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GLOBAL WELL-POSEDNESS FOR PASSIVELY TRANSPORTED

NONLINEAR MOISTURE DYNAMICS WITH PHASE CHANGES

SABINE HITTMEIR, RUPERT KLEIN, JINKAI LI, AND EDRISS S. TITI

Abstract. We study a moisture model for warm clouds that has been used by Klein

and Majda in [21] as a basis for multiscale asymptotic expansions for deep convective

phenomena. These moisture balance equations correspond to a bulk microphysics closure

in the spirit of Kessler [20] and Grabowski and Smolarkiewicz [15], in which water is

present in the gaseous state as water vapor and in the liquid phase as cloud water

and rain water. It thereby contains closures for the phase changes condensation and

evaporation, as well as the processes of autoconversion of cloud water into rainwater and

the collection of cloud water by the falling rain droplets. Phase changes are associated

with enormous amounts of latent heat and therefore provide a strong coupling to the

thermodynamic equation.

In this work we assume the velocity field to be given and prove rigorously the global

existence and uniqueness of uniformly bounded solutions of the moisture model with

viscosity, diffusion and heat conduction. To guarantee local well-posedness we first need

to establish local existence results for linear parabolic equations, subject to the Robin

boundary conditions on the cylindric type of domains under consideration. We then

derive a priori estimates, for proving the maximum principle, using the Stampacchia

method, as well as the iterative method by Alikakos [1] to obtain uniform boundedness.

The evaporation term is of power law type, with an exponent in general less or equal

to one and therefore making the proof of uniqueness more challenging. However, these

difficulties can be circumvented by introducing new unknowns, which satisfy the required

cancellation and monotonicity properties in the source terms.

1. Introduction

Latent heat conversions due to phase changes of water in the atmosphere do to a great

extent influence the energy balance, which is made evident by the following statement

of Emanuel in [34] on p. 5: “If all the water vapor near the surface on a hot muggy day

were condensed out, the air would warm by about 35◦C”. Although the total amount of

moisture even under saturated conditions is small compared to the dry air components, its

effect on the dynamics can be enormous, getting visible e.g. in thunderstorms. To obtain a

better understanding of such complex processes involving the interaction of deep convective

phenomena with their environments, Klein and Majda [21] incorporated moisture processes

into the asymptotic framework by performing very careful nondimensionalisations. Their

studies involving multiple scales are thereby based on a warm cloud model, where water is
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present in gaseous and liquid form. Using this setting in further works they in particular

also revealed interesting new results on the modulation of gravity waves by columnar

clouds [31, 32]. The closure for the source terms of the moisture quantities in that work

corresponds to a basic form of a bulk microphysics model in the spirit of Kessler [20] and

Grabowski and Smolarkiewicz [15]. In the present work we establish global well-posedness

of the moisture model coupled through the phase changes to the thermodynamic equation,

where we assume the velocity field to be given. The coupling to the primitive equations

will be studied in a forthcoming paper by taking over the ideas of Cao and Titi [7] for

their recent breakthrough on the global solvability of the latter system. Moreover, cases

of partial diffusions, arising from the asymptotical analysis in [21], will be analyzed in a

future work too based on the results by Cao et al. [3, 4, 5, 6].

To the best of our knowledge the mathematical analysis of moisture models with phase

changes has been investigated only in a few papers, see Coti-Zelati et al. [2, 8, 9, 10],

Li and Titi [25], and Majda and Souganidis [27]. The models studied by Coti-Zelati et

al. [2, 8, 9, 10] consist of one moisture quantity coupled to the temperature and contain

only the process of condensation during upward motion, see e.g. [18]. Since the source term

considered in [2, 8, 9, 10] is modeled via a Heavy side function as a switching term be-

tween saturated and undersaturated regions, an approach based on differential inclusions

and variational techniques was used in these papers. The moisture model investigated

in [25, 27] is a coupled nonlinear system of the moisture to the barotropic and the first

baroclinic models of the velocity, where the source term in the moisture is the precipita-

tion. This model proposed by Frierson et al. [14] for the tropical atmosphere involves a

small convective adjustment time scale parameter in the precipitation term. The rigorous

analysis was carried out in [25] for both the finite-time relaxation system and the in-

stantaneous relaxation limiting system, including the global well-posedness and the strong

convergence of the relaxation limit. Some moisture models without phase changes coupled

to the primitive equations were also considered by Guo and Huang [16, 17].

The model we are analyzing in this paper is physically more refined and consists of three

moisture quantities for water vapor, cloud water and rain water and contains besides all

the phase changes due to condensation and evaporation also the autoconversion of cloud

water to rain water after a certain threshold is reached, as well as a closure for the collection

of cloud water by the falling rain droplets.

In the remainder of the introduction we first introduce the moisture model in the setting

of Klein and Majda [21] with additional diffusion, viscosity and heat conduction in carte-

sian coordinates. We then reformulate the system in pressure coordinates, which have the

advantage that under the assumption of hydrostatic balance the continuity equation takes

the form of the incompressibility condition. Although we assume the velocity field to be

given this property is very useful when deriving a priori estimates, since it allows for can-

cellations of integral terms involving the advection terms. In the pressure coordinates the

vertical diffusion term becomes nonlinear and we make here the standard approximation

by linearizing around a given background temperature profile, see also [2, 8, 26, 30]. In
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section 2 we then formulate the full problem with boundary and side conditions and state

the main result on the global existence and uniqueness of solutions.

Section 3 contains the proof of local existence and some appropriate a priori estimates.

The local existence is proved based on the results established in section A for linear

parabolic equations, subject to the Robin boundary conditions on the cylindric type of

domains. The a priori estimates are derived by using the Stampaccia type arguments and

the iterative methods of Alikakos [1].

Section 4 contains the proof of the well-posedness, i.e., the uniqueness and the contin-

uous dependence of the solutions on the initial data. The proof is based on the typical

L2-type estimates for the difference between two solutions. Here the main difficulty is

caused by the evaporation source term which is of power law type in qr with an exponent,

generally, less or equal to 1, see (1.18), below. This possible lack of Lipschitz continuity

is overcome by introducing new unknowns, for which the source terms satisfy certain can-

cellation and monotonicity properties in the estimates, such that the uniqueness of the

solution can be concluded also for the original unknowns.

The Appendix is a technical section, which gives the necessary results for some linear

parabolic equations subject to the Robin boundary conditions on the cylindric domains.

These parabolic equations are motivated by the problem considered in the present paper.

Due to the cylindric domains not being smooth, the corresponding parabolic theory re-

quired for our analysis cannot be found explicitly in the existing literature. Therefore, for

the sake of completeness, the derivations are carried out here in detail.

1.1. Moisture model in cartesian coordinates. In the following ρ, T, p,u = (u, v), w

are the density, temperature, pressure, as well as horizontal and vertical velocity compo-

nents respectively. The thermodynamic equation is given by

DT

Dt
− RT

cpp

Dp

Dt
= ST +DTT , (1.1)

where D denotes here, and in what follows, the turbulent or molecular diffusion/viscosity

operators, for which we will assume the simple closure in form of the full Laplacian. The

term ST accounts for the diabatic source and sink terms, such as latent heating, radiation

effects, etc., (see e.g. also [8, 9, 21]), but we will in the following only focus on the effect of

latent heat in association with phase changes. The total derivative contains the advection

with respect to the given velocity field (u, v, w) is denoted by:

D

Dt
= ∂t + u∂x + v∂y + w∂z . (1.2)

The ideal gas law with the gas constant R reads

p = RρT . (1.3)

Remark 1.1. Due to the difference of the gas constant for dry air and water vapor, for

moist air more precisely the virtual temperature, or the density temperature respectively if

also condensed water is present, should be used in (1.3). Moreover, the heat capacities in

the presence of moisture vary as well. Notably, since these corrections are small, they are
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neglected in the following. For more details on the thermodynamics of moist air we refer,

e.g., to [13].

To describe the state of the atmosphere a common thermodynamic quantity used is the

potential temperature

θ = T

(
p0

p

) γ−1
γ

, (1.4)

which is conserved during isentropic motions. Here and in the following the isentropic

exponent γ denotes the ratio of heat capacities γ = cp/cV satisfying

γ − 1

γ
=
R

cp
.

Then θ satisfies

Dθ

Dt
=
θ

T
(ST +DTT ) . (1.5)

In the case of moisture being present typically the water vapor mixing ratio, defined as

the ratio of the density of ρv over the density of dry air ρd ,

qv =
ρv
ρd
, (1.6)

is used for a measure of quantification. If saturation effects occur, then water is also present

in liquid form as cloud water and rain water which are represented by the additional

moisture quantities

qc =
ρc
ρd
, qr =

ρr
ρd
. (1.7)

We focus here on warm clouds, where water is present only in gaseous and liquid form,

i.e., no ice or snow phases occur.

For these mixing ratios for water vapor, cloud water and rain water we have the following

moisture balances

Dqv
Dt

= Sev − Scd +Dqvqv , (1.8)

Dqc
Dt

= Scd − Sac − Scr +Dqcqc , (1.9)

Dqr
Dt
− V

gρ
∂z(ρqr) = Sac + Scr − Sev +Dqrqr , (1.10)

where Sev, Scd, Sac, Scr are the rates of evaporation of rain water, the condensation of

water vapor to cloud water and the inverse evaporation process, the auto-conversion of

cloud water into rainwater by accumulation of microscopic droplets, and the collection of

cloud water by falling rain. Moreover V denotes the terminal velocity of falling rain and

is assumed to be constant.

The key quantity to appear in the following explicit expressions for the source terms is

the saturation mixing ratio

qvs =
ρvs
ρd

, (1.11)

which gives the threshold for saturation as follows
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• undersaturated region: qv < qvs,

• saturated region: qv = qvs,

• oversaturated region: qv > qvs.

Denoting E = R/Rv as the ratio of the individual gas constants for dry air and water

vapor, the saturation vapor mixing ratio satisfies

qvs(p, T ) =
Ees(T )

p− es(T )
, (1.12)

with the saturation vapor pressure es as a function of T being defined by the Clausius-

Clapeyron equation:

es(T ) = es(T0) exp

(
L

Rv

(
1

T0
− 1

T

))
, (1.13)

where the latent heat per unit mass of water vapor L is here and in the following assumed

to be constant, which in general varies slightly with temperature. From this formula it is

obvious that es increases in T , thereby quantifying the fact that the warmer the air is, the

more moisture it can carry. Only positive temperature values are meaningful. Typically,

the reference temperature T0 = 273.15K is used.

The Clausius-Clapeyron equation is only meaningful for temperature ranges found in

the troposphere, thus in particular as es vanishes with decreasing values in T , we shall

pose in the following the natural assumption

es(T ) = 0 and qvs(p, T ) = 0, for T ≤ T , (1.14)

for some constant T ≥ 0 K, which will also be helpful for proving nonnegativity of the

solutions. Moreover the saturation mixing ratio qvs is assumed to be nonnegative and

bounded, that is

0 ≤ qvs(p, T ) ≤ q∗vs, (1.15)

for a positive constant q∗vs. For deriving uniqueness of the solutions we need additionally

the Lipschitz continuity of qvs, i.e., we assume

|qvs(p, T1)− qvs(p, T2)| ≤ C|T1 − T2| , (1.16)

where C is a positive constant.

1.2. Explicit expressions for the source terms. Condensation sets free enormous

amounts of latent heat, which causes a warming of the surrounding environment, and

therefore is a source in the thermodynamic equation. Evaporation on the other hand

enters as a sink displaying its cooling effect. The temperature source term accounting for

the effects due to latent heat is therefore given by

ST =
L

cp
(Scd − Sev) , (1.17)

see e.g. [13, 21]. All other non-moisture related diabatic sources for potential tempera-

ture like e.g. radiation effects are not being considered here. For the source terms of the
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mixing ratios we take over the setting of Klein and Majda [21] corresponding to a bulk

microphysics closure in the spirit of Kessler [22] and Grabowski and Smolarkiewicz [15]:

Sev = CevT (q+
r )β(qvs − qv)+ , β ∈ (0, 1], (1.18)

Scr = Ccrqcqr (1.19)

Sac = Cac(qc − q∗ac)+, (1.20)

where Cev, Ccr, Cac are dimensionless rate constants. Moreover (g)+ = max{0, g} and

the constant q∗ac ≥ 0 denotes the threshold for cloud water mixing ratio beyond which

autoconversion of cloud water into precipitation becomes active. The exponent β in the

evaporation term Sev in the literature typically appears to be chosen as β ≈ 0.5, see

e.g. [21, 15] and references therein.

As we will see below, exponents β ∈ (0, 1) cause difficulties in the analysis, in particular

for the uniqueness of the solutions. In a forthcoming paper we will also demonstrate how

in the case β = 1, which is used in the modelling of precipitating clouds e.g. in [11, 19, 28],

existence and uniqueness of solutions can be proven without diffusivity imposing higher

regularity on the initial data.

We shall use the closure of the condensation term in a similar fashion to [21]

Scd = Ccd(qv − qvs)qc + Ccn(qv − qvs)+ , (1.21)

which is in the literature often defined implicitely via the equation of water vapor at

saturation, see e.g. [15].

1.3. The dynamics in pressure coordinates. Since the density of air varies strongly

throughout the troposphere, the incompressibility assumption is only justified when de-

scribing shallow phenomena, and thus in general the full compressible governing equations

need to be considered. However, under the assumption of hydrostatic balance

∂p

∂z
= −gρ ,

which in particular guarantees the pressure to decrease monotonically in height, the pres-

sure can be used as the vertical coordinate. This has the main advantage that the conti-

nuity equation takes the form of the incompressibility condition

∂xu+ ∂yv + ∂pω = 0 where ω =
dp

dt
, (1.22)

see Lions et al. [26] and Petcu et al. [30].

We therefore reformulate the dynamics in pressure coordinates

(x, y, p)

using hereafter the notation

vh = (u, v) , ∇h = (∂x, ∂y) , ∆h = ∂2
x + ∂2

y .

Due to the different units of the horizontal and the vertical derivatives in pressure coordi-

nates, it is inappropriate to combine them into a single gradient operator. The same holds
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for the velocity components having different units in vertical and horizontal directions.

