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ADAPTIVE MULTILEVEL MONTE CARLO METHODS FOR
STOCHASTIC VARIATIONAL INEQUALITIES∗

RALF KORNHUBER† AND EVGENIA YOUETT†

Abstract. While multilevel Monte Carlo (MLMC) methods for the numerical approximation
of partial differential equations with random coefficients enjoy great popularity, combinations with
spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on
deterministic adaptive mesh refinement for the arising “pathwise” problems and outline a convergence
theory in terms of desired accuracy and required computational cost. Our theoretical and heuristic
reasoning together with the efficiency of our new approach are confirmed by numerical experiments.

Key words. finite elements, adaptive mesh refinement, uncertainty quantification

AMS subject classifications. 65N30, 65N50, 65N55

DOI. 10.1137/16M1104986

1. Introduction. Uncertainty quantification is a well-established and flourish-
ing field in numerical analysis and scientific computing that connects theoretical
challenges with a multitude of practical applications. While stochastic Galerkin ap-
proaches (cf., e.g., [3, 4, 48]) turned out as methods of choice for low dimensional
uncertainties, Monte Carlo (MC) type of methods prove advantageous for high di-
mensional, highly nonlinear problems. While the classical MC method is very robust
and extremely simple, sampling of stochastic data entails the numerical solution of
numerous deterministic problems, which makes performance the main weakness of
this approach. A big step toward efficiency was made by Giles [28], who combined
MC with multigrid techniques by introducing suitable hierarchies of subproblems as-
sociated with corresponding mesh hierarchies. Since then, multilevel Monte Carlo
(MLMC) methods have become a powerful tool in a variety of applications and a
flourishing field of mathematical research. We refer to elliptic problems with random
coefficients [8, 17, 18, 45], random elliptic problems with multiple scales [1], parabolic
random problems [7], and random elliptic variational inequalities [10, 40] and to [29]
for a detailed overview.

Various approaches have been made to further enhance the efficiency of MLMC.
For a given, quasi-uniform mesh hierarchy, Collier et al. [19] and Haji-Ali et al. [35]
aim at reducing the computational cost of MLMC by optimizing the actual selection
of meshes from this hierarchy and other MLMC parameters.

Another, in a sense complementary approach, to reducing the required computa-
tional cost of MLMC is to apply adaptive mesh refinement techniques.

Time discretization of an Itô stochastic differential equation by an self-adaptively
chosen hierarchy of time steps has been suggested by Hoel et al. [36, 37] and a sim-

∗Received by the editors November 23, 2016; accepted for publication (in revised form) April 16,
2018; published electronically July 3, 2018.

http://www.siam.org/journals/sinum/56-4/M110498.html
Funding: The work of the authors was supported by the German Ministry for Education

and Research (BMBF) through grant Wear Simulation and Shape Optimization of Knee Implants.
Subproject 4: Uncertainty Quantification and by the German Research Foundation (DFG) through
grant CRC 1114 Scaling Cascades in Complex Systems, Project B01 Fault Networks and Scaling
Properties of Deformation Accumulation.
†Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany (kornhuber@math.fu-

berlin.de, babushkina@2edat.fu-berlin.de).

1987

http://www.siam.org/journals/sinum/56-4/M110498.html
mailto:kornhuber@math.fu-berlin.de
mailto:kornhuber@math.fu-berlin.de
mailto:babushkina@2edat.fu-berlin.de


1988 RALF KORNHUBER AND EVGENIA YOUETT

ilar approach was presented by Gerstner and Heinz [27], including applications in
computational finance.

Less appears to be known for partial differential equations with random coeffi-
cients. While a posteriori error estimation and adaptive mesh refinement have quite a
history in finite element approximation of deterministic partial differential equations
(cf., e.g., [2, 47]), related adaptive concepts for MLMC methods seem to be rare. Only
recently, Eigel, Merdon, and Neumann [25] suggested an algorithm for constructing an
adaptively refined hierarchy of meshes based on expectations of “pathwise” local error
indicators and illustrated its properties by numerical experiments. Elfverson, Hell-
man, and Målqvist [26] suggested a sample-adaptive MLMC method for approximate
failure probability functionals and Detommaso, Dodwell, and Scheichl [21] introduced
continuous level Monte Carlo (CLMC) treating the level as a continuous variable as
a general framework for sample-adaptive level hierarchies.

In this paper, we follow a novel approach, utilizing a whole family of differ-
ent pathwise mesh hierarchies associated with different MC samples ω ∈ Ω. More
precisely, for a given final tolerance Tol > 0, we choose a sequence of tolerances
Tol1 > · · · > TolL = Tol and approximate each of the different pathwise determin-
istic problems arising for each of the different samples ω ∈ Ω on each MLMC level l
up to the accuracy Toll by finite elements on a different, adaptively refined pathwise
mesh. We emphasize that any deterministic refinement strategy can be used for this
purpose. The computation of sample averages is finally performed on an inductively
constructed global mesh consisting of the union of simplices from all these pathwise
meshes resulting from the different samples.

Based on existing results on elliptic variational inequalities [33, 38] and on gen-
eral MLMC methods [18, 28], we outline an abstract convergence theory for adaptive
MLMC Galerkin approximations of the expected solution in an abstract Hilbert space
setting. Error estimates are formulated in terms of the desired accuracy Tol and the
required computational cost. Extensions to bounded linear as well as Fréchet differen-
tiable functionals can be obtained from corresponding results in [17, 45]. The general
theory is then applied to MLMC finite element methods. In the case of uniform re-
finement we recover an enhanced version of existing results from [40] and we discuss
the assumptions of our abstract theory in light of existing convergent adaptive algo-
rithms for deterministic elliptic variational inequalities [15, 43] and optimality results
for linear variational problems [11, 16, 41, 44]. The implementation of the resulting
adaptive MLMC finite element methods is carried out in the software environment
Dune [12]. Numerical experiments illustrate our theoretical findings and the under-
lying heuristic reasoning. For problems with highly localized random source term, we
observe a significant reduction of computational cost as compared to uniformly refined
meshes. Optimal bounds for the computational cost are observed in all our numerical
experiments. Theoretical justification will be the subject of future research.

