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ABSTRACT: Identification of the main reaction coordinates
and building of kinetic models of macromolecular systems
require a way to measure distances between molecular
configurations that can distinguish slowly interconverting
states. Here we define the commute distance that can be
shown to be closely related to the expected commute time
needed to go from one configuration to the other, and back. A
practical merit of this quantity is that it can be easily
approximated from molecular dynamics data sets when an
approximation of the Markov operator eigenfunctions is
available, which can be achieved by the variational approach to approximate eigenfunctions of Markov operators, also called
variational approach of conformation dynamics (VAC) or the time-lagged independent component analysis (TICA). The VAC
or TICA components can be scaled such that a so-called commute map is obtained in which Euclidean distance corresponds to
the commute distance, and thus kinetic models such as Markov state models can be computed based on Euclidean operations,
such as standard clustering. In addition, the distance metric gives rise to a quantity we call total kinetic content, which is an
excellent score to rank input feature sets and kinetic model quality.

1. INTRODUCTION

Molecular dynamics (MD) simulations are increasingly easy to
generate in a high-throughput manner, using high-performance
computers, distributed computing networks, or clusters of
graphical processing units (GPUs).1−12 This technological
advance has opened up the possibility to sample biomolecular
processes that involve rare events, including peptide and protein
folding, protein conformational changes, and protein−ligand
binding extensively.9,13−16 As a result of this development, mass
trajectory data of aggregate milliseconds can now be routinely
generated, shifting the problem more and more from simulation
to data analysis. Consequently, automation-capable analysis and
machine learning methods to extract key mechanistic and kinetic
information have received great attention recently.17−39

Essentially all these methods use some sort of distance metric
by which they measure the similarity between molecular
configurations, before proceeding to further analyses. Markov
state models and core-based Markov models are based on state
space discretization that employ grids or clustering in some
metric space.34,40 In kernel-based methods, the kernel function
translates distances in some metric space into a similarity
measure.31,41,42 In the variational approach of conformation
dynamics (VAC), the distance metric is defined by means of a
basis set that nonlinearly transforms molecular coordinates or
order parameters.29,43,44 The key concern of these methods is to
estimate mechanisms and kinetics frommolecular dynamics, and
in order to do that successfully they require a distance metric that
is able to distinguish between molecular configurations when

they are kinetically distant. An ideal distance metric for this
purpose is one that assigns large distances between pairs of
configurations when transitions between them are rare, and small
distances when they are rapidly mixing.
For a complex macromolecular system it is nearly impossible

to design a suitable distance metric a priori, and it is often
misleading to use metrics based on structural similarities because
large-scale motions such as loop motions can be fast, while small-
scale motions such as isomerization of packed rings or
dissociation of salt bridges can be slow. In Markov state
modeling, adaptive or iterative approaches have been suggested
to design discretizations that would give rise to a good resolution
of the slow processes, without using an excessive number of
clusters.22,45−47 Recently, we have proposed the construction of a
kinetic map based on a transformation of the input coordinate
space into a new space in which Euclidean distances
approximately correspond to kinetic distances.38 While it was
shown to outperform existing metrics in distinguishing slow and
fast events, this approach still suffered the limitation that the
kinetic mapand the corresponding distance metriccritically
depended on the choice of a delay or lag time parameter used. In
addition, the distance metric did not lend itself to a clear physical
interpretation.
In the present paper we extend the previous approach38 by

integrating over the lag time parameter. We call the resulting
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distance “commute distance”, dcomm(x,y). The dcomm is
completely independent of parameter choices in toy systems
and robust to parameter changes when estimated frommolecular
dynamics data. Moreover, twice the squared commute distance,
2dcomm

2 , is shown to approximate the commute time, that is, the
mean time needed to transition from one molecular config-
uration to the other, and back. The relevance of the commute
time as a metric has has been pointed out in graph theory.48 We
demonstrate that commute distance can be practically computed
from sampled MD data by employing the VAC or TICA.35,36,49

We present an algorithm that allows the transformation of the
molecular coordinates or order parameters used as an input to a
new space in which the Euclidean distance corresponds to the
commute distance. We call this transformed space the “commute
map”. Clustering operations in the commute map are shown to
provide high-quality partitioning into metastable sets, thus
allowing the robust definition of Markov state models.

2. THEORY
2.1. Commute Distance. We consider a dynamical system

with a state space Ω, and an associated propagator, τ , that is, a
Markov operator that propagates a probability density of states
ρt(x), ∀x ∈ Ω in time as

∫ρ ρ

ρ

= |

=

τ τ

τ

+ ∈Ω
py x y x x
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( ) ( ) ( ) d (1)
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In the definition above, pτ(y|x) is the transition density, that is,
the probability that the dynamics process, when located at
configuration x at time t, will be found at configuration y at time t
+ τ. We assume that the system has a unique equilibrium density
(the Boltzmann distribution) defined by

π π= τx x( ) ( ) (3)