Nevertheless the total derivative in pressure coordinates reads

D

Dt
= ∂t + vh · ∇h + ω∂p . (1.23)

For the closure of the turbulent and molecular transport terms we use

D∗ = µ∗∆h + ν∗∂p

(( gp
RT̄

)2
∂p

)
(1.24)

where T̄ = T̄ (p) corresponds to some background distribution being uniformly bounded

from above and from below away from 0. The operator D∗ thereby provides a close approx-

imation to the full Laplacian in cartesian coordinates, see also [26, 30]. This linearization

around the reference profile T̄ is also applied to the vertical transport term of qr after

replacing the density using the ideal gas law, such that the moisture equations in pressure

coordinates (x, y, p) with corresponding velocities (u, v, ω) become

Dqv
Dt

= Sev − Scd +Dqvqv , (1.25)

Dqc
Dt

= Scd − Sac − Scr +Dqcqc , (1.26)

Dqr
Dt

+ V ∂p

( p
T̄
qr

)
= Sac + Scr − Sev +Dqrqr , (1.27)

where according to (1.23)

Dqj
Dt

= ∂tqj + u∂xqj + v∂yqj + ω∂pqj (1.28)

and according to (1.24)

Dqjqj = µqj (∂
2
xqj + ∂2

yqj) + νqj∂p

(( gp
RT̄

)2
∂pqj

)
. (1.29)

The closure of the source terms thereby remains unchanged. The temperature equation

in pressure coordinates reads

DT

Dt
− RT

cpp
ω =

L

cp
(Scd − Sev) +DTT , (1.30)

which can again be reformulated in terms of the potential temperature as follows

Dθ

Dt
=
θ

T

(
ST +DTT

)
=

(
p0

p

) R
cp L

cp
(Scd − Sev) + D̃θθ , (1.31)

where the diffusion in vertical direction however deviates due to the additional pressure

function arising when replacing T in terms of θ according to (1.4)

D̃θθ = µT∆hθ + νT

(
p0

p

)R/cp
∂p

(( gp
RT̄

)2
∂p

((
p

p0

)R/cp
θ

))
. (1.32)
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2. Formulation of the problem and main result

As in Coti Zelati et al. [8] we let M be a cylinder of the form

M = {(x, y, p) : (x, y) ∈M′, p ∈ (p1, p0)} , (2.1)

whereM′ is a smooth bounded domain in R2 and p0 > p1 > 0. The boundary is given by

Γ0 = {(x, y, p) ∈M : p = p0} , (2.2)

Γ1 = {(x, y, p) ∈M : p = p1} , (2.3)

Γ` = {(x, y, p) ∈M : (x, y) ∈ ∂M′, p0 ≥ p ≥ p1} . (2.4)

The boundary conditions read

Γ0 : ∂pT = α0T (Tb0 − T ) , ∂pqj = α0j(qb0j − qj) , j ∈ {v, c, r} , (2.5)

Γ1 : ∂pT = 0 , ∂pqj = 0 , j ∈ {v, c, r} , (2.6)

Γ` : ∂nT = α`T (Tb` − T ) , ∂nqj = α`j(qb`j − qj) , j ∈ {v, c, r} , (2.7)

where the multipliers α0T , α0j , α`T , α`j are nonnegative quantities, which are usually con-

stants, but for the sake of generality are allowed to vary on the corresponding boundaries

and also with time. The functions Tb0, qb0j , Tb`, qb`j are typical temperature and moisture

profiles, which are again defined on the corresponding boundaries and may vary addition-

ally in time. Note that the special case of α`T = α`v = α`c = α`r = 0 in (2.5)–(2.7)

reduces to a similar setting used for the analysis of the moisture model in [8]. We assume

all given functions α0j , α`j , α0T , α`T as well as Tb0, Tb`, qb0j , qb`j to be nonnegative, suffi-

ciently smooth and uniformly bounded, say be in C1. We assume the velocity field to be

given and to satisfy

u, v, ω ∈ L∞(0, T ;L2(M)) ∩ L2(0, T ;H1(M)) ∩ Lr(0, T ;Lσ(M)), (2.8)

for any finite time T , and for some r ∈ [2,∞] and σ ∈ [3,∞] with

2

r
+

3

σ
< 1 , (2.9)

satsifying the well-known Prodi-Serrin regularity condition [33], [29]. Moreover we assume

mass conservation, which reduces in pressure coordinates as mentioned above to

∇h · vh + ∂pω = 0 in M , (2.10)

as well as the no-flux conditions on the boundary of the domain

vh · nh + ω np = 0 on ∂M . (2.11)

Remark 2.1. Typically the vertical velocity component ω is determined via the divergence

constraint in (2.10), which results in different regularity properties for ω in comparison

to the vertical velocity comonents u, v. For the primitive equations it was proven that the

latter satisfy additionally u, v ∈ L2(0, T ;H2(M)), see [7].
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In the following we use the abbreviation

‖f‖ = ‖f‖L2(M) , ‖f‖Lp = ‖f‖Lp(M) . (2.12)

According to the weight in the vertical diffusion terms, we also introduce the weighted

norms

‖f‖w =
∥∥∥( gp

RT̄

)
f
∥∥∥ , ‖f‖2H1

w
= ‖f‖2 + ‖∇hf‖2 + ‖∂pf‖2w , (2.13)

where we emphasize, that since the weight gR
pT̄

is uniformly bounded from above and below

by positive constants, the H1
w(M)-norm is equivalent to the H1(M)-norm.

We summarize the results obtained below in the following theorem:

Theorem 2.1. Let the initial data (T0, qv0, qc0, qr0) ∈ (L∞(M))4 ∩ (H1(M))4 be non-

negative and let the given velocity field (vh, ω) satisfy the above assumptions (2.8)–(2.11).

Then, for any (arbitrarily large) T ∈ (0,∞), there exists a unique nonnegative solution

(T, qv, qc, qr), with initial value (T0, qv0, qc0, qr0), of the boundary value problem (1.25)–

(1.30) subject to (2.5)–(2.7), on M× (0, T ), satisfying

(T, qv, qc, qr) ∈ L∞((0, T )×M) ∩ L2(0, T ;H2(M)), (2.14)

(T, qv, qc, qr) ∈ C([0, T ];H1(M)), (∂tT, ∂tqv, ∂tqc, ∂tqr) ∈ L2(0, T ;L2(M)). (2.15)

3. Local well-posedness and a priori estimates

In this section we prove the local existence and some a priori estimates of strong solutions

to system (1.25)–(1.30), or equivalently system (1.25)–(1.27) with (1.31), subject to the

boundary conditions (2.5)–(2.7).

Local existence of strong solutions is stated in the following proposition.

Proposition 3.1. Let the initial data (T0, qv0, qc0, qr0) ∈ (H1(M))4 be nonnegative and

let the given velocity field (vh, ω) satisfy the above assumptions (2.8)–(2.11). Then there

exists a unique local solution (qv, qc, qr, θ), which depends continuously on the initial data,

in some short time interval (0, T0), to system (1.25)–(1.27) with (1.31), subject to (2.5)–

(2.7), with initial data (qv0, qc0, qr0, θ0), satisfying

(qv, qc, qr, θ) ∈ C([0, T0];H1(M)) ∩ L2(0, T0;H2(M)), (3.1)

(∂tqv, ∂tqc, ∂tqr, ∂tθ) ∈ L2(0, T0;L2(M)). (3.2)

Proof. The well-posedness, i.e., the uniqueness and continuous dependence on initial data,

will be postponed to section 4, below. Therefore, we only prove the existence part here.

We are going to prove the local existence by iteration procedure, that is we construct a

sequence of vector fields {(qnv , qnc , qnr , θn)}∞n=0, and show that this sequence converges to a

vector field (qv, qc, qr, θ), which is the desired strong solution. Let T0 ≤ 1 be a positive

number to be determined later. For simplicity of notations, we set U = (qv, qc, qr, θ), and

denote XT0 := C([0, T0];H1(M)) ∩ L2(0, T0;H2(M)).
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Set U0 = 0, and define Un+1 = (qn+1
v , qn+1

c , qn+1
r , θn+1), n = 0, 1, . . . , to be the unique

strong solution to the linear parabolic system

∂tq
n+1
v −Dqvqn+1

v = Snqv − vh · ∇hqnv − ω∂pqnv , (3.3)

∂tq
n+1
c −Dqcqn+1

c = Snqc − vh · ∇hqnc − ω∂pqnc , (3.4)

∂tq
n+1
r −Dqrqn+1

r = Snqr − vh · ∇hqnr − ω∂pqnr − V ∂p
( p
T̄
qnr

)
, (3.5)

∂tθ
n+1 − D̃θθn+1 = Snθ − vh · ∇hθn − ω∂pθn, (3.6)

subject to the boundary conditions (2.5)–(2.7) and the initial condition

(qn+1
v , qn+1

c , qn+1
r , θn+1)|t=0 = (qv0, qc0, qr0, θ0). (3.7)

Here, Snqv , S
n
qc , S

n
qr and Snθ are the source terms, respectively, expressed by Snev − Sncd,

Sncd − Snac − Sncr, Snac + Sncr − Snev and (p0p )
R
cp L
cp

(Sncd − Snev), with Snev, S
n
cr, S

n
ac and Sncd given

by (1.18)–(1.21), by replacing (qv, qc, qr, θ) with (qnv , q
n
c , q

n
r , θ

n) there.

For simplicity of notations, we denote the vector field of source term SnU as

SnU = (Snqv , S
n
qc , S

n
qr , S

n
θ ). (3.8)

Recalling the expressions of Sev, Scr, Sac and Scd in (1.18)–(1.21) and the regularity as-

sumptions on (vh, ω) in (2.8), one can check (see the calculations (3.10)–(3.11), below) by

the Hölder and Sobolev embedding inequalities that SnU , (vh ·∇hUn +ω∂pU
n) ∈ L2(QT0),

for any Un ∈ XT0 , where QT0 = M× (0, T0). Thus, by Corollary A.1 in the appendix,

below, (qn+1
v , qn+1

c , qn+1
r , θn+1) is well-defined and satisfies

‖Un+1‖XT0 + ‖∂tUn+1‖L2(QT0 ) ≤ C

(
‖SnU‖L2(QT0 ) + ‖vh · ∇hUn‖L2(QT0 ) (3.9)

+‖ω∂pUn‖L2(QT0 ) +
∥∥∥∂p( p

T̄
qnr

)∥∥∥
L2(QT0 )

+ 1

)
,

for a positive constant C, which is independent of n and T0, while T0 ∈ (0, 1].

Noticing that |SnU | ≤ C(|Un|+|Un|3), it follows from the Young and Sobolev embedding

inequalities that

‖SnU‖L2(QT0 ) ≤ C(‖Un‖L2(QT0 ) + ‖Un‖3L6(QT0 ))

≤ C(‖Un‖L2(0,T0;L2(M)) + ‖Un‖3L6(0,T0;H1(M)))

≤ C
√
T0(‖Un‖L∞(0,T0;L2(M)) + ‖Un‖3L∞(0,T0;H1(M)))

≤ C
√
T0(1 + ‖Un‖3XT0 ), (3.10)

for a constant C, which is independent of n and T0, while T0 ∈ (0, 1]. Recalling the

regularity assumption in (2.8), it follows from the Hölder and Sobolev inequalities that

‖vh · ∇hUn‖L2(QT0 ) ≤ ‖vh‖
L

2σ
σ−3 (0,T0;Lσ(M))

‖∇hUn‖
L

2σ
3 (0,T0;L

2σ
σ−2 (M))

≤CT
σ−3
2σ
− 1
r

0 ‖vh‖Lr(0,T0;Lσ(M))‖∇hUn‖1−
3
σ

L∞(0,T0;L2(M))
‖∇hUn‖

3
σ

L2(0,T0;L6(M))

≤CT
σ−3
2σ
− 1
r

0 ‖vh‖Lr(0,T0;Lσ(M))‖Un‖1−
3
σ

L∞(0,T0;H1(M))
‖Un‖

3
σ

L2(0,T0;H2(M))
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≤CT
σ−3
2σ
− 1
r

0 ‖vh‖Lr(0,T ;Lσ(M))‖Un‖XT0 ≤ CT
σ−3
2σ
− 1
r

0 ‖Un‖XT0 , (3.11)

for a positive constant C, which is independent of n and T0, while T0 ∈ (0, 1]; with an

analogous estimate that can be established for ‖ω∂pUn‖L2(QT0 ). Moreover,∥∥∥∂p ( p
T̄
qnr

)∥∥∥
L2(QT0 )

≤ C‖qnr ‖L2(0,T0;H1(M)) ≤ C
√
T 0‖qnr ‖XT0 , (3.12)

for a positive constant C, which is independent of n and T0, while T0 ∈ (0, 1].

Therefore, we have

‖Un+1‖XT0 + ‖∂tUn+1‖L2(QT0 ) ≤ C[T δ0 (‖Un‖XT0 + ‖Un‖3XT0 ) + 1]

≤ C1(T δ0 ‖Un‖3XT0 + 1), (3.13)

for a positive constant C1, which is independent of n and T0, while T0 ∈ (0, 1]; and

δ = min{1
2 ,

σ−3
2σ −

1
r} = σ−3

2σ −
1
r > 0. Set M = 2C1 and T0 = min

{
1, (2C1)−

3
δ

}
. Then,

thanks to (3.13), and recalling that U0 = 0, one can easily show by induction that

‖Un+1‖XT0 + ‖∂tUn+1‖L2(QT0 ) ≤M, n = 0, 1, 2, . . . . (3.14)

Next, we show that {Un}∞n=1 is a Cauchy sequence in the space C([0, T ∗0 ];L2(M)), for a

positive number T ∗0 ∈ (0, T0). As we have pointed out in the Introduction, if the exponent

in the evaporation term Sev, β ∈ (0, 1), we need to introduce the following new unknowns

Qn = qnv + qnr , Hn = Tn − L

cp
(qnc + qnr ), n = 0, 1, 2, · · · .

To show that {Un}∞n=1 is a Cauchy sequence in the space L∞(0, T ∗0 ;L2(M)), instead of car-

rying out the L2-estimate for the difference Un+1−Un, we will perform the corresponding

estimate for (Qn+1 −Qn, qn+1
c − qnc , qn+1

r − qnr , Hn+1 −Hn).

