for two vectors ~x and ~ω is given by

K(~x, ~ω) = exp(−||~x− ~ω||
2

2σ2
) . (3.6)

The kernel takes its maximum value at the support vector, decaying uniformly around
the support vector with a spread σ to all directions.

Computational complexity

The computational complexity of SVMs on data sets with number of features>> number
of samples, which is usually the case in biology, is O(mfeaturesnsamples) [13].

3.1.2 Elastic net

Ridge regression and lasso are highly applied methods in the context of extensive feature
selection. However, they have certain limitations. Ridge penalty shrinks the coefficients
of correlated predictors towards each other, while the lasso tends to pick one of them
and discard the others. Ridge regression however, does not give sparse solutions.

The Elastic net regularisation is a mixture of the `1 (lasso) and `2 (ridge regression)
penalties. For m observation pairs (~xi, yi), y ∈ R, the elastic net solves the following
problem:

min
β0,~β

1

2m

m∑
i=1

(yi − β0 − ~xT ~β) + λ

[
(1− α)

1

2
||~β||22 + α||~β||1

]
. (3.7)

The tuning parameter λ ≥ 0 weights the regularization term, hence controls the overall
strength of the penalty. With increasing α from 0 to 1, for a fixed λ, the sparsity of
the solution to equation (3.7) increases monotonically from 0 to the sparsity of the lasso
solution [24].

For a classification problem where y /∈ R, a data point is assigned a class label via
thresholds for the result of the model with the fitted coefficients applied to a new node.

11

Figure 3.3.: Decision boundaries of six different decision trees 1. The boundaries are very
different in each tree, however, the ensemble of them yields good results.

Computational complexity

The computational complexity of elastic net with number of features >> number of
samples is O(m3

features) [13].

3.1.3 Random forest

The random forest algorithm constructs a collection of decision trees built by several
bootstrap samples from the training data. The idea is that decision trees, trained with
random bootstrap samples of the data, can yield different decision boundaries, none of
which is particularly good on its own (Figure 3.3). The ensemble of them however yields
good results.

Each node in a tree examines the features values of the data points. The threshold for
a horizontal or vertical features split is derived by testing for the features that optimally
splits the data. However, in each level of the tree, only a selection of features are
randomly chosen from all features as split candidates. Without this restriction different
trees would use the same strong features (if there are strong features) in the beginning,
which would lead to highly correlated trees.

The random forest decides on a class by evaluating all trees and choosing the class
that was predicted the most.

Computational complexity

Computational complexity for building a complete unpruned decision tree is
O(mfeaturesnsampleslog(nsamples)). Building a random forest with ntree trees, the com-

1Source: https://sites.google.com/a/iupr.com/advanced-machine-learning/home/lectures/lecture-
06—random-forests

12

plexity is O(ntree ∗mtry ∗ nsampleslog(nsamples)), where mtry is the number of variables
sampled at each node.

3.2. Downsides of ML based biomarker detection

Machine learning approaches are often regarded as black boxes. The methods select on
mathematical background only and hence do not give a (biological) interpretation for
the weighting of features.

Further, for data sets with far more features, than samples, also referred to as p>>n
problem, the methods are likely to give poor performances. This phenomenon was first
demonstrated for discrete classification by Hughes [34]. A reason is that different features
have similar discriminatory power. Biological studies, however, are usually of exactly
this kind: number of measurements per patient >> number of patients. Therefore,
methods, that are better suited for this kind of data, are introduced in this chapter.
Nevertheless, we find these arrangements do not solve the problem entirely. In addition,
the computational time of the described methods is comparably large.

Another problem when applying ML methods for biomarker detection is that one has
to be careful with conclusions based on classifier training: Results are dependent on
the applied method. Several methods should be applied and results must be regarded
carefully. The application in §6.2 exemplifies these issues.

Consequently it is of advantage to include further (biological) knowledge into the
analysis, to obtain relevant biomarkers. We demonstrate this with a network approach
in §4 and §5.

13

4. A new network approach for
biomarker detection

Standard biomarker detection approaches, like machine learning, or correlation based ap-
proaches, investigate experimental measurements only. Studies applying these standard
approaches are hence based on the assumption that the significant differential expres-
sion of a gene, or another biological measurement, between two conditions is sufficient
enough to classify the gene to be pathogenic [18, 62, 87]. This assumption neglects the
fact that impacts of individually altered genes can often be balanced, whereas numerous
alterations of interacting proteins often lead to major consequences [7, 12].

Furthermore, the results in §3 motivate for an approach, that incorporates additional
biological knowledge, because results are determined on a mathematical basis only, which
is why we have to question their relevance in the investigated medical state. Networks are
an option to incorporate additional biological knowledge: By a combination of biological
network and measurements, the network approach can identify areas of connected entities
with significant measurements, where the connection represents some biological process.
We therefore choose to develop a new network approach. Remember that biomarkers are
objectively measurable indicators of a medical state in a biological system. Nodes in the
network should carry weights, representing objectively measurable data, or information
derived from it. We assume that the node weights represent a measure of change between
case and control.

We introduce, analyse, and apply a biased continuous time random walk based algo-
rithm for the identification of metastable sets in a network.

4.1. The algorithm

With our approach we aim to analyse biological interaction networks, where edges are
undirected and node weights are derived from biological data. The aim of our algorithm
can be formulated as: For an undirected network with weighted nodes, the problem is to
find connected nodes with similar and large weights. We denote such sets as modules.

In a biological context, a proportion of biological entities from the observed set, should
be classified as biomakers. Hence, in our algorithm, we assume that the total number
of nodes in modules is small compared with the size of the network.

14

Motivation

A common approach to detect connected substructures with high node weights in a
network is to construct a random walk, a process that a walker randomly takes from
one vertex to one of its adjacent nodes with a probability proportional to the weight of
the edge connecting them. Komurov et al. [40] introduce such an algorithm, NetWalk,
based on biased discrete random walks, which is more likely to jump to adjacent nodes
with higher values. In contrast, Sarich et al. [65] could show that continuous random
walks are better suited for this purpose, because of their ability to detect modules in a
network.

We assume that few regions in the network are relevant, which results in modules of
comparably few nodes and a set of nodes which are not in modules.

We present an algorithm, that combines the above mentioned ideas by Komurov et al.
and Sarich et al., to identify candidate genes based on biased continuous random walks.

Background

Biased random walks

Let S = {1, 2, ..., n} denote the set of nodes and let A = Aij ∈ {0, 1}n×n be the adjacency
matrix with zero diagonal. The node weights are given by w ∈ Rn

≥0. The topological and
the biased discrete time random walk transition matrices are respectively represented by

PT,ij =

{ 1
|Ni| , Aij = 1

0, Aij = 0
, (4.1)

and

PW,ij =

{
wj∑

k∈Ni
wk
, Aij = 1

0, Aij = 0
, (4.2)

where Ni = {k|Aik = 1} is the set of neighbours to the node i. Assuming reversibility and
irreducibility for the Markov chains, the values of the respective stationary distributions
µW , µT give the relative amounts of time, the random walk spent in each node in the
long run. Komurov et al. [40] propose to detect the relevant structures as connected
components of the set {µW > µT}.

Continuous time random walk

The ratio µW/µT is highly correlated with the weight vector w (see equation (4.2)). In
particular, if weights form two concentrated and well-separated groups, NetWalk finds
exactly the high-valued nodes. However, if the high weights are not clearly separated
from the low ones, the method struggles or even fails to find the desired parts. In
preliminary studies we could show that a perturbation of node weights can easily corrupt
the results by this algorithm.

15

Focusing on this issue, the impact of the network topology on the average time spent
by the biased random walk in the single nodes is of high interest. We therefore switch
to a continuous time random walk: The continuous time random walk allows to have
different holding times for each node. Thus, the random walk can be adjusted, such that
it remains longer in nodes with high weights, than in small node weights (see equations
(4.3) and (4.4)).

An example of a topological continuous random walk with equal jumping probabilities
for each node i to all its neighbours Ni and unit holding times, is:

LT,ij =

{
Aij

|Ni| , i 6= j

−1, i = j
. (4.3)

In contrast, the biased random walk has jump rates proportional to the node weights of
the destination of the jump process:

LW,ij =

{
Aijwj i 6= j

−
∑

k∈Ni
wk, i = j

. (4.4)

In the continuous time random walk, µT = 1/n, where 1 = (1, ..., 1)T and
µW = w/

∑
k∈Ni

wk. The ratio µW/µT is now representing the relative node weights w/w̄,
with w̄ = 1/n

∑
k∈Ni

wk, the mean node weight. Note that holding times of the random
walk in each node, however, are now decisive control parameters in tuning the random
walk such that it reveals structures of interest.

Metastability of random walks

If there are at least two sets of nodes with high weights, without any direct connecting
edge between the individual sets, meaning that transitions between the sets are rare
events on the natural time scale of the random walk, then these sets are called metastable.
Processes with this behaviour are called metastable. More precisely, a disjoint collection
of sets Mi, ...,Mm is called metastable, if the average time the random walk takes to enter
one of the Mi from outside

⋃
jMj, is much smaller than the time required to switch to

some Mj, j 6= i, when currently being in Mi. T = (
⋃
jMj)

c, the complement of the
metastable sets, is called transition region. By forcing the random walk to spend more
time in regions with high node weights, it becomes metastable.

The mean first hitting time τB(x) of a metastable process is relevant for the detection
of module cores, the central module nodes. It is defined as the expected first entry time
of the process into the set B, conditional on starting in node x: τB(x) = E[TB(x)].

Identification of metastable structures

To find the metastable sets, recently developed theory on coarse graining of random
walks, where metastable sets do not form a full partition [65, 66], i.e. T 6= ∅ , is applied.
For this, committors are needed. The committor function qi : S → [0; 1] is defined as
the probability that a process starting in node x visits the set Mi first, rather than any

16

other set Mj, j 6= i. Metastable sets should have the property that reducing any Mi to
any of its nodes x will result in the discarded nodes Mi \ {x} having commitor values
qi close to one. The metastable sets are detected based on the commitors (as explained
below, in the steps of our algorithm).

Concept

We apply the above mentioned theory to find modules of nodes with high and similar
weights. For this purpose, a weight similarity measure d(wi, wj) is introduced. We will
use d to construct a continuous time random walk, such that modules of interest form
metastable sets, and then locate these sets.

Node weight similarity

We can set the similarity measure d to d(wi, wj) = |wi−wj| if both node weights follow
similar distributions and are equally relevant in the context of the analysis. We can
define d differently, if this is not the case. For the inclusion of node weight similarity,
the similarity matrix S ∈ Rn×n is defined as:

Sij =

{
exp(−d(wi, wj) ∗ p), Aij = 1

0, otherwise
, (4.5)

where p is a free similarity parameter.
The jump matrix PS is defined by PS,ij = Sij/

∑
k Sik. The rate matrix for the

continuous time random walk with similarity is defined as:

LS = D−1
w (Ps − I) , (4.6)

where Dw denotes the diagonal matrix with diagonal w. The Markov Jump process
regulated by LS has expected holding times equal to one and jumping probabilities
encoded in Ps.

Steps

1. Initialization, step 1 (first two module cores): take a random i∗ ∈ S, then set
module core c1 = argmaxj∈Sτ{i∗}(j). Set c2 = argmaxj∈Sτ{c1}(j) and C =
{c1, c2}.

2. Initialization, step 2 (first two clusters): compute the committor functions q{c1}
and q{c2} for the two target sets {c1} and {c2}, and identify the clusters Mi,
i = 1, 2, as the indices of positive outliers in the data set

(
q{ci}(j)

)
j∈S.

3. Loop, step 1 (find the next module core): set the new, k-th core as the one
”furthest” from all clusters, i.e. ck = argmaxj∈Smini=1,...,|C|τMi(j) and update the
core sets C → C ∪ {ck}

17

4. Loop, step 2 (assign cluster): compute the commitor functions qM1, ..., qMk−1 and
qck for the k target sets M1, ...Mk−1 and {ck}, then identify the cluster Mk as the
indices of positive outliers in the data set

(
q{ck}(j)

)
j∈S

Parameter p

The parameter p in equation (4.5) has the following influence on the results: With
increasing p, the similarity of weights of neighbour given more importance. If it is too
large, the weights become insignificant.

Parameter #m

The application of the algorithm requires a specification of the number of modules that
should be detected, which we denote as #m.

Spectral clustering algorithms [76] use the spectral gaps of the random walk matrix as
an indicator of the number of relevant clusters. Based on the theory of these algorithms
#m is chosen as the number of eigenvalues for which a spectral gap appears. Thus,
#m is determined argumentatively. In each run, a visualisation of the spectrum of LS
(equation (4.6)) is provided (Figure 4.1 shows an example).

Figure 4.1.: Spectrum of the first 20 eigenvalues of LS for an example network. Signifi-
cant spectral gaps show up for eigenvalues 10, 13, and 18. These values can
be used as candidates for #m.

Implementation

The algorithm is implemented in MATLAB. The code is attached in the appendix.

Numerical costs

Since both commitors and expected hitting times are characterized by a system of linear
equations, both of these objects can be computed essentially in O(n) time by utilizing
iterative solvers, given the defining matrices are sparse. Our random walks are reversible,
which is equivalent to the self-adjointness of the rate matrix with respect to a specific
inner product (this requires the knowledge or computation of the stationary distribution
of the process). This enables the usage of specific solvers, which has advantages in
accuracy and runtime.

18

4.2. Postprocessing

We apply our algorithm to artificial and biological data (see §4.3 and 6.3). Three arte-
facts occur in the results:

1. Some modules have rather small node weights.

2. Some modules are adjacent, hence should be jointed.

3. Some modules are very small.

However, it can be understood why these artefacts occur, and we develop a postpro-
cessing, that detects and removes them.

Modules with small node weights

If a set of connected nodes is very similar in terms of weight, it can be attractive for
the algorithm, although its nodes have small weights. These modules contradict with
the aim to identify modules of high weight, but they can easily be identified and, hence,
do not create problems. We define a sufficiently high weighted module, such that the
mean weight of the module is larger or equal to the 90th percentile of all node weights.
The 90th percentile is often applied as a threshold [29, 47, 2]. In the postprocessing all
modules that do not fulfil this criterion are excluded.

Neighbouring modules

Based on the values of the commitor function of each identified module core, each module
is extended with further nodes. It can happen that two cores are extended, such that
the resulting modules are adjacent. These modules can be jointed.

For each pair of modules, all the shortest paths between all nodes of the one module,
to all nodes of the other module, are computed. If any of these shortest paths is 1, the
modules are jointed.

Modules of small size

If a core node has a high weight, but all its neighbours have small weights, the module
is not extended and remains a single node module.

Our working hypothesis is that the impact of single gene changes, is comparatively
small. We are therefore interested in bigger modules. The minimum number of genes
in a module considered in studies for network motif detection is usually three [5, 6, 81].
This values is adopted for our approach: If modules of size ≤ 2 are still present after
the foregone postprocessing step, these modules are excluded.

19

4.3. Simulation studies

We test our algorithm using artificial networks. This enables us to assess whether the
algorithm detects the interesting modules in a network. This is not possible with a real
data network, because we do not know where the interesting modules in the network
are.

We create artificial networks of 5000 nodes, with predefined modules of different kind
and compare the detected modules with the modules that have been inserted. We
decide for a network size of 5000 nodes, because this represents well a dimension of a
medium size biological network. The artificial network has seven topological and hairball
modules. Details on the modules are given in the following sections.

Real world networks are usually almost scale free [3]. Artificial networks are therefore
created with the Barabási–Albert model [4]. The algorithm starts with a network of m0

nodes. The network is evolved by adding one node at a time. Each new node is connected
to m<m0 nodes. The probability for a link from the new node to an existing node i
is: P (ki) = ki/∑j kj, where ki is the degree of node i and j the indices of nodes already
in the network. Each node has at least one link. Accordingly, nodes with comparably
many links, are more likely to be chosen as neighbour nodes, while nodes with few links
are unlikely to attract new nodes in this setting.

The node weight distribution of nodes, that are not in modules, are designed similar
to the biological data from §6.3. The weight distribution follows a gamma distribution
with shape 1.7 and scale 0.07 (Figure 4.2).

Figure 4.2.: Distribution of node weights in the artificial network. Few nodes that are
not in modules have weights larger than 0.3. The maximum node weight of
nodes that are not in modules is approximately 0.7.

Predefined modules of 30 nodes each are added. We choose each cluster to be of size
30, because in our experiments with biological data we observe that modules are often
of similar size. A module seed node is chosen randomly and its weight is set high. The
module is extended by randomly choosing neighbours of the module node and adjusting
their weights. The weights for the predefined module nodes are chosen from a predefined
normal distribution. We perform two simulation studies and evaluate their results:

1. For the clustering of networks with predefined modules with similar weight dis-
tributions, we vary algorithm parameters #m and p (see §4.3.1).

2. For fixed parameters derived from the first study, we cluster networks with
predefined modules with varying weight distributions (see §4.3.2).

20

When studying the performance of the algorithm for artificial networks, a score for
the evaluation, based on the agreement of predefined and detected modules, is required.
It is difficult to compare modules in a network with a large transition region - as in our
approach - because the agreement of module IDs is always high: Assume a module m1

in partition P1 and a partition P2. In partition P2 the majority of nodes from m1 are
assigned to the transition region. Since most of the nodes from m1 are in one module
in P2 (the transition region), this module is evaluated as highly agreeing, in terms of
similar module separation.

We therefore choose to evaluate modules by the percentage of detected nodes from
the predefined modules, denoted as PDN. The percentage overcomes the above men-
tioned problem. However, it does not include a validation of module separation, nor an
assessment of nodes that are additionally identified as modules nodes.