We define a distance metric that assigns to each pair of molecular
configurations x1, x2 a distance that is related to the time needed
to travel between these configurations. Following ref 50, we start
with the definition of the squared kinetic distance at lag time τ:
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This definition has the following interpretation: We start an
ensemble at initial state x1 and another ensemble at initial state x2,
let these ensembles evolve for time τ and then compute the
distance between their probability distributions. If the starting
points were in the same metastable state, or only separated by
small barriers that could be overcome within time τ, then their
distributions will have become similar after time τ, and their
kinetic distance is small. On the other hand, if the two states were
separated by large barriers that could not be overcome within
time τ, their distributions will still be very different after time τ,
and their kinetic distance is large.
At this point, eq 4 is purely a mathematical definition, but it has

been shown that it can be approximated from simulation data.38

The kinetic distance (eq 4) was originally introduced in ref 51 as
the natural diffusion distance for diffusion processes, and when
expressed in scaled diffusion coordinates one obtains the well-
known diffusion map.31,50 In ref 38 we used the same idea and

extended its definition and application to other stochastic
processes which have a unique stationary distribution, in
particular to MD simulations.
Unfortunately, the metric (eq 4), and thus all algorithms using

it, depend very strongly on the lag time τ. It is evident from its
definition that this kinetic distance can separate fast and slow
processes if there is a clear time scale separation and an
appropriate value for the lag time τ is chosen in between fast and
slow time scales. Unfortunately these time scales are often
unknown at the beginning of the analysis, and one would like a
metric that can robustly detect them without requiring any a
priori knowledge of the system under investigation.
To avoid this dependency, we here introduce the following

integrated version of the kinetic distance and call it commute
distance, or short dcomm, for reasons that will become clear later.
Its square is defined by

∫ τ= | − |
τ τ τ

π=

∞

−
d p px x y x y x( , ) ( ) ( ) dcomm

2
1 2

0
1 2

2

1 (6)

and we will examine its properties in the following sections. This
distance metric measures the time-integrated difference between
the two distributions when starting in two states x1 and x2. It is
obvious that when the starting points are equal, x1 = x2, then IKD

2

= 0. Since we assume the dynamics to possess a unique
equilibrium distribution, the integrand of eq 6 tends to 0 for τ→
∞, and the commute distance dcomm(x1, x2) will have a finite value
when this convergence is sufficiently fast. In practice this is the
case when the dynamics have amaximum relaxation time scale, as
we expect it to have in molecular dynamics. As a counterexample,
dcomm(x1, x2) is not a meaningful quantity for free diffusion on an
infinite domain, as there is no finite upper bound to the relaxation
time scales in this process.
In the following, in order to explicitly distinguish it from the

dcomm, we indicate the previously defined kinetic distance
Dτ(x1, x2) (defined by eq 4) as τ-kinetic distance.

2.2. Spectral Form of the Commute Distance and the
CommuteMap.Themathematical definition eq 6 is only useful
for very simple systems for which the transition density pτ(y|x1)
can be analytically written and integrated. However, it is
straightforward to obtain an expression for the commute
distance that is useful to approximate it in practice, and does
not require execution of the integration over τ numerically.
Following ref 38, we note that for every metastable Markov
process that fulfills the detailed balance with respect to the
equilibrium distribution π(x), that is, π(x) pτ(y|x) = π( y) pτ(x|y),
the transition density can be approximated by the spectral
decomposition:

∑ λ τ ψ π ψ τ ρ| = +τ
=

p y x x y y x( ) ( ) ( ) ( ) ( ) ( ) ( )
j

n

j j j t
1

fast

(7)

where λj(τ) and ψ j(x) are the eigenvalues and eigenfunctions of
the backward propagator, , that is, the operator adjoint to the
propagator . The contribution τ ρ x( ) ( )t

fast contains the fast
processes and vanishes at lag times larger than the slowest
relaxation time scale contained therein, such that pτ(y|x) ≈
∑j=1

n λj (τ) ψj(x) π(y) ψj(y). When a realization of the dynamical
process is available, λj(τ) and ψj(x) can be approximated with
methods discussed in section 2.4. We use the convention to
normalize all eigenfunctions as ⟨ψi(x)|ψj(x)⟩π = δ ij and sort the
eigenvalues by norm
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λ λ λ= ≥ | | ≥ ≥ | |1 ... n1 2

These eigenvalues are exponentially decaying functions of the lag
time τ:

λ τ = τ−( ) ej
t/ j

(8)

where tj is the relaxation time scale of the jth process.
When eq 7 is inserted into eq 4, it can be easily shown that the

kinetic distance at lag time τ, Dτ(x1, x2) can be estimated as
follows:

∑ λ τ ψ λ τ ψ≃ −τ
=
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2

1 2
2

1 2
2
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Note that this expression does not depend on the stationary
process with eigenvalue one, as ψ1(x) is a constant function, and
thus ψ1(x1)− ψ1(x2)≡ 0. Inserting this result into eq 6, and using
eq 8 for the eigenvalue dependence on τ, we can compute an
expression of the commute distance:

∫
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In the above expression, tj is the relaxation time scale of the jth
process, as defined in eq 8.
Proceeding analogously as in ref 38, a similar but practically

less useful result can be obtained for nonreversible dynamics.
Equation 10 shows that the commute distance equals the

Euclidean distance in the space of coordinates:

ψ ψ̃ = t x/2 ( )j j j 1

These coordinates thus form the natural metric space with
respect to the presently defined commute distance, and a suitable
set of coordinates for subsequent operations using the Euclidean
distance, such as clustering approaches. We call this metric space
the commute map, in analogy to the terms diffusion map or
kinetic map used before.38,51 The form eq 12 makes it apparent
that the squared commute distance has the unit of time. The
relationship of square distance and time is reminiscent of a
diffusion process. As discussed in the next section, it can be
shown that the squared commute distance dcomm