The paper is organized as follows. Section 2 contains the formulation of pathwise
elliptic variational inequalities together with some well-known existence and unique-
ness results. In section 3 we present our abstract framework of adaptive MLMC
Galerkin methods together with error estimates and upper bounds for the required
computational cost. These abstract results are applied to finite element approxi-
mations in the next section 4 and numerical experiments are reported in the final
section 5.

2. A random variational problem. Let (Ω,A,P) be a complete probability
space with Ω denoting a sample space and let A ∈ 2Ω be the σ-algebra of all possible
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events associated with a finite probability measure P : A → [0, 1] on Ω. As usual,
E[ξ] =

∫
Ω
ξ dP denotes the expectation of a random variable ξ and L2(Ω) denotes the

Hilbert space of square integrable random variables on Ω.
For a given separable Hilbert space H, equipped with the scalar product (·, ·)H

and the associated norm ‖ · ‖H = (·, ·)1/2
H , we introduce the Bochner-type space

L2(Ω,A,P;H) of P-measurable mappings v : Ω→ H with the property
∫

Ω
‖v‖2H dP(ω)

<∞. We will use the abbreviation L2(Ω;H) = L2(Ω,A,P;H). It is easily seen that
L2(Ω;H) is also a Hilbert space with the scalar product

(v, w)L2(Ω;H) =

∫
Ω

(v, w)H dP(ω), v, w ∈ L2(Ω;H),

and the associated norm ‖ · ‖L2(Ω;H) = (·, ·)1/2
L2(Ω;H). The expectation in L2(Ω;H) is

defined by

E [v] =

∫
Ω

v(ω) dP(ω) ∈ H, v ∈ L2(Ω;H).

Let a(ω; ·, ·) and `(ω; ·), ω ∈ Ω, denote families of bilinear forms and linear func-
tionals on H, respectively. For a given subset K ⊂ H and any fixed realization ω ∈ Ω,
we consider the pathwise variational inequality

(1) u(ω) ∈ K : a(ω;u(ω), v − u(ω)) ≥ `(ω; v − u(ω)) ∀v ∈ K.

Note that in the unconstrained case K = H the inequality (1) can be equivalently
rewritten as the variational equality

(2) u(ω) ∈ H : a(ω;u(ω), v) = `(ω; v) ∀v ∈ H.

Assumption 2.1. The subset K is nonempty, closed, and convex. For each real-
ization ω ∈ Ω we have `(ω; ·) ∈ H ′ and a(ω; ·, ·) is bounded and coercive in the sense
that

(3) γ(ω)‖v‖2H ≤ a(ω; v, v), a(ω; v, w) ≤ Γ(ω)‖v‖H‖w‖H ∀v, w ∈ H

holds with γ(ω) ≥ γ0 > 0 a.e. in Ω, and Γ ∈ L∞(Ω). For all fixed v, w ∈ H the
mappings a(·; v, w), `(·; v) are measurable and ` ∈ L2(Ω;H ′).

Assumption 2.1 yields the existence, uniqueness, and regularity of pathwise solu-
tions (cf., e.g., [38, Theorem 2.1] and [33, Proposition 1.2]).

Proposition 2.1. Let Assumption 2.1 hold. Then the pathwise problem (1) ad-
mits a unique solution for each ω ∈ Ω, the solution map u : Ω 7→ H is measurable
with respect to the Borel σ-algebra in H, and u ∈ L2(Ω;H).

Note that u ∈ L2(Ω;H) implies E[u] ∈ H. It also follows that

u ∈ K =
{
v ∈ L2(Ω;H) | v(ω) ∈ K a.e. in Ω

}
⊂ L2(Ω;H)

is the unique solution of the “mean-square” variational inequality

(4) u ∈ K : E [a(·;u, v − u)] ≥ E [`(·; v − u)] ∀v ∈ K.

To fix the ideas, we will often concentrate on the bilinear form

a(ω; v, w) =

∫
D

α(x, ω)∇v(x) · ∇w(x) dx
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and the functional

`(ω; v) =

∫
D

f(x, ω)v(x) dx

on the Sobolev space H = H1
0 (D) of weakly differentiable functions defined on a

Lipschitz domain D ∈ Rd, d = 1, 2, 3, and the subset

(5) K = {v ∈ H | v(x) ≥ 0 a.e. in D}.

Note that random obstacles χ ∈ L2(Ω;H1
0 (D)) can be traced back to the case

(5) by introducing the new variable w = u− χ. For a detailed discussion of sufficient
conditions on the coefficient α and the right-hand side f for existence and uniqueness
of pathwise solutions, we refer to section 4.

The remainder of this paper is devoted to the efficient approximation of the
expectation E[u] of the family of pathwise solutions u(ω), ω ∈ Ω, of (1).

3. Adaptive multilevel Monte Carlo Galerkin methods. For given initial
tolerance 0 < Tol1 < 1 and reduction factor q < 1 we define a sequence of tolerances
by

(6) Toll = qToll−1, l = 2, . . . , L,

with the final desired accuracy Tol = TolL. For each ω ∈ Ω we choose an associated
hierarchy of subspaces Sl(ω) ⊂ H, i.e.,

(7) S1(ω) ⊂ S2(ω) ⊂ · · · ⊂ SL(ω) ⊂ H,

with finite dimensions Nl(ω) and nonempty, closed, convex subsets Kl(ω) ⊂ Sl(ω),
l = 1, . . . , L. We consider the family of pathwise Galerkin approximations
(8)
ul(ω) ∈ Kl(ω) : a(ω;ul(ω), v − ul(ω)) ≥ `(ω; v − ul(ω)) ∀v ∈ Kl(ω), ω ∈ Ω.

Assumption 3.1. For all l = 1, . . . , L the set-valued map Ω 3 ω 7→ Kl(ω) ∈ H is
measurable and there is a wl ∈ L2(Ω;H) such that wl(ω) ∈ Kl(ω) holds for all ω ∈ Ω.

In combination with Assumption 2.1, the Assumption 3.1 yields the existence,
uniqueness, and regularity of approximate pathwise solutions (cf., e.g., [34, Theorems
2.3 and 2.7]).

Proposition 3.1. Let Assumptions 2.1 and 3.1 hold. Then there is a unique
solution ul(ω) ∈ Kl(ω) of (8) for each l = 1, . . . , L and ω ∈ Ω, the discretized
solution map ul : Ω 7→ Sl(ω) ⊂ H is measurable, and ul ∈ L2(Ω;H).