It is not known if any modules of interest occur by random. This can happen, because
the background includes high weights. If the respective nodes are connected, they should
be detected as a module. Therefore, the occurrence of new module nodes should not
downgrade the assessment of results, which is not the case with the described percentage
evaluation.

4.3.1 Varying algorithm parameters #m and p

The application of the algorithm requires a specification of the two parameters p and
#m. The evaluation of results for artificial networks allows for the study of the influence
of parameters p, which influences the similarity criterion, and #m, the desired number
of modules, and postprocessing.

In this section, the modules are created such that their node weights follow a normal
distribution with mean 0.5 and variance 0.05, because we often observer similar distri-
butions in modules from biological data. The maximum of the node weight distribution
of nodes not in modules is approximately 0.7 and only few nodes have similar weight.
Hence, 0.5 is a comparably high value, which our algorithm is designed to find.

Parameter #m

In this section, the values of #m are determined via the spectral gaps of the spectrum
of the generator matrix LS (equation (4.6)).

In our studies we find, that in almost all cases, for increasing #m, the PDN as well
as the number of module nodes in general increases. Generally, for increasing #m, we
observe:

• Some modules split into several modules, or parts of them combine with other
modules.

• Nodes from the transition region form new modules, or they are integrated into
modules that are found for smaller values of #m.

• The majority of nodes that are in a module for smaller values of #m, appear in
modules for larger values of #m.

21

(a) Development of the modules for five different values of #m. Each module state has a prefix
(1., 2., 3., 4., 5.cluster number), representing the clustering iteration. For larger values of #m,
the number of nodes in modules increases, thus some nodes which are in the transition region
in a module for a smaller value of #m, are in a module for a larger value of #m. These nodes
are denoted as the .0 module.

(b) Density of weights of nodes in all detected module per value of #m. For higher values of
#m, more high node weights and some small weight nodes are in the resulting module set.

Figure 4.3.: Clustering of one artificial network for p = 10 and #m = 2, 11, 14, 16, 19

Figure 4.3a shows the development of modules for five different values of #m, de-
termined from spectral gaps, for one artificial network. For larger values of #m, the
number of nodes in modules increases. The initial modules are almost always adopted
for increasing #m. More modules of similar size are returned for larger values of #m.
The module 3.9 splits into two modules, one of which includes additional nodes.

Figure 4.3b reveals, that for this network and algorithm setting, more high weight
nodes are identified for larger values of #m. A small amount of low weight nodes are
also added, however. We observe this behaviour for the majority of the tested networks.

Figure 4.4 shows the PDN for p = 10 and #m = 1, ..., 20 for five different networks.
In general for increasing #m, more predefined module nodes are detected. The curve
flattens for large values of #m.

22

Figure 4.4.: PDN for five artificial networks for #m = 1, ..., 20, for p = 10. The PDN
increases for increasing values of #m (more drastically for smaller values).

Parameter p

Results for p < 10 include significantly more small weight nodes, compared to results
for larger p. Hence, p = 10 is chosen as the minimum p. For p > 25, LS (equation (4.6))
becomes numerically unstable. Reducing the tolerance does not remove all conflicts.
Therefore, p = 10 and p = 25 are tested in this simulation study.

In Figure 4.5a we can see, that the number of nodes from clusterings with different
values of p and the same #m is similar for #m ≥ 10: They differ by no more than 5%.
For 18 of 20 values of #m, the mean PDN is similar or higher for p = 25 than for p = 10.

Postprocessing

Figure 4.5a reveals that the postprocessing removes less than 10% of the module nodes
belonging to predefined modules for any values of #m.

However, the number of detected modules differs significantly: For initially
2, 11, 14, 16, 19 modules in the clustering illustrated in Figure 4.3, the postprocess-
ing returns the same 3 modules in all cases. We observe this development for three of
the five tested networks, and for one network highly similar modules are returned after
the postprocessing for varying numbers of #m. This indicates that if the postprocess-
ing is included, the initially fixed parameters p and #m no longer change the results
significantly.

Number of nodes in modules

It must be noted that it more module nodes do not necessary indicate an improved result.
In sparse approaches, the aim is to identify few, mainly relevant entities. In biomarker
detection, this leads to biomarkers with high interpretability. Further, medical testing
for few biomarkers is simpler and cheaper.

Figure 4.5b shows that for larger values of #m, the number of module nodes increases
almost linearly. We have observed that the curve of the PDN flattens for large values of
#m (Figure 4.4). Bearing in mind the idea of sparseness, a compromise regarding #m

23

(a) The PDN changes minimally after postprocessing. Only for p = 25 and values of #m ≥
10 the PDN changes by more than 3%.

(b) Total number of module nodes: Significant changes after postprocessing. In the postpro-
cessing for p = 10, more nodes are removed in the postprocessing than in the postprocessing
for p = 25

Figure 4.5.: Mean results for five different networks for #m = 1, ...20, for p = 10, 25
before and after postprocessing (PP)

might be ideal: For larger values of #m, more module nodes of predefined modules are
detected. However, for higher values of #m, the number of module nodes which do not
belong to any of the predefined modules increases even more.

4.3.2 Varying weight distributions of predefined modules

In our first simulation study, evaluations are performed on networks with modules having
similar node weight distribution. It is of interest how the results change when these
distributions are altered.

The distribution of weights of nodes that are not in modules is left unchanged. The
parameter µ of the normal distribution of the predefined modules is altered between
µ = 0.1, ..., 1. The variance is fixed at σ2 = 0.1. From results in §4.3, it follows that
p = 25 is slightly better than p = 10 and that #m should be chosen relatively large.
Results in this section are therefore computed for p = 25 and #m = 16. For each µ, five
networks are computed and clustered with our algorithm.

Figure 4.6 shows mean and standard deviation of the PDN. For µ ≥ 0.5, the PDN
are satisfying. For µ ≥ 0.6, the PDN remain almost unchanged. The PDN being small
for small values of µ does not mean that the algorithm preforms poor in that case,
because the algorithm is designed to detect modules with high weights. The background

24

distribution has its maximum at roughly 0.7. If similar high weight nodes are adjacent by
chance, they form more interesting modules for our purpose, compared to the predefined
modules.

Figure 4.6.: PDN (respective mean and standard deviation) of clustering results with
weights in predefined modules ∼ N(µ, 0.05), µ = 0.1, ..., 1. For µ ≥ 0.6, the
PND remains almost unchanged.

Figures 4.7a and 4.7b show the mean number, respectively weight, of nodes that are
assigned to a module, but are not in the predefined modules. For increasing µ ≥ 0.4, the
number of these nodes decreases. We can assume that with increasing µ, more significant
modules form in the network. Further, for small values of µ, nodes in predefined modules
have small weights compared to the other nodes, which is why few of the predefined
module nodes are detected.

(a) Number of returned module nodes not in predefined modules

(b) Mean weight of returned module nodes not in predefined modules

Figure 4.7.: Evaluation (respective mean and standard deviation) of module nodes from
our algorithm that are not in predefined modules with weights in predefined
modules ∼ N(µ, 0.05), µ = 0.1, ..., 1. For increasing µ ≥ 0.4, the number of
these nodes decreases.

25

(a) Mean number of nodes from predefined modules that are not in detected mod-
ules from our algorithm. The number of these nodes decreases for increasing
µ ≥ 0.2.

(b) Mean weight of nodes from predefined modules that are not in detected modules
from our algorithm. The mean weight of the ignored nodes increases for increasing
µ ≥ 0.2.

Figure 4.8.: Evaluation (respective mean and standard deviation) of nodes from prede-
fined modules that are not in modules of network clustering with weights in
predefined modules ∼ N(µ, 0.05), µ = 0.1, ..., 1

Figures 4.8a and 4.8b show the mean number, respectively weight, of nodes from
predefined modules not in detected modules by our algorithm. The number of these
nodes decreases for increasing µ ≥ 0.2. It can happen that the weights of two adjacent
nodes from predefined modules are at the opposite ends of the module weight distribution.
Hence, the similarity for these adjacent nodes would no longer be satisfied and the node
is excluded from the module. The mean weight of the ignored nodes increases, which
makes sense, since the weight of nodes in predefined modules increases.

Changes due to postprocessing are mainly visible for the module nodes not in prede-
fined modules (Figure 4.9, compare Figure 4.7). The number of these nodes decreases
significantly and their mean weight increases. This proves for a successful postprocess-
ing.

We could also investigate, how far the PDN alters, when σ2 of the normal distribution
of the predefined modules is altered. However, we can see that σ2 = 0.1 produces
satisfying results for a sufficiently large value of µ. Increasing σ2 in the node weight
distribution contradicts with the objective of finding modules of similar weight. We are
therefore satisfied with the previous observations within the scope of this thesis.

26

(a) Number of module nodes not in predefined modules

(b) Mean weight of module nodes not in predefined modules

Figure 4.9.: Evaluation (respective mean and standard deviation) of module nodes from
our algorithm not in predefined modules of network clustering after post-
processing with weights in predefined modules ∼ N(µ, 0.05), µ = 0.1, ..., 1.
The number of these nodes decreases significantly and their mean weight
increases. Compare Figure 4.7.

27

5. A new fusion network approach for
biomarker detection

Due to the progress of high throughput technologies in recent years, an abundance of
omics data from a variety of biological data types is present today. This data has enabled
the creation of a multitude of databases that significantly facilitate biomedical research.
Integration of these sources allows a comprehensive analysis of molecular and clinical
datasets. Thus, it can improve molecular based insights to diseases.

As previously discussed, applying networks into a biological study improves results in
another aspect. Approaches for biomarker detection using PPI networks, often evaluate
topological features of weighted PPI networks without additional data, where weights
represent e.g. confidence of interactions. Other approaches evaluate topological features
of weighted PPI networks, where weights are derived by the integration of one data source
[45, 83, 85]. These approaches do not make use of data fusion. Thereby, specific results
might be over interpreted or missed [27]. Equally important is that fusion approaches
enable us to capture more dimensions of complex biological processes.

An example for a network analysis algorithm performing data fusion for identification
of candidate genes in a PPI network is given by Xia et al. [84]. They define a selection of
‘seed proteins’, around which a network is built, as the first main task. This is a method
often applied, when it comes to big data analysis [40], as for example in [71]. Indeed,
simplifies the analysis, but it adds a strong bias to the problem [20] and it contradicts
with the idea of capturing biological processes more realistically.

An algorithm for network based biomarker detection, going beyond simple one dimen-
sional approaches and not making use of initial data restriction, is a progress compared
to these methods. In this chapter, we apply the ideas of our algorithm from §4 and
adjust it to a fusion network algorithm.

5.1. Algorithm adjustments towards a fusion approach

The algorithm is adjusted such that it detects structures based on multi-dimensional
node weight similarity. From a weight similarity measure, a continuous time random
walk is constructed such that the modules of interest form metastable sets of the walker.

While the holding times in the single source approach are computed on the basis of
each node weight, in the fusion approach holding times have to be based on a vector of
weights. Further, for the computation of the distance of nodes, a distance measure for
vectors is required.

28

To get an idea of a good choice of holding times, as well as for the distance measure,
several settings are evaluated on artificial networks in §5.3. When each data (weight
dimension) follows similar distribution, standard distance measures, such as Manhattan
or Euclidean distance, can be used. For a reasonable choice, the data has to be observed.

The general aim of the algorithm is to find modules of connected nodes with high
weights. In the one dimensional case modules could be assessed immediately by examin-
ing whether the nodes are connected and by observing the distribution of node weights.
In the fusion network approach, however, the assessment of modules becomes more com-
plex. In an analysis we find that the algorithm returns different kinds of modules. In
one kind, all weights are high, in the other, only one weight is high. Both modules are
interesting. Modules with one high node weight are also interesting, as they are a region
of connected nodes with a significant characteristic in one dimension.

Nevertheless, in our fusion approach we aim to find nodes, which show interesting
characteristics in all dimensions. We therefore design the random walker to leave nodes
with small weights in any dimension quickly. Hence, for modules with one high weight
dimension, the other weight dimensions must be slightly increased, for the module to be
detected. We decide for exp(min(nodeweight)), for the holding times.

5.2. Postprocessing

We apply our algorithm to artificial and biological data (see §5.3 and §6.5). We observe
similar artefacts as in the single source approach (compare §4.2). The postprocessing
needs to be adjusted for fusion data, because each module has two weight distributions
that need to be evaluated. In the single source approach, we correct for:

1. Modules with small node weights;

2. Modules that are adjacent;

3. Modules of size ≤ 2.

Similar to the single source postproceesing, in the fusion postprocessing, we correcting
for modules with small weight, such that modules are removed if the mean of the weight
distribution of each dimension, is smaller than the 90th quantile of the overall network
distribution.

Modules are jointed if the shortest path for any node pair from the respective modules
is at maximum 1. However, modules are only combined, if their node weight distribu-
tions are similar, according to the following criterion: A two sided Kolmogorow-Smirnow
(KS) test between the weights of nodes of the respective modules, for each weight di-
mensions, is performed in R with ks.test. The KS test determines if two samples
differ significantly. We choose the KS test, because it makes no assumption about the
distribution of data. If the p-value is larger than 0.05 for all weight dimensions, the
modules are combined. The threshold is chosen comparably small, because we define it
to be sufficient for two modules to be combined, if distributions are relatively similar.

29

Modules of size one are combined with another module if the mean weight of the sin-
gleton module and the other module differ no more than the variance of the background
distribution from each other.

Similar to the postprocessing for single source networks, remaining modules of size
two or one are removed.

5.3. Simulation studies

In this section we analyse how to adjust the algorithm for a fusion approach, such that
it return modules of requested kind. To enable a reasonable evaluation of results, we
analyse artificial networks. This enables us to tell, whether the algorithm detects the
interesting modules in a network.

We create artificial networks, with predefined modules of different kind and com-
pare the detected modules with the modules that have been inserted. Real world net-
works are usually almost scale free. Artificial networks are therefore created with the
Barabási–Albert model [4], for details see §4.3. Each node is assigned to weights. The
node weight distributions of those nodes that are not in modules, are designed similar
to §4.3. Both distributions follow a gamma distribution with shape 1.7 and scale 0.07
(Figure 5.1).

Clusterings are evaluated by the PND, the percentage of detected nodes the predefined
modules defined in §4.3. We perform two simulation studies on the artificial networks
and evaluate their results:

1. For the clustering of networks with predefined modules with similar weight dis-
tributions, we vary algorithm setting and parameters (see §5.3.1).

2. For a fixed algorithm setting and parameters derived from the first study,
we cluster networks with predefined modules with varying weight distributions
(see §5.3.2).

Figure 5.1.: Distribution of node weights (w1,w2) in the artificial network for nodes not
in predefined modules. The maximum of node weights is approximately 0.7,
but only few nodes have such high weights.

30

5.3.1 Varying algorithm setting and parameters

In this section, we analyse artificial for which the node weights in the seven modules
follow a normal distribution with mean 0.5 and variance 0.05. Details on how these
modules are derived are given in the introduction of §4.3. For two of seven modules,
only one weight is high. The other modules are high in both weights.

Firstly, the algorithmic settings are evaluated. We evaluate combinations of different
choices for:

1. Distance d between two nodes: d(nodei, nodej)

2. Exponent x in holding times: exp(min(nodeweight)x)

Table 5.1.: PDN for different algorithm settings (node distance d and exponent x in hold-
ing times x) and parameters (similarity parameterp and number of modules
#m), for module node weights ∼ N(0.5, 0.05); PDN> 0.7 marked blue.

d x p #m PDN

Euclidean 1

10
15 0.61
19 0.83

25
14 0.59
18 0.83
19 0.9

50
17 0.81
18 0.83
19 0.83

Euclidean 2

10

8 0.4
15 0.61
16 0.64
19 0.83

25
14 0.59
18 0.72
19 0.9

Manhattan 1
10

8 0.24
12 0.54
14 0.64
16 0.73
19 0.88

25 18 0.72

Manhattan 2
10

8 0.24
13 0.61
15 0.66
18 0.69

25 19 0.9
50 20 0.83

31

Table 5.1 shows evaluations for different algorithmic settings, for different p and #m,
for a network with 5000 nodes and seven modules. The modules, that have been inserted
artificially, are further referred to as predefined modules. Values for #m are determined
from the spectrum of LS (equation (4.6)).

We can use simple distance measures, like Euclidean or Manhattan distance, for d,
since both the node weights come from similar distributions. A difference between Eu-
clidean and Manhattan distance is, that Manhattan distance sums up each dimension’s
difference, whereas Euclidean distance averages the distances.

Results for p < 10 include significantly more small weight nodes, compared to results
for larger p. Hence, p = 10 is chosen as the minimum p. For p significantly larger than
50, LS (equation (4.6)) becomes numerically unstable. The maximum p is therefore set
to 50. p = 25 is tested as an intermediate p. In Table 5.1 PDN are marked blue, if they
are 70 or higher. For two settings for p = 50 LS (equation (4.6)) becomes numerically
unstable.

For a sufficiently large #m, all but one setting yield PDN of > 70%. This is an
important finding. Results in §4.3 indicate a tendency of more nodes in the resulting
modules for increasing #m. These nodes include nodes from predefined modules. The
same holds for the fusion network approach for both distance measures.

The number of modules, however, is more than twice as high as 7 (which is the
number of predefined modules) for results with PDN > 70%. This is enhanced in the
postprocessing. We fix the difference measure to the Euclidean distance. x is set to 1
since results are amongst the best and interpretation is easier than for x = 2. Further,
we fix p = 25, because it yields best results in this setting.

How to find the best #m remains an open question. The PDN is usually better
for larger #m up to a certain value of #m, because the modules for larger values of
#m include the nodes of modules for smaller values of #m. Often, the best result
is achieved at the biggest spectral gap. Figure 5.2 shows results for clusterings of 10
different artificial networks, that are computed with the same settings (p = 25, Euclidean
distance). #m is set to the following high values:

• The number of the eigenvalue, when sorted, for the biggest spectral gap of LS (4.6)
(which we observer is always < 20).