2 (xi, xj) between
two configurations xi and xj is equivalent to half the commute
time tcomm(xi, xj) between xi and xj:

=
+

t
t t

x x( , )
2i j

ij ji
comm (14)

where tij is the mean first passage time from xi to xj, that is, the
expected time for the dynamics governed by (1) to reach xj when
starting in xi. Therefore, dcomm

2 (xi, xj) provides a direct measure of
the time needed to connect the two configurations xi and xj
kinetically. This insight makes an interesting connection to graph
theory, for which the commute time has been found to be an
excellent embedding metric for the graph.48

Finally, the metric gives rise to a kinetic variance or kinetic
content of each eigenvalue/eigenvector pair. Analogously to ref
38, we compute the variance of the commute distance along each
coordinate, giving rise to the kinetic content of that process:

ψ ψ= ⟨ ̃| ̃⟩ =πK
t
2i i i

i

and the total kinetic content of the system:

∑=
=

K
t
2i

n
i

1

Note that the kinetic content has the physical unit of a time, and
it equals half the sum of all relaxation times in the system. Clearly,
the total kinetic content is only finite if the distribution of
relaxation time scales decays sufficiently fast, as we expect for
systems investigated by molecular dynamics, but may in practice
require some regularization of the estimated eigenvalues (see
section 2.4). Note that the kinetic content is maximized by the
variational approach (section 2.4) and can be used as a cross-
validation score similar to the sum of eigenvalues used in ref 47.
The fraction of kinetic content captured by the first m

dimensions of the kinetic map is given by

=
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This expression can be used as a practical dimensionality
reduction strategy as it provides the m dimensions (containing
the m slowest processes) needed to explain a desired percentage
(e.g., 95%) of the total kinetic content of the system.

2.3. Example: Commute Distance of Simple Markov
Jump Processes. To get a feeling for what the dcomm measures,
let us first consider a simple two-state, discrete-time system
described by the rate matrix of a Markov jump process, or Master
equation model:52

=
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−
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Note that the rate matrix has the same eigenvectors as the
corresponding transition matrices P(τ) = exp(τK), where τ is the
lagtime. Here we use a rate matrix rather than a transition matrix,
because the time-integral in the definition of the commute
distance (eq 6) cannot be directly evaluated in a scenario where
the true dynamics occurs in (macroscopic) discrete time steps.
The rate matrix above has only one relaxation time scale (the
exchange process between the two states):

κ
= − =

+
t

k k
1 1

2
2 12 21 (16)
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Inserting these results into eq 10 gives the following expression
for the commute distance between the two substates:
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We compare this quantity with the mean first-passage time t12,
from state 1 to state 2, and t21, from state 2 to 1. The general
definition of mean first passage time tij between two states i and j
for a Markov jump process with rate matrix K = [kij]:
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in the case of the two-state system above trivially reduces to
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Thus, for the simple example, it is straightforward to show that
twice the square of the commute distance is equal to the
commute time, that is, the sum of the first passage times from
state 1 to state 2 and return. We note that when drawing an
analogy to a one-dimensional diffusion process, dcomm has the
role of a diffusion constant and tcomm is the time needed to diffuse
a unit length.
How is dcomm

2 related to the round-trip time more generally?
We show in the Appendix that if the full set of exact
eigenfunctions ψi and associated time scales ti are used in eq
10, the square of the commute distance is always equivalent to
the half commute time:

=
+

=d
t t t

x x
x x
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2i j
ij ji i j
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As each term of eq 12makes a nonnegative contribution to dcomm
2 ,

it is obvious that when we only include the first n < ∞ terms in
the sum, the correspondingly truncated commute distance
dcomm,n
2 will be a lower bound to the half round-trip time:

≤
+

d
t t

x x( , )
2n i j

ij ji
comm,
2

(19)

2.4. Estimating Commute Distances and Commute
Maps from Data. The variational approach to approximate
eigenfunctions of Markov operators, also called variation
approach of conformation dynamics (VAC29,43) and the time-
lagged independent component analysis (TICA35,36) as a special
case of the VAC, can be used to approximate relaxation time
scales tj and eigenfunctions ψj(x), and thus used to compute
commute distances and commute maps according to eq 10.

We briefly restate here the algorithm resulting from refs 29 and
43 in matrix notation. Suppose we are given a simulation
trajectory measured in some set of order parameters that are
assumed to be able to trace the slow kinetics (e.g., interatomic or
inter-residue distances, torsions, and Cartesian coordinates in
some reference frame, arbitrary nonlinear functions of molecular
coordinates, or any combination of the listed options). Denote
these order parameters xt̃,i, with time index t = 1, ..., T (trajectory
length T) and dimension index i = 1, ..., n. To compute commute
distances, we will always strip the mean from the coordinates, in
particular we will use:

∑μ = ̃
τ

=

−

xi
t

T

t i
1

,

where τ is the lag time at which we will be performing the
calculation, and we remove the mean by xt,i = xt̃,i − μi. We then
define the two matrices
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and compute the moment matrices
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Optionally we can use the symmetrized version with
μi = ∑t = 1

T−τ xt̃,i + ∑t = τ
T xt̃,i, C00 = X0

TX0 + Xτ
TXτ, and C0τ = X0

TXτ

+ Xτ
TX0 in order to enforce a real-valued solution, and then solve

the generalized eigenvalue problem:

Λ= ̂
τC R C R0 00

with eigenvector matrices R and the diagonal matrix of
eigenvalues, Λ̂ and where we use the convention that the
eigenvectors are normalized to fulfill riC00ri

T = 1 for all i.
According to the variational principle of conformation dynamics,
the eigenvalues resulting from this solution are approximations
to the true eigenvalues from below λî(τ) ≤ λi(τ) for all i and τ.