Before we approximate the expectation E[u] in terms of (approximations of) ul(ω),
ω ∈ Ω, let us state some assumptions on ul(ω) and thus implicitly on the approxi-
mating family of spaces Sl(ω).

Assumption 3.2. For all l = 1, . . . , L the family ul(ω), ω ∈ Ω, satisfies the dis-
cretization error estimate

(9) ‖u− ul‖L2(Ω;H) ≤ 1
2
√

2
Toll.

In general, the exact solution ul(ω) of variational inequality (8) is not available
but can be only approximated up to a certain tolerance by an iterative solver.



ADAPTIVE MULTILEVEL MONTE CARLO METHODS 1991

Assumption 3.3. For all l = 1, . . . , L and each ω ∈ Ω, an approximate solution
ũl(ω) ∈ Sl(ω) of the pathwise problem (8) can be computed with accuracy

(10) ‖ul(ω)− ũl(ω)‖H ≤ 1
2
√

2
Toll,

ũl : Ω 7→ Sl(ω) ⊂ H is measurable, and ũl ∈ L2(Ω;H).

Then the expectation E(u) is approximated by the inexact MLMC Galerkin
method

(11) EL[ũL] =

L∑
l=1

EMl
[ũl − ũl−1]

with ũ0 = 0 and suitable (Ml) ∈ NL. On each level l, we utilize the MC approximation

(12) EM [v] =
1

M

M∑
i=1

vi(ω), M ∈ N, v ∈ L2(Ω;H),

of E[v] by independent, identically distributed copies vi(ω) of v(ω), i = 1, . . . ,M .
A basic representation of the error of MC methods is stated in the following

lemma

Lemma 3.1. The MC approximation (12) of the expectation E[v] satisfies the
identity

(13) ‖E[v]− EM [v]‖L2(Ω;H) = M−1/2V [v]1/2

denoting

(14) V [v] = E[‖E[v]− v‖2H ] ≤ ‖v‖2L2(Ω;H).

Before we present an error estimate for the inexact MLMC method, we state an
extension of Lemma 3.1 taken from [10, Theorem 3.1].

Lemma 3.2. The inexact MLMC Galerkin approximation EL[ũL] satisfies

(15) ‖E[u]− EL[ũL]‖2L2(Ω;H) = ‖E[u− ũL]‖2H +

L∑
l=1

M−1
l V [ũl − ũl−1].

We now prove an error bound for the inexact MLMC Galerkin method.

Theorem 3.1. Let Assumptions 2.1 and 3.1–3.3 hold. Then the inexact MLMC
Galerkin approximation EL[ũL] of the expected value E[u] satisfies the error estimate
(16)
‖E[u]− EL[ũL]‖2L2(Ω;H)

≤ 3M−1
1

(
1
4Tol

2
1 + V [u]

)
+ 1

2

(
1 +

(
1 + q−1

)2 L∑
l=2

M−1
l q2(l−L)

)
Tol2.
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Proof. We estimate the terms on the right-hand side of the identity (15). First
we get

E[‖u− ũL‖H ] ≤ ‖u− ũL‖H ≤ ‖u− uL‖H + ‖uL − ũL‖H ≤ 2−1/2TolL

utilizing the triangle inequality together with Assumptions 3.2 and 3.3. Then, for
l = 2, . . . , L we have

V [ũl − ũl−1] ≤ ‖ũl − ũl−1‖2L2(Ω;H)

≤
(
‖ũl − ul‖L2(Ω;H) + ‖ul − u‖L2(Ω;H)

+ ‖u− ul−1‖L2(Ω;H) + ‖ul−1 − ũl−1‖L2(Ω;H)

)2
≤ 1

2 (1 + q−1)2Tol2l ,

again by Assumptions 3.2 and 3.3 and (6). Finally, for l = 1, we obtain the estimate

V [ũ1] = V [(ũ1 − u1) + (u1 − u) + u]

≤ 3(‖ũ1 − u1‖2L2(Ω;H) + ‖u1 − u‖2L2(Ω;H) + V [u])

≤ 3( 1
4Tol

2
1 + V [u]).

Inserting the above estimates into (15), we obtain

∥∥E[u]− EL[ũL]
∥∥2

L2(Ω;H)

≤ 1
2Tol

2 + 3M−1
1

(
1
4Tol

2
1 + V [u]

)
+ 1

2

(
1 + q−1

)2 L∑
l=2

M−1
l Tol2l .

As a consequence of (6), we have Toll = ql−LTol and the assertion follows.

The error estimate (16) clearly implies that the desired accuracy Tol is obtained
for sufficiently large numbers of samples Ml, l = 1, . . . , L.

We now investigate the computational cost for the evaluation of EL[ũL]. Assuming
that the evaluation of the inexact solution of the discrete pathwise problems (8)
dominates overall work, the computational cost is defined by

(17)

L∑
l=1

Ml∑
i=1

cost(ũl,i(ω)),

where cost(ũl,i(ω)) stands for the computational cost of one evaluation of ũl,i(ω)
measured in the number of floating-point operations. We relate cost(ũl,i(ω)) to the
dimension Nl,i(ω) of Sl,i(ω).

Assumption 3.4. For all l = 1, . . . , L and each ω ∈ Ω, an approximation ũl(ω) of
the solution ul(ω) of (8) can be evaluated at computational cost bounded by

c0(1 + log(Nl(ω)))µNl(ω)

with positive constants c0, µ independent of Toll, Nl(ω), and ω ∈ Ω.

In order to obtain a bound for the computational cost in terms of the desired
accuracy, Toll has to be related to Nl(ω).
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Assumption 3.5. For all l = 1, . . . , L and each ω ∈ Ω, the dimension Nl(ω) of the
ansatz space Sl(ω) providing the accuracy (9) satisfies

(18) Nl(ω) ≤ c1Tol−sl

with positive constants c1, s independent of Toll, Nl(ω), and ω ∈ Ω.

Now we are ready to state an upper bound for the computational cost for the
evaluation of EL[uL] in terms of the desired accuracy Tol. The proof is carried out
along the lines of similar results in [18, 28].