• 19, because this yielded the best result in Table 5.1 for the selected setting.

• 20, to see if results get considerably better for large values.

In most of the cases, the results for the three values of #m do not vary significantly.
We conclude that setting #m to a large number for a big spectral gap is recommendable.

32

Figure 5.2.: PDN for 10 artificial networks for different values of #m; d is set to Eu-
clidean distance, exponent x in holding times is 1, and p = 25. In most of
the cases, the results for the three values of #m do not vary significantly.

5.3.2 Varying weight distributions of predefined modules

In §5.3.1 the optimal parameters for the algorithm to analyse networks with similar node
weight distributions are determined. In this section we evaluate clustering results for
networks with modules that have different weight distributions. The first simulation
study reveals, that results for #m = 19 are consistently good: The PDN is on average
0.897 with variance across different networks 0.006. This is a satisfying result. We
therefore fix #m = 19 for the following analysis in this section.

The background distribution is unchanged (see §5.3.1). In a first analysis, the pa-
rameter µ of the normal distribution of the module node weights is altered between
µ = 0.1, ..., 1. The variance is fixed at σ2 = 0.1. For each µ, five networks are computed,
over which we evaluate. Figure 5.3a shows the mean and standard deviation of the PDN.
For µ ≥ 0.4, the PDNs are satisfying and do not change considerable any longer.

The same test setting is performed for networks for module node weight distributions
with µ = 0.5 and σ2 = 0.01, ..., 0.1, 0.15, 0.2, 0.25, 0.3. Results are shown in Figure 5.3b.
For modules with node weight distributions with σ ≤ 0.1 the PDN is similar and high,
compared to higher values of σ2. That the PDN is small for higher values of σ2 can be
exploited by the fact that the algorithm detects modules with similar weights. It has to
be assumed that this is no longer given, for network modules with a wide node weight
distribution.

33

(a) µ = 0.1, ..., 1. For µ ≥ 0.4, the PDNs are satisfying and do not change considerable any longer

(b) σ2 = 0.01, ..., 0.1, 0.15, 0.2, 0.25, 0.3. For modules with node weight distributions with σ ≤ 0.1 the
PDN is similar and high, compared to higher values of σ2.

Figure 5.3.: Mean and standard deviation of the PDN for node weight distribution from
normal distributions N(µ, σ2) with varying values for µ (a) or σ2 (b)

5.3.3 Influence of postprocessing

The PDN are nearly equal before and after postprocessing (Figure 5.4), except for small
µ for which the PDN decreases (compare Figure 5.3a). Indeed the predefined modules
are not of interest due to their small mean weight and therefore the exclusion of these
nodes from detected modules is desirable.

Further, the number of module nodes returned by the algorithm that are not in pre-
defined modules decreases (Figure 5.5). As already mentioned, we do not know if any
interesting structures appear by chance when the networks are created. Figure 5.6 re-
veals that the weights in these nodes (precisely, the maximum of the weight vector
of each new node) are high in general and that their mean weight is increased after
postprocessing.

34

Figure 5.4.: Mean and standard deviation of the PDN after postprocessing, for weights
of predefined modules ∼ N(µ, 0.05), µ = 0.1, ..., 1

For networks with fixed µ and altered σ2 (Figure 5.3b), the postprocessing does not
changes results much. The postprocessing of networks with fixed σ2 and altered µ
(Figure 5.3a), results in larger differences. We therefore only observe the influence of
postprocessing on networks with fixed σ2 and altered µ.

(a)

(b)

Figure 5.5.: Mean and standard deviation of the number of returned module nodes not
in predefined modules before (a) and after (b) postprocessing, for weights of
predefined modules ∼ N(0.5, σ2), σ2 = 0.01, ..., 0.1, 0.15, 0.2, 0.25, 0.3. The
number of module nodes returned by the algorithm that are not in predefined
modules decreases.

35

(a) Before postprocessing

(b) After postprocessing

Figure 5.6.: Mean and standard deviation of the maximum of the weight vector of
each node in module nodes not in predefined modules before (a) and af-
ter (b) postprocessing, for weights of predefined modules ∼ N(0.5, σ2),
σ2 = 0.01, ..., 0.1, 0.15, 0.2, 0.25, 0.3. The weights are high in general and
that their mean weight is increased after postprocessing.

5.3.4 Simulation studies on a biological network

So far we have observed that the algorithm performs well on artificial networks. It
remains an open question whether the algorithm detects all the interesting modules in a
biological network. Answering this question is very difficult, if not impossible. However,
we can easily investigate a related question: Whether a set of connected genes in a
biological network, whose node weights are set high, is be detected as a module.

For this purpose, we insert a module into a biological fusion network, by changing
the node weights of connected nodes such that they build a module, as defined by
our algorithm hypotheses. We adjust nodes in a biological protein protein interaction
network with weights that describe the change of each protein (related gene) in breast
cancer, compared to healthy tissue for two different omics data collections (details in
§6.5). A set of genes that is connected, but has not been detected as a module before,
is selected (Figure 5.7).

36

Figure 5.7.: Visualisation of the connected genes in a biological network for which node
weights are altered, which thereby fits the characteristics of a module that
our algorithm should detect.

The module weights for the two weight distributions of the selected nodes are ma-
nipulated twice: Firstly, similar high means for each weight type and small variance.
Secondly, differing means and higher variance (see Figure 5.8). The weights in the
complete network are distributed between approximately 0 and 0.6.

The set of nodes is entirely detected by the algorithm as one module for p=25 and
several #m.

(a) Very small difference between mean and small variance

(b) Slightly higher difference between means and higher variance

Figure 5.8.: Artificial distribution of increased node weights (Jensen–Shannon divergence
for gene expression and methylation) of connected nodes in a biological
network

37

6. Application to real world biological
data

We have discussed three approaches for biomarker detection from biological data: Ma-
chine learning based biomarker detection, a network approach for biomarker detection,
and a fusion network approach for biomarker detection. In this chapter, we evaluate
these approaches on biological data.

We evaluate two different fusion approaches: the machine learning approach from §3
and our network from §5. The fusion data approach with machine learning methods is
based on a simple vector joint, meaning that for each sample a vector of features from
all data types is analysed. In the network case, the data fusion implies vectorial node
weights, meaning that each feature (biological entity) is assigned several weights.

Note that several steps for preprocessing, transformation and analysis are necessary.
For this purpose, we wrote R1-scripts of roughly 3500 lines.

6.1. Data

We analyse TCGA [46] level 32 breast cancer data from 31 healthy tissue and 199 tumour
tissue samples. More precisely, we analyse level 3 methylation (Illumina Infinium 450k),
as well as gene expression (RNAseq3) data. Hence, we analyse the DNA and mRNA
level (see Figure 6.1). We choose these data types, to analyse data from inside and
outside of the nucleosome, which enables an analysis of cellular processes at different
regions of the cell. Furthermore, it allows for an investigation of their relation.

The application of biological data requires a preceding data analysis and preprocessing.
Level 3 data is already normalised [63, 72, 14]. Therefore, a detailed normalisation is
not performed. Exploration of this topic goes beyond the scope of this thesis. However,
normalisation is an important step when biological data is analysed, and we can skip it
only because TCGA’s level 3 data is already normalised.

1Software environment, see [36]
2Level 1: Low level data for single sample, not normalized, level 2: Normalized single sample data,

level 3: Aggregate of processed data from single sample
3For details see [78]

38

Figure 6.1.: Central dogma of molecular biology 4. The DNA is transcribed to RNA,
which is henceforth translated to proteins. In this work we analyse DNA
methylation (DNA level) and gene expression (mRNA level) data.

6.1.1 Gene expression data

TCGA level 3 RNAseq data contains RPKM (Reads Per Kilobase per Million mapped
reads) normalised read counts for 20502 genes.

RPKM normalises for total read length and the number of sequenced reads. It is
defined as

RPKM =
109 ∗ C
N ∗ L

, (6.1)

where C is the number of reads mapped to a gene, N the total number of mapped reads
in the experiment and L the exon length in base-pairs for a gene.

Figure 6.2 shows the distribution of RPKM values in our data.

4Source: www.nature.com

39

Figure 6.2.: Histogram of mean RPKM per gene in level 3 breast cancer data from
TCGA. The majority of PRKM values is smaller than 100. The maximum
RPKM value is approximately 4000.

Handling of zero entries

In RNAseq level 3 gene expression data, approximately one percent of RPKM values
are exactly zero, which is striking, because it means that a gene is not expressed at
all. 10% of RPKM values are smaller than 0.1, but different from zero, which suggests
that values being exactly zero are actually of such kind, but arise from normalisation
or erroneous measurement. To analyse if this is the case, we analyse the distribution of
genes with at least 10 zero entries, excluding the values that are exactly zero. It shows
that for approximately 50% of these genes, the non zero RPKM values are significantly
larger than 0.1.

We cannot allow for large numbers of dubious measurements, because we are inter-
ested in identifying typical patterns for a specific disease (stage). Including dubious
measurements can have negative effects on our results if they are incorrect. Therefore
we exclude genes, for which we do not have enough values different from zero. Figure
6.3 shows the amount of genes having a certain number of zero entries. The maximum
threshold is chosen to be 31, because the control data set has 31 samples. We can see

Figure 6.3.: Relation of removed values for allowed RPKM measurements different from
zero. For allowed values between 5 and 25 the number of removed PRKM
measurements increases almost linearly.

40

that there is no value that results in a considerably smaller number of deletions than
any higher value. For thresholds larger than approximately 20, we would delete more
than 10% of genes. Therefore, we remove genes with up to 20 zero entries per gene.
This results in a deletion of data for 2266 genes.

Handling of outliers

We observe that RPKM values for some genes are aggregated around a certain value,
but a few measurements lie very far apart from the rest (Figure 6.4). In the later study
we analyse the distribution of measurements per gene. Outliers lead to an increase of
the range of the distribution, which makes small changes less visible.

We decide to replace these outliers with random values, that are still higher than
normal, but not as dramatically divergent from mean. Values are replaced randomly
to not to perturb the distribution of measurements all too much: If we would set all
these outliers to a fixed value, a second peak in the distribution of measurements arises
if there is more than one measurement to correct for.

A measurement is considered an outlier, if, by exclusion of all gene’s RPKM val-
ues larger than the 99th percentile of all RPKM values of that gene, the mean
of all measurements is altered by more than 25%. We define this threshold
based on observations of various RPKM distributions, as it detects striking outliers
well. These values are replaced with random values, from the uniform distribution
U(mean(RPKM) + |mean(RPKM) + 99th percentile|/2, 99th percentile), which are
high compared to all measurements for the gene. This is done iteratively until the
condition is fulfilled for all genes. An example for the result of the outlier replacement
is given in Figure 6.4.

Measurements for 1772 genes from the case and for 597 genes from the control group
are modified by the above mentioned procedure.

Figure 6.4.: Distribution of RPKM values for gene ASPN in control data before (blue)
and after (red) outlier replacement. Before the outlier is replaced, it appears
as a striking very large value. After the data processing a new peak appears
at ∼ 60. The distribution of all PRKM values remains almost unchanged.

41

6.1.2 Methylation data

The Illumina Infinium HumanMethylation450 BeadChip allows genome-wide profiling
of methylation for over 450000 methylation sites [37].

For each methylation site a beta value is provided. The beta value is the ratio of the
methylated probe intensity and the overall intensity. The beta value for a methylation
site i is defined as:

βi =
max(yi,meth, 0)

max(yi,unmeth, 0) +max(yi,meth, 0) + α
, (6.2)

where yi,unmeth and yi,meth are the intensities measured for the ith unmethylated, respec-
tively methylated probes. A constant bias α is added to regularise β when the intensities
for both probes are low. Background subtraction might result in negative values, which
is why the maximum term is chosen. This results in a beta-value between 0 and 1 [22].

Figure 6.5 shows the distribution of beta values in the TCGA breast cancer data.

Figure 6.5.: Histogram of mean beta value per methylation site in level 3 breast cancer
data from TCGA. The majority of beta values lies in a range of 0.1 and
0.25. The maximum beta value is close to 1.

Integration of Methylation Data

In the used TCGA’s level 3 methylation data a mapping between 365925 of the 485577
methylation sites to 21232 genes is included. Accordingly numerous distinct methylation
sites are assigned to one gene. Further, 33590 methylation sites are assigned to at least
two genes.

For the integration of methylation data in our analysis, it is required to assign one
value to each gene (per data source). Therefore, methylation data has to be processed,
before we can include it in the analysis.

How to process methylation data reasonably, such that one value for each gene remains,
is still unclear. The question of the consequences of methylation comes along with this
problem. Unfortunately, there is not yet a definite answer. The consensus in literature
is to assume a reduction of the gene expression when the methylation appears in a
promoter region and an increase of gene expression for a methylation in the gene-body

42

[60, 77, 9]. However, it has been demonstrated that this relationship does not always
hold [77].

While the consequences of methylation are not yet clear, approaches for the transfor-
mation of methylation data already exist. There are currently two main approaches.

One approach is to restrict the analysis to the methylation of the promoter region of a
gene [73, 42]. An argument for this approach is the high influence of the promoter in the
expression of the gene in general. The information on methylation of the non promoter
regions is neglected in this approach.

Another approach is to consider the mean methylation beta value of all methylation
sites that are associated with the gene [50, 82]. This approach contradicts the assumption
of the opposite effects of methylation in the promoter region and the gene-body. Further,
this approach might be an oversimplification. If a small amount of methylation sites of a
gene are highly methylated and the others are not, this information is lost by considering
the mean.

To decide for one transformation, we evaluate the results of both approaches as de-
picted in the following.

Methylation data transformation. Methylation data is transformed in two different
ways:

• The transformation in which the mean of the methylation sites that are associated
with the gene is selected as the gene’s methylation value, is referred to as the all
sites transformation in the following

• The approach to associate the mean of the methylation sites that have a promoter
association with the gene, is referred to as the promoter transformation.

Promoter associations for all methylation sites are obtained by the R-Package
IlluminaHumanMethylation450k.db. For 10612 of the 21232 genes, associations
for at least one of their methylation sites as a promoter region, exist.

To allow for comparison of the different methylation data transformations, methylation
data for genes which have at least one promoter associated methylation site are selected
in the promoter and in the all sites transformation. This is performed for case and
control data. In the promoter transformation, we keep only those methylation sites that
have a promoter association.

Next, for each sample, for each remaining gene, the mean of the beta values of the
remaining methylation sites associated with that gene is stored.

Analysis of methylation data transformations. To evaluate which transformation
should be applied, classifiers are trained with the three methods described in §3 and
their performances are compared with the F1 score (see below). The analysis of results
for three different methods allows to better detect if the performance is based on the
data or on the method.

This approach requires data of the following format: for each sample, data for the
features (genes) and a response based on which the classifier partitions the data. The

43

Figure 6.6.: Illustration of T stages 1 to 4 of breast cancer5. The grey coloured area
represents the tumour. Classes T1, T2, and T3 are characterised by the
increasing size of the tumour. A tumour of class T4 has spread into the
surrounding tissue.

tumour stage (column ajcc tumour pathologic pt in TCGA’s clinical data) is chosen as
the response.

The tumour stage describes the extent of the primary tumour or the infestation of
additional tissue. Thus, it describes a characteristic of the tumour at the time of data ac-
quisition. The information days to death for example, which is also available in TCGA’s
clinical data, does not fulfil this requirement: It is influenced by initial disease stage,
therapy treatment, psychological issues, and other, possibly non-disease, related issues.
In Figure 6.6, the T stages of breast cancer are illustrated.

For the present data, this results in 8 different classes: T1 (8 cases), T1a (1 case),
T1b (3 cases), T1c (34 cases), T2 (118 cases), T3 (29 cases), T4 (2 cases), T4b (2 cases),
TX (2 cases). T stands for primary tumour. The number describes the extent of the
primary tumour or the infestation of additional tissue, X means unclear. The lower case
letters are subcategories of the number categories. The subcategories are neglected, so
as to obtain classes of bigger size.

Classes T4 and TX have few representatives only, which is why we decide to exclude
them from this study. This results in three classes: T1, T2, and T3. Class T3 has the
minimum number of cases: 29. Control data is included with class label T0.

Pipeline of methylation data analysis. We compute data sets that have been trans-
formed by either of the two transformation methods described above. For these data
sets, for each gene, the Jensen–Shannon divergence (equation (6.5)) between case and
control data is computed. Only the genes with the 100, respectively 1000 highest
Jensen–Shannon divergences are kept.

We train classifiers with the remaining data from the all sites and promoter transfor-
mations. 10-fold cross validation with 5 repeats is applied, which allows to not to split
the data into training and testing data, which we would like to circumvent, since the
data set has few samples per class. The results in this step are strongly influenced by

5Source: http://oncolex.org/Breast-cancer/Background/Staging

44

the method applied for training the classifier, which means we are not only evaluating
the transformation, but also the method that is used to train the classifier. To slightly
reduce this problem, we evaluate the transformed data with three standard methods:
SVM, random forest, and elastic net, so that we can better detect if the performance
is based on the data or on the method. Details on the applied methods are given in
§3. The classifiers are evaluated based on their classification performance on sampled
test data (F1 score, see below). Subsequently, the classification results for the different
classifiers are evaluated. Figure 6.7 shows a visualisation of the steps that are performed
for each transformation.

Figure 6.7.: Pipeline of methylation data analysis for one transformation: Once the data
is transformed, the JSD for each gene between case and control data is
computed and the genes with the highest JSDs are selected. Subsequently,
classifiers are trained and tested with the measurements of the remaining
genes.

Classifier performance. For the training we select the same number of samples for
each class from all samples, to not to bias the resulting classifier. We randomly select 29
samples from all samples. The testing data set has approximately half of the size of the
training data set: 14 samples from each tumour stage, which we randomly select from
all samples.