To simplify the notation, we set

αn(t) = 1 + ‖qn−1
c ‖2L∞ + ‖qnc ‖2L∞ + ‖qn−1

r ‖2L∞ + ‖qnr ‖2L∞ + ‖qnv ‖2L∞ + ‖θn‖2L∞ ,

φn(t) = ‖Qn −Qn−1‖2 + ‖qnr − qn−1
r ‖2 + ‖qnc − qn−1

c ‖2 + ‖Hn −Hn−1‖2,

for n = 1, 2, · · · . Then, thanks to (3.14), and using the Gagliardo-Nirenberg inequality,

‖f‖L∞(R3) ≤ C‖f‖
1
4

L2(R3)
‖f‖

3
4

H2(R3)
, and the Hölder inequality, one deduces∫ T ∗0

0
αn(t)dt ≤ T ∗0 + C

∑
f∈{qn−1

c ,qnc ,q
n−1
r ,qnr ,q

n
v ,θ

n}

∫ T ∗0
0
‖f‖

1
2

L2‖f‖
3
2

H2dt

≤ T ∗0 + C(T ∗0 )
1
4M

1
2

∑
f∈{qn−1

c ,qnc ,q
n−1
r ,qnr ,q

n
v ,θ

n}

(∫ T ∗0
0
‖f‖2H2dt

) 3
4

≤ T ∗0 + CM2(T ∗0 )
1
4 . (3.15)

We now perform the L2-estimate for (Qn+1−Qn, qn+1
c −qnc , qn+1

r −qnr , Hn+1−Hn). Since

the proof is similar to that of showing the uniqueness in Proposition 4.1, below, we only

sketch the proof here. First, for the estimate of Qn+1−Qn, following the same arguments

for deriving (4.13), one ends up with an energy inequality, which is the same as (4.13),
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but replacing Q1−Q2 and qr1− qr2 by Qn+1−Qn and qn+1
r − qnr , respectively, on the left

and the first line on the right of (4.13), and replacing qr1, qr2, Q1, Q2, qc1, qc2, qv1, qv2, T1, T2

by qnr , q
n−1
r , Qn, Qn−1, qnc , qn−1

c , qnv , q
n−1
v , Tn, Tn−1, respectively, in the other terms on the

right of (4.13). Then, by using (4.14), below, as well as the Young inequality, we have

1

2

d

dt
‖Qn+1 −Qn‖2 +

µqc
4
‖∇h(Qn+1 −Qn)‖2 +

νqv
4
‖∂p(Qn+1 −Qn)‖2w

≤ CQ(µqr‖qn+1
r − qnr ‖2 + νqr‖∂p(qn+1

r − qnr )‖2w) + C[φn+1(t) + αn(t)φn(t)].(3.16)

Next, for the estimate of qn+1
r − qnr , similar as before, following the same arguments for

deriving (4.17), one obtains a similar energy inequality as (4.17), from which, by using

the monotonicity in the evaporation term [(qnr )β − (qn−1
r )β](qnr − qn−1

r ) ≥ 0, as well as the

Young inequality, one has the following inequality

1

2

d

dt
‖qn+1
r − qnr ‖2 + µqr‖∇h(qn+1

r − qnr )‖2 +
µqr
2
‖∂p(qn+1

r − qnr )‖2w

≤C[φn+1(t) + αn(t)φn(t)]. (3.17)

And finally, similar arguments as for (4.19) and (4.21) yield the estimates for qn+1
c − qnc

and Hn+1 −Hn as follows

1

2

d

dt
‖qn+1
c − qnc ‖2 + µqc‖∇h(qn+1

c − qnc )‖2 + νqc‖∂p(qn+1
c − qnc ‖2w ≤ Cαn(t)φn(t), (3.18)

and

1

2

d

dt
‖Hn+1 −Hn‖2 +

µT
2
‖∇h(Hn+1 −Hn)‖2 +

νT
2
‖∂p(Hn+1 −Hn)‖2w

≤ CH

(
µqc‖∇h(qn+1

c − qnc )‖2 + νqc‖∂p(qn+1
c − qnc )‖2w + µqr‖∇h(qn+1

r − qnr )‖2

+νqr‖∂p(qn+1
r − qnr )‖2w

)
+ C[φn+1(t) + αn(t)φn(t)]. (3.19)

Set

Jn(t) =
1

2CQ
‖Qn −Qn−1‖2 + ‖qnr − qn−1

r ‖2 + ‖qnc − qn−1
c ‖2 +

1

2CH
‖Hn −Hn−1‖2.

Noticing that φn(t) ≤ CJn(t), it follows from (3.16)–(3.19) that

d

dt
Jn+1(t) ≤ C[Jn+1(t) + αn(t)Jn(t)].

Since Jn+1(0) = 0 it follows from the above, by virtue the Gronwall inequality, that

Jn+1(t) ≤ eCt
∫ t

0
αn(s)Jn(s)ds, for all t ∈ [0, T ∗0 ] ⊂ [0, T0].

Thanks to the above, recalling (3.15), and choosing T ∗0 small enough, we have

sup
0≤t≤T ∗0

Jn+1(t) ≤ eCT ∗0
(∫ T ∗0

0
αn(t)dt

)
sup

0≤t≤T ∗0
Jn(t) ≤ 1

2
sup

0≤t≤T ∗0
Jn(t),

and thus

sup
0≤t≤T ∗0

Jn+1(t) ≤ C

2n
.

Thanks to the above estimate, it is clear that {(Qn, qnc , qnr , Hn)}∞n=1 is a Cauchy sequence

in L∞(0, T ∗0 ;L2(M)), and consequently {Un}∞n=1 is a Cauchy sequence in the same space.
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By virtue of this fact, and recalling the a priori estimate (3.14), by the Aubin-Lions lemma,

there is a vector field U ∈ XT ∗0 , with ∂tU ∈ L2(QT ∗0 ), such that

Un ⇀ U, in L2(0, T ∗0 ;H2(M)), (3.20)

∂tU
n ⇀ ∂tU, in L2(QT ∗0 ), (3.21)

Un → U, in L2(0, T ∗0 ;H1(M)) ∩ C([0, T ∗0 ];L2(M)). (3.22)

We point out that the above convergence holds for the whole sequence {Un}∞n=1, rather

than only for a subsequence.

Using the above convergences, one can take the limit, as n→∞, in (3.3)–(3.6) to show

that U = (qv, qc, qr, θ) is a strong solution of the boundary value problem (1.25)–(1.27)

with (1.31), subject to (2.5)–(2.7), with initial data (qv0, qc0, qr0, θ0). �

In the following proposition we derive nonnegativity and uniform boundedness for the

moisture quantities and the temperature. Here the sequence of the derivation of the

individual bounds needs to be in the right order to close the estimates consecutively.

Proposition 3.2. Let T ∈ (0,∞) and (T, qv, qc, qr) be a solution to (1.25)–(1.30) in

M× (0, T ) subject to the boundary conditions (2.5)–(2.7) with non-negative intial data

(T0, qv0, qc0, qr0) ∈ (L∞(M))4 ∩ (H1(M))4, satisfying the regularities stated in Proposi-

tion 3.1 by replacing T0 with T . Then for every t ∈ [0, T ] the solution (T, qv, qc, qr)(t)

satisfies

0 ≤ qv ≤ q∗v , 0 ≤ qc ≤ q∗c , 0 ≤ qr ≤ q∗r , 0 ≤ T ≤ T ∗ , (3.23)

where

q∗v = max
{
‖qv0‖L∞(M), ‖qb0v‖L∞((0,T )×M′), ‖qb`v‖L∞((0,T )×Γ`), q

∗
vs

}
(3.24)

with q∗vs being the constant in (1.15), and q∗c , q
∗
r , T

∗ are constants depending on the follow-

ing quantities:

q∗c = Cqc
(
T , ‖qc0‖L∞(M), ‖qb0c‖L∞((0,T )×M′), ‖qb`c‖L∞((0,T )×Γ`), q

∗
v , q
∗
vs

)
, (3.25)

q∗r = Cqr
(
T , ‖qr0‖L∞(M), ‖qb0r‖L∞((0,T )×M′), ‖qb`r‖L∞((0,T )×Γ`), q

∗
c

)
, (3.26)

T ∗ = CT
(
T , ‖T0‖L∞(M), ‖Tb0‖L∞((0,T )×M′), ‖Tb`‖L∞((0,T )×Γ`), q

∗
v , q
∗
c , q
∗
vs

)
. (3.27)

Proof. (i)Nonnegativity of qv, qc, qr and θ. For deriving this first part of the comparison

principles we employ the Stampacchia method and therefore test the equations of the

mixing ratios with their negative parts, where in the following we use

f = f+ − f− (3.28)

for splitting a function f into its positive and negative parts, with f+ = max{f, 0} and

f− = max{−f, 0}.
For the aim of the later uses, we first carry out some calculations on the integrals over

the domainM of the products of the diffusion and convection terms with q−j , j ∈ {v, c, r}.
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Integration by parts and using the boundary conditions (2.5)–(2.7), one deduces∫
M
q−j D

qjqjdM =

∫
M

[
µqj∆hqj + νqj∂p

(( gp
RT̄

)2
∂pqj

)]
q−j dM

= µqj

∫
Γ`

(∂nqj)q
−
j dΓ` + νqj

∫
M′

( gp
RT̄

)2
(∂pqj)q

−
j dM

′
∣∣∣∣p0
p1

−
∫
M

[
µqj∇hqj · ∇hq−j + νqj

( gp
RT̄

)2
∂pqj∂pq

−
j

]
dM

= µqj‖∇hq−j ‖
2 + νqj‖∂pq−j ‖

2
w + µqj

∫
Γ`

α`j(q`j − qj)q−j dΓ`

+νqj

∫
M′

(gp0

RT̄

)2
αb0j(qb0j − qj)q−j dM

′. (3.29)

Since the functions q`j and q0j are both nonnegative and qjq
−
j = −(q−j )2 a.e., the last two

boundary integrals are nonnegative, and we obtain∫
M
q−j D

qjqjdM≥ µqj‖∇hq−j ‖
2 + νqj‖∂pq−j ‖

2
w. (3.30)

The integral containing the advection term vanishes due to (2.10) and (2.11), since∫
M

(vh · ∇hqj + ω∂pqj)q
−
j dM = −1

2

∫
M

(vh · ∇h + ω∂p)(q
−
j )2dM

= −1

2

∫
∂M

(vh · nh + ωnp)(q
−
j )2d(∂M) +

1

2

∫
M

(q−j )2(∇h · vh + ∂pω)dM = 0 . (3.31)

We now proceed with the derivation of the nonnegativity of qv, qc, qr and T , where we

start with the cloud water mixing ratio qc. Multiplying equation (1.26) by −q−c , recalling

(3.30)–(3.31), noticing that q−c (qc − q∗ac)
+ = 0 since q∗ac ≥ 0 and applying the Sobolev

embedding inequality, one deduces

1

2

d

dt

∫
M

(q−c )2dM≤ −
∫
M
q−c (Scd − Sac − Scr)dM

= −
∫
M
q−c
(
Ccd(qv − qvs)qc + Ccn(qv − qvs)+ − Cac(qc − q∗ac)+ − Ccrqcqr

)
dM

≤
∫
M

(Ccrqcqr − Ccd(qv − qvs)qc)q−c dM =

∫
M

(Ccd(qv − qvs)− Ccrqr)(q−c )2dM

≤ C(1 + ‖(qv, qr)‖L∞(M))‖q−c ‖2 ≤ C(1 + ‖(qv, qr)‖H2(M))‖q−c ‖2, (3.32)

from which due to the Gronwall inequality we have

‖q−c ‖2(t) ≤ eC
∫ t
0 (1+‖(qv ,qr)‖H2(M))dt‖q−c0‖

2 = 0 , (3.33)

implying q−c ≡ 0, and thus the nonnegativity of qc.

We next prove the nonnegativity of qv. Multiplying equation (1.25) by −q−v , integrating

the resultant over M, using (3.30)–(3.31) and noticing that (qv − qvs)
+q−v = 0 due to

qvs ≥ 0, we get

1

2

d

dt

∫
M

(q−v )2dM≤ −
∫
M
q−v (Sev − Scd)dM
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=

∫
M

(
Ccd(qv − qvs)qc + Ccn(qv − qvs)+ − CevT (q+

r )β(qvs − qv)+
)
q−v dM

=

∫
M

(
Ccd(qv − qvs)qc − CevT (q+

r )β(qvs − qv)+
)
q−v dM

≤
∫
M

(
Ccd(qv − qvs)qc + CevT

−(q+
r )β(qvs − qv)+

)
q−v dM. (3.34)

Recalling qvs ≥ 0, qc ≥ 0 and qvs(p, T ) = 0 for T ≤ 0 from (1.14), one can deduce

qvsqcq
−
v ≥ 0 and T−(q+

r )β(qvs − qv)
+q−v = T−(q+

r )β(−qv)+q−v = T−(q+
r )β(q−v )2. Using

moreover the Sobolev and Young inequalities, one obtains

1

2

d

dt
‖q−v ‖2 ≤

∫
M

(
− Ccdqc + CevT

−(q+
r )β

)
(q−v )2dM

≤ C(‖qc‖L∞(M) + ‖T‖L∞(M)‖qr‖
β
L∞(M))‖q

−
v ‖2

≤ C(1 + ‖(qc, qr, θ)‖2H2(M))‖q
−
v ‖2 . (3.35)

In (3.35) we made use of the fact that β ∈ (0, 1]. Applying the Gronwall inequality to the

resulting estimate, one obtains

‖q−v ‖2(t) ≤ eC
∫ t
0 (1+‖(qc,qr,θ)‖2

H2(M)
)dt‖q−v0‖

2 = 0. (3.36)

Therefore q−v ≡ 0, implying again qv ≥ 0.

We now turn to the rain water mixing ratio qr. Before proceeding in proving the

nonnegativity, we show how to deal with the integral involving the terminal velocity by

applying the Young inequality as follows

V

∫
M
q−r ∂p

( p
T̄
qr

)
dM = −V

∫
M

[
(q−r )2∂p

( p
T̄

)
+
( p
T̄

)
q−r ∂pq

−
r

]
dM

≤ C‖q−r ‖2 +
νqr
2
‖∂pq−r ‖2w. (3.37)

Testing now (1.27) with q−r and employing (3.30)–(3.37), we obtain

1

2

d

dt

∫
M

(q−r )2dM≤ C‖q−r ‖2 −
∫
M
q−r (Sac + Scr − Sev)dM

= C‖q−r ‖2 −
∫
M
q−r

(
Cac(qc − q∗ac)+ + Ccrqcqr − CevT (q+

r )β(qvs − qv)+
)
dM

≤ C‖q−r ‖2 + Ccr

∫
M
qc(q

−
r )2dM≤ C(1 + ‖qc‖L∞(M))‖q−r ‖2, (3.38)

where we have used q−r (q+
r )β = 0. Applying the Gronwall inequality to the above inequality

and using the Sobolev embedding theorem, we deduce

‖q−r ‖2(t) ≤ eC
∫ t
0 (1+‖qc‖L∞(M))dt‖q−r0‖

2

≤ e
C

∫ t
0 (1+‖qc‖H2(M))dt‖q−r0‖

2 = 0. (3.39)

Thus q−r ≡ 0 and we obtain the desired nonnegativity qr ≥ 0.
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Finally, we prove the nonnegativity of θ and therefore first deal with the integrals

involving the diffusion terms. Integration by parts yields∫
M
θ− D̃θθdM =

∫
M

[
µT∆hθ + νT

(
p0

p

) R
cp

∂p

(( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

))]
θ−dM

=−
∫
M

[
µT∇hθ · ∇hθ− + νT

( gp
RT̄

)2
∂p

((
p0

p

) R
cp

θ−

)
∂p

((
p

p0

) R
cp

θ

)]
dM

+ µT

∫
Γ`

θ−∂nθdΓ` + νT

∫
M′

( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

)(
p0

p

) R
cp

θ−dM′
∣∣∣∣∣
p0

p1

. (3.40)

We recall that θ = T (p0p )R/cp , as well as Tb` ≥ 0 and Tb0 ≥ 0. By the boundary conditions

(2.5)–(2.7) we then have

on Γ` : θ−∂nθ =

(
p0

p

) 2R
cp

T−∂nT =

(
p0

p

) 2R
cp

T−α`T (Tb` − T ) ≥ 0 , (3.41)

on Γ0 : θ−∂p

((
p

p0

)R/cp
θ

)
= θ−∂pT = T−

(
p0

p

) R
cp

α0T (Tb0 − T ) ≥ 0 , (3.42)

on Γ1 : θ−∂p

((
p

p0

)R/cp
θ

)
= θ−∂pT = 0. (3.43)