Theorem 3.2. Let Assumptions 2.1 and 3.1–3.5 hold. Then there are numbers
of samples Ml, l = 1, . . . , L, such that the inexact pathwise MLMC Galerkin approxi-
mation EL[ũL] satisfies the error estimate

(19)
∥∥E[u]− EL[ũL]

∥∥
L2(Ω;H)

≤ Tol

and can be evaluated with computational cost bounded by

(20) C(L+ | log(Tol1)|)µTol−s1 LcsTol−max{2,s} with

{
cs = 2 for s = 2,
cs = 0 for s 6= 2,

and a constant C only depending on c0, c1, q, s, µ, and V [u].

Proof. Utilizing Assumptions 3.4 and 3.5, the computational cost for the evalua-
tion of EL[ũL] is bounded by

c0

L∑
l=1

Ml∑
i=1

((1 + log(Nl,i(ω)))µNl,i(ω) + (1 + log(Nl−1,i(ω)))µNl−1,i(ωli))

≤ c0c1
L∑
l=1

Ml

(
(1 + log(c1Tol

−s
l ))µTol−sl + (1 + log(c1Tol

−s
l−1))µTol−sl−1

)
≤ c0c1(1 + qs)

L∑
l=1

Ml

(
1 + log(c1q

−s(l−1)Tol−s1 )
)µ
Tol−sl

≤ c(L+ | log(Tol1)|)µ
L∑
l=1

MlTol
−s
l

with a constant c depending on c0, c1, s, µ, and q. Hence, the desired upper bounds
for the computational cost will follow from corresponding upper bounds for

L∑
l=1

MlTol
−s
l .

We always select M1 to be the smallest integer such that

(21) M1 ≥ 12
(

1
4Tol

2
1 + V [u]

)
Tol−2,

so that the first term in the error estimate (16) is bounded by 1
4Tol

2. The choice of
the other Ml, l = 2, . . . , L, will depend on s.

Let us first consider the case s < 2. We choose the numbers of samples Ml to be
the smallest integers such that

(22) Ml ≥ C1q
s+2
2 (l−1)+2(1−L), l = 2, . . . , L,
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denoting C1 = 2(1 + q−1)2(1 − q
2−s
2 )−1. Inserting any Ml, l = 1, . . . , L, with the

properties (21) and (22) into the error estimate (16), we get

∥∥E[u]− EL[ũL]
∥∥2

L2(Ω;H)
≤ 3

4Tol
2 + 1

2Tol
2
(
1 + q−1

)2
C−1

1

L−1∑
l=1

q
2−s
2 l < Tol2

by exploiting the convergence of geometric series. As we have chosen the smallest
integers with the properties (21) and (22), we can exploit q2(1−L) = Tol21Tol

−2,
Tol−sl = q−s(l−1)Tol−s1 , l = 2, . . . , L, and similar arguments as above to obtain

L∑
l=1

MlTol
−s
l ≤

(
12
(

1
4Tol

2
1 + V [u]

)
Tol−s1 + C1

L∑
l=2

q
2−s
2 (l−1)

)
Tol−2 +

L∑
l=1

Tol−sl

≤ cTol−s1 Tol−2

with a positive constant c depending on s < 2, q, and V [u].
We now consider other values of s. The numbers of samples Ml are chosen to be

the smallest integers such that

(23) Ml ≥ C2Lq
2(l−L), l = 2, . . . , L,

with C2 = 2(1 + q−1)2 for s = 2 and such that

(24) Ml ≥ C3q
s+2
2 (l−L), l = 2, . . . , L,

with C3 = 2(1 + q−1)2(1 − q s−2
2 )−1 for s > 2. The same arguments as above then

provide the desired bounds for accuracy and computational cost.

Observe that the logarithmic term in Assumption 3.4 is reflected by the logarith-
mic term (L+ | log(Tol1)|)µ in the computational cost.

For L = 1, the approximation E[ũL] reduces to an inexact version of the classical
MC method. Theorem 3.1 then implies that the error estimate (19) holds for

M ≥ 3
2 + 6V [u]Tol−2

with M = M1 and Tol = Tol1. The corresponding computational cost is bounded by

C(1 + | log(Tol)|)µTol−(2+s)

with C depending on c0, c1, s, µ, q, and V [u], which indicates that, up to initial
tolerance and logarithmic terms, the MLMC method is by a factor of Tol−min{2,s}

faster than the classical single level version.

4. Multilevel Monte Carlo finite element methods. We consider problem
(1) with the symmetric bilinear form

(25) a(ω; v, w) =

∫
D

α(x, ω)∇v(x) · ∇w(x) dx

and the linear functional

(26) `(ω; v) =

∫
D

f(x, ω)v(x) dx,
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both defined on the Sobolev space H = H1
0 (D) of weakly differentiable functions on

a bounded Lipschitz domain D ⊂ Rd, d = 1, 2, 3, equipped with the norm

‖v‖H =

(
d∑
i=1

∥∥∥ ∂
∂xi

v
∥∥∥2

L2(D)

)1/2

.

The closed convex set K ∈ H of admissible solutions is given by

(27) K = {v ∈ H | v(x) ≥ 0 a.e. in D}.

We impose the following assumptions on the random coefficient α and on the
random right-hand side f .

Assumption 4.1. The random diffusion coefficient α and the right-hand side f
are strongly measurable mappings Ω 3 ω 7→ α(·, ω) ∈ L∞(D) and Ω 3 ω 7→ f(·, ω) ∈
L2(D) with the properties

(28) 0 < α− ≤ α(x, ω) ≤ α+ <∞ a.e. in D × Ω,

and f ∈ L2(Ω;L2(D)).

These assumptions imply Assumption 2.1 and thus the existence and uniqueness
of pathwise solutions u(ω) of (1) and u ∈ L2(Ω;H). Note that uniform coercivity
(28) can be replaced by weaker conditions (cf., e.g., [40]).

On the background of the general results from section 3 we now concentrate on
MLMC finite element methods for the numerical approximation of the expectation
E[u]. Single level versions are obtained for the special case L = 1.

4.1. Uniform refinement. We assume for simplicity that D has a polygonal
(polyhedral) boundary and consider the hierarchy of shape regular, conforming, qua-
siuniform partitions T (k), k ∈ N, of D into simplices as obtained by successive uniform
refinement of a given, intentionally coarse, initial partition T (1). (We will also assume
that T (1) is sufficiently fine in a sense to be specified later.)