Classifiers are trained with R package caret. The train function in caret is
applied to train classifiers. It includes optimisation of method parameters. To assess
the performance of each model, the F1 score is computed for 100 classifications with
randomly selected samples. The F1 score is defined as:

F1 =
2 ∗ PPV ∗ TPR
PPV + TPR

, (6.3)

45

where PPV is the positive predictive value (precision) and TPR the true positive rate
(recall). Hence, the F1 score is the harmonic mean of precision and recall. We choose
the F1 score over standard accuracy, because standard accuracy can be misleading.
Sometimes it may be desirable to select a model with a lower standard accuracy because
it has a greater predictive power on the problem. The F1 score incorporates this.

Results are shown in Table 6.1. The promoter transformation performs best for all
classifiers and will therefore be chosen as the transformation method for the following
analysis.

Table 6.1.: Mean F1 score over 100 testing runs of classifiers for methylation data trans-
formations promoter and all sites. Each classifier observes data for genes
with the top 100/1000 Jensen–Shannon divergences (JSD). Transformation
promoter outperforms all sites transformation in all settings.

Transformation
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

JSD top 100 features
promoter 0.805 0.807 0.812
all sites 0.770 0.804 0.795

JSD top 1000 features
promoter 0.830 0.839 0.831
all sites 0.794 0.793 0.800

6.2. Machine learning based biomarker detection for
single source data

For the machine learning approach a matrix of type samples × features and a class
label for each sample are required. We evaluate the preprocessed data described in §6.1.
The class label is either healthy or tumour.

The F1 score (see above) of the classifiers are shown in Table 6.2. All F1 scores are
equal or close to 1. This is not surprising, and has to do with the so called curse of
dimensionality : the complexity of a subspace increases with the number of dimensions.
In order to obtain a statistically reliable result, the amount of data needed to support
the result often grows exponentially with the dimensionality. We do not have such a
large number of samples and are hence overfitting.

We performed similar experiments with the three tumour classes from §6.1.2 and
control group. Results are contained in the appendix. In that case, except for the
classifier trained with gene expression data and elastic net, the results are all similar
and slightly better than 80%.

Usually, one is interested in identifying a small set of biomarkers. In biomarker de-
tection, this leads to biomarkers with high interpretability. Further, medical testing for

46

Table 6.2.: Mean F1 score over 100 testing runs. Two classifier are trained with the
complete gene expression, respectively methylation data. All F1 scores are
equal or close to 1.

Data type
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

Gene expression data 1 0.989 1
Methylation data 1 0.989 1

few biomarkers is simpler and cheaper. Therefore the features with the highest classifier
relevance are focussed in the result. They are mainly driving the classifier’s results. The
100 main features vary strongly between classifiers (Figure 6.8). Only the top features
for methylation data SVM and random forest classifiers show a high overlap. The elastic
net selects only 3 features from the methylation data.

A biological interpretation of the result is questionable. First of all, it is not clear
which features to select. We could select the top 100 (10,20,50,1000,...) features, or
define a threshold for the feature importance, for features to be included in the final
result. Either way, we would have to come up with a number that can hardly be argued
for. This does not hold for the elastic net result, because it includes a feature selection
(embedded approach). Further, we would have to investigate the function of each gene
individually. Hence, it is difficult to draw conclusions in terms of biomarker selection at
this point.

(a) Methylation data (b) Gene expression data

Figure 6.8.: Venn diagram of the 100 most important features of classifiers trained with
three different methods for methylation data (a) and gene expression data
(b). Only the top features for methylation data SVM and random forest
classifiers show a high overlap. The elastic net selects only 3 features from
the methylation data.

47

6.3. Biomarker detection with the single data network
approach

In the network approach we analyse data that is combined with a network to obtain
highly interpretable results. We analyse a protein protein interaction (PPI) network. In
the PPI network nodes correspond to proteins and edges represent pairwise interactions
between proteins. The reason for the incorporation of a network is that impacts of
individually altered proteins can often be balanced, whereas alterations of interacting
proteins often lead to major consequences [7, 12]. Hence, our results are not only better
interpretable than results from standard approaches (as for example the machine learning
approach which is applied in §6.2), but also more meaningful.

We combine the STRING PPI network [70], version 10, with our data. Combining
data and network in this case means that each node is assigned a weight, which is derived
from the data. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
is a database of predicted PPIs. Interactions are derived from three kinds of sources:
High-throughput experiments, mining of databases and literature, and prediction from
genomic context analysis. The human STRING PPI network consists of 8548002 inter-
actions for 19247 proteins.

We apply our algorithm (§4) to detect biomarker genes. More precisely, we search for
proteins, that are altered in the case group, compared to the control group (specifically
the expression of one of its coding genes, or the methylation of promoter regions of the
genes), which are interacting with other affected proteins.

6.3.1 Preprocessing for network application

Before we can start the network analysis, we need to preprocess data further, such that
it is mappable to a network:

• The gene IDs in network and data are distinct, so either of the IDs has to be
converted.

• One value per gene and data type is required, describing the difference of mea-
surements between case and control.

ID conversion

Nodes in the STRING PPI network are labelled with ensembl protein IDs. TCGA data,
however, contains data for genes labelled by gene symbol. To allow for a combination
of network and data, TCGA’s gene symbol IDs are converted to ensembl protein IDs.
Mappings of the gene symbols to ensemble proteins are derived from R-package mygene
as well as databases bioDBnet [52] and g:Profiler [61] .

Use of package mygene yielded 81927 ensembl protein IDs for 16612 of the 22290 gene
symbols form TCGA data. From databases bioDBnet and g:Profiler 94992 conversions
for 17761 gene symbols are obtained. Altogether, 96433 ensembl protein conversions for
17922 gene symbols are obtained, whereof 94669 ensembl protein IDs are distinct.

48

Precisely, for the RNAseq data for 17605 of 18236 gene symbols, a conversion to
ensembl protein was obtained. For methylation data a conversion for 9493 of 10679 gene
symbols to 58379 ensembl gene IDs was found.

There are two reasons for the multiple assignment: Firstly, one protein can consist of
several polypeptides, each of which is coded by one gene. Secondly each gene can code
for multiple polypeptides, due to alternative splicing.

The conversion step has a high influence, since on the one hand we are loosing data
for numerous genes for the subsequent analysis and on the other hand get numerous
multi alignments. Nonetheless it is a required step. We should keep in mind that if we
were to improve in this step, the results would change most likely.

Difference measure

In the final network analysis, it is required to assign one value to each protein for each
omics data type. Up to this point, case and control data are still separate. To compare
between all case and all control samples with a network approach, we need to summarise.

The value assigned to each node should inform about the change of the measurements
of a gene between case and control group. In this section, the results of two difference
measures: Fold change and Jensen–Shannon divergence (further JSD), are analysed.

Fold change. Applying log fold change, defined as∣∣∣∣log2

(
mean(measurementcotrol)

mean(measurementcase)

)∣∣∣∣ , (6.4)

which I will refer to as fold change in the following, is a standard method for data
group comparison. The fold change provides information about the shift of the mean
of two distributions, but not about an altered type of these. Hence, the fold change
involves a normality or uniform distribution assumption of the measurements for each
gene, because it only regards the mean of all measurements. Furthermore, if the values
follow e.g. a normal distribution with the same mean, but different standard deviation,
the fold change will not detect this difference.

Jenson-Shannon divergence. The Jenson-Shannon divergence, defined for two prob-
ability distributions P and Q, by

JSD(P ‖ Q) =
1

2
D(P ‖M) +

1

2
D(Q ‖M) , (6.5)

where M = 1
2
(P + Q) and D(P ‖ Q) =

∑
x∈X P (x) · log P (x)

Q(x)
is the Kullback–Leibler

divergence, measures the distance between two distributions P and Q and does not
include an assumption on the type of distribution. Another advantage of the JSD is
that it is bounded by 0 and 1 and can therefore be interpreted easily.

In the Jenson-Shannon divergence analysis between case and control distribution, it
must be noted that the number of samples per class differs: 30 samples for control and

49

(a) Gene expression data (b) Methylation data

Figure 6.9.: Scatter plots of fold change and JSD for gene expression data (a) and methy-
lation data (b). For both data types, the plot tends towards a linear trend.
Two things are striking: Firstly, the range of the fold change is smaller for
methylation data, than it is for gene expression data (∼[0,2], compared to
∼[0,8]). Secondly, in both plots points accumulate along the x-axis.

200 samples for case (minus zero measurements for gene expression data, see §6.1.1).
This might have a critical influence on the resulting distributions. We are restricted to
the number of samples provided, but we should keep this in mind.

Comparison of fold change and Jenson-Shannon divergence. In order to decide for
one strategy, we look at the results for fold change and JSD, applied on the methylation
and gene expression data. Concerns regarding the fold change have been indicated above.
The following analysis will reveal if they are justified for the selected data.

The scatter plot (Figure 6.9) of fold change and JSD, gives a first overview of their
mutual behaviour. For both data types, the plot tends towards a linear trend. Two
things are striking: Firstly, the range of the fold change is smaller for methylation data,
than it is for gene expression data (∼[0,2], compared to ∼[0,8]). Secondly, in both plots
points accumulate along the x-axis.

The different range of the fold change values is caused by the range of the data. For
gene expression data, the values per gene spread more than for methylation data.

Figure 6.10 shows the case and control RPKM-distribution of a gene with very small
fold change and medium JSD. The assignment of a small fold change is misleading,
because the range of the RPKM values in the case group differs from the range of the
RPKM values in the control group (∼[3,6], compared to ∼[2,14]). This observation
signifies a difference between the two groups, and the fold change does not detect this
difference. We should remember at this point that the group sizes are different, but
this does not necessarily mean that the range of the distribution should be decreased as
much. For gene SIRT5 not a single sample in the control group has an RPKM values

50

Figure 6.10.: Distribution of RPKM values for gene SIRT5 (Fold change = 0.03; JSD
= 0.24). The range of the RPKM values in the case group differs from the
range of the RPKM values in the control group. The fold change does not
capture the difference of the distributions.

greater than 6. Numerous other genes show this behaviour. Based on these observations,
the JSD is chosen as difference measure.

With the decision to use a difference measure as node weight, we loose the information
of the actual expression, respectively methylation intensity. In this analysis we content
ourselves with this, nevertheless it could be interesting to include both, change and
respective intensity, in the disease samples in a later analysis. For the comparison of
approaches with and without a network, we have to remember that the approach without
the network has all the gene measurements as input.

6.3.2 Results

For the analysis of the data with our network approach, we have to decide on a range
of parameters to observe. Based on observation in §4.3, the minimum of p, which is the
parameter that influences the similarity criterion, is chosen to be 10. For p significantly
larger than 50, LS (equation (4.6)) becomes numerically unstable. The maximum p is
therefore set to 50. p = 25 is tested as an intermediate p. Values for #m, the desired
number of modules, are determined from the spectrum of LS (equation (4.6)).

We evaluate the genes in the module sets with two different approaches: In the math-
ematical evaluation, we regard each module as a set of connected biomarkers. The
modules should consist of nodes with a high weight (JSD), thus with a high difference
between case and control data. We apply the methods explained in §3.1. The input
matrix consists of measurements for the module genes only. F1 score (6.3) is applied for
performance assessment. As discussed in §3.2 the machine learning method has a great
influence on the result. For this, we train classifiers with data for the module genes (this
is afeature selection). Three different training methods are applied to evaluate these
feature selections: SVM, random forest, and elastic net, so that we can better detect if
the performance is based on the data or on the method.

51

In the biological evaluation, KEGG [39] pathway analysis of the module genes using
DAVID [19] is performed, to analyse if the results are relevant in the context of breast
cancer. We choose KEGG database, because it returned the largest number of pathways
in our analysis, comparing to other pathway databases in DAVID.

Scoring of modules

To compare between module sets for varying parameters p and #m, the F1 score is con-
sidered. The reason that we analyse multiple values of #m is, that in almost all cases
more than one spectral gap shows up. However, the weight distribution of each mod-
ule is another important characteristic, which we evaluate with the JSD of the weight
distribution of all network nodes, compared to module set distribution. To allow for
comparison between results we score each module with a combination of the aforemen-
tioned F1 score and JSD: JSD ∗ F1max, where F1max is the maximum F1 score of the
three classifiers trained with SVM, random forest, and elastic net.

The consequence of choosing module sets with high scores JSD ∗ F1max, is that in
most cases small set of genes have maximum score compared to other module sets. The
reason is that the algorithm usually returns modules with higher JSD for smaller values
of #m, because it detects the most significant nodes in the first modules. If we were
interested in finding as many interesting genes as possible, we could use a score that
includes the number of genes detected.

(1.) Gene expression data analysis

After postprocessing of the modules in the gene expression network we observe: all
module genes for p = 10 are in modules for p = 25 (Figure 6.11). For distinct #m, but
for same p, modules for larger values of #m always contain all nodes of modules for
smaller values of #m. To simplify, in that case, only the genes for larger values of #m
are shown in Figure 6.11.

Figure 6.11.: Venn diagram of the genes belonging to the largest module sets (respective
#m in visualisation) obtained from gene expression data after postprocess-
ing for for p = 10, 25, 50. All module genes for p = 10 are in modules for
p = 25. All except one gene for p = 50 are in module genes for p = 25.

52

Table 6.3.: Mean F1 score over 100 testing runs. Each classifier is trained with data
for the module genes returned by our algorithm for different values of p
and #m for gene expression data before and after (∗)postprocessing. After
postprocessing the score for the module sets with fewest genes is the highest
for each p iteration. The F1max is close to 1 in all cases. The number left and
right to the ”→” in the #m of the preprocessing modules indicated which
module set is altered and how many modules remain.

D
at

a

Parameters Results

p #m Genes JSD
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

Score:
JSD ∗
F1max

G
en

e
ex

p
re

ss
io

n

10
6 160 0.562 0.996 0.992 0.996 0.560
8 165 0.523 0.996 0.983 0.996 0.521

14 283 0.448 0.996 0.995 0.992 0.446

25

7 1432 0.497 1 0.992 0.996 0.497
9 1438 0.492 1 0.996 0.996 0.492

11 1447 0.484 1 0.996 0.996 0.484
18 1460 0.472 1 0.996 0.996 0.472

50

7 1593 0.399 0.996 0.992 0.996 0.397
9 1596 0.395 0.996 0.996 0.996 0.393

11 1607 0.383 0.996 0.996 0.996 0.381
18 2808 0.28 0.996 0.992 0.996 0.279

10∗
6 → 1 152 0.608 0.996 0.992 0.996 0.606

8 → 1 150 0.608 0.996 0.992 0.996 0.606

14 → 1 240 0.599 0.996 0.995 0.992 0.597
25∗ all → 2 1425 0.507 1 0.996 0.996 0.507
50∗ all → 3 838 0.555 0.996 0.996 0.996 0.553

Classifiers. Table 6.3 shows details on the modules and their performance as feature
selections for all parameters p and #m evaluated. Column Genes specifies the number
of genes in all modules for the respective setting. Best values per p are marked bold.

After the postprocessing explained in §4.2, the score for the module sets with fewest
genes is the highest for each p iteration. The F1max is close to 1 in all cases, so that the
JSD has an high influence on the difference of scores. The score decreases for increasing
p before postprocessing.

Modules for p = 10 and #m = 6, respectively #m = 8 after postprocessing have the
highest score. The 150 genes in modules after postprocessing for p = 10 and #m = 8
are included in the genes for p = 10 and #m = 6. Figure 6.12 shows a visualisation of
the module for p = 10∗ and #m = 6.

53

Figure 6.12.: The best scoring module from the gene expression data network for p = 10 and #m = 6 after postprocessing:
152 genes connected with different edge types.

54

Biological analysis of best performing result. Only the modules with the best score
are evaluated (p = 10 and #m = 6 and p = 10 and #m = 8; after postprocessing). A
complete list of genes in the larger module set (p = 10∗/#m = 6) is listen in the
appendix. The pathways analysis results are identical for both modules. P values for all
pathways are significant:

Module KEGG pathway P value Genes involved

1

Cell cycle 1.38ˆ10−12 14
Oocyte meiosis 1.56ˆ10−10 12
Progesterone-mediated oocyte maturation 2.11ˆ10−6 8
p53 signaling pathway 1.15ˆ10−4 6

Cell cycle pathway. Module genes involved in the Cell cycle pathway are cell di-
vision (CD) genes, cyclin (CCN) genes, protein kinases, mitotic checkpoint complex
(BUB) genes, and an oncogene: PTTG [74], which is an anaphase promoting complex
substrate.

Oocyte meiosis pathway. 10 genes of the Cell cycle pathway, reappear in the Oocyte
meiosis pathway. The two additional genes are AURKA and SGOL1.

AURKA has been mentioned in the context of breast cancer [68, 88, 75].

Progesterone-mediated oocyte maturation pathway. Genes in involved in path-
way Progesterone-mediated oocyte maturation are within the genes involved in Cell cycle
and Oocyte meiosis pathways.

p53 signalling pathway. p53 is a well know tumour suppressor gene [28]. Genes
involved in this pathway, that are not within the previously mentioned pathways, are:
GTSE1 and RRM2. An importance of RRM2 for breast cancer is indicated by Closer
et al. [17].

Remark on pathway results. All pathways are reasonable in the context of breast
cancer, as they refer processes in women, or processes relevant in cancer.

Note that the module genes assigned to the pathways are intersecting - in fact this is
not surprising because of our underlying network. All genes are in one module. Hence
they are connected in the network and the pathway analysis confirms this.