Straightforward computation of the integral containing the p−derivatives gives

νT

∫
M

( gp
RT̄

)2
∂p

((
p0

p

)R/cp
θ−

)
∂p

((
p

p0

)R/cp
θ

)
dM

= νT

∫
M

(
−
( gp
RT̄

)2
(∂pθ

−)2 +

(
g

cpT̄

)2

(θ−)2

)
dM . (3.44)

Thus, we have∫
M
θ− D̃θθdM≥ µT

∥∥∇hθ−∥∥2
+ νT

∥∥∂pθ−∥∥2

w
− νT

∫
M

(
g

cpT̄

)2

(θ−)2dM . (3.45)

By the aid of the above, multiplying equation (1.31) by θ−, it follows from integration by

parts that

1

2

d

dt
‖θ−‖2 ≤ −L

cp

∫
M

(
p0

p

) R
cp

θ−
(
Ccd(qv − qvs)qc + Ccn(qv − qvs)+qc

)
dM

+
L

cp

∫
M
θ−
(
p0

p

) R
cp

CevT (q+
r )β(qvs − qv)+dM

+νT

∫
M

(
g

cpT̄

)2

(θ−)2dM≤ C‖θ−‖2, (3.46)

where we used the assumption (1.14) that qvs = 0 for T ≤ 0 (or θ ≤ 0 respectively), and

the nonnegativity of qv, qc and qr. Since θ−0 ≡ 0, the Gronwall inequality implies again

θ− ≡ 0 for all t > 0, and thus θ ≥ 0.
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(ii) Boundedness of qv. We will test the equation (1.25) with (qv−q∗v)+. For the diffusion

operator we thereby proceed similar to above:∫
M

(qv − q∗v)+Dqvqv dM

=

∫
M

[
µqv∆hqv + νqv∂p

(( gp
RT̄

)2
∂pqv

)]
(qv − q∗v)+dM

= µqv

∫
Γ`

(qv − q∗v)+∂nqvdΓ` + νqv

∫
M′

( gp
RT̄

)2
(qv − q∗v)+∂pqvdxdy

∣∣∣∣p0
p1

−
∫
M

[
µqv∇hqv · ∇h(qv − q∗v)+ + νqv

( gp
RT̄

)2
∂pqv∂p(qv − q∗v)+

]
dM

= −µqv‖∇h(qv − q∗v)+‖2 − νqv‖∂p(qv − q∗v)+‖2w

+µqv

∫
Γ`

α`v(qb`v − qv)(qv − q∗v)+dΓ`

+νqv

∫
M′

(gp0

RT̄

)2
αb0v(qb0v − qv)(qv − q∗v)+dM′

∣∣∣∣
p=p0

. (3.47)

By the definition of q∗v we have

(qb`v − qv)(qv − q∗v)+ ≤ 0 on Γ` , (qb0v − qv)(qv − q∗v)+ ≤ 0 on Γ0, (3.48)

implying∫
M

(qv − q∗v)+DqvqvdM≤ −µqv‖∇h(qv − q∗v)+‖2 − νqv‖∂p(qv − q∗v)+‖2w, (3.49)

and leading further to the inequality

1

2

d

dt

∫
M

((qv − q∗v)+)2dM≤
∫
M

(qv − q∗v)+(Sev − Scd)dM (3.50)

=

∫
M

(qv − q∗v)+
(
CevT (q+

r )β(qvs − qv)+ − Ccd(qv − qvs)qc − Ccn(qv − qvs)+
)
dM.

Thanks to the above inequality, the definition of q∗v in (3.24) (implying in particular

q∗v ≥ qvs) and the nonnegativity of T and qc, one has

1

2

d

dt

∫
M

((qv − q∗v)+)2dM≤ 0. (3.51)

Therefore, ‖(qv − q∗v)+‖2(t) ≤ ‖(qv0 − q∗v)+‖2 = 0, such that qv ≤ q∗v .
(iii)Boundedness of qc, qr. We start with the derivation of the uniform boundedness of

qj , with j ∈ {c, r}. For any m ≥ 2, we denote the cutoff function qj,kj as

qj,kj = (qj − kj)+ (3.52)

with

kj = sup
t∈[0,T ]

(‖qb`j‖L∞(Γ`) + ‖qb0j‖L∞(∂M′) + ‖qj0‖L∞(M)), (3.53)

for j ∈ {c, r}. We will use the method of testing equations (1.26)–(1.27) with mqm−1
j,kj

,

which is typically employed for equations with nonlinear diffusion, see e.g. [22]. Integrating
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by parts, the transport operator vanishes as before, and for the diffusion terms we have∫
M
qm−1
j,kj
Dqjqj dM = µqj

∫
Γ`

qm−1
j,kj

∂nqjdΓ` + νqj

∫
M′

( gp
RT̄

)2
qm−1
j,kj

∂pqj

∣∣∣p0
p1
dM′ (3.54)

−
∫
M

(
µqj∇hqj · ∇hqm−1

j,kj
+ νqj

( gp
RT̄

)2
∂pqj∂pq

m−1
j,kj

)
dM .

Since, by definition, kj is larger than the given boundary functions, we obtain

on Γ` : qm−1
j,kj

∂nqj = ((qj − kj)+)m−1α`j(qb`j − qj) ≤ 0 , (3.55)

on Γ0 : qm−1
j,kj

∂pqj = ((qj − kj)+)m−1α0j(qb0j − qj) ≤ 0 . (3.56)

Moreover since m ≥ 2 we can reformulate∫
M
∇hqj · ∇hqm−1

j,kj
dM = (m− 1)

∫
M
qm−2
j,kj
|∇hqj,kj |

2dM =
4(m− 1)

m2
‖∇hq

m
2
j,kj
‖2 (3.57)

with an analogous calculation for the p-derivatives.

We now start with the derivation of the uniform boundedness of qc by testing equation

(1.26) with mqm−1
c,kc

for any m ≥ 2. Using the preceding computations and the Young

inequality, we obtain directly from the uniform boundedness of qv derived before:

d

dt

∫
M
qmc,kcdM≤ −4

m− 1

m
(µqc‖∇hq

m
2
c,kc
‖2 + νqc‖∂pq

m
2
c,kc
‖2w)

+m

∫
M

(
Ccd(qv − qvs)qc + Ccn(qv − qvs)+ − Cac(qc − q∗ac)+ − Ccrqcqr

)
qm−1
c,kc

dM

≤ −4
m− 1

m
(µqc‖∇hq

m
2
c,kc
‖2 + νqc‖∂pq

m
2
c,kc
‖2w) + Cm

∫
M

(qmc,kc + qm−1
c,kc

)dM

≤ Cm
∫
M

(1 + qmc,kc)dM≤ Cm(1 + ‖qc,kc‖mLm(M)), (3.58)

from which, by the Gronwall inequality and the definition of kc, one obtains

‖qc,kc‖mLm(M)(t) ≤ e
Cmt(Cmt+ ‖qc,kc(0)‖mLm(M)) = eCmtCm(T + 1), (3.59)

for any t ∈ (0, T ). Thanks to this estimate, we have

‖qc,kc‖Lm(M)(t) ≤ eCt(C(T + 1))
1
mm

1
m , (3.60)

from which, by taking m→∞, one gets ‖qc,kc‖L∞(M)(t) ≤ eCt for all t ∈ [0, T ], and thus

‖qc‖L∞(M×(0,T )) ≤ kc + eCT =: q∗c . (3.61)

We next apply the same method to derive also uniform boundedness of qr by employing

the test function mqm−1
r,kr

. The main difference to the previous estimates constitutes the

additional vertical transport term of qr, which we shall bound as follows:

−V m
∫
M
qm−1
r,kr

∂p

( p
T̄
qr

)
dM = −V m

∫
M
qm−1
r,kr

[
qr∂p

( p
T̄

)
+
p

T̄
∂pqr

]
dM

=− V m
∫
M
qm−1
r,kr

(qr,kr + kr)∂p

( p
T̄

)
dM− 2V

∫
M

p

T̄
q
m
2
r,kr

∂pq
m
2
r,kr

dM

≤Cm
∫
M

(
1 + qmr,kr

)
dM+ νqr

2(m− 1)

m
‖∂pq

m
2
r,kr
‖2w , (3.62)
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where we applied the Cauchy-Schwarz and Young inequalities. Then the estimate for qr

becomes

d

dt

∫
M
qmr,krdM≤ −4

m− 1

m

(
µqr‖∇hq

m
2
r,kr
‖2 +

νqr
2
‖∂pq

m
2
r,kr
‖2w
)

+ Cm

∫
M

(1 + qmr,kr)dM

+m

∫
M

(
Cac(qc − q∗ac)+ + Ccrqcqr − CevT (q+

r )β(qvs − qv)+
)
qm−1
r,kr

dM

≤ −2
m− 1

m
(µqr‖∇hq

m
2
r,kr
‖2 + νqr‖∂pq

m
2
r,kr
‖2w) + Cm

∫
M

(1 + qmr,kr)dM , (3.63)

where we have used the nonnegativity of T and the uniform boundedness of qc. We thus

obtain

d

dt

∫
M
qmr,krdM≤ Cm(1 + ‖qr,kr‖mLm(M)). (3.64)

By the same argument as that for qc above, we get the following estimate for qr:

‖qr‖L∞(M×(0,T )) ≤ kr + eCT =: q∗r . (3.65)

(iv) Boundedness of θ. We finally derive a similar estimate for θ. As before we set

θkθ = (θ − kθ)+ with kθ = sup
t∈[0,T ]

(‖θb`‖L∞(Γ`) + ‖θb0‖L∞(∂M′) + ‖θ0‖L∞(M)), (3.66)

where θb` =
(p0
p

)R/cpTb` and θb0 =
(p0
p

)R/cpTb0 accordingly. Similar to above, one can

deduce by integration by parts and using the boundary condition (2.7) that∫
M
θm−1
kθ

∆hθdM≤ −
4(m− 1)

m
‖∇hθ

m
2
kθ
‖2 ≤ 0. (3.67)

While for the diffusion term in the p-direction, the calculations are more involved. Recall-

ing that θ = T
(
p0
p

) R
cp , it follows from the boundary conditions (2.5)–(2.6) that(

p0

p

) R
cp

θm−1
kθ

∂p

((
p

p0

) R
cp

θ

)
=

(
p0

p

) R
cp

θm−1
kθ

∂pT =

(
p0

p

) R
cp

θm−1
kθ

α0T (Tb0 − T )

= θm−1
kθ

α0T (θb0 − θ) ≤ 0, on Γ0, (3.68)

and (
p0

p

) R
cp

θm−1
kθ

∂p

((
p

p0

) R
cp

θ

)
=

(
p0

p

) R
cp

θm−1
kθ

∂pT = 0, on Γ1. (3.69)

Thus, due to integration by parts,∫
M

(
p0

p

) R
cp

∂p

(( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

))
θm−1
kθ

dM

= −
∫
M

( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

)
∂p

((
p0

p

) R
cp

θm−1
kθ

)
dM

+

∫
M′

(
p0

p

) R
cp

θm−1
kθ

( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

)
dM′

∣∣∣∣p0
p1
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≤ −
∫
M

( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

)
∂p

((
p0

p

) R
cp

θm−1
kθ

)
dM. (3.70)

Direct calculations yield

∂p

((
p

p0

) R
cp

θ

)
∂p

((
p0

p

) R
cp

θm−1
kθ

)

= (m− 1)θm−2
kθ

(∂pθkθ)
2 +

R

cpp

(
(m− 1)θm−2

kθ
θ − θm−1

kθ

)
∂pθkθ −

(
R

cpp

)2

θθm−1
kθ

= (m− 1)θm−2
kθ

[
(∂pθkθ)

2 +
R

cpp

(
θ − θkθ

m− 1

)
∂pθkθ

]
−
(
R

cpp

)2

θθm−1
kθ

= (m− 1)θm−2
kθ

(
∂pθkθ +

R

2cpp

(
θ − θkθ

m− 1

))2

−
(
R

cpp

)2
[
m− 1

4

(
θ − θkθ

m− 1

)2

+ θθkθ

]
θm−2
kθ

. (3.71)

Plugging this relation into the previous inequality, one obtains by the Young inequality∫
M

(
p0

p

) R
cp

∂p

(( gp
RT̄

)2
∂p

((
p

p0

) R
cp

θ

))
θm−1
kθ

dM

≤
∫
M

( gp
RT̄

)2
(
R

cpp

)2
[
m− 1

4

(
θ − θkθ

m− 1

)2

+ θθkθ

]
θm−2
kθ

dM

=

(
g

cpT̄

)2 ∫
M

[
m− 1

4

(
θ − θkθ

m− 1

)2

+ θθkθ

]∣∣∣∣∣
θ≥kθ

θm−2
kθ

dM

=

(
g

cpT̄

)2 ∫
M

[
m− 1

4

(
m− 2

m− 1
θkθ + kθ

)2

+ θ2
kθ

+ kθθkθ

]∣∣∣∣∣
θ≥kθ

θm−2
kθ

dM

≤ C

∫
M

[m(θkθ + kθ)
2 + θ2

kθ
+ kθθkθ ]θ

m−2
kθ

dM≤ Cm
∫
M

(1 + θmkθ)dM. (3.72)

Combing the above estimate with (3.67) yields∫
M
D̃θθθm−1

kθ
dM≤ Cm

∫
M

(1 + θmkθ)dM. (3.73)

We now test equation (1.31) with mθm−1
kθ

and integrate by parts

d

dt

∫
M
θmkθdM≤ Cm

∫
M

(
θmkθ + 1

)
dM

+m
L

cp

∫
M

(
p0

p

) R
cp (

Ccd(qv − qvs)qc + Ccn(qv − qvs)+
)
θm−1
kθ

dM

−mL

cp

∫
M

(
p0

p

) R
cp

CevT (q+
r )β(qvs − qv)+θm−1

kθ
dM

≤ Cm
∫
M

(θmkθ + 1)dM , (3.74)
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where we made use of (3.73), the boundedness of qv, qc and the nonnegativity of T . By

the same argument as before for qc and qr, it follows that

‖θ‖L∞(M×(0,T )) ≤ kθ + eCT , (3.75)

proving the upper bound for T , on the interval [0, T ]. �

4. Global existence and well-posedness

In this section we prove our main result, i.e., the global existence and well-posedness,

i.e., the uniqueness and the continuous dependence with respect to the initial data, of the

strong solutions to system (1.25)–(1.30), or equivalently system (1.25)–(1.27) with (1.31),

subject to the boundary conditions (2.5)–(2.7).

The uniqueness, and the Lipschitz continuity of the solutions on the initial data, is guar-

anteed by the following proposition, which, as we already mentioned in the Introduction,

requires the Lipschitz continuity of the saturation mixing stated in (1.16).