Then
hk = max

t∈T (k)
diam(t) = 2−kh1, k ∈ N,

and the associated finite element spaces

(29) S(k) = {v ∈ H | v|t is affine ∀t ∈ T (k)}, k ∈ N,

form a hierarchy of subspaces ofH. We consider the pathwise approximations u(k)(ω) ∈
K(k) = S(k) ∩K characterized by

(30) a(ω;u(k)(ω), v − u(k)(ω)) ≥ `(ω; v − u(k)) ∀v ∈ K(k), ω ∈ Ω.

Assumption 4.2. The spatial domain D is convex and the random coefficient α is
a measurable map Ω 3 ω 7→ α(·, ω) ∈ C1(D̄) with the property α ∈ L∞(Ω;C1(D̄)).

The following discretization error estimate is a direct consequence of [40, Propo-
sition 4.2].

Theorem 4.1. Let Assumptions 4.1 and 4.2 hold. Then the error estimate

(31) ‖u− u(k)‖L2(Ω;H) ≤ C0hk

holds with a positive constant C0 that is independent of hk, k ∈ N.
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We make sure that T (1) is fine enough to guarantee

(32) ‖u− u(1)‖L2(Ω;H) ≤ 1
2
√

2
Tol1

by selecting h1 such that C0h1 ≤ 1
2
√

2
Tol1 and define a uniform MLMC hierarchy in

the sense of (7) according to

(33) Sl(ω) = S(r(l−1)+1), Kl = Sl(ω) ∩K, l = 1, . . . , L, ω ∈ Ω.

Then Assumption 3.1 is trivially satisfied and Theorem 4.1 implies the accuracy As-
sumption 3.2 by choosing r ∈ N such that 2−r ≤ q. Furthermore, Assumption 3.3
can be satisfied by sufficiently many steps of any iterative solver for elliptic varia-
tional inequalities that converges uniformly in ω and consists of basic arithmetic or
max operations, thus preserving measurability (cf., e.g., [20, 31, 39, 42, 46]). Then,
by Theorem 3.1, the resulting uniform, inexact MLMC finite element approximation
EL[ũL] with sufficiently large numbers of MC samples Ml on each level satisfies the
desired error estimate

(34)
∥∥E[u]− EL[ũL]

∥∥
L2(Ω;H)

≤ Tol.

It is well-known (cf. [40, section 4.5], [5, Corollary 4.1]) that standard monotone
multigrid (STDMMG) methods [39, 42] satisfy Assumption 3.4 with µ = 4 in d = 1
space dimension, with µ = 5 in d = 2 space dimensions, and a suitable constant c0.
In spite of computational evidence, no theoretical justification of mesh-independent
convergence rates seem to be available for d = 3. Finally, utilizing again Theorem 4.1,
we find that Assumption 3.5 holds with s = d, because the dimension Nl of Sl is
bounded by h−dr(l−1)+1 and thus by Tol−dl up to a constant c1. Hence, Theorem 3.2

implies the following result on the efficiency of uniform MLMC finite element methods.

Theorem 4.2. Let Assumptions 4.1 and 4.2 and (32) hold, and let STDMMG be
used for the iterative solution of the pathwise discretized obstacle problems of the form
(8).

Then there are Ml, l = 1, . . . , L, such that the resulting uniform MLMC finite
element method provides an approximation EL[ũL] with prescribed accuracy (34) at
computational cost bounded by

C(L+ d| log Tol1|)µTol−d1 LcsTol−max{2,d} with

{
cs = 0, µ = 4 for d = 1,
cs = 2, µ = 5 for d = 2,

and a constant C depending only on c0, c1, q, and V [u].

In fact, one could chose M1 according to (21) and Ml, l = 2, . . . , L, according to
(22) and (23) for d = 1 and d = 2, respectively.

The number of refinements in (33) can be defined a priori for all ω ∈ Ω. Hence,
Theorem 4.2 is not new, but just a slightly enhanced version, e.g., of [40, Theo-
rem 4.10]. Assuming that for all k ∈ N and each ω ∈ Ω there is an a posteriori error
estimate η(k)(ω) satisfying

‖u(ω)− u(k)(ω)‖H ≤ η(k)(ω),

a priori uniform refinement could be replaced by a posteriori uniform refinement with
possibly different mesh sizes for different ω ∈ Ω. This approach can be regarded as a
special case of a posteriori adaptive refinement presented in the next subsection.
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4.2. Adaptive refinement. We consider a sequence of nested finite element
spaces S(k)(ω) associated with a corresponding sequence of partitions T (k)(ω), k ∈ N ,
which, for each fixed ω ∈ Ω, is obtained by successive adaptive refinement of the given
fixed initial triangulation T (1)(ω) = T (1). Let T (1) be fine enough to provide the
accuracy (32) and we set

(35) S1(ω) = S(1), ω ∈ Ω.

For each fixed ω ∈ Ω we apply a pathwise adaptive refinement providing a hi-
erarchy of subspaces S(k)(ω) and corresponding approximations u(k)(ω). We assume
convergence of the pathwise adaptive scheme controlled by an a posteriori error esti-
mator.

Assumption 4.3. For all k ∈ N and for each fixed ω ∈ Ω we have

(36) ‖u(ω)− u(k)(ω)‖H ≤ Cestη(k)(ω) and η(k)(ω)
k→∞−−−−→ 0

with an a posteriori error estimator η(k)(ω) and positive constant Cest independent
of ω.

For each fixed ω ∈ Ω, there are existing adaptive algorithms based on local
error indicators and corresponding a posteriori error estimates η(k)(ω) that provide
convergence (36); see, e.g., Siebert and Veeser [43], Braess, Carstensen, and Hoppe [15,
section 5], or Carstensen [16]. The constant Cest in these algorithms usually depends
on the initial triangulation T (1) and on the ellipticity constants α−, α+.

We now define the hierarchy of subspaces for each ω ∈ Ω according to

(37) Sl(ω) = S(kl(ω))(ω), l = 2, . . . , L,

where kl(ω) is the smallest natural number such that

(38) ‖u(ω)− u(kl(ω))(ω)‖H ≤ 1
2
√

2
Toll

and Toll is chosen according to (6). This definition makes sense, because kl(ω) <∞
holds pointwise for each fixed ω ∈ Ω by Assumption 4.3. Note that kl(ω) might not be
uniformly bounded in ω ∈ Ω. We assume that adaptive refinement and the accuracy
criterion (38) preserve measurability.