Only 18 of the 150 module genes are involved in the pathways. This, however, does
not mean that the results are weak. This highlights one of the strength of our approach,
as our methods does not require a pathway annotation. Firstly, KEGG pathways cover
only a fraction of proteins in a whole proteome. When applying networks as the STRING
network, more information than pathways are included. The results benefit from that.
The genes not involved in pathways are interacting with the pathway genes is some way,
which is interesting. The genes not involved in KEGG pathways are interacting with
the KEGG pathway genes, and this is indeed interesting.

55

Figure 6.13.: Venn diagram of the genes of the largest module sets obtained from methy-
lation data after postprocessing for p = 10, 25, 50 (for p = 10 the largest
module set does not contain genes of all smaller module sets, therefore
overlaps of genes in module sets for m = 8, 10 are visualised)

(2.) Methylation data analysis

Figure 6.13 shows the overlap of module genes for different parameters after the post-
processing. For distinct #m, but for same p, modules for higher #m often contain all
nodes of modules for smaller #m. This appears for all p, except for p = 10. To simplify,
in this case, only the genes for higher #m are shown in Figure 6.13.

For p = 50, the algorithm returns modules that contain all network genes. After the
postprocessing, the genes of the remaining module for p = 50, are not contained in any
other module. The remaining module contains only 4 genes.

The modules for p = 25 contain genes of both distinct module sets for p = 10 and
some additional nodes.

The number of genes in all modules per #m after postprocessing is significantly smaller
than for gene expression data (the maximum number of genes in methylation data is
131, whereas it is 1425 is gene expression data).

Classifiers. The results of the mathematical anylysis of modueles is shown in Table
6.4. The Table shows details on the modules and their performance as feature selections
for all parameters p and #m evaluated. Column Genes specifies the number of genes in
all modules for the respective setting. Best values per p are marked bold.

After the postprocessing explained in §4.2, the score for the modules with fewest genes
for each value of p is the highest. The F1max is close to 1 in all cases, so that the JSD
has an high influence on the difference of scores.

The JSD for the module sets from p = 50 is zero, because it contains all networks

56

nodes, hence their is no difference between the weight distributions of all network nodes
and module nodes.
p = 25 and #m = 7 has the highest score, after postprocessing. Figure 6.14 shows a

visualisation of the modules for p = 25 and #m = 7.

Table 6.4.: Mean F1 score over 100 testing runs. Each classifier is trained with data for
the module genes returned by our algorithm for different values of p and #m
for methylation data before and after (∗)postprocessing. After postprocessing
the score for the module sets with fewest genes is the highest for each p
iteration. The F1max is close to 1 in all cases. The number left and right
to the ”→” in the #m of the preprocessing modules indicated which module
set is altered and how many modules remain.

D
at

a

Parameters Results

p #m Genes JSD
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

Score:
JSD ∗
F1max

M
et

h
y
la

ti
on

10

3 5 0.506 0.988 0.982 0.963 0.500
4 6 0.327 0.982 0.984 0.959 0.322
8 62 0.559 1 1 1 0.559

12 80 0.409 1 1 0.998 0.409

25

2 3 0.566 0.98 0.972 0.934 0.555
4 5 0.298 0.985 0.979 0.932 0.294
5 7 0.205 0.961 0.983 0.921 0.202
7 24 0.414 0.998 1 0.998 0.414

12 89 0.547 1 1 0.998 0.547
16 138 0.566 1 1 1 0.566

50

7 9220 0 1 1 0.974 0
10 9220 0 1 1 0.974 0
12 9220 0 1 1 0.974 0
16 9220 0 1 1 0.974 0

10∗
3,4 → 1 3 0.636 0.976 0.979 0.967 0.623

8 → 2 59 0.612 1 1 1 0.612
12 → 2 67 0.589 1 1 0.998 0.589

25∗
7 → 2 17 0.633 1 1 1 0.633

12 → 2 82 0.632 1 1 0.998 0.632
16 → 2 131 0.626 1 1 1 0.626

50∗ all → 1 4 0.558 0.977 0.98 0.903 0.547

57

(a) Module 1, 9 genes

(b) Module 2, 8 genes

Figure 6.14.: The best scoring module set from the methylation data network for p = 25
and #m = 7 after postprocessing: genes are connected with different edge
types.

Biological analysis of best performing result. Only the module set with the best
score is evaluated (p = 25 and #m = 7 after postprocessing). A complete list of genes
in the modules is listed in the appendix. For neither of the genes of the module sets,
sufficiently enriched pathways are found. This highlights one of the strength of our
approach, as our methods does not require a pathway annotation.

58

Module 1. Module 1 is comprised of nine genes. For five of the nine genes, we could
find publications suggesting an impact of the gene on breast cancer.

Six of the nine genes in module 1 are coding proteins, that have a function connected
to the cell membrane:

• Actin is part of the cytoskeleton;

• Receptors are transmembrane proteins;

• NADH Dehydrogenase translocates protons from the matrix into the intermem-
brane space of the mitochondrion.

NDUFAF3 hence, has a function in both, the cell membrane and the mitochondrion.
MRPL44 and RPL22 also have a function connected to the mitochondrion.

Summarising, eight of the nine proteins in module 1 can be assigned functions con-
nected to the cell membrane and/or mitochondrion.

The relation of altered functions of the mitochondrion and cancer is well known:
Warburg first proposed that cancer originated from irreversible injury to mitochondrial
respiration [79].

Gene Full name BRCA impact

AFAP1 Actin Filament Associated Protein 1 [21]

GPR160 G Protein-Coupled Receptor 160 [23]

NDUFAF3
NADH Dehydrogenase (Ubiquinone)
Complex I, Assembly Factor 3

[48]

PPFIBP2
TPRF Interacting Protein, Binding
Protein 2 (Liprin Beta 2)

[64]

LPHN1 Adhesion G Protein-Coupled Receptor L1 [54]

LDLRAD2
Low Density Lipoprotein Receptor
Class A Domain Containing 2

-

MRPL44 Mitochondrial Ribosomal Protein L44 -

RPL22 Ribosomal Protein L22 -

CTSA Cathepsin A -

59

Module 2. Module 2 is comprised of eight genes. For four of them, we could find
publications, suggesting an impact of the gene on breast cancer.

We cannot find a reasonable biological interpretation for module 2.

Gene Full name BRCA impact

OSBPL7 Oxysterol Binding Protein-Like 7 [1]

PITPNM2
Phosphatidylinositol Transfer Protein,
Membrane-Associated 2

[41]

ABCA1
ATP-Binding Cassette, Sub-Family A
(ABC1), Member 1

[59]

CILP2 Cartilage Intermediate Layer Protein 2 [38]

ZNF572 Zinc Finger Protein 572 -

ZNF502 Zinc Finger Protein 502 -

XKR6
XK, Kell Blood Group Complex
Subunit-Related Family, Member 6

-

DNAH10 Dynein, Axonemal, Heavy Chain 10 -

6.4. Machine learning based biomarker detection for
fusion data

Data can be integrated by attaching one data set to the other, which results in one long
vector. For the data used in this work, this results in a matrix of 28848 features (18236
gene expression and 10612 methylation features, for 30 control + 200 case samples).
This data can be analysed with methods depicted in §3, because the result matrix, only
of higher dimension than in §6.3.

The performance results of the classifiers trained with single, respectively fusion data
sets, with three different methods each (details on methods in §3), are shown in Table
6.5. We evaluate three different methods, so that we can better detect if the performance
is based on the data or on the method. The class variable is either healthy or tumour.
The performance of the classifiers trained with fusion data are better or equally good,
as the single data trained classifiers.

Figure 6.15 visualises that classifiers trained with SVM and random forest tend to
pick features from gene expression data, whereas for elastic net the two data sources are
nearly balanced. The overlap of the 100 most important features is at maximum 10%

60

Table 6.5.: Mean F1 score over 100 testing runs. Each classifier is trained with data
for the module genes returned by our algorithm for different values of p
and #m for different training data. For random forest classifiers, the fusion
data classifier performs slightly better, the other classifiers perform equally
perfect.

Data type
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

Gene expression data 1 0.989 1
Methylation data 1 0.989 1
Fusion data 1 1 1

between classifiers (SVM & elastic net 10%, random forest & elastic net 2%, SVM &
random forest 5%).

It is difficult to draw conclusions in terms of biomarker selection at this point. The
argumentation is the same as in §6.2, for example it is not clear which features to select
(this does not hold for the elastic net result, because it includes a feature selection), each
feature has to be regarded separately. Moreover, the curse of dimensionality is another
problem.

Figure 6.15.: Pie charts of 100 most important features for classifiers for fusion data;
With methods random forest (l), SVM with RBF kernel (c), elastic net
(r). Classifiers trained with SVM and random forest tend to pick features
from gene expression data, whereas for elastic net the two data sources are
nearly balanced.

61

6.5. Biomarker detection with the fusion network
approach

We use the processed data and network described in §6.3, for the application of our fusion
network algorithm (§5) by assigning each node a vectorial weight. Only those genes are
maintained for which gene expression and methylation data are available. This results
in a network of 9060 nodes and 5544788 edges.

In our algorithm, we choose Euclidean distance for the similarity measure d be-
tween two nodes. We can use Euclidean distance, because node weights are both
similarly distributed and minimum (0.001 and 0.003) and maximum (0.63 and 0.66)
of both JSD distributions are similar. Holding times of the random walker are set to
exp(min(weighti, wightj)), as describes in 5.3.

6.5.1 Results

Based on observation in §5.3, the minimum of p, which is the parameter that influences
the similarity criterion, is chosen to be 10, because the results for smaller values of p
contain a lot of smaller weight nodes. For p significantly larger than 50, LS (equation
(4.6)) becomes numerically unstable. The maximum p is therefore set to 50. p = 25 is
tested as an intermediate p. Values for #m are determined from the spectrum of LS
(equation (4.6)).

For a fixed value of p, modules detected for higher #m often contain all nodes belong-
ing to modules detected for smaller #m. This appears for all p, except for p = 10. To
simplify considerations, in that case only the genes belonging to modules detected with
higher #m are observed in Figure 6.16. All module sets contain the same 67 genes.

Figure 6.16.: Venn diagram of genes of the largest module sets for fusion data modules
after postprocessing for p = 10, 25, 50 (for p = 10 the largest module set
does not contain genes of all smaller module sets, therefore overlaps of
genes in module sets for m = 3, 10, 12 are visualised)

62

(a) Module 1 (b) Module 2

Figure 6.17.: Node weight distribution for highest scoring module set in fusion data. In
Module 1 the measurement for gene expression are high for all genes. In
Module 2, both data measurements are high.

Classifiers. Table 6.6 shows details on the modules and the performance of classifiers
trained with module genes returned by our algorithm, for all parameter sets evaluated.
Column Genes specifies the number of genes in all modules for the respective setting.
Best values per p are marked bold.

Each result is assigned a score: JSD ∗ F1max, where JSD is the Jensen–Shannon
divergence between the higher module weight distribution and the distribution of all
network weights; F1max is the maximum F1 score of the three classifiers using methods
SVM with RBF kernel, random forest, and elastic net.

After the postprocessing explained in §5.2, the score is the highest for each p iteration
when the total amount of genes in modules is the smallest. The F1max is close to 1 in
all cases, so that the JSD has an high influence on the difference of scores. The score
JSD ∗ F1max is the highest for genes in modules for p = 50∗ and #m = 12 (∗ := after
postprocessing). For this setting two modules remain after postprocessing: Module 2 (3
genes) is high in both, gene expression and methylation JSDs. Module 1 (126 genes)
is high in gene expression JSDs, and methylation JSDs spread from approximately 0 to
0.5 (Figure 6.17). Figures 6.18 and 6.19 show a visualisation of the modules for p = 50∗

and #m = 12.

63

Table 6.6.: Mean F1 score over 100 testing runs. Each classifier is trained with data for
the module genes returned by our algorithm for different values of p and #m
for fusion data before and after (∗)postprocessing The number left and right
to the ”→” in the #m of the preprocessing modules indicated which module
set is altered and how many modules remain.

D
at

a

Parameters Results

p #m Genes JSD
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

Score:
JSD ∗
F1max

F
u
si

on

10
3 110 0.481 0.996 0.974 0.995 0.479

12 400 0.116 1 0.999 0.997 0.116
17 386 0.122 1 0.996 1 0.122

25
8 160 0.363 1 0.979 1 0.363

12 196 0.263 1 0.983 1 0.263
18 267 0.271 1 0.999 0.997 0.271

50

5 7 0.308 0.959 0.985 0.964 0.303
7 9 0.145 0.963 0.977 0.961 0.142

12 144 0.463 1 0.995 1 0.463
14 149 0.437 1 0.993 1 0.437
17 165 0.361 1 0.995 1 0.361

10∗
3 → 1 104 0.56 0.996 0.976 0.995 0.558

12 → 3 218 0.29 1 0.995 0.997 0.29
17 → 6 230 0.271 1 0.999 1 0.271

25∗
8 → 2 149 0.418 1 0.982 1 0.418

12,18 → 7 220 0.391 1 0.996 0.997 0.391

50∗
12 → 2 129 0.598 1 0.997 1 0.598

14,17 → 3 137 0.498 1 0.996 1 0.498

64

Figure 6.18.: The best scoring module set (module 1) from the gene expression data network for p = 50 and #m = 12 after
postprocessing: 126 genes connected with different edge types.

65

Figure 6.19.: The best scoring module set (module 2) from the fusion data network
for p = 50∗ and #m = 12 after postprocessing: 3 genes connected with
different edge types.

Biological analysis of best performing result. To evaluate the biological meaning of
module genes, KEGG [39] pathway analysis using DAVID [19] is performed. Only the
module set with the best score is evaluated (p = 25 and #m = 12 after postprocessing).
A complete list of genes in the modules is listed in the appendix.

Module KEGG pathway P value Genes involved

1

Cell cycle 2.86ˆ10−9 12
Oocyte meiosis 1.83ˆ10−7 10
Progesterone-mediated oocyte maturation 6.40ˆ10−4 6
p53 signaling pathway 2.23ˆ10−3 5
Base excision repair 3.34ˆ10−2 3

2 - - 3

Four of the five pathways occur for gene expression data as well (see §6.3.1). The fol-
lowing analysis therefore includes considerations from the biological analysis of modules
in the gene expression network in §6.3.1.

Cell cycle pathway. Three genes from Cell cycle pathways that are enriched in
modules for gene expression data, are not included in these Cell cycle pathway genes:
two cyclin genes and PTTG1. However, one new gene appears: E2F1. Interestingly,
E2F1 often occurs in the context of breast cancer [25, 8, 30].

Oocyte meiosis pathway. For genes in the fusion data modules that show an en-
richment in the Oocyte meiosis no additional genes occur, compared to modules for
gene expression data which are enriched in Oocyte meiosis pathway. One cyclin gene
and PTTG1 are not within the module.

66

Progesterone-mediated oocyte maturation pathway. For genes in the fusion data
modules that show an enrichment in the Progesterone-mediated oocyte maturation path-
way no additional genes occur, compared to modules for gene expression data which are
enriched in Progesterone-mediated oocyte maturation pathway. Two cyclin genes less are
within the module.

p53 signalling pathway. For genes in the fusion data modules that shows an en-
richment in the p53 signalling no additional genes occur, compared to modules for gene
expression data which are enriched in p53 signalling pathway. One cyclin gene less is
within the module.

Base excision repair. Neither of the pathways for gene expression module genes, nor
any of the previously mentioned fusion pathway genes, contains genes that are associated
with Base excision repair pathway. The three genes associated with the Base excision
repair pathway are NEIL3, a DNA glycosylase, PARP1, a poly(ADP-ribosyl)transferase,
and POLE2, a polymerase. PARP1 is associated with breast cancer [57, 58, 31].

Remark on pathway results. All pathways are reasonable in the context of breast
cancer, as they refer processes in women, or processes relevant in cancer.

For module 1, only 19 of the 126 module genes are involved in the pathways. This,
however, does not mean that the results are weak. This highlights one of the strength of
our approach, as our methods does not require a pathway annotation. When applying
networks as the STRING network, more information than pathways are included. The
results benefit from that. The genes not involved in pathways are interacting with the
pathway genes is some way, which is interesting.

Module 2. Module 2 is composed of genes ANKRD35, EZH1, and H2AFY.
Yoo and Hennighausen [86] describe an impact of EZH1, EZH2 and H2A on breast

cancer, with relations to EZH1 and histone H2A:
’PRC1 and PCR2 are associated with chromatin condensation. PRC1 catalyses the

monoubiquitylation of histone H2A and PRC2 contributes to the methylation of H3K27.
PRC2 is composed of several proteins, including [...] and either EZH1 or EZH2. [...]
Experimental evidence from several systems suggests that H3K27 methylation is mainly
achieved by EZH2 and to a lesser extent by EZH1. [...] Excessive EZH2 concentrations
have been reported as a marker of aggressive breast cancer.’

EZH2 and EZH1 are neighbours in the network. ANKRD35 is a neighbour of EZH1.
We could not find evidence for a relation of ANKRD35 to breast cancer. However, other
ANKRD genes are mentioned as biomarkers for (breast) cancer [51, 32].

67

Remark

We observe that node weights in most modules are either high in methylation, or in gene
expression JSD, as for example in our selected module 1 (Figure 6.17a). This is driven
by the data, as there are few nodes that are high in both JSDs, as we can see in Figure
6.20. Accordingly the results are satisfying.

Figure 6.20.: Scatter plot of JSD for methylation data and JSD for gene expression data.
Only few genes have a high JSD in methylation and gene expression. No
linear trend can be seen.

68

7. Discussion

In this work we present a promising approach for biomarker detection using fusion
networks.

A clear advantage of network approaches over standard ones, apart from the inclusion
of a more realistic hypothesis of cell behaviour, incorporating that impacts of individu-
ally altered proteins can often be balanced, whereas alterations of interacting proteins
often lead to major consequences [7, 12], is the interpretability of results. The network
approach returns modules of interacting proteins. They can often be grouped to similar
functions, or pathways. In the machine learning approach, each gene has to be regarded
separately.