29

The eigenvectors of this solution approximate the transfer
operator eigenfunctions ψi(xt) evaluated on the sampled
configurations xt as

ψΨ = ≈ X R[ ]ti 0

With the use of the normalization condition above, the resulting
e i g e n f u n c t i o n t r a j e c t o r i e s h a v e v a r i a n c e 1 :

τ ψ− ∑ =τ−
=
−T( ) 1t

T1
1 ti

2 . To use this approach to estimate the
commute map, we simply compute the estimated relaxation time
scales

τ τ
λ τ

̂ = −
| ̂ |

t ( )
ln ( )i

i

Given the estimated time scales tî(τ), we can compute the
commute map as

Ψ′ = ̂tX Rdiag( /2 )i0 (20)

Euclidean distances in these commute map coordinates
approximate the commute distance, that is, for any two data
points x1 and x2 sampled along the trajectory, we have
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ψ ψ̂ = ′ − ′d x x( , ) t tcomm
2

1 2 1 2 2

2

Note that by removing the mean, we have removed the stationary
eigenpair (λ1 = 0, ψ1 = 1) from the solution. Thus, the relaxation
time scales obtained from the algorithm above will be variational
approximations of the dynamic relaxation time scales, that is, t1̂≈
t2, ..., tn̂≈ tn+1. The stationary eigenpair does not contribute to the
commute distance, which motivates us to use the mean-free
coordinates for the present application of the variational
approach.
In the algorithm described above, we can only approximate n

(number of the chosen molecular order parameters or basis
functions) eigenfunctions. According to eq 19, the Euclidean
distances inΨ′ are thus expected to be lower bounds to the half
round-trip times between the corresponding configurations.
Furthermore, since the variational principle implies tî(τ) ≤ ti(τ)
in absence of statistical error, this systematic approximation error
involved in the variational approach above will lead to a further
underestimation of the half round-trip times. The point-wise
approximation error of the eigenfunctions, ψ̂j(x) − ψj(x) is more
difficult to quantify, and the statistical error due to finite data size
in both tî and ψ̂i can go in both directions. Nonetheless we expect
and practically observe the approximate bound:

̂ ≲
+

d
t t

x x( , )
2comm

2
1 2

12 21

It is also worth noting that in this paper, we do not, in practice,
execute the integral over τ to compute eq 10 algorithmically, but
rather use the integrated expression eq 12 with an estimate tî(τ)
obtained at a single estimation lag time τ. The key advantage of
the commute distance compared with the previous τ-kinetic
distance is that the choice of τ is no longer arbitrary, because tj is a
property of the system rather than a model parameter, and it is
well-known that tj can be approximated by monitoring the
convergence of tj(τ) as a function of τ. However, the new kinetic
distance is in practice also robust if we use a τ for which tj(τ) is
not converged (see results discussed below in section 4).
2.5. Regularization of Time Scales. In practice, the small

eigenvalues and corresponding time scales ti < τ are often both
spurious from a mathematical perspective and not very relevant

from a physicochemical perspective. Processes that are fast
compared with the lag time cannot be reliably estimated as their
contribution to the signal has decayed according to eq 7. To
avoid contamination of the commute distance by these spurious
estimates, we can employ a regularization that dampens small
time scales. Here we use

τ τ ϕ τ′ = ̂ ̂t t t( ) ( ) ( , )i i i

with

ϕ τ π
τ τ

τ
̂ =

̂ −
+

⎛
⎝⎜

⎞
⎠⎟t

t
( , )

1
2

tanh
( )

1i
i

to modify time scales tî(τ) estimated from simulation data, which
has the effect of damping estimated time scales smaller than τ,
and then employ ti′ in (20) to construct the commute map.

3. FOUR-WELL POTENTIAL
We compare the performance of the commute map with that of
the τ-kinetic map approach proposed in ref 38 in a diffusion
process on the metastable example system introduced in ref 40.
In particular, we compare the ability of the different metrics to
distinguish states that are kinetically well separated. The system’s
potential energy contains four wells (Figure 1A), and the
dynamics are defined by a Metropolis jump process between
neighbors in a 1000-state grid on the domain x ∈ [0, 1]. This
system has four metastable states that contain most of the
equilibrium density (Figure 1B), and three slow relaxation time
scales corresponding to the transition processes between the
wells that are well separated from the faster relaxation time scales
(Figure 1D). As this system has an exact microstate transition
matrix = ∈ ×pP [ ]ij