Assumption 4.4. For all l = 1, . . . , L the set-valued map Ω 3 ω 7→ Sl(ω) ∈ H is
measurable.

A rigorous investigation of sufficient conditions for measurability of ω → S(k)(ω)
and ω → Sl(ω) would exceed the scope of this presentation and is therefore postponed
to a separate publication.

Assumption 4.4 clearly implies Assumption 3.1 while the initial condition (32)
and the accuracy criterion (38) provide Assumption 3.2.

Assumption 3.3 can be satisfied by sufficiently many steps of any iterative solver
for elliptic variational inequalities that converges uniformly in ω and consists of basic
arithmetic or max operations, thus preserving measurability (cf., e.g., [20, 31, 39, 42,
46]).

Like in the uniform case, Assumption 3.4 can be satisfied by STDMMG meth-
ods [39, 42] with µ = 4 in d = 1 space dimension and µ = 5 in d = 2 space dimensions
with a suitable constant c0.

Now, instead of the regularity Assumption 4.2, we require that pathwise adaptive
refinement provides quasioptimal meshes uniformly in ω ∈ Ω.
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Assumption 4.5. For all l = 1, . . . , L and each ω ∈ Ω, the dimension Nl(ω) of the
finite element space Sl(ω) defined in (35) and (37) satisfies

(39) Nl(ω) ≤ c1Tol−dl

with a positive constant c1 independent of Toll, Nl(ω), and ω ∈ Ω.

For fixed ω ∈ Ω and K = H, the quasioptimality condition (39) has been estab-
lished for a variety of adaptive refinement strategies with a constant c1(ω) (cf., e.g.,
[11, 44, 41]). Uniform upper bounds for c1(ω) as required in Assumption 4.5 are ob-
served in the numerical experiments to be presented in the next section. Theoretical
validation will be the subject of future research.

Now the following convergence result is a direct consequence of Theorem 3.2.

Theorem 4.3. Let Assumptions 4.1 and 4.3–4.5 and (32) hold. Then there are
Ml, l = 1, . . . , L, such that the adaptive MLMC finite element method based on the
multilevel hierarchy defined in (37) provides an approximation E[ũL] with prescribed
accuracy (34) at computational cost bounded by

C(L+ d| log Tol1|)µTol−d1 LcsTol−max{2,d} with

{
cs = 0, µ = 4 for d = 1,
cs = 2, µ = 5 for d = 2,

and a constant C depending only on c0, c1, q, and V [u].

In fact, one could chose M1 according to (21) and Ml, l = 2, . . . , L, according to
(22) and (23) for d = 1 and d = 2, respectively.

5. Numerical experiments. In this section we investigate the adaptive MLMC
finite element approach presented in the preceding sections from a numerical perspec-
tive. We use the algorithm proposed by Giles [29, Algorithm 1] (see also [28]). Here,
the increment of the number of levels is associated with uniform mesh refinement
for uniform MLMC and an update of the stopping criterion for adaptive MLMC to
be specified later. We slightly modified the computation of the optimal number of
realizations on each level by replacing the cost of an individual realization by the
average of the cost of all realizations on the same level. In our computations, we used
a minimal number Mmin of samples setting Mmin = 100 for the Poisson problem (cf.
subsection 5.1) and Mmin = 50 for the obstacle problem (cf. subsection 5.2).

The initial accuracy condition (32) is addressed by formally setting

(40) Tol1 = 2
√

2Cest‖η(1)‖L2(Ω)

with the L2(Ω)-norm approximated by an MC method with 1000 samples. We choose
Toll according to (6) with q = 1

2 . The accuracy criterion (38) is replaced by the
approximation

(41) η(kl(ω))(ω) ≤ 1
2
√

2Cest
Toll = ql−1‖η(1)‖L2(Ω),

which is used as stopping criterion on each level in adaptive MLMC. Note that the
unknown constant Cest does not appear in our computations. Both uniform and
adaptive MLMC terminate once the stopping criterion in Giles’ algorithm is met.

Pathwise adaptive refinement is performed as suggested by Siebert and Veeser [43]
with error indicators ηt(ω) given by local contributions to the hierarchical error es-
timator according to [49, Theorem 3.5]. Here, the exact finite element solution is
replaced by an approximation provided by an iterative method to be described below.
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In the unconstrained case K = H, this approach is reducing to the classical hierar-
chical error estimation (cf., e.g., [14, 22] or [23, section 6.1.4]). Note that the error
is estimated in the energy norm. We use Dörfler marking [24] with θ = 0.4 for the
Poisson problem (cf. subsection 5.1) and θ = 0.2 for the obstacle problem (cf. subsec-
tion 5.2) together with local “red” mesh refinement [6, 9, 13] with hanging nodes [30,
section 3.1]. Implementation is carried out in the finite element software environment
Dune [12] involving the dune-subgrid module [32] for the evaluation of the sum of
different approximate evaluations of ul,i(ω) on different grids.

Discretized variational inequalities of the form (30) are solved iteratively by trun-
cated nonsmooth Newton multigrid methods (TNNMG) [30, 31] with nested iter-
ations, because TNNMG is easier to implement and usually converges faster than
STDMMG [30]. Numerical experiments (see, e.g., [40, section 5]) also indicate that
TNNMG satisfies Assumption 3.4 with µ = 0. Note that both STDMMG and
TNNMG reduce to classical multigrid with Gauss–Seidel smoothing in the uncon-
strained case K = H. The accuracy condition (10) is replaced by the uniform stopping
criterion

‖u(k)
ν+1 − u(k)

ν ‖H ≤ 1
2
√

2
σalgToll

with u
(k)
ν denoting the νth iterate and a safety factor σalg = 0.001 accounting for

estimating the algebraic error ‖u(k)−u(k)
ν ‖H by ‖u(k)

ν+1−u
(k)
ν ‖H . In view of the above-

mentioned optimal convergence properties of TNNMG, the cost for the evaluation of
ũl(ω) ∈ Sl(ω) is set to the corresponding number of unknowns Nl(ω) = dim Sl(ω),
i.e.,

cost(ũl(ω)) = Nl(ω).

In light of (17), the computational cost for the adaptive MLMC method with L levels
is then given by

(42) costL =

L∑
l=1

Ml∑
i=1

Nl,i(ω),

which reduces to costL =
∑L
l=1NlMl in case of uniform refinement.