For methods that are not embedded, a number or rule has to be decided on, to choose
biomarkers from all features. We have to fix such a rule in our network approach as well,
but the score we apply is based on reasonable arguments, such as difference between
weight distributions of resulting genes and all genes and classifier performance from
according feature selections. The performance of the models from machine learning is
equal or similar to perfect accuracy. We have comparably few samples for a large number
of features, which brings along the curse of dimensionality and leads to overfitting. This
results in good accuracy most probably, but we have to assume that we are concerned
with overfitting.

To analyse the relevance of network modules from our algorithm, they are considered
as feature selections. Three different training methods are applied to evaluate these
feature selections: SVM, random forest, and elastic net. The feature selection derived
from the network approaches reach very good results, which is interesting because they
contain only a small number of features: In one module set in the methylation data
results, the F1 score is 0.98 for five genes only (0.976 for the remaining 3 genes after
postprocessing).

When comparing the single source network with the fusion network approach, the
results of the fusion approach outperform the single source approach in terms of biological
relevance and they are similarly good as one of the single source analysis results regarding
the classification power.

In the network approach, the percentage of F1 scores of all experiments being exactly 1
is the highest in methylation data results (51%), followed by fusion data results (44%),
and gene expression data results (10%). The biological analysis of the best scoring
module set for methylation data does not reveal as extensive nor convincing results, as
the best scoring fusion network module set. 41 genes in the fusion module sets, are not
in the best scoring modules of the single source network approach (Figure 7.1).

The biological analysis of fusion module sets reveals one additional pathway, compared
to single source module sets. Furthermore, it reveals one module of genes that are not

69

Figure 7.1.: Venn diagram of genes in best scoring module sets for all network ap-
proaches. 88 genes of modules in fusion and gene expression networks are
overlapping. The gene in modules from the methylation network do not
overlap with any of the other module genes.

in the best scoring modules of the single source network approach for which we find
publications that indicate a role of the genes in breast cancer.

Hence, the biomarkers we detect are highly supported by breast cancer literature,
biological pathways, and classification power.

70

8. Conclusion and outlook

In this thesis we propose a new network analysis approach for biomarker detection which
can be applied to single source, e.g. gene expression and methylation data, as well as
fusion networks. Our algorithm is a powerful approach to detect metastable structures
in a fusion network with scalar or vectorial node weights.

We test our algorithm on simulated and breast cancer data. The simulation study
confirms that the proposed algorithm is able to identify relevant areas in the network
(single source and fusion).

We apply our algorithm (single source and fusion) and standard machine learning
methods to real world biological data. The underlying network is the STRING PPI
network and the data is methylation and gene expression breast cancer data from TCGA.
We have discussed that deriving meaningful biomarkers using machine learning methods
is questionable, because firstly, it does not incorporate biological processes. Secondly,
from results of methods that are not embedded a selection of biomarkers is difficult and
not based on a biological argumentation. Further, the data contains far more features
than samples, which can lead to overfitting. We can see in our results, that they depend
on the applied method and the overlap between methods is often small.

In contrast, the biomarkers our approach returns do not show these problems, which
makes them more biologically relevant. Researchers can use these biomarkers as sugges-
tions for e.g. new drug targets or diagnosis.

Some issues are worth further exploration. We have restricted our analysis to a static
PPI network. However, PPI networks do not cover all processes in the cell. It would be
interesting to study more complex networks. Further, we have restricted node weights to
carry information of change. We could additionally include measurement intensity. An
idea is to alter edges depending on measurements. Furthermore, it would be interesting
to test various more parameters, respectively algorithm settings.

In summary, this thesis presents a new approach to extract relevant modules of fu-
sion networks. The analyses demonstrates that it is a promising approach to identify
biomarkers.

71

Bibliography

[1] Aaroe, J. ; Lindahl, T. ; Dumeaux, V. ; Saebo, S. ; Tobin, D. ; Hagen, N.
; Skaane, P. ; Lonneborg, A. ; Sharma, P. ; Borresen-Dale, A.-L. : Gene
expression profiling of peripheral blood cells for early detection of breast cancer. In:
Breast Cancer Res 12 (2010), Nr. 1, S. R7

[2] Agarwala, A. ; Billheimer, J. ; Rodrigues, A. ; Risman, M. ; McCoy, M. ;
Cuchel, M. ; Rader, D. : Hdl Phospholipid is Associated With Coronary Artery
Disease (cad) in Individuals With Hdl-c Above the 90th Percentile Who Develop
Cad. In: Circulation 128 (2013), Nr. 22 Supplement, S. A15126

[3] Albert, R. : Scale-free networks in cell biology. In: Journal of cell science 118
(2005), Nr. 21, S. 4947–4957

[4] Albert, R. ; Barabási, A.-L. : Statistical mechanics of complex networks. In:
Reviews of modern physics 74 (2002), Nr. 1, S. 47

[5] Alon, U. : Network motifs: theory and experimental approaches. In: Nature
Reviews Genetics 8 (2007), Nr. 6, S. 450–461

[6] Altay, G. ; Emmert-Streib, F. : Revealing differences in gene network inference
algorithms on the network level by ensemble methods. In: Bioinformatics 26 (2010),
Nr. 14, S. 1738–1744

[7] Barabási, A.-L. ; Gulbahce, N. ; Loscalzo, J. : Network medicine: a network-
based approach to human disease. In: Nature Reviews Genetics 12 (2011), Nr. 1,
S. 56–68

[8] Berteaux, N. ; Lottin, S. ; Monté, D. ; Pinte, S. ; Quatannens, B. ; Coll,
J. ; Hondermarck, H. ; Curgy, J.-J. ; Dugimont, T. ; Adriaenssens, E. :
H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through
positive control by E2F1. In: Journal of Biological Chemistry 280 (2005), Nr. 33,
S. 29625–29636

[9] Bird, A. : DNA methylation patterns and epigenetic memory. In: Genes &
development 16 (2002), Nr. 1, S. 6–21

[10] Blazier, A. S. ; Papin, J. A.: Integration of expression data in genome-scale
metabolic network reconstructions. In: Front Physiol 3 (2012), Nr. 299

[11] Breiman, L. : Random forests. In: Machine learning 45 (2001), Nr. 1, S. 5–32

72

[12] Calvano, S. E. ; Xiao, W. ; Richards, D. R. ; Felciano, R. M. ; Baker, H. V.
; Cho, R. J. ; Chen, R. O. ; Brownstein, B. H. ; Cobb, J. P. ; Tschoeke, S. K.
u. a.: A network-based analysis of systemic inflammation in humans. In: Nature
437 (2005), Nr. 7061, S. 1032–1037

[13] Chapelle, O. : Training a support vector machine in the primal. In: Neural
computation 19 (2007), Nr. 5, S. 1155–1178

[14] Chou, A. P. ; Chowdhury, R. ; Li, S. ; Chen, W. ; Kim, A. J. ; Piccioni, D. E.
; Selfridge, J. M. ; Mody, R. R. ; Chang, S. ; Lalezari, S. u. a.: Identification
of retinol binding protein 1 promoter hypermethylation in isocitrate dehydrogenase
1 and 2 mutant gliomas. In: Journal of the National Cancer Institute (2012), S.
djs357

[15] Colburn, W. ; DeGruttola, V. G. ; DeMets, D. L. ; Downing, G. J. ;
Hoth, D. F. ; Oates, J. A. ; Peck, C. C. ; Schooley, R. T. ; Spilker, B. A.
; Woodcock, J. u. a.: Biomarkers and surrogate endpoints: Preferred definitions
and conceptual framework. Biomarkers Definitions Working Group. In: Clinical
Pharmacol & Therapeutics 69 (2001), S. 89–95

[16] Cortes, C. ; Vapnik, V. : Support-vector networks. In: Machine learning 20
(1995), Nr. 3, S. 273–297

[17] Coser, K. R. ; Chesnes, J. ; Hur, J. ; Ray, S. ; Isselbacher, K. J. ; Shioda,
T. : Global analysis of ligand sensitivity of estrogen inducible and suppressible
genes in MCF7/BUS breast cancer cells by DNA microarray. In: Proceedings of the
National Academy of Sciences 100 (2003), Nr. 24, S. 13994–13999

[18] Dai, M. ; Wang, P. ; Boyd, A. D. ; Kostov, G. ; Athey, B. ; Jones, E. G.
; Bunney, W. E. ; Myers, R. M. ; Speed, T. P. ; Akil, H. u. a.: Evolving
gene/transcript definitions significantly alter the interpretation of GeneChip data.
In: Nucleic acids research 33 (2005), Nr. 20, S. e175–e175

[19] Dennis Jr, G. ; Sherman, B. T. ; Hosack, D. A. ; Yang, J. ; Gao, W. ; Lane,
H. C. ; Lempicki, R. A. u. a.: DAVID: database for annotation, visualization, and
integrated discovery. In: Genome biol 4 (2003), Nr. 5, S. P3

[20] Dezső, Z. ; Nikolsky, Y. ; Nikolskaya, T. ; Miller, J. ; Cherba, D. ; Webb,
C. ; Bugrim, A. : Identifying disease-specific genes based on their topological
significance in protein networks. In: BMC systems biology 3 (2009), Nr. 1, S. 1

[21] Dorfleutner, A. ; Stehlik, C. ; Zhang, J. ; Gallick, G. E. ; Flynn, D. C.:
AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-
MB-231 breast cancer cells. In: Journal of cellular physiology 213 (2007), Nr. 3, S.
740–749

73

[22] Du, P. ; Zhang, X. ; Huang, C.-C. ; Jafari, N. ; Kibbe, W. A. ; Hou, L. ; Lin,
S. M.: Comparison of Beta-value and M-value methods for quantifying methylation
levels by microarray analysis. In: BMC bioinformatics 11 (2010), Nr. 1, S. 587

[23] Dvorkin-Gheva, A. ; Hassell, J. A.: Identification of a novel luminal molecular
subtype of breast cancer. In: PloS one 9 (2014), Nr. 7, S. e103514

[24] Friedman, J. ; Hastie, T. ; Tibshirani, R. : Regularization paths for generalized
linear models via coordinate descent. In: Journal of statistical software 33 (2010),
Nr. 1, S. 1

[25] Frietze, S. ; Lupien, M. ; Silver, P. A. ; Brown, M. : CARM1 regulates
estrogen-stimulated breast cancer growth through up-regulation of E2F1. In: Can-
cer research 68 (2008), Nr. 1, S. 301–306

[26] Fröhlich, H. : Network based consensus gene signatures for biomarker discovery
in breast cancer. In: Plos one 6 (2011), Nr. 10, S. e25364

[27] Ge, H. ; Walhout, A. J. ; Vidal, M. : Integrating omic information: a bridge
between genomics and systems biology. In: TRENDS in Genetics 19 (2003), Nr.
10, S. 551–560

[28] Greenblatt, M. ; Bennett, W. ; Hollstein, M. ; Harris, C. : Mutations in
the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis.
In: Cancer research 54 (1994), Nr. 18, S. 4855–4878

[29] Group, H. S. C. R. u. a.: The hyperglycemia and adverse pregnancy outcome
(HAPO) study. In: International Journal of Gynecology & Obstetrics 78 (2002),
Nr. 1, S. 69–77

[30] Han, S. ; Park, K. ; Bae, B.-N. ; Kim, K. H. ; Kim, H.-J. ; Kim, Y.-D. ; Kim,
H.-Y. : E2F1 expression is related with the poor survival of lymph node-positive
breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide.
In: Breast cancer research and treatment 82 (2003), Nr. 1, S. 11–16

[31] Hastak, K. ; Alli, E. ; Ford, J. M.: Synergistic chemosensitivity of triple-
negative breast cancer cell lines to poly (ADP-Ribose) polymerase inhibition, gem-
citabine, and cisplatin. In: Cancer research 70 (2010), Nr. 20, S. 7970–7980

[32] He, Q. ; He, Q. ; Liu, X. ; Wei, Y. ; Shen, S. ; Hu, X. ; Li, Q. ; Peng, X. ;
Wang, L. ; Yu, L. : Genome-wide prediction of cancer driver genes based on SNP
and cancer SNV data. In: American journal of cancer research 4 (2014), Nr. 4, S.
394

[33] Huang, P. ; Cao, K. ; Zhao, H. : Screening of critical genes in lung adenocar-
cinoma via network analysis of gene expression profile. In: Pathology & Oncology
Research 20 (2014), Nr. 4, S. 853–858

74

[34] Hughes, G. P.: On the mean accuracy of statistical pattern recognizers. In:
Information Theory, IEEE Transactions on 14 (1968), Nr. 1, S. 55–63

[35] Ideker, T. ; Dutkowski, J. ; Hood, L. : Boosting signal-to-noise in complex
biology: prior knowledge is power. In: Cell 144 (2011), Nr. 6, S. 860–863

[36] Ihaka, R. ; Gentleman, R. : R: a language for data analysis and graphics. In:
Journal of computational and graphical statistics 5 (1996), Nr. 3, S. 299–314

[37] Illumina: Infinium HumanMethylation450 BeadChip. https://www.illumina.

com/content/dam/illumina-marketing/documents/products/datasheets/

datasheet_humanmethylation450.pdf

[38] Jiaqi, H. ; Morehouse, C. ; Streicher, K. ; Higgs, B. W. ; Gao, J. ; Baffa, R.
; Meggan, C. ; Boutrin, A. ; Brohawn, P. ; Zhu, W. u. a.: Altered expression
of insulin receptor isoforms in breast cancer. In: Cancer Research 71 (2011), Nr. 8
Supplement, S. 327–327

[39] Kanehisa, M. ; Goto, S. : KEGG: kyoto encyclopedia of genes and genomes. In:
Nucleic acids research 28 (2000), Nr. 1, S. 27–30

[40] Komurov, K. ; White, M. A. ; Ram, P. T.: Use of data-biased random walks on
graphs for the retrieval of context-specific networks from genomic data. In: PLoS
Comput Biol 6 (2010), Nr. 8, S. e1000889

[41] Krøig̊ard, A. B. ; Larsen, M. J. ; Lænkholm, A.-V. ; Knoop, A. S. ; Jensen,
J. D. ; Bak, M. ; Mollenhauer, J. ; Kruse, T. A. ; Thomassen, M. : Clonal
expansion and linear genome evolution through breast cancer progression from pre-
invasive stages to asynchronous metastasis. In: Oncotarget 6 (2015), Nr. 8, S. 5634

[42] Lee, B. B. ; Lee, E. J. ; Jung, E. H. ; Chun, H.-K. ; Chang, D. K. ; Song, S. Y.
; Park, J. ; Kim, D.-H. : Aberrant methylation of APC, MGMT, RASSF2A, and
Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. In:
Clinical Cancer Research 15 (2009), Nr. 19, S. 6185–6191

[43] Li, B.-Q. ; You, J. ; Chen, L. ; Zhang, J. ; Zhang, N. ; Li, H.-P. ; Huang,
T. ; Kong, X.-Y. ; Cai, Y.-D. : Identification of lung-cancer-related genes with
the shortest path approach in a protein-protein interaction network. In: BioMed
research international 2013 (2013)

[44] Libbrecht, M. W. ; Noble, W. S.: Machine learning applications in genetics and
genomics. In: Nature Reviews Genetics 16 (2015), Nr. 6, S. 321–332

[45] Ma, S. ; Jiang, T. ; Jiang, R. : Differential regulation enrichment analysis via
the integration of transcriptional regulatory network and gene expression data. In:
Bioinformatics 31 (2015), Nr. 4, S. 563–571

75

[46] McLendon, R. ; Friedman, A. ; Bigner, D. ; Van Meir, E. G. ; Brat, D. J. ;
Mastrogianakis, G. M. ; Olson, J. J. ; Mikkelsen, T. ; Lehman, N. ; Aldape,
K. u. a.: Comprehensive genomic characterization defines human glioblastoma genes
and core pathways. In: Nature 455 (2008), Nr. 7216, S. 1061–1068

[47] Meijers, J. C. ; Tekelenburg, W. L. ; Bouma, B. N. ; Bertina, R. M. ;
Rosendaal, F. R.: High levels of coagulation factor XI as a risk factor for venous
thrombosis. In: New England Journal of Medicine 342 (2000), Nr. 10, S. 696–701

[48] Mitchell, N. E.: Genome-wide DNA methylation changes during breast tumori-
genesis, University of Alabama at Birmingham, Diss., 2012

[49] Mitra, K. ; Carvunis, A.-R. ; Ramesh, S. K. ; Ideker, T. : Integrative ap-
proaches for finding modular structure in biological networks. In: Nature Reviews
Genetics 14 (2013), Nr. 10, S. 719–732

[50] Model, F. ; Osborn, N. ; Ahlquist, D. ; Gruetzmann, R. ; Molnar, B. ;
Sipos, F. ; Galamb, O. ; Pilarsky, C. ; Saeger, H.-D. ; Tulassay, Z. u. a.:
Identification and validation of colorectal neoplasia–specific methylation markers
for accurate classification of disease. In: Molecular cancer research 5 (2007), Nr. 2,
S. 153–163

[51] Molloy, T. J. ; Roepman, P. ; Naume, B. ; Veer, L. J.: A prognostic gene
expression profile that predicts circulating tumor cell presence in breast cancer
patients. In: PloS one 7 (2012), Nr. 2, S. e32426

[52] Mudunuri, U. ; Che, A. ; Yi, M. ; Stephens, R. M.: bioDBnet: the biological
database network. In: Bioinformatics 25 (2009), Nr. 4, S. 555–556

[53] Nitsch, D. ; Gonçalves, J. P. ; Ojeda, F. ; De Moor, B. ; Moreau, Y. :
Candidate gene prioritization by network analysis of differential expression using
machine learning approaches. In: BMC bioinformatics 11 (2010), Nr. 1, S. 1