1000 1000, we can compute arbitrary long-

time expectations by using appropriate powers of that matrix,
without requiring sampling and introducing statistical error. The
eigenvalues of P(τ) = Pτ as a function of τ are shown in Figure
1C, with the corresponding relaxation time scales (independent
of τ) in Figure 1D.
Figure 1 panels E and F show the cumulative kinetic content of

the τ-kinetic distance defined previously38 in comparison with
the commute distance defined here. In the τ-kinetic distance, the

Figure 1. τ-Kinetic distance versus commute distance in a four-state kinetic model. (A) Potential energy of the model system (see ref 40 for details).
Dashed black lines mark the four metastable basins of the model. (B) Equilibrium distribution is shown in gray, and the eigenfunctions corresponding to
the three slowest processes, Ψ1 (blue), Ψ2(green), Ψ3 (red) are shown. (C) Eigenvalues as a function of the lag time. (D) Relaxation time scales. The
region where ti < τ is shaded in gray. (E, F) Cumulative kinetic content for the τ-kinetic distance metric used in ref 38 with different choices of lag time τ,
and the commute time metric used here, respectively. Dashed black vertical lines indicate number of dimensions required to explain 95% of the kinetic
content for the τ-kinetic distance (E) and both 95% or 98% for the dcomm (F).
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cumulative kinetic content, thus the number of dimensions m95%
needed to explain 95% of the total kinetic content, vary strongly
with the lag time τ used to compute the metric, with m95% taking
values of 107, 22, 6, and 3 for τ equal to 50, 500, 5000, and 50000,
respectively. In the integrated version of the metric, by definition
the cumulative kinetic content is independent of the choice of τ,
because the relaxation time scales do not depend on τ. In this
case, 95% of the kinetic content is obtained with m95% = 9, and
98% with m98% = 40.
Figures 2 and 3 compare the τ-kinetic distance and the

commute distance between each pair of points (xi, xj). The τ-

kinetic distance performs poorly for small values of the lag time τ,
and states separated by large barriers are only clearly
distinguished for large values of τ (>5000), likely because at
small τ there are many eigenvalues close to 1 contaminating the
distance metric (Figure 2). Figure 3 presents the results obtained
when m95% (top panels) or m98% (bottom panels) eigenfunctions
are used to compute the dcomm (see eq 12). Although small
differences between the m95% and m98% results can be noticed in
the values of dcomm connecting the faster interconverting regions
(left panels), in both cases the commute distance correctly
distinguishes quickly and slowly interconverting pairs of states
independently of τ. The right panels of Figure 3 show the ratio
between 2dcomm

2 (xi, xj) and the commute time, tcomm = (tij + tji)/2,
between all pairs of states (xi, xj). Consistent with the results
discussed above, this ratio approaches 1 for all pairs of states
when more eigenfunctions are used in the dcomm estimation.
However, even when only m95% = 9 eigenfunctions are used, the
ratio 2dcomm

2 (xi, xj)/tcomm is very close to 1 when the states (xi, xj)

are well separated by a barrier, and significantly deviates from 1
only for pairs of states within the same metastable basin. In
practical applications, in the analysis of trajectories of much more
complex systems, the calculation of distances or mean first
passage times between states that are kinetically very close (with
respect to the lagtime used in the estimations) is not relevant as
these states are usually aggregated in the same macrostate. Thus,
dcomm can in practice be estimated with a limited number of slow
coordinates.
To compare the practical performance of dcomm and the τ-

kinetic distance as metrics for Markov state modeling, we test
their ability to find the four metastable basins by simple k-means
clustering with four states. Representative results are shown in
Figure 4 by using the first m95% eigenfunctions (using m98%
produces indistinguishable results). When the τ-kinetic map ψ̃j =
λj(τ)ψj(x) is used, the clustering result depends strongly on the
choice of the lag time τ in its definition (Figure 4A). The four
metastable basins are properly distinguished for τ = 5000, but
small lag times fail completely in obtaining a metastable partition
using four clusters, and will consequently result in a very poor
Markov state model. For the longest tested lag time τ = 50000,
the separation between basins three and four is lost. This can be
explained by the fact that at this lag time, the eigenvalue λ3 has
become negligible and the corresponding eigenvector ψ3 that

Figure 2. Kinetic distance in a four-well potential model. τ-Kinetic
distance Dτ(xi, xj) as proposed in ref 38 between all pairs of states (xi, xj)
in the four-well system, computed for four different choices of lag time,
τ. For illustrative purposes, for each choice of τ, the distances are
normalized to the corresponding maximum values, τD x xmax ( , )

i j
i j

,
, that

are equal to 51.1 (τ = 50), 17.9 (τ = 500), 4.1 (τ = 5000), and 2.3 (τ =
50000). Different colors map to values as illustrated in the color bar at
the bottom. Dashed black lines mark the four metastable states as
defined in Figure 1.