5.1. Poisson equation with random right-hand side. We consider the Pois-
son problem
(43)
u(ω) ∈

{
w ∈ H1(D) | w|∂D = g(ω)

}
: a(ω;u(ω), v) = `(ω;w) ∀v ∈ H1

0 (D)

with D = (−1, 1)2 in d = 2 space dimensions, the bilinear form

(44) a(ω; v, w) =

∫
D

∇v(x) · ∇w(x) dx, v, w ∈ H,

the right-hand side

(45) `(ω; v) =

∫
D

f(x, ω)v(x) dx, v ∈ H,

with uncertain source term

(46) f(x, ω) = e−β|x−Y (ω)|2 (4β2|x− Y (ω)|2 − 4β
)
,
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Fig. 1. Error achieved by uniform and adaptive MLMC over the inverse of required accuracy
Tol for the Poisson problem.

and uncertain, inhomogeneous boundary conditions

g(x, ω) = e−β|x−Y (ω)|2 , x ∈ ∂D.

Here, β is a positive constant and Y (ω) = (Y1(ω), Y2(ω))T is a random vector whose
components are uniformly distributed random variables Y1, Y2 ∼ U(−0.25, 0.25). For
each ω ∈ Ω a pathwise solution of (43) is given by

(47) u(x, ω) = e−β|x−Y (ω)|2 , x ∈ D.

As Assumption 4.1 is satisfied, this solution is unique and we have spatial regularity
in the sense that u ∈ L2(Ω;H2(D)) (cf. Assumption 4.2). However, u(ω) exhibits a
peak at (Y1(ω), Y2(ω)) ∈ D that becomes more pronounced with increasing β, thus
leading to larger constants C0 in the uniform error estimate (31).

We will compare the performance of MLMC finite element methods based on
uniform and adaptive refinement, as presented in the preceding section 4, for β = 10,
50, 150. The initial partition T (1) is obtained by applying four uniform refinement
steps to the partition of the unit square D into two congruent triangles with right
angles at (1,−1) and (−1, 1).

Figure 1 illustrates the convergence properties of uniform and adaptive MLMC
methods for the different values of β by showing the actually achieved error over the
inverse of the required tolerance Tol. Here, the error ‖E[u] − EL[ũL]‖L2(Ω;H1(D)) is
approximated by an MC method utilizing M = 5 independent realizations ‖E[u] −
EL[ũL]‖H1(D). For all values of β, both uniform and adaptive MLMC match the
required accuracy Tol as indicated by the dotted line, thus nicely confirming our
theoretical results (cf. Theorems 4.1 and 4.3) also in this slightly more general case
of random boundary conditions. Due to limited memory resources the accessible
accuracy of uniform MLMC is exceeded by adaptive MLMC for β = 50, 150

We now investigate the corresponding computational effort in terms of required
number of samples and mesh size. Figure 2 shows the average numbers of optimal
MLMC samples Ml (sometimes smaller than Mmin) over the corresponding levels
l = 1, . . . , L for different values of β and Tol. The average is taken over the M = 5
realizations of ‖E[u] − EL[ũL]‖H1(D). It is interesting that the number of samples
required for adaptive MLMC is always smaller than for uniform MLMC and that the
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Fig. 2. Average optimal number of samples over levels for uniform (un) and adaptive (ad)
MLMC, different values of Tol, and the Poisson problem.

Table 1
Average number of unknowns on different levels for the Poisson problem.

l 1 2 3 4 5 6
Uniform 289 1089 4225 16641 66049 263169
Adaptive, β = 10 289 965 3339 11719 56087 218507
Adaptive, β = 50 289 508 1017 5701 16901 49895
Adaptive, β = 150 289 385 929 2730 6938 19606

difference becomes larger for larger β. Moreover, adaptive MLMC often requires less
levels than uniform MLMC.

Table 1 reports on the average mesh sizes or, equivalently, the average of the
number of the unknowns Nl,i(ω), i = 1, . . . ,Ml, on the levels l = 1, . . . , 7 for uniform
and adaptive MLMC up to tolerances 0.025, 0.05, and 0.1 for β = 10, 50, and 100,
respectively. Note that adaptive MLMC reached the desired tolerances already on
level L = 6. While for β = 10 the corresponding uniform and adaptive mesh sizes
stay relatively close to each other, the mesh sizes for adaptive MLMC for β = 50,
150 are considerably smaller than for uniform MLMC. Even though most of the work
in MLMC methods is performed on coarser levels, this already indicates a gain of
efficiency by adaptive mesh refinement.

Upper bounds of the computational cost of MLMC in terms of the desired ac-
curacy Tol as stated in Theorem 3.2 strongly rely on Assumption 3.5 postulating
Nl(ω) = O(Tol−sl ). While, under suitable regularity conditions, Assumption 3.5
holds with s = d for uniform MLMC, there is no theoretical evidence yet for adaptive
MLMC. In order to check Assumption 3.5 for adaptive MLMC numerically, we adap-
tively computed approximations to realizations of ul,i(ω), i = 1, . . . , I = 1000, up to
the tolerance 1

2
√

2Cest
Toll according to the stopping criterion (41) for l = 1, . . . , 7,

and β = 10, 50, 150. Figure 3 displays the maximal required number of unknowns
Nl,max = maxi=1,...,I Nl,i(ω) over the the number of levels l = 1, . . . , 7. We observe
that log(Nl,max) grows like 2 log(q)(l − 1) (dotted line) or, equivalently, Nl,max =
O(Tol−2

l ) for all three values of β. This indicates that adaptive MLMC satisfies
Assumption 3.5 with s = d = 2.