Proposition 4.1. Let (Ti, qvi, qci, qri) for i ∈ {1, 2} be two strong solutions, on the in-

terval [0, T ], of (1.25)–(1.30), subject to (2.5)–(2.7), with initial data (T 0
i , q

0
vi, q

0
ci, q

0
ri) ∈

(L∞(M))4 ∩ (H1(M))4. Then, the following estimate holds

sup
t∈[0,T ]

(
‖T1 − T2‖2 +

∑
j∈{v,c,r}

‖qj1 − qj2‖2
)
≤ CeC0T

(
‖T 0

1 − T 0
2 ‖2 +

∑
j∈{v,c,r}

‖q0
j1 − q0

j2‖2
)

for a positive constant C0, implying in particular the uniqueness of the solutions.

Proof. The main difficulty in the proof of the uniqueness and the continuous dependence

on the initial data of the solutions is caused by the evaporation term Sev if the exponent

β ∈ (0, 1). This problem can be circumvented by introducing the following new unknowns

Q = qv + qr, H = T − L

cp
(qc + qr) . (4.1)

These quantities resemble the ones used in Hernandez-Duenas et al. [19]. However, in

[19] the cloud water was not taken into account. In particular, cpH corresponds to the

liquid water enthalpy, see e.g. Emanuel [13]. In the following we prove uniqueness by

deriving typical L2-estimates for the differences of the solutions in terms of estimates for

the quantities

Q, qc, qr, H . (4.2)

We start with the estimate for Q, whose evolution is governed by the equation:

∂tQ+ vh · ∇hQ+ ω∂pQ =− V ∂p
( p
T̄
qr

)
+ Sac + Scr − Scd + µqv∆hQ+ (µqr − µqv)∆hqr

+ νqv∂p

(( gp
RT̄

)2
∂pQ

)
+ (νqr − νqv)∂p

(( gp
RT̄

)2
∂pqr

)
. (4.3)

Let Q1, Q2 be two solutions of (4.3). We multiply the equation for the difference (Q1−Q2)

by (Q1 − Q2), and integrate over M. Recalling (2.10)–(2.11), it follows from integration
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by parts and using the relevant boundary conditions, that∫
M

(∂t(Q1 −Q2) + vh · ∇h(Q1 −Q2) + ω∂p(Q1 −Q2))(Q1 −Q2)dM =
1

2

d

dt
‖Q1 −Q2‖2.

(4.4)

By the boundary conditions (2.5)–(2.7), one can check that

on Γ` : ∂n(Q1 −Q2) + α`v(Q1 −Q2) = (α`0 − α`r)(qr1 − qr2), (4.5)

on Γ0 : ∂p(Q1 −Q2) + α0v(Q1 −Q2) = (α0v − α0r)(qr1 − qr2), (4.6)

on Γ1 : ∂p(Q1 −Q2) = ∂p(qr1 − qr2) = 0, (4.7)

on Γ` : ∂n(qr1 − qr2) = α`r(qr2 − qr1), on Γ0 : ∂p(qr1 − qr2) = α0r(qr2 − qr1). (4.8)

For shortening the expressions, we use hereafter the notation

Diff (Q, qr) := (4.9)

µqv∆hQ+ (µqr − µqv)∆hqr + νqv∂p

(( gp
RT̄

)2
∂pQ

)
+ (νqr − νqv)∂p

(( gp
RT̄

)2
∂pqr

)
for the diffusion terms in equation (4.3) for Q. It then follows from integration by parts,

using the boundary conditions (4.5)-(4.8), that∫
M

(Diff(Q1, qr1)−Diff(Q2, qr2))(Q1 −Q2)dM

= µqv

∫
Γ`

(Q1 −Q2)∂n(Q1 −Q2)dΓ` − µqv‖∇h(Q1 −Q2)‖2

+νqv

∫
M′

( gp
RT̄

)2
∂p(Q1 −Q2)(Q1 −Q2)dM′

∣∣∣∣p0
p1

− νqv‖∂p(Q1 −Q2)‖2w

+(µqr − µqv)
∫

Γ`

∂n(qr1 − qr2)(Q1 −Q2)dΓ`

+(νqr − νqv)
∫
M′

( gp
RT̄

)2
∂p(qr1 − qr2)(Q1 −Q2)dM′

∣∣∣∣p0
p1

−(µqr − µqv)
∫
M
∇h(qr1 − qr2) · ∇h(Q1 −Q2)dM

−(νqr − νqv)
∫
M

( gp
RT̄

)2
∂p(qr1 − qr2)∂p(Q1 −Q2)dM, (4.10)

Applying Young’s inequality to the integrals over M and using the boundary conditions

(4.5)-(4.8) to the boundary integrals, one obtains, after some manipulations,∫
M

(Diff(Q1, qr1)−Diff(Q2, qr2))(Q1 −Q2)dM

≤ −µqv
2
‖∇h(Q1 −Q2)‖2 +

(µqr − µqv)2

2µqv
‖∇h(qr1 − qr2)‖2 − νqv

2
‖∂p(Q1 −Q2)‖2w

+
(νqr − νqv)2

2νqv
‖∂p(qr1 − qr2)‖2w − µqv

∫
Γ`

α`v(Q1 −Q2)2dΓ`

+

∫
Γ`

(µqrα`r − µqvα`v)(qr2 − qr1)(Q1 −Q2)dΓ`
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−νqv
∫
M′

( gp
RT̄

)2
α0v(Q1 −Q2)2dM′

∣∣∣∣
p=p0

+

∫
M′

(νqrα0r − νqvα0v)(qr2 − qr1
)
(Q1 −Q2)dM′

∣∣∣∣
p=p0

. (4.11)

Since we do not want to make any restrictions on the boundary data (i.e.,we also want to

allow that, e.g., α0r = 0, but α0v > 0), we apply Young’s inequality with ε > 0 sufficiently

small to the boundary integrals to finally estimate them using the boundedness of the

trace map H1(M) 7→ H
1
2 (∂M) ↪→ L2(∂M), see, e.g., [12], as follows∫

Γ`

(µqrα`r − µqvα`v)(qr2 − qr1)(Q1 −Q2)dΓ`

+

∫
M′

(νqrα0r − νqvα0v)(qr2 − qr1
)
(Q1 −Q2)dM′

∣∣∣∣
p=p0

≤ ε

∫
∂M

(Q1 −Q2)2d(∂M) + C(ε)

∫
∂M

(qr1 − qr2)2d(∂M)

≤ µqv
4
‖∇h(Q1 −Q2)‖2 +

νqv
4
‖∂p(Q1 −Q2)‖2w + C(‖Q1 −Q2‖2 + ‖qr1 − qr2‖2)

+CQ(µqr‖∇h(qr1 − qr2)‖2 + νqr‖∂p(qr1 − qr2)‖2w) . (4.12)

For the L2-estimate we therefore obtain

1

2

d

dt
‖Q1 −Q2‖2 +

µqv
4
‖∇h(Q1 −Q2)‖2 +

νqv
4
‖∂p(Q1 −Q2)‖2w

≤ CQ(µqr‖qr1 − qr2‖2 + νqr‖∂p(qr1 − qr2‖2w) + C(‖Q1 −Q2‖2 + ‖qr1 − qr2‖2)

−V
∫
M

(
(qr1 − qr2)∂p

(
p

T

)
+
p

T
∂p(qr1 − qr2)

)
(Q1 −Q2)dM

+Cac

∫
M

((qc1 − q∗ac)+ − (qc2 − q∗ac)+)(Q1 −Q2)dM

+Ccr

∫
M

(
(qc1 − qc2)qr1 + qc2(qr1 − qr2)

)
(Q1 −Q2)dM

−Ccd
∫
M

((qv1 − qv2)qc1 + qv2(qc1 − qc2))(Q1 −Q2)dM

+Ccd

∫
M

(qvs(T1)(qc1 − qc2) + qc2(qvs(p, T1)− qvs(p, T2))(Q1 −Q2)dM

−Ccn
∫
M

((qv1 − qvs(p, T1))+ − (qv2 − qvs(p, T2))+)(Q1 −Q2)dM . (4.13)

The Lipschitz continuity property of the saturation mixing ratio (1.16) implies

|(qv1 − qvs(p, T1))+ − (qv2 − qvs(p, T2))+|

≤ |(qv1 − qvs(p, T1))+ − (qv2 − qvs(p, T1))+|+ |(qv2 − qvs(p, T1))+ − (qv2 − qvs(p, T2))+|

≤ |qv1 − qv2|+ C|T1 − T2| . (4.14)



24 SABINE HITTMEIR, RUPERT KLEIN, JINKAI LI, AND EDRISS S. TITI

Using additionally the uniform boundedness of all moisture quantities as well as Young’s

inequality and rewriting qv and T in terms of the quantities in (4.2), we obtain:

1

2

d

dt
‖Q1 −Q2‖2 +

µqv
4
‖∇h(Q1 −Q2)‖2 +

νqv
4
‖∂p(Q1 −Q2)‖2w

≤ C
(
‖Q1 −Q2‖2 + ‖qr1 − qr2‖2 + ‖qc1 − qc2‖2 + ‖H1 −H2‖2

)
+CQ(µqr‖∇h(qr1 − qr2)‖2 + νqr‖∂p(qr1 − qr2)‖2w). (4.15)

We next estimate the difference of the two rain water mixing ratios. We thereby bound

the diffusion and the vertical transport term with terminal velocity V as follows:∫
M

(qr1 − qr2)Dqr(qr1 − qr2)dM− V
∫
M

(qr1 − qr2)∂p

( p
T̄

(qr1 − qr2)
)
dM

= −µqr
∫

Γ`

α`r(qr1 − qr2)2dΓ` − µqr‖∇h(qr1 − qr2)‖2

−νqr
∫
M′

( gp
RT̄

)2
α0r(qr1 − qr2)2dM′

∣∣∣
p=p0

− νqr‖∂p(qr1 − qr2)‖2w

−V
∫
M

[
(qr1 − qr2)2∂p

(
p

T

)
+
p

T
(qr1 − qr2)∂p(qr1 − qr2)

]
dM

≤ −µqr‖∇h(qr1 − qr2)‖2 − νqr
2
‖∂p(qr1 − qr2)‖2w + C‖qr1 − qr2‖2 , (4.16)

and we get for the L2-estimate of qr1 − qr2:

1

2

d

dt
‖qr1 − qr2‖2 + µqr‖∇h(qr1 − qr2)‖2 +

νqr
2
‖∂p(qr1 − qr2)‖2w

≤ C‖qr1 − qr2‖2 + Cac

∫
M

((qc1 − q∗ac)+ − (qc2 − q∗ac)+)(qr1 − qr2)dM

+Ccr

∫
M

[
(qc1 − qc2)qr1(qr1 − qr2) + qc2(qr1 − qr2)2

]
dM

−Cev
∫
M

(T1 − T2)qβr1(qvs(p, T1)− qv1)+(qr1 − qr2)dM

−Cev
∫
M
T2(qβr1 − q

β
r2)(qvs(p, T1)− qv1)+(qr1 − qr2)dM

−Cev
∫
M
T2q

β
r2((qvs(p, T1)− qv1)+ − (qvs(p, T2)− qv2)+)(qr1 − qr2)dM . (4.17)

We can now use the monotonicity property in the evaporation term (qβr1−q
β
r2)(qr1−qr2) ≥ 0

and recall (4.14) to estimate further replacing T in terms of H, qc and qr

1

2

d

dt
‖qr1 − qr2‖2 + µqr‖∇h(qr1 − qr2)‖2 +

νqr
2
‖∂p(qr1 − qr2)‖2w

≤ C
(
‖Q1 −Q2‖2 + ‖qr1 − qr2‖2 + ‖qc1 − qc2‖2 + ‖H1 −H2‖2

)
. (4.18)

We now turn to the difference of the cloud water mixing ratios. We estimate the

boundary terms arising from partial integration of the diffusion operator as above, using

(4.14) and the Lipschitz continuity of qvs, (1.16), and obtain

1

2

d

dt
‖qc1 − qc2‖2 + µqc‖∇h(qc1 − qc2)‖2 + νqc‖∂p(qc1 − qc2)‖2w
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≤ Ccd

∫
M

(qv1 − qv2 − (qvs(p, T1)− qvs(p, T2))qc1(qc1 − qc2)dM

+Ccd

∫
M

(qv2 − qvs(p, T2))(qc1 − qc2)(qc1 − qc2)dM

+Ccn
(
(qv1 − qvs(p, T1))+ − (qv2 − qvs(p, T2))+

)
(qc1 − qc2)dM

−Cac
∫
M

((qc1 − q∗ac)+ − (qc2 − q∗ac)+)(qc1 − qc2)dM

−Ccr
∫
M

[
(qc1 − qc2)2qr1 + qc2(qr1 − qr2)(qc1 − qc2)

]
dM

≤ C
(
‖Q1 −Q2‖2 + ‖qr1 − qr2‖2 + ‖qc1 − qc2‖2 + ‖H1 −H2‖2

)
. (4.19)

To close the estimates it remains to bound (H1 −H2). The equation for H reads

∂tH + vh · ∇hH + ω∂pH =

=
RT

cpp
ω − L

cp
V ∂p

( p
T̄
qr

)
+ µT∆hH + νT∂p

(( gp
RT̄

)2
∂pH

)
−L
cp

(
(µqc − µT )∆hqc + (νqc − νT )∂p

(( gp
RT̄

)2
∂pqc

))
−L
cp

(
(µqr − µT )∆hqr + (νqr − νT )∂p

(( gp
RT̄

)2
∂pqr

))
. (4.20)

As it can be seen here from the thermodynamic equation the antidissipative term con-

taining the vertical velocity ω appears on the right hand side. In previous estimates we

could circumvent estimations involving this term by switching to the potential tempera-

ture θ. However, this is not possible here, since for an alternative definition of the form

H̃ = θ − L
cp

(p0
p

) R
cp (qc + qr), which would also allow for a cancellation of the source terms

from phase changes, the vertical velocity term would appear again from the vertical advec-

tion term due to the pressure function multiplying the moisture quantities. We therefore

stick to the previously introduced quantity H.