Figure 3. Robustness and interpretation of commute distance in a four-
well potential model. The square of the commute distance proposed
here, dcomm

2 (xi, xj), between all pairs of states (xi, xj) in the four-well
system is shown on the left panels, for two different choices of
dimensions in eq 12: using the first m95% (top) or m98% (bottom)
coordinates needed to explain 95% or 98% of the total kinetic content. In
both cases the commute distance clearly distinguishes between the
slowly interconverting metastable states. As in Figure 2, the values are
normalized to their corresponding maximum, τd x xmax ( , )

i j
i j

,
comm,95%
2 ≈

1.7 × 106τ and τd x xmax ( , )
i j

i j
,

comm,98%
2 ≈ 2.2 × 106τ. The right panels

show the ratio 2dcomm
2 (xi, xj)/tcomm(xi, xj) of twice the squared commute

distance to the commute time, tcomm(xi, xj) = tij + tji, for all pairs of states
(xi, xj), for m95% (top) or m98% (bottom). For all figures, different colors
map to values as illustrated in the color bar at the bottom. Dashed black
lines mark the four metastable states as defined in Figure 1.
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distinguishes between basins three and four is no longer
contributing to the metric (see Figure 1).
In contrast, using k-means with four clusters on the commute

map, ψ ψ̃ = t x/2 ( )j j j , accurately and reliably separates the four

metastable basins of the system. In practice, Markov state models
are built with more clusters than metastable states, in order to
obtain a good approximation quality.40,45 Nonetheless, the ability
of a metric to provide a good separation of the slow processes
with relatively few states and without prior knowledge of system-
specific parameters (e.g., the choice of the lag time τ) is key in
obtaining reliable Markov state models.
To further illustrate this point, we use the different cluster

discretizations obtained above and construct Markov state
models. As the exact transition matrix P is given, the coarse-
grained Markov state model at lag time T can be obtained by

π

π
=

∑

∑
∈ ∈

∈
p T

p T
( )

( )
IJ

i I j J i ij

i I i

,

(21)

where I and J are the sets of microstates in the corresponding

clusters, π = −ei
E k Tx( )/i B is the equilibrium probability of

microstate i, and pij(T) = [PT]ij. We can compare the
performance of these Markov models by virtue of the variational
approach of conformation dynamics (VAC),29,43 which states
that the approximated eigenvalues, as obtained for instance in a
Markov model, always underestimate the true eigenvalues:
λi
MSM(T) ≤ λi

exact(T), and that equality is only obtained when the
approximated eigenfunction equals the exact one. As a result, the
estimated relaxation time scales ti(T) = −T/ln |λi(T)| are also
underestimated, ti

MSM(T) ≤ ti
exact, and this principle provides a

practical criterion to evaluate the performance of a metric
distance, as the choice yielding larger estimates for the relaxation
time scales should be preferred.
Figure 5 shows the ratio of the Markov state model time scales

to the exact time scales, ti
MSM(T)/ti

exact. Values of 1 indicate the
perfect approximation, and values much smaller than 1 indicate a
poor approximation. Different numbers of clusters, ranging from
4 to 30, and different choices of lag time T are used in the
construction of theMarkov model for each choice of the distance
metric. In addition to the lag time T used in the construction of
the Markov model (eq 21), the kinetic distance, Dτ(xi, xj), also
depends on the lag time τ in its definition (see eq 9), and results
are presented for values of τ = 50, 500, 5000, 50000 (different
rows in Figure 5A).
The three slowest time scales are reported in different columns

in the figure. As expected, the estimated time scales ti
MSM are

closer to the corresponding exact time scales ti
exact if a larger

number of clusters and longer lag times T are used in the
definition of the Markov model.40,45 However, the time scales
depend strongly also on the lag time τ chosen in the definition of
the kinetic distance metric itself, and are severely underestimated
when small values of τ are used. On the other hand, the estimated
time scales obtained when dcomm is used in the discretization step
of the Markov model construction are generally much more
accurate than the corresponding results obtained with the τ-
kinetic distance, comparable only when the optimal value of lag
time τ = 5000 is used in the τ-kinetic distance (see also Figure
4A).

4. APPLICATION TO MOLECULAR DYNAMICS
SIMULATION

We compare the robustness of the commute map with that of the
previously proposed τ-kinetic map approach also in the analysis
of molecular dynamics simulations of a biomolecular system. We
used a one-millisecond simulation of a 58-residue protein, bovine
pancreatic trypsin inhibitor (BPTI), produced by D. E. Shaw
research using the Anton supercomputer (see ref 3 for simulation
details). As in our previous work,38 the BPTI trajectory was
subsampled to 100 000 frames, and the Cartesian coordinates of
the protein Cα-atoms were used as an input data set.
We again first inspect the robustness of the metric itself as a

function of lag time. In contrast to the four-well example in which
the exact time scales could be computed from the knowledge of
the exact transition matrix, in this example the commute distance
will depend on the lag time τ, because the time scales ti are
estimated from the data. However, the hope is that the effect of τ
on dcomm is less strong than on the τ-kinetic distance, or that a
suitable value of τ can be easily chosen by inspecting the results.
In kinetic maps based on the τ-kinetic distance (eq 4) the

eigenvalues λi(τ) are used as scaling factors. As the eigenvalues
decay exponentially in τ with different time scales, the scaling

Figure 4. Quality of cluster discretization for different kinetic distances.
k-Means clustering with k = 4 is used in different kinetic maps to probe
their ability to separate different metastable basins with few clusters. The
potential energy function is plotted in each figure, and the four
metastable states are marked by black dashed lines, as in Figure 1A. (A)
With the use of the τ-kinetic map, ψ̃j = λj(τ) ψj(x), as a metric produces
results that are strongly dependent on the lag-time chosen. Only
intermediate lag times (here τ = 5000) provide accurate distinction of
the four metastable basins. (B) With the use of the commute map,
ψ ψ̃ = t x/2 ( )j j j , the four metastable basins are accurately and reliably

separated by a four-state k-means clustering.
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factors depend strongly on the choice of the lag time τ (Figure
6A,B). In the present approach using dcomm (eq 6), the scaling

factors are the square roots of the regularized time scales, ′ti .