On this background, we expect from Theorem 3.2 that the computational cost
both of uniform and adaptive MLMC should asymptotically behave like O(Tol−2).
Figure 4 shows the average of costL, as defined in (42), over the inverse of the required
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Fig. 4. Average computational cost of uniform and adaptive MLMC over the inverse of required
accuracy Tol for the Poisson problem.

accuracy Tol together with the expected asymptotic behavior (dotted line). As in
Figure 1, the average is taken over the M = 5 realizations of ‖E[u] − EL[ũL]‖H1(D).
Observe that adaptive MLMC always outperforms uniform MLMC and the gain is
increasing with increasing β. Though the simple model of computational cost (42)
is frequently used, it obviously ignores a posteriori error estimation, mesh handling,
interpolation, etc., which does occur in adaptive MLMC but not in the uniform case.
We therefore complement our considerations by a comparison of the overall run time
on the machine with 3.3 a GHz Intel Xeon E3-1245 processor with 7.8 GBytes of
RAM for different tolerances Tol and different values of β. We found that the overall
run time to reach the tolerance, Tol = 0.025, 0.05, and 0.1, by uniform MLMC
was improved by a factor of 1.1, 3.2, and 4.6 by adaptive MLMC for β = 10, 50,
and 150, respectively. These experiments confirm that uniform MLMC is preferable
for sufficiently smooth problems while, even without specific software optimization,
adaptive MLMC can substantially reduce the computational cost in the presence of
random singularities.

5.2. Obstacle problem with random diffusion coefficient and right-hand
side. We consider an elliptic variational inequality of the form (1) with D = (0, 1) in
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d = 1 space dimension,

K = {v ∈ H | v(x) ≥ 0 a.e. in D} ⊂ H, H = H1
0 (D),

the bilinear form

(48) a(ω; v, w) =

∫
D

α(x, ω)∇v(x) · ∇w(x) dx, v, w ∈ H,

with random diffusion coefficient

(49) α(x, ω) = 1 +
cosx2

10
Y1(ω) +

sinx2

10
Y2(ω),

and the right-hand side

(50) `(ω; v) =

∫
D

f(x, ω)v(x) dx, v ∈ H,

with random source term

f(x, ω) =



−8e2(Y1(ω)+Y2(ω))
(
a(x, ω) · (3x2 − r2)

+ (x2 − r2)x2
(
− sin x2

10 Y1(ω) + cos x2

10 Y2(ω)
))

,
x > r,

4r2e2(Y1(ω)+Y2(ω))
(
a(x, ω) · (−1− r2 + x2)

+ (−2− 2r2 + x2)x2
(
− sin x2

10 Y1(ω) + cos x2

10 Y2(ω)
))

,
x ≤ r,

denoting

r = r(Y1(ω), Y2(ω)) = 0.7 +
Y1(ω) + Y2(ω)

10
.

Here, Y1, Y2 ∼ U(−1, 1) stand for uniformly distributed random variables. For each
ω ∈ Ω a solution of the corresponding pathwise problem (1) is given by

u(x, ω) = max {(x2 − r2)eY1(ω)+Y2(ω), 0}
2
, x ∈ D.

As Assumption 4.1 is satisfied, this solution is unique and we have u ∈ L2(Ω;H).
We will compare the numerical behavior of MLMC finite element methods with

uniform and adaptive spatial mesh refinement as presented in section 4. The initial
partition T (1) of D = [0, 1] consists of sixteen closed intervals with length 1/16.

Figure 5 shows the error ‖E[u] − EL[ũL]‖L2(Ω;H1(D)) of uniform and adaptive
MLMC over Tol−1. As in the previous numerical experiment, the exact error ‖E[u]−
EL[ũL]‖L2(Ω;H1(D)) is approximated by an MC method utilizing M = 5 independent
realizations ‖E[u]− EL[ũL]‖H1(D). As expected from Theorems 4.1 and 4.3, both for
uniform and adaptive MLMC the error is bounded by the prescribed tolerance Tol
indicated by the dotted line. Adaptive MLMC appears to be slightly more accurate
than the uniform version.

Next, we consider the required number of samples and mesh size. The average
optimal number of MLMC samples Ml over the corresponding levels l = 1, . . . , L are
shown in Figure 6 for different values of Tol. Again, the numbers of samples for
adaptive MLMC are slightly smaller than for the uniform method.

The average mesh size or, equivalently, the average of the number of unknowns
Nl,i(ω), i = 1, . . . ,Ml on the levels l = 1, . . . , 10 for prescribed tolerance 0.00125 is
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Table 2
Average number of unknowns on different levels for the obstacle problem.

l 1 2 3 4 5 6 7 8 9 10
Uniform 17 33 65 129 257 513 1025 2049 4097 8193
Adapted 17 19 24 34 57 106 207 443 927 2150

reported in Table 2. The uniform mesh size on the final level L = 10 is about 3.8 times
larger than for adaptive MLMC indicating the potential of the adaptive approach.

As the given data clearly satisfy Assumption 4.2, the general Assumption 3.5 holds
true for uniform MLMC. Hence, Theorem 4.2 provides the upper bound O(Tol−2)
for the computational cost of uniform MLMC. As corresponding theoretical evidence
is still missing for adaptive MLMC, we check Assumption 3.5 numerically. To this
end, we adaptively computed approximations to realizations of ul,i(ω), i = 1, . . . , I =
1000, up to the tolerance 1

2
√

2Cest
Toll according to the stopping criterion (41) for

l = 1, . . . , 12. Figure 7 displays Nl,max = maxi=1,...,I Nl,i(ω) over the number of levels
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l. We observe that log(Nl,max) grows like log(q)(l − 1) (dotted line) or, equivalently,
Nl,max = O(Tol−1

l ) indicating that adaptive MLMC satisfies Assumption 3.5 with
s = d = 1.

From Theorems 4.2 and 3.2, combined with numerical evidence of Assumption 3.5,
we expect that the computational cost both of uniform and adaptive MLMC asymp-
totically behaves like O(Tol−2). This is confirmed by Figure 8, showing the average
computational cost over the inverse of the required accuracy Tol together with the ex-
pected asymptotic behavior (dotted line). Again, the average is taken over the M = 5
realizations of ‖E[u] − EL[ũL]‖H1(D). We observe a gain of efficiency of adaptive
MLMC by a factor of 1.75 as compared to the uniform version.

We also measured the overall run time on the machine with a 3.3 GHz Intel Xeon
E3-1245 processor with 7.8 GBytes of RAM for the final tolerance Tol = 0.00125 and
found that (for the given implementation) the overall run time is not improved by
adaptive refinement.
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energy functional in obstacle problems, Numer. Math., 117 (2011), pp. 653–677.


	Introduction
	A random variational problem
	Adaptive multilevel Monte Carlo Galerkin methods
	Multilevel Monte Carlo finite element methods
	Uniform refinement
	Adaptive refinement

	Numerical experiments
	Poisson equation with random right-hand side
	Obstacle problem with random diffusion coefficient and right-hand side

	References