Testing again the equation for the difference (H1−H2) against (H1−H2) and treating the

boundary terms arising from the diffusion operators and the additional vertical transport

term in a similar way as for (Q1 −Q2) above, we obtain:

1

2

d

dt
‖H1 −H2‖2 ≤ −µT ‖∇h(H1 −H2)‖2 − νT ‖∂p(H1 −H2)‖2w

+ C(‖qc1 − qc2‖2L2(∂M) + ‖qr1 − qr2‖2L2(∂M)) + ε‖H1 −H2‖2L2(∂M)

− L

cp

∫
M
∇h(H1 −H2) ·

(
(µqc − µT )∇h(qc1 − qc2) + (µqr − µT )∇h(qr1 − qr2)

)
dM

− L

cp

∫
M

( gp
RT̄

)2
∂p(H1 −H2) ·

(
(νqc − νT )∂p(qc1 − qc2) + (νqr − νT )∂p(qr1 − qr2)

)
dM

− L

cp

∫
M

[
V
p

T
(qr1 − qr2)∂p(H1 −H2) +

Rω

cpp
(T1 − T2)(H1 −H2)

]
dM

≤− µT
2
‖∇h(H1 −H2)‖2 − νT

2
‖∂p(H1 −H2)‖2w + CHµqc‖∇h(qc1 − qc2)‖2

+ CH(µqr‖∇h(qr1 − qr2)‖2 + νqc‖∂p(qc1 − qc2)‖2w + νqr‖∂p(qr1 − qr2)‖2w)
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+ C
(
‖H1 −H2‖2 + ‖qr1 − qr2‖2 + ‖qc1 − qc2‖2

)
, (4.21)

where ε is chosen sufficiently small; we have also used here the boundedness of the trace

map H1(M) 7→ L2(∂M) and Young’s inequality. Moreover, since according to (2.8) we

have ω ∈ L∞(0, T ;L2(M)), we have also used above the following bound for the integral

containing the vertical velocity component ω:∣∣∣∣∫
M

Rω

cpp
(T1 − T2)(H1 −H2)dM

∣∣∣∣
≤C
(
‖H1 −H2‖2L4(M) +

∑
j∈{c,r}

‖qj1 − qj2‖2L4(M)

)
≤C
(
‖H1 −H2‖

3
2

H1(M)
‖H1 −H2‖

1
2 +

∑
j∈{c,r}

‖qj1 − qj2‖
3
2

H1(M)
‖qj1 − qj2‖

1
2

)

≤ε
(
‖∇(H1 −H2)‖2 +

∑
j∈{c,r}

‖∇(qj1 − qj2)‖2
)

+ Cε

(
‖H1 −H2‖2 +

∑
j∈{c,r}

‖qj1 − qj2‖2
)
. (4.22)

We now combine the estimates (4.15), (4.18), (4.19) and (4.21) by introducing

J(t) =
1

2

(
A‖Q1 −Q2‖2 + ‖qc1 − qc2‖2 + ‖qr1 − qr2‖2 +B‖H1 −H2‖2

)
, (4.23)

where A and B are positive constants chosen accordingly (e.g., A = 1
2CQ

and B = 1
2CH

),

such that for some C0 > 0

dJ

dt
≤ C0J (4.24)

and we conclude the proof by applying the Gronwall inequality. �

We are now ready to prove our main result, Theorem 2.1.

Proof of Theorem 2.1. The uniqueness and continuous dependence on the initial data

is an immediate corollary of Proposition 4.1. Therefore, it remains to prove the global

existence. By Proposition 3.1, under the assumptions in Theorem 2.1, there is a unique

local strong solution (qv, qc, qr, θ), with

(qv, qc, qr, θ) ∈ C([0, T0];H1(M)) ∩ L2(0, T0;H2(M)). (4.25)

We extend the unique strong solution (qv, qc, qr, θ) to the maximal time of existence T∗.
If T∗ = ∞, then one obtains a global strong solution. Suppose that T∗ < ∞, then one

obviously has

lim
T →T −∗

‖(qv, qc, qr, θ)‖L∞(0,T ;H1(M))∩L2(0,T ,H2(M)) =∞. (4.26)

By Proposition 3.2, we have ‖(qv, qc, qr, θ)‖L∞(M×(0,T∗)) ≤ C, for a positive constant

C that depends continuously on T∗. Let ε be a small enough positive time to be speci-

fied later. We will estimate the norms to the solution in the time interval (T∗ − ε, T ),



GLOBAL WELL-POSEDNESS NONLINEAR MOISTURE DYNAMICS WITH PHASE CHANGES 27

for T ∈ (T∗ − ε, T∗). For simplicity, we denote U = (qv, qc, qr, θ). Applying Corol-

lary A.1 in the appendix, below, to system (1.25)–(1.27) with (1.31), and recalling that

‖(qv, qc, qr, θ)‖L∞(M×(0,T∗)) ≤ C, we have

‖U‖L∞(T∗−ε,T ;H1(M))∩L2(T∗−ε,T ;H2(M)) (4.27)

≤ C(1 + ‖vh · ∇hU‖L2(M×(T∗−ε,T )) + ‖ω∂pU‖L2(M×(T∗−ε,T )) + ‖∂pU‖L2(M×(T∗−ε,T ))),

for a positive constant C independent of T < T∗.
The same argument as for (3.11) yields

‖vh · ∇hU‖L2(M×(T∗−ε,T )) ≤ C(T − T∗ + ε)
σ−3
2σ
− 1
r ‖vh‖Lr(T∗−ε,T ;Lσ(M))

·‖U‖L∞(T∗−ε,T ;H1(M))∩L2(T∗−ε,T ;H2(M))

≤ Cε
σ−3
2σ
− 1
r ‖U‖L∞(T∗−ε,T ;H1(M))∩L2(T∗−ε,T ;H2(M)), (4.28)

for a positive constant C independent of T < T∗, with an analogous estimate for ω∂pU.

By the Hölder inequality one moreover gets

‖∂pU‖L2(M×(T∗−ε,T )) ≤ C(T − T∗ + ε)
1
2 ‖U‖L∞(T −T∗+ε,T ;H1(M))

≤ Cε
1
2 ‖U‖L∞(T −T∗+ε,T ;H1(M)), (4.29)

for a positive constant C independent of T < T∗.
Plugging the above two estimates into (4.27), and choosing ε small enough, one con-

cludes

‖U‖L∞(T∗−ε,T ;H1(M))∩L2(T∗−ε,T ;H2(M)) ≤ C, (4.30)

for a positive constant C independent of T < T∗, which contradicts (4.26). Therefore, we

must have T∗ = ∞, in other words, the solution (qv, qc, qr, θ)(t) can be extended to be a

global solution. �
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Appendix A. Elliptic and parabolic problems on cylindrical domains

As mentioned in the introduction, this technical section is devoted to establishing the

existence and uniqueness of solutions (weak or strong) to some elliptic or parabolic prob-

lems, subject to the Robin boundary conditions on the cylindrical domains. Since the

results stated in this section hold for any finite dimensional space, and in order to state

and prove the results in the general settings, the notations used in this section are inde-

pendent of those used in the previous sections.

Let M ⊆ RN be a bounded domain with smooth boundary, L0 and L1 two numbers,

with L0 < L1, and set the cylindrical domain Ω = M × (L0, L1). For a spatial variable

x ∈ Ω, we denote by x′ ∈ M the first N components of x, that is x′ = (x1, · · · , xN ), and

by z the last component of x, that is z = xN+1. We divide the boundary into the lateral

boundary Γ`, the upper boundary Γ1 and the lower boundary Γ0, that is ∂Ω = Γ`∪Γ1∪Γ0,

where

Γ` = ∂M × [L0, L1], Γ0 = M × {L0}, Γ1 = M × {L1}, (A.1)

and set Γ01 = Γ0∪Γ1. Note that the unit outward normal vector field on the boundary ∂Ω

is piecewise smooth. In view of this, we use different notations to distinguish the normal

vectors on different portions of the boundary: we denote by n the unit outward normal

vector on Γ`, while the unit outward normal vector on Γ01 is denoted by ν.

A.1. Linear elliptic problem. In this subsection we establish the existence, uniqueness

and regularity of weak solutions to the following elliptic problem:
−∆hu− ∂z(a∂zu) + bu = f, in Ω,

∂nu+ αu = ϕ, on Γ`,

∂νu+ βu = ψ, on Γ01,

(A.2)

where a, b, α, β, f, ϕ and ψ are given functions. As above ∇h and ∆h denote the gradient

and Laplacian in the horizontal coordinates (x1, . . . , xN ).

Weak solutions to (A.2) are defined as follows.

Definition A.1. A function u ∈ H1(Ω) is called a weak solution to the elliptic problem

(A.2), if the following equation holds∫
Ω

(∇hu · ∇hφ+ a∂zu∂zφ+ buφ)dx+

∫
Γ`

αuφdΓ` +

∫
Γ01

aβuφdx′

=

∫
Ω
fφdx+

∫
Γ`

ϕφdΓ` +

∫
Γ01

aψφdx′ (A.3)
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holds for any φ ∈ H1(Ω). If b ≡ α ≡ β ≡ 0, we ask for the additional constraint
∫

Ω udx = 0

on u, and assume that the following compatibility condition holds∫
Ω
fdx+

∫
Γ`

ϕdΓ` +

∫
Γ01

aψdx′ = 0. (A.4)

Existence and uniqueness of weak solutions to (A.2) is stated in the following proposi-

tion, which can be proven in the standard way by the Lax-Milgram Lemma [23].

Proposition A.1 (Existence and uniqueness of weak solutions). Assume that the func-

tions a, b, α, β, f, ϕ and ψ satisfy

a, b ∈ L∞(Ω), α ∈ L∞(Γ`), β ∈ L∞(Γ01), λ ≤ a ≤ Λ, 0 ≤ b, α, β ≤ Λ, (A.5)

f ∈ L2(Ω), ϕ ∈ L2(Γ`), ψ ∈ L2(Γ01), (A.6)

for some positive numbers λ and Λ. Then, there is a unique weak solution u to (A.2),

satisfying

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖ϕ‖L2(Γ`) + ‖ψ‖L2(Γ01)), (A.7)

for a positive constant C depending only on Ω and the coefficients a, b, α and β.

We are going to study the H2 regularity of the weak solutions established in Proposition

A.1. To this end, we start with the corresponding result for the elliptic problem of a special

case stated in the next lemma.

Lemma A.1 (H2 regularity: a special case). Assume that a, f and ϕ satisfy the assump-

tions in Proposition A.1, and let u ∈ H1(Ω) be a weak solution to
−∆hu− ∂z(a∂zu) = f, in Ω,

∂nu = ϕ, on Γ`,

∂νu = 0, on Γ01.

(A.8)

Suppose in addition that a ∈ C(Ω), ∂za ∈ L∞(Ω) and ϕ ∈ H
1
2 (Γ`).

Then, u ∈ H2(Ω), and the following estimate holds

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (Γ`)

+ ‖u‖H1(Ω)), (A.9)

where C is a positive constant depending only on Ω, the modulus of continuity of a,

‖a‖L∞(Ω) and ‖∂za‖L∞(Ω).

Proof. Our strategy to prove the conclusion is as follows: we extend the weak solution

appropriately to a larger domain, multiply it by some cutoff function, and show that the

resultant satisfies some elliptic equations subject to the Neumann boundary conditions in

a smooth domain, for which the classical regularity and elliptic estimates apply.

We first extend the boundary function ϕ to the whole domain Ω. By the trace theorem,

one can find an extension ϕext ∈ H1(Ω) of ϕ to the domain Ω, such that ϕext = ϕ on Γ`,

in the sense of trace, and

c‖ϕext‖H1(Ω) ≤ ‖ϕ‖H 1
2 (Γ`)

≤ C‖ϕext‖H1(Ω), (A.10)
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for two positive constants c and C depending only on Ω. Thanks to this, in the rest of the

proof we always suppose that the boundary function ϕ has already been extended to the

whole domain Ω, such that ϕ ∈ H1(Ω) and the above estimate holds with ϕext = ϕ.

We first extend u, so that it satisfies a similar elliptic equation in the extended domain.

To this end, let Ω̃ = M × (2L0 − L1, 2L1 − L0), and extend u in z evenly, with respect to

the plane z = L0 and z = L1, that is we define

ũ(x′, z) =


u(x′, 2L0 − z), z ∈ (2L0 − L1, L0),

u(x′, z), z ∈ [L0, L1],

u(x′, 2L1 − z), z ∈ (L1, 2L1 − L0),

(A.11)

for x = (x′, z) ∈ Ω̃. The extended functions ã, f̃ , α̃, ϕ̃ are defined in the similar way as ũ.

Then one can check that ũ ∈ H1(Ω̃) is a weak solution to
−∆hũ− ∂z(ã∂zũ) = f̃ , in Ω̃,

∂nũ = ϕ̃, on Γ̃`,

∂ν ũ = 0, on Γ̃01,

(A.12)

where Γ̃` = ∂M × (2L0 − L1, 2L1 − L0) and Γ̃01 = M × {2L0 − L1, 2L1 − L0}.
We will introduce some appropriate truncation function of ũ, and show that the trun-

cation satisfies some elliptic equation, subject to the Neumann boundary condition, in

a smooth domain. To this end, let us first take a smooth bounded domain O, with

Ω ⊆ O ⊆ Ω̃, ∂O∩Ω̃∩Γ01 = ∅ and ∂O∩Ω̃∩ Γ̃01 = ∅, and choose a function η ∈ C∞0 (RN+1),

with η ≡ 1 on Ω, and η ≡ 0 on Ω̃ \ O. Since ũ is a weak solution to (A.12), choosing φη

as a testing function yields∫
Ω̃

[∇hũ · ∇h(φη) + ã∂zũ∂z(φη)]dx =

∫
Ω̃
f̃φηdx+

∫
Γ̃`

ϕ̃ηφdΓ`, (A.13)

for any φ ∈ H1(Ω̃). Noticing that ∂O = (∂O ∩ Ω̃) ∪ (∂O ∩ Γ̃s), and ∇hη = 0 on ∂O ∩ Ω̃,

integration by parts yields∫
Ω̃
∇hũ · ∇h(φη)dx =

∫
O

[∇h(ũη) · ∇hφ+ (∇h · (ũ∇hη) +∇hũ · ∇hη)φ]dx

−
∫
∂O∩Γ̃`

ũ∂nηφdΓ`. (A.14)

Noticing that ∂zη = 0 on ∂O ∩ Ω̃, it follows from integration by parts that∫
Ω̃
a∂zũ∂z(φη)dx =

∫
O
a∂z(ũη)∂zφdx+

∫
O

(∂z(a∂zηũ) + a∂zũ∂zη)φdx. (A.15)

Plugging (A.14) and (A.15) into (A.13), and noticing that η = 0 on Γ̃` \ ∂O, we deduce∫
O

[∇h(ũη) · ∇hφ+ a∂z(ũη)∂zφ]dx

=

∫
O

[f̃η − (∇h · (ũ∇hη) +∇hũ · ∇hη)− (∂z(a∂zηũ)

+a∂zũ∂zη)]φdx+

∫
∂O∩Γ̃`

(ϕ̃η + ũ∂nη)φdΓ`, (A.16)
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for any φ ∈ H1(Ω̃).

Define the truncation U = ũη, and denote

F = f̃η − (∇h · (ũ∇hη) +∇hũ · ∇hη)− (∂z(a∂zηũ) + a∂zũ∂zη), (A.17)

and

Φ =

{
ũ∂nη + ϕ̃η, on ∂O ∩ Γ̃`,

0, on ∂O \ Γ̃`.
(A.18)

Then, noticing that any function from H1(O) can be extended to be a function in H1(Ω̃),

(A.16) implies that U ∈ H1(O) is a weak solution to{
−∆hU − ∂z(ã∂zU) = F, in O,
∂NU = Φ, on ∂O,

(A.19)

where N is the unit outward normal vector at the boundary ∂O.