[54] Obermayr, E. ; Sanchez-Cabo, F. ; Tea, M.-K. M. ; Singer, C. F. ; Krainer,
M. ; Fischer, M. B. ; Sehouli, J. ; Reinthaller, A. ; Horvat, R. ; Heinze,
G. u. a.: Assessment of a six gene panel for the molecular detection of circulating
tumor cells in the blood of female cancer patients. In: BMC cancer 10 (2010), Nr.
1, S. 666

[55] Organization, W. H. u. a.: International Programme on Chemical Safety (IPCS)–
Environmental Health Criteria 155: Biomarkers and risk assessment: concepts and
principles. In: International Journal of Aquatic Biology (2015) 3 (1993), Nr. 6, S.
398–408

[56] Orrù, G. ; Pettersson-Yeo, W. ; Marquand, A. F. ; Sartori, G. ;
Mechelli, A. : Using support vector machine to identify imaging biomarkers of
neurological and psychiatric disease: a critical review. In: Neuroscience & Biobe-
havioral Reviews 36 (2012), Nr. 4, S. 1140–1152

76

[57] O’Shaughnessy, J. ; Osborne, C. ; Pippen, J. E. ; Yoffe, M. ; Patt, D.
; Rocha, C. ; Koo, I. C. ; Sherman, B. M. ; Bradley, C. : Iniparib plus
chemotherapy in metastatic triple-negative breast cancer. In: New England Journal
of Medicine 364 (2011), Nr. 3, S. 205–214

[58] Ossovskaya, V. ; Koo, I. C. ; Kaldjian, E. P. ; Alvares, C. ; Sherman, B. M.:
Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast
cancer and other primary human tumor types. In: Genes & cancer 1 (2010), Nr.
8, S. 812–821

[59] Park, S. ; Shimizu, C. ; Shimoyama, T. ; Takeda, M. ; Ando, M. ; Kohno, T.
; Katsumata, N. ; Kang, Y.-K. ; Nishio, K. ; Fujiwara, Y. : Gene expression
profiling of ATP-binding cassette (ABC) transporters as a predictor of the patho-
logic response to neoadjuvant chemotherapy in breast cancer patients. In: Breast
cancer research and treatment 99 (2006), Nr. 1, S. 9–17

[60] Phillips, T. : The role of methylation in gene expression. In: Nature Education 1
(2008), Nr. 1, S. 116

[61] Reimand, J. ; Kull, M. ; Peterson, H. ; Hansen, J. ; Vilo, J. : g: Profiler a
web-based toolset for functional profiling of gene lists from large-scale experiments.
In: Nucleic acids research 35 (2007), Nr. suppl 2, S. W193–W200

[62] Roldo, C. ; Missiaglia, E. ; Hagan, J. P. ; Falconi, M. ; Capelli, P. ;
Bersani, S. ; Calin, G. A. ; Volinia, S. ; Liu, C.-G. ; Scarpa, A. u. a.: Mi-
croRNA expression abnormalities in pancreatic endocrine and acinar tumors are
associated with distinctive pathologic features and clinical behavior. In: Journal of
Clinical Oncology 24 (2006), Nr. 29, S. 4677–4684

[63] Saleem, M. ; Kamdar, M. R. ; Iqbal, A. ; Sampath, S. ; Deus, H. F. ; Ngomo,
A.-C. N.: Big linked cancer data: Integrating linked tcga and pubmed. In: Web
Semantics: Science, Services and Agents on the World Wide Web 27 (2014), S.
34–41

[64] Sapkota, Y. ; Yasui, Y. ; Lai, R. ; Sridharan, M. ; Robson, P. J. ; Cass, C. E.
; Mackey, J. R. ; Damaraju, S. : Identification of a breast cancer susceptibility
locus at 4q31. 22 using a genome-wide association study paradigm. In: PloS one 8
(2013), Nr. 5, S. e62550

[65] Sarich, M. : Projected transfer operators: discretization of Markov processes in
high-dimensional state spaces, Berlin, Freie Universität Berlin, Diss., 2011, Diss.,
2011

[66] Sarich, M. ; Djurdjevac, N. ; Bruckner, S. ; Conrad, T. O. ; Schütte, C.
: Modularity revisited: A novel dynamics-based concept for decomposing complex
networks. In: Journal of Computational Dynamics 1 (2014), Nr. 1, S. 191–212

77

[67] Siegel, R. L. ; Miller, K. D. ; Jemal, A. : Cancer statistics, 2016. In: CA: A
cancer journal for clinicians (2015)

[68] Staff, S. ; Isola, J. ; Jumppanen, M. ; Tanner, M. : Aurora-A gene is frequently
amplified in basal-like breast cancer. In: Oncology reports 23 (2010), Nr. 2, S. 307–
312

[69] Swan, A. L. ; Mobasheri, A. ; Allaway, D. ; Liddell, S. ; Bacardit, J. :
Application of machine learning to proteomics data: classification and biomarker
identification in postgenomics biology. In: Omics: a journal of integrative biology
17 (2013), Nr. 12, S. 595–610

[70] Szklarczyk, D. ; Franceschini, A. ; Wyder, S. ; Forslund, K. ; Heller, D.
; Huerta-Cepas, J. ; Simonovic, M. ; Roth, A. ; Santos, A. ; Tsafou, K. P.
u. a.: STRING v10: protein–protein interaction networks, integrated over the tree
of life. In: Nucleic acids research (2014), S. gku1003

[71] Talwar, P. ; Silla, Y. ; Grover, S. ; Gupta, M. ; Agarwal, R. ; Kushwaha,
S. ; Kukreti, R. : Genomic convergence and network analysis approach to identify
candidate genes in Alzheimer’s disease. In: BMC genomics 15 (2014), Nr. 1, S. 199

[72] TCGA: TCGA RNAseq data. https://wiki.nci.nih.gov/display/TCGA/

RNASeq

[73] Teodoridis, J. M. ; Hall, J. ; Marsh, S. ; Kannall, H. D. ; Smyth, C. ;
Curto, J. ; Siddiqui, N. ; Gabra, H. ; McLeod, H. L. ; Strathdee, G. u. a.:
CpG island methylation of DNA damage response genes in advanced ovarian cancer.
In: Cancer research 65 (2005), Nr. 19, S. 8961–8967

[74] Tfelt-Hansen, J. ; Kanuparthi, D. ; Chattopadhyay, N. : The emerging
role of pituitary tumor transforming gene in tumorigenesis. In: Clinical medicine
& research 4 (2006), Nr. 2, S. 130–137

[75] Vidarsdottir, L. ; Bodvarsdottir, S. K. ; Hilmarsdottir, H. ; Tryg-
gvadottir, L. ; Eyfjord, J. E.: Breast cancer risk associated with AURKA 91T
A polymorphism in relation to BRCA mutations. In: Cancer letters 250 (2007),
Nr. 2, S. 206–212

[76] Von Luxburg, U. : A tutorial on spectral clustering. In: Statistics and computing
17 (2007), Nr. 4, S. 395–416

[77] Wagner, J. R. ; Busche, S. ; Ge, B. ; Kwan, T. ; Pastinen, T. ; Blanchette,
M. : The relationship between DNA methylation, genetic and expression inter-
individual variation in untransformed human fibroblasts. In: Genome Biol 15
(2014), Nr. 2, S. R37

[78] Wang, Z. ; Gerstein, M. ; Snyder, M. : RNA-Seq: a revolutionary tool for
transcriptomics. In: Nature Reviews Genetics 10 (2009), Nr. 1, S. 57–63

78

[79] Warburg, O. u. a.: On the origin of cancer cells. In: Science 123 (1956), Nr. 3191,
S. 309–314

[80] (WHO), W. H. O. u. a.: International Programme on Chemical Safety. Biomarkers
in Risk Assessment: Validity and Validation, 2001. 2015

[81] Wong, E. ; Baur, B. ; Quader, S. ; Huang, C.-H. : Biological network motif
detection: principles and practice. In: Briefings in bioinformatics (2011), S. bbr033

[82] Worsham, M. J. ; Chitale, D. ; Chen, K. M. ; Divine, G. : The methylome
of ER-negative tumors is predominantly hypermethylated. In: Cancer Research 74
(2014), Nr. 19 Supplement, S. 1372–1372

[83] Wu, C. ; Zhu, J. ; Zhang, X. : Integrating gene expression and protein-protein
interaction network to prioritize cancer-associated genes. In: BMC bioinformatics
13 (2012), Nr. 1, S. 182

[84] Xia, J. ; Benner, M. J. ; Hancock, R. E.: NetworkAnalyst-integrative ap-
proaches for protein–protein interaction network analysis and visual exploration.
In: Nucleic acids research (2014), S. gku443

[85] Yang, R. ; Daigle, B. J. ; Petzold, L. R. ; Doyle, F. J.: Core module
biomarker identification with network exploration for breast cancer metastasis. In:
BMC bioinformatics 13 (2012), Nr. 1, S. 12

[86] Yoo, K. H. ; Hennighausen, L. : EZH2 methyltransferase and H3K27 methyla-
tion in breast cancer. In: Int J Biol Sci 8 (2012), Nr. 1, S. 59–65

[87] Zhang, C. ; Zhao, H. ; Li, J. ; Liu, H. ; Wang, F. ; Wei, Y. ; Su, J. ; Zhang, D.
; Liu, T. ; Zhang, Y. : The identification of specific methylation patterns across
different cancers. In: PloS one 10 (2015), Nr. 3, S. e0120361

[88] Zheng, F. ; Yue, C. ; Li, G. ; He, B. ; Cheng, W. ; Wang, X. ; Yan, M. ;
Long, Z. ; Qiu, W. ; Yuan, Z. u. a.: Nuclear AURKA acquires kinase-independent
transactivating function to enhance breast cancer stem cell phenotype. In: Nature
communications 7 (2016)

[89] Zhu, J. ; Qin, Y. ; Liu, T. ; Wang, J. ; Zheng, X. : Prioritization of candidate
disease genes by topological similarity between disease and protein diffusion profiles.
In: BMC bioinformatics 14 (2013), Nr. Suppl 5, S. S5

[90] Zou, H. ; Hastie, T. : Regularization and variable selection via the elastic net.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67
(2005), Nr. 2, S. 301–320

79

A. Appendix

Classifier training with biological data and four classes

This section contains classifier results, comparable to results in §6.2 and §6.4. In this
section, we use tumour stages T1, T2, T3, and control label as response in the classifi-
cation.

1.0.1 All features

Table A.1.: Overall mean F1 score over 100 testing runs for classifiers trained with single
and fusion data with classes: Control, T1, T2, T3

Data selection Data type
F1 score,

SVM
classifier

F1 score,
Random forest

classifier

F1 score,
Elastic net
classifier

All features

Gene expression data 0.828 0.839 0.677
Methylation data 0.849 0.823 0.826
Fusion data 0.849 0.805 0.790

Top 100 JSD
Gene expression data 0.683 0.818 0.627
Methylation data 0.771 0.823 0.752
Fusion data 0.737 0.836 0.705

80

(a) Methylation data (b) Gene expression data

Figure A.1.: Venn diagram of top 100 features separated by class for methylation data
(a) and gene expression data (b) classifiers trained with random forest,
SVM with RBF kernel, elastic net

1.0.2 Module features

Table A.2.: Mean F1 score over 100 runs for different training data with classes: Control,
T1, T2, T3; Before, and after (∗)postprocessing

Data p #m Genes JSD
SVM

[svmradial]

Random
forest
[rf]

Elastic
net

[glmnet]

JSD ∗
F1max

G
en

e
ex

p
re

ss
io

n

10
6 160 0.562 0.756 0.824 0.779 0.463
8 165 0.523 0.725 0.822 0.696 0.403

14 283 0.448 0.651 0.82 0.665 0.400

25

7 1432 0.497 0.793 0.826 0.826 0.411

9 1438 0.492 0.787 0.83 0.837 0.412

11 1447 0.484 0.792 0.83 0.833 0.403
18 1460 0.472 0.792 0.822 0.84 0.396

50

7 1593 0.399 0.799 0.821 0.709 0.328
9 1596 0.395 0.799 0.828 0.709 0.327

11 1607 0.383 0.802 0.835 0.773 0.319

18 2808 0.280 0.822 0.837 0.787 0.234

10∗ 6 → 1 152 0.599 0.779 0.829 0.766 0.497

25∗ all → 2 1423 0.507 0.793 0.843 0.82 0.427

50∗ all → 3 838 0.555 0.758 0.832 0.774 0.462

Continued on next page

81

Table A.2 – continued from previous page

Data p #m Genes JSD
SVM

[svmradial]

Random
forest
[rf]

Elastic
net

[glmnet]

JSD ∗
F1max

M
et

h
y
la

ti
on

10

3 6 0.263 0.674 0.789 0.569 0.208
7 49 0.521 0.759 0.8 0.713 0.417
8 65 0.543 0.755 0.817 0.732 0.444

18 161 0.509 0.794 0.812 0.809 0.413

25

6 453 0.545 0.783 0.825 0.717 0.450
12 491 0.476 0.781 0.807 0.813 0.387
14 498 0.459 0.782 0.801 0.814 0.374
15 502 0.454 0.782 0.821 0.814 0.373

17 914 0.307 0.817 0.823 0.73 0.253

50
12 846 0.490 0.796 0.83 0.732 0.407

15 2091 0.355 0.817 0.832 0.805 0.295

17 2097 0.350 0.817 0.821 0.805 0.287

10∗
3,4 → 1 3 0.636 0.624 0.794 0.564 0.505

8 → 2 59 0.612 0.754 0.81 0.729 0.496

12 → 2 67 0.589 0.804 0.826 0.817 0.487

25∗ 7 → 2 17 0.633 0.776 0.8 0.703 0.506
50∗ all → 1 4 0.558 0.796 0.816 0.732 0.480

F
u
si

on

10
3 110 0.481 0.781 0.809 0.771 0.389

12 400 0.116 0.793 0.815 0.794 0.095

17 386 0.122 0.798 0.821 0.804 0.100

25
8 160 0.363 0.777 0.805 0.833 0.302

12 196 0.263 0.767 0.815 0.822 0.212
18 267 0.271 0.796 0.821 0.82 0.222

50

5 7 0.308 0.685 0.816 0.598 0.251
7 9 0.145 0.683 0.796 0.575 0.115

12 144 0.463 0.784 0.839 0.777 0.388

14 149 0.437 0.778 0.824 0.811 0.367
17 165 0.361 0.772 0.835 0.806 0.301

10∗
3 → 1 104 0.560 0.768 0.816 0.772 0.457

12 → 3 218 0.290 0.788 0.795 0.795 0.231
17 → 6 230 0.271 0.769 0.828 0.691 0.224

25∗
8 → 2 149 0.418 0.77 0.802 0.825 0.397

12,18 → 7 220 0.391 0.774 0.825 0.834 0.326

50∗
12 → 2 129 0.598 0.774 0.827 0.744 0.494

14,17 → 3 137 0.498 0.774 0.826 0.762 0.411

82

Genes in best scoring modules

1.0.3 Genes in best scoring module for gene expression data

In this section we present all the genes in the modules detected by our algorithm for
breast cancer data. Compare §6.3.1 and §6.5.1.

Module 1

CKS2, GTSE1, HIST1H3D, HIST1H3H, KIF11, KIF4A, RABIF, RNASEH2A,
UBE2T, ADAMTS5, ANGPTL7, CACHD1, FIGF, LEP, PLA2G4A, SH3BGRL2,
ANLN, ARF1, ASF1B, ASPM, AURKA, AURKB, BUB1, BUB1B, CALCOCO1,
CASC5, CBX7, CCNA2, CCNB1, CCNB2, CCNE2, CCNF, CDC14B, CDC20,
CDC25C, CDCA3, CDCA5, CDCA8, CDK1, CDKN3, CENPA, CENPE, CENPF,
CENPI, CENPL, CENPM, CEP55, CKAP2L, CLSPN, DEPDC1, DEPDC1B,
DLGAP5, DTL, E2F7, E2F8, EME1, ERCC6L, ESCO2, EXO1, EZH1, FAM126A,
FAM83D, FANCI, FOXM1, GRAMD1A, H2AFY, HJURP, HMMR, ITM2A, KCNIP2,
KIAA0101, KIF14, KIF20A, KIF23, KIF2C, LAGE3, LMNB1, MELK, MKI67,
MYBL2, NACC1, NCAPG, NCAPH, NDC80, NEIL3, NEK2, NUF2, NUSAP1, OIP5,
PAQR4, PBK, PKMYT1, PLK1, PRC1, PRR11, PSMC4, PTTG1, RAD51AP1,
RAD54L, RRM2, SGOL1, SKA3, SMC4, SPAG5, SPC24, SPRY2, TACC3, TK1,
TOP2A, TPX2, TRIM59, TRIP13, TROAP, TTK, UBE2C, ZWINT, ANKRD29,
ARHGAP20, CDCA2, CHL1, CNN1, COL10A1, COL11A1, FAM111B, FHL1,
INHBA, IQGAP3, ITIH2, KLHL29, LIMS2, LRIG3, MATN2, MMP13, MYOC,
SMYD1, TTC28, UBE2S, WISP1, FAM72A, POC1A, RERGL, ARHGAP11A, CDC2,
FAM72D, KIF15, KIFC1, MMP11, MYH11, PPAPDC1A, PRAME, SPC25, BTBD14B

1.0.4 Genes in best scoring module for methylation data

Module 1

MRPL44, AFAP1, CTSA, GPR160, LDLRAD2, NDUFAF3, PPFIBP2, RPL22, LPHN1

Module 2

ZNF572, ABCA1, CILP2, OSBPL7, PITPNM2, XKR6, DNAH10, ZNF502

1.0.5 Genes in best scoring module for fusion data

Module 1

CKS2, E2F1, GTSE1, HIST1H3D, HIST1H3H, KIF11, KIF4A, RNASEH2A,
TNFRSF10D, UBE2T, ADAM8, ANKRD53, ANLN, APOA1BP, ARF1, ASF1B,
ASPM, ATP1A3, AURKA, AURKB, B4GALT3, BUB1, BUB1B, CALCOCO1, CAV1,
CBX7, CCNB1, CCNE2, CDC14B, CDC20, CDC25C, CDCA3, CDCA5, CDCA8,
CDK1, CDKN3, CENPA, CENPF, CENPI, CENPL, CENPM, CEP55, DEPDC1,

83

DIXDC1, DLGAP5, DTL, E2F8, EME1, ERCC6L, ESCO2, EXO1, FAM126A,
FAM13A, FANCI, FBXO6, FLAD1, HJURP, HMMR, HPSE2, ITM2A, KCNIP2,
KIAA0101, KIF14, KIF20A, KIF23, KIF2C, KLHL21, KPNA2, MAZ, MKI67, MTX1,
NCAPG, NCAPH, NDC80, NEIL3, NEK2, NR3C1, NR3C2, NUF2, NUSAP1, OIP5,
PACSIN1, PAQR4, PARP1, PBK, PDE2A, PI16, PKD2, PKMYT1, PLD1, PLK1,
POLE2, PRC1, PYGO2, RAVER1, RRM2, RUSC1, SGOL1, SHCBP1, SLC25A39,
SLC35A2, SMC4, SPAG5, SPC24, SPRY2, TACC3, THRA, TK1, TOP2A, TOR2A,
TPM3, TPX2, TRIM59, TROAP, TTK, UBE2C, USP44, ZBTB16, ZBTB4, ZWINT,
CDC2, CSDA, KIF15, KIFC1, SPC25, TSTA3

Module 2

ANKRD35, EZH1, H2AFY

Algorithm code

This section contains the code of the algorithm presented in §4 and §5.