This choice has the attractive advantage that ′ti is an invariant of
the system that we try to approximate and is thus a more

objective choice than using eigenvalues λi(τ). Indeed, ′ti values
tend to converge at sufficiently long lag times (Figure 6C), thus
defining a range of lag times τ that are reasonable choices to
estimate them.
Interestingly, for this system, the relative scaling factors

τ τ′ ′t t( )/ ( )i 1 are approximately constant even for short lag times

τ at which the absolute values τ′t ( )i are not converged yet

(Figure 6D). Since many geometric analysis approaches such as
the k-means clustering methods are sensitive to relative, but not
absolute distances, this result implies that the present commute
map is much more robust with respect to the choice of the lag
time τ than previous approaches.
Results from a Markov model analysis based on different

metrics are reported in Figure 7. TICA is performed using a lag
time τ = 10 ns. We consider five metrics: Euclidean distance with
(i) projections onto the first two, or (ii) first six TICA
coordinates, and (iii) in full TICA space, (iv) τ-kinetic map,
and (v) commute map of all scaled TICA-coordinates. For the
given setting, the commute map provides a better compression
than the τ-kinetic map (Figure 7A,B), requiring 29 in contrast to
38 dimensions to explain 95% of the kinetic content.
We then constructed reversible Markov state models from the

different projections of the data into the five different metric
spaces. In all cases, k-means clustering with 200 clusters was used.
Implied time scales estimates of Markov state models are shown
in Figure 7C. While low-dimensional TICA projections provide
well-converged estimates of the three slowest relaxation time
scales in the Markov state model, they are still significantly
underestimated when compared to both the kinetic map and the
commute map results. Using all (unscaled) TICA coordinates
performs worse than low-dimensional TICA projections, as the
time scales after the slowest are significantly underestimated.
Overall, the present commute map performs better than the τ-
kinetic map, and significantly better than low-dimensional TICA
projections. This is most apparent in the comparison of the total
kinetic content (Figure 7D). The commute map also reveals that
the slowest relaxation time scales and the total kinetic content is
not perfectly converged. This is an indicator of either incomplete
sampling as has been noted for this data set before3,53 or that the
features and discretization used here still exhibit significant
projection error.40,45

Figure 5. Quality of Markov state model built with different kinetic
distances. Ratios of the three slowest Markov state model time scales to
the exact time scales, ti

MSM(τ)/ti
exact are shown. Values of 1 (red) indicate

the perfect approximation, and values close to 0 (blue) a poor
approximation. Color scheme as in Figure 2. (A) MSMs using a cluster
discretization of the previously proposed τ-kinetic map.38 Each row
reports results obtained with a different choice of the lag time τ used to
compute the metric, while the lag time on the horizontal axis is the
Markov state model lag time, T. Consistent with the results reported in
Figure 4A, good results for all slow time scales are only obtained when
using a suitable choice of lag time τ (here τ = 5000) to define the metric.
(B) Same as in panels A, but using the commute distance dcomm
proposed here.

Figure 6. Relative scaling factors for kinetic map and commute map for
BPTI. (A) Scaling factors λi(τ) for the τ-kinetic map proposed in ref 38.

(B) Relative scaling factors λi(τ)/λ1(τ). (C) Scaling factors τt ( )i used
for the commute map proposed here. (D) Relative scaling factors

τ τt t( )/ ( )i 1 . The commute map is robust with respect to different
choices of lag time τ. In each figure, different colors indicate different
eigenvalue numbers, i ∈ [1, 30].

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00762
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acs.jctc.6b00762


5. CONCLUSIONS
We propose a new distance metric, the commute distance
(dcomm), which can distinguish between slowly interconverting
states in dynamical systems, and thus serve as a basis for finding
good reaction coordinates and building kinetic models. The
dcomm is defined as the lagtime-integral of the τ-kinetic distance
metric proposed in ref 38. In practice, we use the dcomm concept
to construct a kinetic map as follows:

1. Obtain estimates of the slowest relaxation time scales and
approximations to the eigenfunctions of the Markov
backward propagator by means of the time-lagged
independent component analysis (TICA), or the varia-
tional approach of conformation dynamics (VAC).
Algorithmically, this step involves the computation of
two covariance matrices from simulation data, the solution
of an eigenvalue problem, and the projection of the
simulation data onto the eigenvector matrix.

2. The coordinates of the transformed data are now ordered
from the slowest to the fastest relaxation process. Now
scale each coordinate by t /2i , where ti is the estimated
relaxation time scale of the corresponding process. The
resulting coordinates define the commute map, in which
the Euclidean distance between any two points corre-
sponds to dcomm.