Since O is a smooth domain, one can now apply the classic regularity and elliptic

estimates to the truncation U . Then, by the assumptions, one can check that F ∈ L2(Ω),

and Φ ∈ H
1
2 (∂O), by the trace theorem. Therefore, it follows from the regularity and

elliptic estimates for the elliptic equations subject to the Neumann boundary conditions

in the bounded smooth domains, that U ∈ H2(O) and the following estimate holds

‖U‖H2(O) ≤ C(‖F‖L2(O) + ‖Φ‖
H

1
2 (∂O)

+ ‖U‖H1(O)), (A.20)

where the constant C depends only onO, the modulus of continuity of a, λ and ‖∂za‖L∞(O).

We can now derive the regularity and elliptic estimate for u from those for U . Recalling

that η ≡ 1 on Ω, one obtains u ∈ H2(Ω), and it is obvious that

‖u‖H2(Ω) ≤ ‖U‖H2(O). (A.21)

Note that

‖F‖L2(O) ≤ C(‖f‖L2(Ω) + ‖u‖H1(Ω)), (A.22)

for a positive constant C depending only on Ω, ‖a‖L∞(Ω) and ‖∂za‖L∞(Ω),

‖U‖H1(O) ≤ C‖u‖H1(Ω), (A.23)

for a positive constant C depending only on Ω, and by the trace inequality

‖Φ‖
H

1
2 (O)

≤ C‖Φ‖H1(O) ≤ C(‖u‖H1(Ω) + ‖ϕ‖H1(Ω))

≤ C(‖u‖H1(Ω) + ‖ϕ‖
H

1
2 (Γ`)

), (A.24)

for a positive constant C depending only on Ω. In the above inequality, one recalls that

the boundary function ϕ has already been extended to the whole domain, at the beginning

of the proof.

Thanks to the above estimates, it follows from (A.20) that

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (Γ`)

+ ‖u‖H1(Ω)), (A.25)

for a positive constant C depending only on Ω, the modulus of continuity of a, λ, ‖a‖L∞(Ω)

and ‖∂za‖L∞(O). This completes the proof of Lemma A.1. �
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Proposition A.2 (H2 regularity: the general case). Assume, in addition to the assump-

tions on a, f, ϕ in Lemma A.1, that

b ∈ L∞(Ω), α, β ∈W 1,∞(Ω), ψ ∈ H
1
2 (Γ01), (A.26)

where α and β have been extended to the whole domain Ω.

Then, the unique weak solution u stated in Proposition A.1 belongs to H2(Ω), and the

following estimate holds

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖ϕ‖
H

1
2 (Γ`)

+ ‖ψ‖
H

1
2 (Γ01)

+ ‖u‖H1(Ω)), (A.27)

for a positive constant C depending only on Ω, the modulus continuity of a, λ, ‖a‖L∞(Ω),

‖∂za‖L∞(Ω), ‖b‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).

Proof. We set

ϕ0 = ϕ− αu, ψ0 = ψ − βu, f0 = f − bu. (A.28)

Then it is obvious that u is a weak solution to
−∆hu− ∂z(a∂zu) = f0, in Ω,

∂nu = ϕ0, on Γ`,

∂νu = ψ0, on Γ01.

(A.29)

Since ψ0 ∈ H
1
2 (Γ01) by the trace theorem there is a function Ψ0 ∈ H2(Ω), such that

∂νΨ0 = ψ0 on Γ01, and ‖Ψ0‖H2(Ω) ≤ C‖ψ0‖
H

1
2 (Γ01)

for a positive constant C depending

only on Ω. Setting u1 = u − Ψ0, one can easily check that u1 is a weak solution to the

following elliptic problem
−∆hu1 − ∂z(a∂zu1) = f1, in Ω,

∂nu1 = ϕ1, on Γ`,

∂νu1 = 0, on Γ01,

(A.30)

where f1 and ϕ1 are given by

f1 = f0 + ∆hΨ0 + ∂z(a∂zΨ0), ϕ1 = ϕ0 − ∂nΨ0. (A.31)

Note that f1 ∈ L2(Ω) and ϕ1 ∈ H
1
2 (Γ`), by Lemma A.1, one has u1 ∈ H2(Ω), and the

following estimate holds

‖u1‖H2(Ω) ≤ C(‖f1‖L2(Ω) + ‖ϕ1‖
H

1
2 (Γ`)

+ ‖u1‖H1(Ω)), (A.32)

for a positive constant C depending only on Ω, the modulus continuity of a, λ, ‖a‖L∞(Ω)

and ‖∂za‖L∞(Ω). Thus, recalling that Ψ0 ∈ H2(Ω), it is clear that u = u1 + Ψ0 ∈ H2(Ω).

Recalling that ‖Ψ0‖H2(Ω) ≤ C‖ψ0‖
H

1
2 (Γ01)

, for a positive constant C depending only on

Ω, one deduces

‖u‖H2(Ω) ≤ ‖u1‖H2(Ω) + ‖Ψ0‖H2(Ω) ≤ ‖u1‖H2(Ω) + C‖ψ0‖
H

1
2 (Γ01)

, (A.33)

‖u1‖H1(Ω) ≤ ‖u‖H1(Ω) + ‖Ψ0‖H1(Ω) ≤ ‖u‖H1(Ω) + C‖ψ0‖
H

1
2 (Γ01)

, (A.34)

‖ϕ1‖
H

1
2 (Γ`)

≤ ‖ϕ0‖
H

1
2 (Γ`)

+ ‖∂nΨ0‖
H

1
2 (Γ`)

≤ ‖ϕ0‖
H

1
2 (Γ`)

+ C‖Ψ0‖H2(Ω)
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≤ C(‖ϕ0‖
H

1
2 (Γ`)

+ ‖ψ0‖
H

1
2 (Γ01)

), (A.35)

for a positive constant C depending only on Ω, and

‖f1‖L2(Ω) ≤ ‖f‖L2(Ω) + C‖u‖H1(Ω) + C‖Ψ0‖H2(Ω)

≤ C(‖f‖L2(Ω) + ‖u‖H1(Ω) + ‖ψ0‖
H

1
2 (Γ01)

), (A.36)

for a positive constant C depending only on Ω, ‖a‖L∞(Ω), ‖∂za‖L∞(Ω) and ‖b‖L∞(Ω).

Thanks to the above estimates, one derives from (A.32) that

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖ϕ0‖
H

1
2 (Γ`)

+ ‖ψ0‖
H

1
2 (Γ01)

+ ‖u‖H1(Ω)), (A.37)

for a positive constant C depending only on Ω, ‖a‖L∞(Ω), ‖∂za‖L∞(Ω) and ‖b‖L∞(Ω). One

still need to estimate ‖ϕ0‖
H

1
2 (Γ`)

+ ‖ψ0‖
H

1
2 (Γ01)

, which is done as follows. By the trace

inequality, one has

‖ϕ0‖
H

1
2 (Γ`)

+ ‖ψ0‖
H

1
2 (Γ01)

≤ ‖ϕ‖
H

1
2 (Γ`)

+ ‖ψ‖
H

1
2 (Γ01)

+ ‖αu‖
H

1
2 (Γ`)

+ ‖βu‖
H

1
2 (Γ01)

≤ ‖ϕ‖
H

1
2 (Γ`)

+ ‖ψ‖
H

1
2 (Γ01)

+ C(‖αu‖H1(Ω) + ‖βu‖H1(Ω))

≤ ‖ϕ‖
H

1
2 (Γ`)

+ ‖ψ‖
H

1
2 (Γ01)

+ C‖u‖H1(Ω), (A.38)

for a positive constant C depending only on Ω, ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω). Plugging the

above estimate into (A.37) yields the conclusion. �

A.2. Linear parabolic equations. Given a positive time T , set QT = Ω× (0, T ). Con-

sider the parabolic problem
∂tu+ Lu = f, in QT ,

Bu = Φ, on ∂Ω× (0, T ),

u(·, 0) = u0, on Ω,

(A.39)

where the elliptic operator L is given by

Lu = −∆hu− ∂z(a∂zu), (A.40)

the boundary operator B is given by

Bu =

{
∂nu+ αu, on Γ`,

∂νu+ βu, on Γ01,
(A.41)

and the boundary function Φ is given by

Φ =

{
ϕ, on Γ`,

ψ, on Γ01,
(A.42)

for some functions ϕ and ψ.

Throughout this subsection, we assume that the coefficients a, α and β in the elliptic

operator L and the boundary operator B are independent of the time variable t, while
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the nonhomogeneous functions ϕ and ψ are allowed to depend on t. Assume that the

coefficients a, α and β satisfy

a ∈ C(Ω), ∂za ∈ L∞(Ω), λ ≤ a(x) ≤ Λ, 0 ≤ α, β ∈W 1,∞(Ω), (A.43)

for some positive constants λ and Λ, where the functions α, β, defined on the boundary

∂Ω, have been extended to the whole domain Ω. We assume moreover that the boundary

functions ϕ,ψ and Φ satisfy

ϕ ∈ L2(0, T ;H
1
2 (Γ`)), ψ ∈ L2(0, T ;H

1
2 (Γ01)), ∂tΦ ∈ L2(∂Ω× (0, T )). (A.44)

We are going to prove the existence and uniqueness of weak and strong solutions (see

the definitions below) to (A.39).

Definition A.2. Given a positive time T ∈ (0,∞) and a function u0 ∈ L2(Ω). Assume

that (A.43) and (A.44) hold, and f ∈ L2(QT ). A function u is called a weak solution to

(A.39), if u ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)), and the following integral equality holds∫ T

0
[−(u, ∂tξ) + 〈u, ξ〉a]dt =

∫ T

0
b(f, ϕ, ψ, ξ)dt+ (u0, ξ(·, 0)), (A.45)

for any ξ ∈ H1(QT ), with ξ(·, T ) ≡ 0, where (·, ·) is the L2(Ω) inner product,

〈u, ξ〉a =

∫
Ω

(∇hu · ∇ξ + a∂zu∂zξ)dx+

∫
Γ`

αuξdΓ` +

∫
Γ01

aβuξdx′, (A.46)

and

b(f, ϕ, ψ, ξ) =

∫
Ω
fξdx+

∫
Γ`

ϕξdΓ` +

∫
Γ01

ψξdx′. (A.47)

Definition A.3. Given a positive time T ∈ (0,∞) and a function u0 ∈ H1(Ω). Assume

that (A.43) and (A.44) hold, and let f ∈ L2(QT ). A function u is called a strong solution

to (A.39), if

u ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∂tu ∈ L2(0, T ;L2(Ω)), (A.48)

the equation in (A.39) is satisfied, a.e. in QT , the boundary condition in (A.39) is satisfied

in the sense of trace, and the initial condition in (A.39) is fulfilled.

Let us first transform the nonhomogeneous boundary value problem to the homogeneous

one. For each t ∈ [0, T ], we define UΦ(·, t) as the unique solution to{
LUΦ = 0, in Ω,

BUΦ = Φ, on ∂Ω.
(A.49)

Noticing that Φ ∈ C([0, T ];L2(∂Ω)), by applying Proposition A.1 and Proposition A.2,

one can see that UΦ ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)), and

‖UΦ‖L∞(0,T ;H1(Ω)) + ‖UΦ‖L2(0,T ;H2(Ω)) ≤C
(
‖ϕ‖

L2(0,T ;H
1
2 (Γ`))

+ ‖ψ‖
L2(0,T ;H

1
2 (Γ01))

)
,
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for a positive constant C depending only on Ω, λ, the modulus of continuity of a, ‖a‖L∞(Ω),

‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω). Note that ∂tUΦ satisfies{
L∂tUΦ = 0, in Ω,

B∂tUΦ = ∂tΦ, on ∂Ω,
(A.50)

by Proposition A.1, it follows

‖∂tUΦ‖L2(0,T ;H1(Ω)) ≤ C‖∂tΦ‖L2(0,T ;L2(∂Ω)). (A.51)

Therefore, we have

‖UΦ‖L∞(0,T ;H1(Ω)) + ‖UΦ‖L2(0,T ;H2(Ω)) + ‖∂tUΦ‖L2(0,T ;H1(Ω))

≤ C
(
‖ϕ‖

L2(0,T ;H
1
2 (Γ`))

+ ‖ψ‖
L2(0,T ;H

1
2 (Γ01))

+ ‖∂tΦ‖L2(0,T ;L2(∂Ω))

)
, (A.52)

for a positive constant C depending only on Ω, λ, the modulus of continuity of a, ‖a‖L∞(Ω),

‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).

Suppose that u is a weak (strong) solution to (A.39), by setting v = u − UΦ, one can

easily verify that v is a weak (strong) solution to the following problem
∂tv + Lv = g, in QT ,

Bv = 0, on ∂Ω× (0, T ),

v(·, 0) = v0, on Ω,

(A.53)

where

g = f − ∂tUΦ, v0 = u0 − UΦ(·, 0). (A.54)

Conversely, if v is a weak (strong) solution to (A.53), the u = v + UΦ is a weak (strong)

solution to (A.39). Therefore, to prove the existence and uniqueness of weak (strong)

solutions to (A.39), it suffices to prove the corresponding results for (A.53).

We are going to construct a sequence of approximated solutions vN to the parabolic

problem (A.53) by discretizing in time. Let g ∈ L2(QT ). We fix an arbitrary positive

integer N , and let h = T
N . We set

gk+1 =
1

h

∫ (k+1)h

kh
g(t)dt, k = 0, 1, · · · , N − 1. (A.55)

Due to the assumption, it is obvious that gk+1 ∈ L2(Ω) for k = 0, 1, · · · , N − 1. It follows

from the Minkowski and Hölder inequalities that

h

N−1∑
k=0

‖gk+1‖L2(Ω) =

N−1∑
k=0

∥∥∥∥∥
∫ (k+1)h

kh
g(t)dt

∥∥∥∥∥
L2(Ω)

≤
N−1∑
k=0

∫ (k+1)h

kh
‖g(·, t)‖L2(Ω)dt

=

∫ T
0
‖g(·, t)‖L2(Ω)dt = ‖g‖L1(0,T ;L2(Ω)) ≤

√
T ‖g‖L2(QT ), (A.56)

and

h

N−1∑
k=0

‖gk+1‖2L2(Ω) =
1

h

N−1∑
k=0

∥∥∥∥∥
∫ (k+1)h

kh
g(t)dt

∥∥∥∥∥
2

L2(Ω)
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≤ 1

h

N−1∑
k=0

(∫ (k+1)h

kh
‖g(·, t)‖L2(Ω)dt

)2

≤
∫ T

0
‖g(·, t)‖2L2(Ω)dt = ‖g‖2L2(QT ). (A.57)

We set v0 = v0 and define vk+1 for k = 0, 1, · · · , N − 1 successively as the unique

solution to the elliptic problem{
vk+1−vk

h + Lvk+1 = gk+1, in Ω,

Bvk+1 = 0, on ∂Ω.
(A.58)

According to Proposition A.1 and Proposition A.2 there is a unique solution vk+1 ∈ H2(Ω)

to (A.58) for k = 0, 1, · · · , N − 1. Define the approximate solution vN as

vN (t) =
N−1∑
k=0

χ[kh,(k+1)h)(t)v
k+1, t ∈ [0, T ). (A.59)

Some a priori estimates on vN are stated in the following lemma.