1.0.6 Main function

1 %% i n i t i a l i z e network and make genera to r
2 f unc t i on [simmat] = mainFusion (patterns , ps)
3 %there must be a f o l d e r c a l l e d l i k e NetworkName in which the re

i s a network c a l l e d NetworkName A and node weights c a l l e d
NetworkName VECTCOLORS

4 f o r j =1: l ength (pat t e rn s)
5 pattern = pat t e rns { j }
6 d = d i r (pwd) ;
7 i sub = [d (:) . i s d i r] ;
8 nameFolds = {d(i sub) . name } ’ ;
9 idx=˜ c e l l f u n (’ isempty ’ , regexp (nameFolds , patte rn)) ;

10 NetworkNames = nameFolds (idx)
11 f o r i =1: l ength (NetworkNames)
12 NetworkName=NetworkNames{ i }
13 f o r p=ps
14 di sp ([NetworkName , ’ ; p = ’ , num2str (p)]) ;
15 theta = 2 ;
16 sparseAdjacencyName = s t r c a t (pwd , ’\ ’ ,

NetworkName , ’\ ’ , NetworkName , ’ ’ , ’A. txt ’)
;

17 colorMatrixName = s t r c a t (pwd , ’\ ’ ,
NetworkName , ’\ ’ , NetworkName , ’ ’ , ’
VECTCOLORS. txt ’) ;

84

18

19 % load data
20 % load JCDnetwork . mat
21 sp = load (sparseAdjacencyName) ;
22 c o l o r s 0 = load (colorMatrixName) ;
23 %
24 c o l o r s = c o l o r s 0 ;
25 c o l o r s = abs (c o l o r s) ;
26

27 % assemble adjacency matrix
28 A = spconvert (sp) ;
29 n = s i z e (A, 2) ;
30 c l e a r sp ;
31

32

33 % make the genera to r
34 di sp (’ Making time−cont inuous RW . . . ’) ;
35 [L ,mu, simmat] = makeLnew(A, co l o r s , p) ;
36

37 % plo t e i g e n v a l u e s to dec ide how many c l u s t e r s
i t should be searched f o r

38 f i g = f i g u r e (2) ;
39 num = 20 ;
40 sL = s o r t (r e a l (e i g s (L ,num, ’ l r ’)) , ’ descend ’) ;
41 p lo t (1 :num, sL (1 :num) , ’ r+’ , ’ LineWidth ’ , 2)
42 t i t l e (’ Spectrum of L ’) ;
43 f i l ename = [’C:\ Users\monarams\work\

MasterThesis\ sp . ’ NetworkName ’ . ’ ’ p ’
num2str (p) ’ . png ’] ;

44 f i l ename2 = [pwd ’\ ’ NetworkName ’\ ’ ’ p ’
num2str (p) ’\Spectrum . ’ NetworkName ’ . ’ ’ p ’
num2str (p) ’ . png ’] ;

45 pr in t (f i g , ’−dpng ’ , f i l ename)
46 pr in t (f i g , ’−dpng ’ , f i l ename2)
47

48 %% do the c l u s t e r i n g
49

50 n u m c l u s t e r s a l l = input (’ Give a number o f
modules : ’) ; %c l ;

51

52 f o r num cluste r s=n u m c l u s t e r s a l l
53 % c l u s t e r i n g
54 di sp ([’ Fuzzy c l u s t e r i n g f o r number o f

c l u s t e r s = ’ , num2str (num cluste r s)]) ;

85

55 [cores , c l u s t e r s , q ,m] = m h t c l u s t e r p l a i n (L ,
num clusters , theta) ;

56

57 x = [] ;
58 c l u s t e r k = [] ;
59 f o r k=1: num cluste r s
60 c l u s t e r k = [c l u s t e r k ; f i n d (c l u s t e r s==k

)] ;
61 x = [x ; repmat (k , l ength (f i n d (c l u s t e r s==k

)) ,1)] ;
62 end
63

64 T = tab l e (c l u s t e r k , x) ;
65 f i l ename = [pwd ’\ ’ NetworkName ’\ ’ ’ p ’

num2str (p) ’\ ’ NetworkName ’ . ’ num2str (
num cluste r s) ’p ’ num2str (p) ’ . txt ’] ;

66 w r i t e t a b l e (T, f i l ename) ;
67 c l o s e a l l
68 end
69 end
70 end
71 end
72 end

1.0.7 Generator

1 f unc t i on [L , L0 , simmat] = makeLnew(A, co l o r s , p)
2

3 type = 6 ;
4

5 n = s i z e (A, 2) ;
6 i = 1 : n ;
7

8 % i n i t i a l i z a t i o n s
9 d = diag (sum(A, 2)) ; % degree s

10 c o l o r t y p e = ’ vec to r ’ ;
11 switch c o l o r t y p e
12 case ’ s c a l a r ’
13 colmat = abs (spar s e (i , i , c o l o r s , n , n)∗A − A∗ spa r s e (i , i ,

c o l o r s , n , n)) ;
14 simmat = spar s e (A.∗ exp(−p∗ colmat)) ; % s i m i l a r i t y matrix
15 meancols = c o l o r s ; % no averag ing o f c o l o r s needed
16 case ’ vec to r ’
17 % i f wrong s i z e , t ranspose

86

18 col m = s i z e (co l o r s , 2) ;
19 i f col m == length (A)
20 c o l o r s = co l o r s ’ ;
21 end
22 colmat = squareform (pd i s t (co l o r s , ’ euc l i d ean ’)) ;
23 simmat = spar s e (A.∗ exp(−p∗ colmat)) ;
24 di sp ([’ meancols = min (co l o r s , [] , 2) ’])
25 meancols = (min (co l o r s , [] , 2)) ;
26

27 end
28

29

30 % L0 : t imes ˜exp (median (weights)) , jumpprobs˜ s i m i l a r i t i e s
31 % L : t imes ˜exp (weights) , jumpprobs˜ s i m i l a r i t i e s
32 Jp = spar s e (i , i , 1 . / (sum(simmat , 2)) ,n , n) ∗ simmat ;
33 L0 = (Jp − speye (n , n)) /exp (median (meancols)) ;
34 ho ld t imes = exp (meancols) ;
35 Dc = spar s e (i , i , 1 . / ho ld t imes , n , n) ;
36 L = Dc∗(− speye (n , n)+ Jp) ;
37

38

39 end % end func t i on

Clustering

1 f unc t i on [cores , c l u s t e r s , commitors ,m] = m h t c l u s t e r p l a i n (L ,
num cluster , theta)

2 % func t i on [cores , c l u s t e r s , commitors ,m] = m h t c l u s t e r p l a i n (L ,
num cluster , theta)

3 %
4 % I d e n t i f i e s c l u s t e r s (metastable s e t s) o f the Markov jump

proce s s g iven
5 % by the genera to r L based on mean f i r s t h i t t i n g t imes . The

a lgor i thm
6 % i t e r a t e s the f o l l o w i n g s t ep s :
7 % 1) I d e n t i f y new core as the node where the minimal expected

h i t t i n g time
8 % to the other c l u s t e r s i s maximal
9 % 2) I d e n t i f y nodes which belong to the c l u s t e r de f ined by the

new core as
10 % p o s i t i v e s t a t i s t i c a l o u t l i e r s o f the commitor func t i on va lue s

.
11 %
12 % Input : L : n x n genera to r

87

13 % num cluster : number o f c l u s t e r s to f i n d
14 % theta : p o i t i v e s ca l a r , m u l t i p l i e r o f the

standard
15 % dev ia t i on in the th r e sho ld ing proce s s
16 % Output : c o r e s : num cluster x 1 array o f core i n d i c e s
17 % c l u s t e r s : n x 1 array from { 0 , 1 , 2 , . . , num cluster

}ˆn
18 % i n d i c a t i n g the a f f i l i a t i o n to the

c l u s t e r s
19 % commitors : (op t i ona l output) n x num cluste r s

array o f
20 % commitor va lues to the co r e s
21 % m: n x num cluster array o f mfpt ve c t o r s

to the
22 % c l u s t e r s
23

24 % i n i t i a l i z a t i o n
25 n = length (L) ;
26 c l u s t e r s = ze ro s (n , 1) ;
27

28 % random s t a r t i n g po int
29 curr = c e i l (n∗ rand ()) ;
30 % f p r i n t f (’Random s t a r t i n g node : %d\n\n ’ , cur r) ;
31

32 % f i n d 1 s t core
33 co r e s = ze ro s (num cluster , 1) ;
34 m = mfpt (L , cur r) ;
35 % choose node which takes the l o n g e s t
36 % to get to curr
37 [˜ , cur r] = max(m) ; % f i g u r e (20) ; p l o t (m, ’ . − ’) ;
38 c l u s t e r s (cur r) = 1 ;
39 co r e s (1) = curr ;
40

41 % f i n d 2nd core
42 m = mfpt (L , cur r) ;
43

44 % choose node which takes the l o n g e s t to get to curr
45 [˜ , cur r] = max(m) ; % f i g u r e (21) ; p l o t (m, ’ . − ’) ;
46 c l u s t e r s (cur r) = 2 ;
47 co r e s (2) = curr ;
48

49 % bui ld the two c l u s t e r s :
50 % cons t ruc t r i g h t hand s i d e f o r commitor computation (here the

c l u s t e r s are

88

51 % j u s t the co r e s yet)
52 CCs = ze ro s (n , 2) ;
53 f o r k=1:2
54 CCs(co r e s (k) , k) = 1 ;
55 end
56 % compute commitors
57 q = f u l l (compute committors gen (L , CCs)) ;
58 commitors {1} = q ;
59 % s e t f i r s t 2 c l u s t e r s as p o s i t i v e o u t l i e r s
60 f o r k=1:2
61 di sp ([’ computing c l u s t e r ’ num2str (k)])
62 % get r i d o f b ig o u t l i e r s (0 & 1) , which are unambiguously

i d e n t i f y a b l e
63 s t a tba s e = f i n d s t a t b a s e (q (: , k)) ;
64 % a s s i g n new c l u s t e r as nodes with p o s i t i v e s t a t i s t i c a l

o u t l i e r
65 % commitor va lue s
66 c l u s t e r s (q (: , k) >= min(max(median (q (: , k)) ,10∗ eps) + . . .
67 theta ∗ std (q (s tatbase , k)) ,1−10∗ eps)) = k ;
68 i f s td (q (s tatbase , k)) < 10∗ eps
69 f p r i n t f ([’ Standard dev i a t i on near machine p r e c i s i o n , ’

, . . .
70 ’ r e s u l t s may be inaccu ra t e \n ’]) ;
71 end
72 end
73

74 % mean f i r s t h i t t i n g time vec to r s o f the c l u s t e r s
75 m = zero s (n , num cluster −1) ;
76 % s e t the f i r s t one
77 r e s t = ˜(c l u s t e r s ==1) ;
78 m(re s t , 1) = −L(re s t , r e s t)\ones (nnz (r e s t) , 1) ;
79

80 % loop to f i n d c l u s t e r s number 3 , . . . , num cluster
81 f o r k=3: num cluster
82 di sp ([’ computing c l u s t e r ’ num2str (k)])
83 % mean f i r s t h i t t i n g t imes to l a s t c l u s t e r i d e n t i f i e d
84 r e s t = ˜(c l u s t e r s == k−1) ;
85 m(re s t , k−1) = −L(re s t , r e s t)\ones (nnz (r e s t) , 1) ;
86

87 % f i n d next core : where h i t t i n g time i s maximal
88 [˜ , cur r] = max(min (m(: , 1 : k−1) , [] , 2)) ;
89 % a s s i g n core
90 co r e s (k) = curr ;
91 c l u s t e r s (cur r) = k ;

89

92

93 % a s s i g n nodes to t h i s c l u s t e r
94 % cons t ruc t r i g h t hand s i d e f o r commitor computation
95 CCs = ze ro s (n , k) ;
96 f o r kk=1:k
97 % commitors o f nodes
98 CCs(co r e s (kk) , kk) = 1 ;
99 end

100 % compute commitors
101 q = f u l l (compute committors gen (L , CCs)) ;
102 commitors{k−1} = q ;
103 % get r i d o f b ig o u t l i e r s (0 & 1) , which are unambiguously
104 % i d e n t i f y a b l e
105 s t a tba s e = f i n d s t a t b a s e (q (: , k)) ;
106 % a s s i g n new c l u s t e r as nodes with p o s i t i v e s t a t i s t i c a l

o u t l i e r
107 % commitor va lue s
108 c l u s t e r s (q (: , k) >= min(max(median (q (: , k)) ,10∗ eps) + . . .
109 theta ∗ std (q (s tatbase , k)) ,1−10∗ eps)) = k ;
110 i f s td (q (s tatbase , k)) < 10∗ eps
111 f p r i n t f ([’ Standard dev i a t i on near machine p r e c i s i o n , ’

, . . .
112 ’ r e s u l t s may be inaccu ra t e \n ’]) ;
113 end
114

115 % di sp l ay
116 f l a g d i s p = 0 ;
117 i f f l a g d i s p
118 f o r kk=1:k
119 c l u s t e r k = f i n d (c l u s t e r s==kk) ’ ;
120 i f l ength (c l u s t e r k)<20,
121 f p r i n t f (’ C lus te r %d :\n\n ’ , kk) ;
122 f p r i n t f (’ ’) ;
123 f p r i n t f (’%d ’ , c l u s t e r k) ;
124 f p r i n t f (’\n\n ’) ;
125 e l s e
126 f p r i n t f ([’ C lus t e r %d too l a r g e to be d i sp l ayed .

’ , . . .
127 ’ F i r s t 20 e lements :\n\n ’] , kk) ;
128 f p r i n t f (’ ’) ;
129 f p r i n t f (’%d ’ , c l u s t e r k (1 : 2 0)) ;
130 f p r i n t f (’\n\n ’) ;
131 end
132 end

90

133 end
134 end
135

136 % make sure the co r e s are always in the c l u s t e r s
137 f o r k=1: num cluster
138 c l u s t e r s (co r e s (k)) = k ;
139 end
140

141 i f nargout >= 4
142 r e s t = ˜(c l u s t e r s == num cluster) ;
143 i f any (c l u s t e r s == num cluster)
144 m(re s t , num cluster) = −L(re s t , r e s t)\ones (nnz (r e s t) , 1) ;
145 e l s e
146 m(: , num cluster) = mfpt (L , co r e s (num cluster)) ;
147 end
148 end
149

150

151 %%
152 f unc t i on s ta tba s e = f i n d s t a t b a s e (q)
153 % Function to compute the i n d i c e s o f q , in a c o n s i s t e n t way ,

f o r which the
154 % s t a t i s t i c a l anays i s i s c a r r i e d out .
155

156 % get r i d o f b ig o u t l i e r s (0 & 1) , which are unambiguously
i d e n t i f y a b l e

157 s t a tba s e = (q>0) & (q<1) & (q>2∗median (q)−1) ;
158 % get r i d o f other b ig (negat ive) o u t l i e r s (probably not

nece s sa ry)
159 % sta tba s e = l o g i c a l (s t a tba s e . ∗ (q > median (q) − std (q (s t a tba s e

)))) ;

Compute committors

1 f unc t i on q = compute committors gen (L ,C)
2 C = spar s e (C) ;
3 Cs = sum(C, 2) ;
4 d = −L∗C;
5 Sk = L(Cs==0, Cs==0) ;
6 d = d(Cs==0 ,:) ;
7 f = Sk\d ;
8 q = C;
9 q (Cs==0 ,:) = f ;

Find first two cores

91

1 f unc t i on m = mfpt (L , s e t)
2 n=length (L (1 , :)) ;
3 ind =1:n ;
4 s e l = ones (n , 1) ;
5 s e l (s e t) =0;
6 ind=ind (s e l ==1) ;
7 S = L(ind , ind) ;
8 d = − ones (l ength (ind) ,1) ;
9 f = S\d ;

10 m=zero s (n , 1) ;
11 m(ind) = f ;
12 end

92