We have shown that by definition, 2dcomm
2 is equal to the

commute time, or round-trip time between pairs of states. This
equivalence is only obtained when all the eigenfunctions are used
in the estimation, but a good approximation to the round-trip
time between states in different metastable states can be obtained
even if only a small set of slow eigenfunctions are used. Note that
a good metric for constructing kinetic models needs to be able to
separate slowly mixing states, while it is less important to
accurately represent the commute times between fast-mixing
states.
In contrast to the previous τ-kinetic distance, the commute

distance is well-defined as the scaling factors applied to the
eigenfunction trajectories are using ti, which is a physical quantity
of the simulated system, rather than τ which is a parameter. In

practice, ti is obtained by monitoring the convergence of tj(τ) as a
function of τ. It has been empirically observed in the presently
studied molecular example that the relative scaling factors

τ τt t( )/ ( )i 1 are rather constant even in regimes of τ where the
absolute scaling factors ti(τ) are not converged. This indicates
that when geometric operations are used for postprocessing
which are insensitive to the absolute scaling (length unit) of the
data, it may be possible to rely on dcomm even when using very
short lag times. We can currently not prove whether this
observation is generally valid, and this aspect will require further
investigation.

■ APPENDIX A: COMMUTE DISTANCE AS AN
ESTIMATE OF THE ROUND TRIP TIME

The definition of twice the commute distance 2dcomm
2 (xi, xj) (eq

10) between two states xi and xj is equivalent to the definition of
the commute time, tcomm(xi, xj) = tij + tji, that is, the mean time to
go from xi to xj and back (eq 14). This equivalence can be proven
by expressing the mean first passage time tij from xi to xj in terms
of the eigenfunctions ψk(x) in eq 7 and corresponding time scales
tk. We assume that the fast term in the spectral decomposition
(eq 7 above) can be ignored at lagtimes of interest.
It is useful to introduce a function hxi(x) which takes the value

of the mean first passage time from any state x ∈ Ω to the target
state xi. The function hxi(x) can be decomposed in the basis set
defined by the eigenfunctions {ψk(x)} of the backward operator

τ as

∑ ψ ψ ψ= −
>

h tx x x x( ) ( ( ) ( )) ( )
k

k i k k i kx
1

i
(22)

where τ λ τ= −t ln ( )i i are the time scales associated with the
eigenvalues λi(τ). The first eigenfunction ψ1(x) does not
contribute to the sum in eq 22 as ψ1(xi) − ψ1(x) ≡ 0. This
decomposition can be proven by using the defining equation for
hxi(x). The generalization of definition of mean first passage time

tji = hxi(xj) given in eq 17 for hxi(x) becomes

Figure 7.Markov model analysis of BPTI molecular dynamics trajectories by using different TICA projections and kinetic maps. (A) Cumulative kinetic
content of the τ-kinetic map approach proposed in ref 38 with a lag time τ = 10 ns. (B) Cumulative kinetic content of the dcomm approach proposed here.
(C) Total kinetic content K = ∑iti with 95% confidence intervals for different choices of the subspace used. The present commute map approach
performs best. (D) Implied time scales with 95% confidence intervals of theMarkov statemodel built on different projections: TICA 2, TICA 6, all TICA
dimensions, the τ-kinetic map, and the commute map were compared. The gray area denotes the numerically unreliable regime time scale < τ.
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= − ∀ ≠

=

h

h

x x x

x

( ) 1

( ) 0

i

i

x

x

i

i (23)

The operator in eq 23 is the generator of the backward
operator τ , that is, =τ

τe . has the same eigenfunctions
ψ i ( x ) o f τ , w i t h a s s o c i a t e d e i g e n v a l u e s

κ τ λ τ= − = −− −tln ( )i i i
1 1, where λi(τ) are the eigenvalues of

τ , and ti are the corresponding time scales. This expression
trivially satisfies the requirement hxi(xi) = 0. It is also
straightforward to show that it solves eq 23, by directly evaluating
the action of the generator on it:

∑

∑

∑

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

−

= −
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>

>
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x x
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( ) ( )
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k
k i k

1

1

1 (24)

w h e r e w e h a v e u s e d ψ ψ= − tx x( ) ( )/i i i a n d

ψ∝ x(constant) ( )1 = κ1 = 0.
Because the eigenfunctions {ψk(x)} form a π-orthonormal

basis set (where π(x) is the equilibrium distribution), they can be
used to decompose any function, including the delta function:

∫∑δ
π

ψ ψ δ
−

= ′ ′ − ′
=

∞x x
x

x x x x x
( )

( )
( ) ( ) ( ) di

k
k k i

1

Thus, ∀x ≠ xi:
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and, using the fact that ψ1(x) = 1:

∑ ψ ψ = −
>

x x( ) ( ) 1
k

k i k
1 (25)

When eq 24 and eq 25 are combined, it is clear that eq 22 is the
solution of eq 23.
By using the decomposition 22, we can now express the

commute time tcomm in terms of the eigenfunctions and time
scales:

∑

∑

ψ ψ ψ ψ ψ ψ

ψ ψ

= + = +

= − + −

= − =

t t t h h

t

t d

x x x x
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x x x x
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[( ( ) ( )) ( ) ( ( ) ( )) ( )]

( ( ) ( )) 2 ( , ).

i j ij ji j i

k
k i k j k i k j k i k j k

k
k i k j i j

x xcomm

2
comm
2

i i

In the case of a discrete-state system (as the example discussed in
section 2.3), the set of eigenfunctions is finite and the sum can be
evaluated. In more complex applications, in practice the sum is
truncated to the first n < ∞ terms, and 2tcomm

2 (xi, xj) is a lower

bound to the commute tcomm(xi, xj) (see also discussion in section
2.4).
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