Lemma A.2. Assume that (A.43) holds. Set v0 = v0 ∈ L2(Ω), and let vk+1, k =

0, 1, · · · , N −1, be the functions defined by (A.58), and vN by (A.59). Then, the following

estimates hold:

(i) There is a positive constant C depending only on λ and T , such that

‖vN‖L∞(0,T ;L2(Ω)) + ‖vN‖L2(0,T ;H1(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖L2(Ω)); (A.60)

(ii) If we assume in addition that v0 ∈ H1(Ω), then we have

‖vN‖L∞(0,T ;H1(Ω)) + ‖vN‖L2(0,T ;H2(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖H1(Ω)), (A.61)

for a positive constant C depending only on Ω, λ, T , the modulus of continuity of a,

‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).

Proof. (i) Testing (A.58) by vk+1, and summing the results with respect to k from 0 to

M yields

h
M∑
k=0

〈vk+1, vk+1〉a +

M∑
k=0

(vk+1 − vk, vk+1) = h

M∑
k=0

(gk+1, vk+1), (A.62)

for M = 0, 1, · · · , N − 1. Straightforward calculations yield

M∑
k=0

(vk+1 − vk, vk+1) =
1

2

(
‖vM+1‖2L2(Ω) − ‖v0‖2L2(Ω) +

M∑
k=0

‖vk+1 − vk‖2L2(Ω)

)

≥ 1

2

(
‖vM+1‖2L2(Ω) − ‖v0‖2L2(Ω)

)
. (A.63)

It follows from the Cauchy inequality that

M∑
k=0

(gk+1, vk+1) ≤ sup
0≤k≤M

‖vk+1‖L2(Ω)

M∑
k=0

‖gk+1‖L2(Ω)
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≤ sup
0≤k≤N−1

‖vk+1‖L2(Ω)

N−1∑
k=0

‖gk+1‖L2(Ω). (A.64)

Thanks to (A.63) and (A.64) it follows from (A.62) using (A.56) that

h

M∑
k=0

〈vk+1, ak+1〉a +
1

2
‖vM+1‖2L2(Ω)

≤ h sup
0≤k≤N−1

‖vk+1‖L2(Ω)

N−1∑
k=0

‖gk+1‖L2(Ω) +
1

2
‖v0‖2L2(Ω)

≤ sup
0≤k≤N−1

‖vk+1‖L2(Ω)

√
T ‖g‖L2(QT ) +

1

2
‖v0‖2L2(Ω), (A.65)

for M = 0, 1, · · · , N − 1. Setting

A = sup
0≤M≤N−1

(
h

M∑
k=0

〈vk+1, vk+1〉a +
1

2
‖vM+1‖2L2(Ω)

)
, (A.66)

it follows from the Young inequality and (A.65) that

A ≤
√

2A
√
T ‖g‖L2(QT ) +

1

2
‖v0‖2L2(Ω)

≤ 1

2
A+ T ‖g‖2L2(QT ) +

1

2
‖v0‖2L2(Ω), (A.67)

and thus

A ≤ 2T ‖g‖2L2(QT ) + ‖v0‖2L2(Ω). (A.68)

Thanks to this, and recalling that 〈v, v〉a ≥ λ‖∇v‖2L2(Ω), one obtains

hλ
N−1∑
k=0

‖∇vk+1‖2L2(Ω) + sup
0≤k≤N−1

‖vk+1‖2L2(Ω) ≤ 8T ‖g‖2L2(QT ) + 4‖v0‖2L2(Ω), (A.69)

from which, recalling the definition of vN , (i) follows.

(ii) Testing (A.58) by vk+1 − vk, and summing the resultants with respect to k from 0

to M , for M = 0, 1, · · · , N − 1, yields

M∑
k=0

(
〈vk+1, vk+1 − vk〉a +

1

h
‖vk+1 − vk‖2L2(Ω)

)
=

M∑
k=0

(gk+1, vk+1 − vk), (A.70)

from which, noticing that

M∑
k=0

〈vk+1, vk+1 − vk〉a =
1

2

(
〈vM+1, vM+1〉a − 〈v0, v0〉a +

M∑
k=0

〈vk+1 − vk, vk+1 − vk〉a

)
,

(A.71)

one obtains

〈vM+1, vM+1〉a +
2

h

M∑
k=0

‖vk+1 − vk‖2L2(Ω) ≤ 2

M∑
k=0

(gk+1, vk+1 − vk) + 〈v0, v0〉a, (A.72)
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for M = 0, 1, · · · , N − 1. Applying the Cauchy inequality to the righthand side of the

above equality, and using (A.57), one obtains

2
M∑
k=0

(gk+1, vk+1 − vk) ≤ 2
M∑
k=0

‖gk+1‖L2(Ω)‖vk+1 − vk‖L2(Ω)

≤ 1

h

M∑
k=0

‖vk+1 − vk‖2L2(Ω) + h
M∑
k=0

‖gk+1‖2L2(Ω)

≤ 1

h

M∑
k=0

‖vk+1 − vk‖2L2(Ω) + ‖g‖2L2(QT ), (A.73)

which, plugged into the previous inequality, yields

〈vM+1, vM+1〉a + h

M∑
k=0

∥∥∥∥vk+1 − vk

h

∥∥∥∥2

L2(Ω)

≤ ‖g‖2L2(QT ) + 〈v0, v0〉a, (A.74)

for M = 0, 1, · · · , N − 1, and thus

sup
1≤k≤N

〈vk, vk〉a + h
N−1∑
k=0

∥∥∥∥vk+1 − vk

h

∥∥∥∥2

L2(Ω)

≤ ‖g‖2L2(QT ) + 〈v0, v0〉a. (A.75)

Combining (A.57), (A.69) and (A.75), and applying the H2 estimate to the elliptic op-

erator L, there is a positive constant C depending only on Ω, λ, the modulus of continuity

of a, ‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω), such that

h

N−1∑
k=1

‖vk+1‖2H2(Ω) ≤ Ch

N−1∑
k=1

(‖Lvk+1‖2L2(Ω) + ‖vk+1‖2H1(Ω))

≤ Ch

N−1∑
k=1

(∥∥∥∥gk+1 − vk+1 − vk

h

∥∥∥∥2

L2(Ω)

+ ‖vk+1‖2H1(Ω)

)
≤ C(T 2 + 1)(‖g‖2L2(QT ) + ‖v0‖2H1(Ω)), (A.76)

from which, recalling the definition of vN and (A.75), (ii) follows. �

The existence and uniqueness of weak and strong solutions to (A.53) is now stated in

the following proposition.

Proposition A.3. Given a positive time T ∈ (0,∞) and the initial data v0 ∈ L2(Ω), we

assume that (A.43) holds, and that g ∈ L2(QT ).

Then, there is a unique weak solution to (A.53), satisfying

‖v‖L∞(0,T ;L2(Ω)) + ‖v‖L2(0,T ;H1(Ω)) ≤C(‖g‖L2(QT ) + ‖v0‖L2(Ω)),

for a positive constant C depending only on λ and T .

Moreover, if we assume in addition that v0 ∈ H1(Ω), then the unique weak solution is

a strong one, and satisfies

‖v‖L∞(0,T ;H1(Ω)) + ‖v‖L2(0,T ;H2(Ω)) + ‖∂tv‖L2(QT ) ≤ C(‖g‖L2(QT ) + ‖v0‖H1(Ω)), (A.77)
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for a positive constant C depending only on Ω, λ, T , the modulus of continuity of a,

‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).

Proof. Let gk+1, k = 0, 1, · · · , N − 1, be the functions defined by (A.55), and set

gN (t) =
N−1∑
k=0

χ[kh,(k+1)h)(t)g
k+1. (A.78)

Recalling that g ∈ L2(0, T ;L2(Ω)), one can verify that gN → g, in L2(0, T ;L2(Ω)), as

N →∞. Let vk+1, k = 0, 1, · · · , N − 1, be the functions defined by (A.58). Let vN be the

function given by (A.59).

By Lemma A.2, the following estimate holds

‖vN‖L∞(0,T ;L2(Ω)) + ‖vN‖L2(0,T ;H1(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖L2(Ω)), (A.79)

for a positive constant C depending only on λ and T ; and if we assume in addition that

v0 ∈ H1(Ω), then the following additional estimate holds

‖vN‖L∞(0,T ;H1(Ω)) + ‖vN‖L2(0,T ;H2(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖H1(Ω)), (A.80)

for a positive constant C depending only on Ω, λ, T , the modulus of continuity of a,

‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω). Thanks to the above estimates, there

is a subsequence, still denoted by {vN}∞N=1, and a function v, with v ∈ L∞(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)), such that

‖v‖L∞(0,T ;L2(Ω)) + ‖v‖L2(0,T ;H1(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖L2(Ω)), (A.81)

for a positive constant C depending only on λ and T , and

vN
∗
⇀ v in L∞(0, T ;L2(Ω)), and vN ⇀ v in L2(0, T ;H1(Ω)). (A.82)

Moreover, if we assume in addition that v0 ∈ H1(Ω), then the above v has the additional

regularity that v ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)), and

‖v‖L∞(0,T ;H1(Ω)) + ‖v‖L2(0,T ;H2(Ω)) ≤ C(‖g‖L2(QT ) + ‖v0‖H1(Ω)), (A.83)

for a positive constant C depending only on Ω, λ, T , the modulus of continuity of a,

‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).

We take an arbitrary function η ∈ C1(QT ) with η(·, t) ≡ 0 when t is close enough

to T , and set ηk = η(·, hk), k = 0, 1, · · · , N − 1. Then, for large enough N , one has

ηN−1 = η(·, (1− 1
N )T ) ≡ 0. Define two functions ηN and ∂̄tηN as

ηN =

N−1∑
k=0

χ[kh,(k+1)h)(t)η
k, ∂̄tηN =

N−1∑
k=0

χ[kh,(k+1)h)(t)
ηk+1 − ηk

h
. (A.84)

Then, using η ∈ C1(QT ), one can show that

ηN → η, in L2(0, T ;H1(Ω)), and ∂̄tηN → ∂tη, in L2(QT ). (A.85)
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Taking ηk as the testing function, and summing the resultant with respect to k from 0

to N − 1 yields

h

N−1∑
k=0

〈vk+1, ηk〉a +

N−1∑
k=0

(vk+1 − vk, ηk) = h

N−1∑
k=0

(gk+1, ηk). (A.86)

Direct calculations yield

N−1∑
k=0

(vk+1 − vk, ηk) = (vN , ηN−1)− (v0, η
0)−

N−1∑
k=1

(vk, ηk − ηk−1)

= −(v0, η
0)− h

N−1∑
k=1

(vk,
ηk − ηk−1

h
)

= −(v0, η
0)− h

N−2∑
k=0

(vk+1,
ηk+1 − ηk

h
), (A.87)

from which, noticing that ηN = ηN−1 ≡ 0, one obtains

N−1∑
k=0

(vk+1 − vk, ηk) = −(v0, η
0)− h

N−1∑
k=0

(vk+1,
ηk+1 − ηk

h
). (A.88)

Thanks to the above equality, it follows from (A.86) that

−h
N−1∑
k=0

(vk+1,
ηk+1 − ηk

h
) + h

N−1∑
k=0

〈vk+1, ηk〉a = h
N−1∑
k=0

(gk+1, ηk) + (v0, η
0). (A.89)

Recalling the definitions of vN , gN , ηN and ∂t̄ηN , one can verify that the above equality

is equivalent to∫ T

0
(−(vN , ∂̄tηN ) + 〈vN , ηN 〉a)dt =

∫ T

0
(gN , ηN )dt+ (v0, η(·, 0)), (A.90)

from which by letting N → ∞ due to ηN → η in L2(0, T ;H1(Ω)) and ∂̄tηN → ∂tη in

L2(QT ) one obtains∫ T

0
(−(v, ∂̄tη) + 〈v, η〉a)dt =

∫ T

0
(g, η)dt+ (v0, η(·, 0)). (A.91)

Therefore, v is a weak solution to (A.53) fulfilling the estimate (A.81). Moreover, if

in addition v0 ∈ H1(Ω), one has the additional regularities that v ∈ L2(0, T ;H2(Ω)) ∩
L∞(0, T ;H1(Ω)), and the estimate (A.83) holds. This proves the existence part of the

proposition, while the uniqueness can be proven in the standard way, see e.g. Ladyzhen-

skaya et al. [24].

We now prove that the weak solutions just established are strong ones and satisfy

the corresponding estimate, if v0 ∈ H1(Ω). Recall that, in this case, one has v ∈
L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)), and (A.83) holds. Thanks to this fact, and notic-

ing that the equation in (A.53) is satisfied in the sense of distribution, one obtains

∂tv ∈ L2(QT ), which, along with v ∈ L2(0, T ;H2(Ω)) and g ∈ L2(QT ), in turn implies

that the equation in (A.53) is satisfied, a.e. in QT . Thus, recalling the estimate (A.83), one

obtains the desired L2(QT ) estimate for ∂tv, stated in the proposition. The regularities
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v ∈ L2(0, T ;H2(Ω)) and ∂tv ∈ L2(QT ) imply v ∈ C([0, T ];H1(Ω)), from which, using

the weak formula of weak solution to (A.53), one can see that v(·, 0) = v0. Hence the

initial condition is fulfilled. Thanks to the regularities of v, by integration by parts in the

weak formula of (A.53), one can further see that the boundary conditions are satisfied in

the sense of trace. Therefore, v is a strong solution to (A.53), and satisfies the desired

estimate. This completes the proof of Proposition A.3. �

Recalling (A.52), as a direct corollary of Proposition A.3, one obtains the existence and

uniqueness of weak and strong solutions to (A.39), which is stated in the following:

Corollary A.1. Given a positive time T ∈ (0,∞) and the initial data u0 ∈ L2(Ω). We

assume that (A.43) and (A.44) hold, and that f ∈ L2(QT ). Set

M0 = ‖ϕ‖
L2(0,T ;H

1
2 (Γ`))

+ ‖ψ‖
L2(0,T ;H

1
2 (Γ01))

+ ‖∂tΦ‖L2(0,T ;L2(∂Ω)). (A.92)

Then, there is a unique weak solution to (A.39), satisfying

‖u‖L∞(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H1(Ω)) ≤ C(‖f‖L2(QT ) + ‖u0‖L2(Ω) +M0), (A.93)

for a positive constant C depending only on λ and T .

Moreover, if we assume in addition that u0 ∈ H1(Ω), then the unique weak solution is

a strong one, and satisfies

‖v‖L∞(0,T ;H1(Ω)) + ‖v‖L2(0,T ;H2(Ω)) + ‖∂tv‖L2(QT ) ≤ C(‖f‖L2(QT ) + ‖u0‖H1(Ω) +M0),

(A.94)

for a positive constant C depending only on Ω, λ, T , the modulus of continuity of a,

‖a‖L∞(Ω), ‖∂za‖L∞(Ω), ‖α‖W 1,∞(Ω) and ‖β‖W 1,∞(Ω).
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