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Abstract

This paper investigates the criterion of long-term average costs for a Markov decision
process (MDP) which is not permanently observable. Each observation of the process pro-
duces a fixed amount of information costs which enter the considered performance criterion
and preclude from arbitrarily frequent state testing. Choosing the rare observation times
is part of the control procedure. In contrast to the theory of partially observable Markov
decision processes, we consider an arbitrary continuous-time Markov process on a finite
state space without further restrictions on the dynamics or the type of interaction. Based
on the original Markov control theory, we redefine the control model and the average cost
criterion for the setting of information costs. We analyze the constant of average costs for
the case of ergodic dynamics and present an optimality equation which characterizes the
optimal choice of control actions and observation times. For this purpose, we construct an
equivalent freely observable MDP and translate the well-known results from the original
theory to the new setting.
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1 Introduction
Markov decision processes (MDP’s) provide a mathematical framework for modeling situations
in which the dynamics of a process are partly random and partly under the control of a decision
maker. Such situations appear in many application areas like machine maintenance, portfolio
management or medical therapy. Given the state of the process at some point in time, the deci-
sion maker has to choose an action which affects the future dynamics of the process. Depending
on the process evolution the system produces costs (or rewards), and the goal is to optimize
the dynamics according to a given performance criterion. Bellman [4, 5] and Howard [19]
popularized the theory of sequential decision making in the 1960’s. They introduced the dy-
namic programming concept which is expressed in the so called Bellman equation and states
the optimization problem in a recursive form.

Since then, MDP’s are an object of steady research, see e.g. [9–12,14,17,18,26,31,32] where
different variants with respect to the considered time index, the state space or the performance
criterion are studied. Of special interest is the situation of limited state information. How
should the action be chosen if the state of the process is not known with certainty? These
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situations are considered in the theory of partially observable MDP’s, see the survey paper by
Monahan [24] for an overview. Most of the approaches assume the underlying time index
to be discrete, see [20, 22, 29]. A continuous-time partially observable process is considered
in [1–3,21,28]; however, these approaches are based on restrictions with respect to the considered
dynamics and/or the kind of interaction: The system is assumed to be non-decreasing in
the state space (which refers to considering a process of deterioration), interaction consists of
stopping the process or bringing it back to some initial state.

In this paper we avoid such restrictions and consider an arbitrary continuous-time Markov
decision process on a finite state space which is not permanently observable. Instead, each
observation of the process produces a fixed amount of information costs

kinfo>0

which are included in the considered performance criterion and preclude from arbitrarily fre-
quent state testing. To determine the dates for the rare but flexible observations is part of
the control procedure. Given a state observation, the decision maker chooses both a time for
the next observation as well as an action which determines the stochastic dynamics within the
subsequent time interval of hidden progress. Within such a time interval the action is fixed,
i.e. it cannot be changed blindly without knowing the state.

The approach is motivated by the fact that in many real-world applications a permanent
observation and control of the process under consideration is not feasible. Especially situations
in the context of medical therapy or machine maintenance suggest that state examinations are
costly and therefore rare. Choosing suitable dates for any kind of inspections is a common task
to perform: A medical scientist proposes a date for the next checkup, and a machinist fixes
a date for the next inspection of the machine. Given the result of an inspection, a decision
concerning future interaction (medical treatment of a patient, choice of production mode for
the machine...) has to be taken. The model presented here exactly reflects this situation of
rare but flexible observation and decision making.

The setting of Markov control with information costs has been investigated in [33,34] and [8]
for the criterion of discounted costs over an infinite time horizon. In the present paper, we will
analyze the criterion of long-term average costs which - in the context of completely observable
MDP’s - is a common optimality criterion studied by many authors, see e.g. [7,16,23,26,27,35].
We will redefine the performance criterion for the given situation of information costs (Section
2) and derive the corresponding Bellman equation. Interestingly, the approach will clearly differ
from the one given in [8,33,34]: While the discounted-cost criterion permits a direct analysis, the
average-cost criterion can be handled by turning the given process into an equivalent completely
observable MDP which will be done in Section 3. A further cost analysis concerning the impact
of the information cost parameter kinfo is given in Section 4.

2 The control model
The control model considered in this article is given by the tuple(

S,A, {A(x) :x∈S}, {La :a∈A}, c, kinfo

)
, (2.1)

where S and A are the state space and the action space, respectively. While the state space
is assumed to be finite, the action space may be any metrizable topological space; we denote
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the corresponding Borel σ-algebra by B(A). It is A(x) the set of available actions when the
process is in state x∈S. For each action a∈A, the infinitesimal generator La describes the
dynamics of the process given this action. More precisely, La(x,y)≥0 is the transition rate for
a transition from x∈S to y∈S, y 6=x, while La(x,x) is defined by La(x,x) :=−

∑
y 6=x

La(x,y). We

assume the transition rates to be stable in the sense of supa∈A(x) |La(x,x)|<∞ ∀x∈S. It is
c :S×A→ [0,∞) the cost function giving the costs produced by the process per unit of time
depending on the actual state and the chosen action. Furthermore, - in contrast to the original
Markov control theory - this model contains the parameter kinfo of information costs that
have to be paid each time that the process is observed.

2.1 The controlled process
The corresponding Markov control process (Xt)t≥0 - which is itself continuous in time - may only
be observed at discrete but flexible points in time which themselves are subject to the control
of the decision maker. More precisely, the control procedure is the following. Starting with
some (known) state Xt0 =x0∈S at time t0 = 0, the decision maker has to choose not only an
action a∈A(x0) but also a time t1 = t0 +τ >t0 for the next state observation. Within the time
interval (t0,t1) the process (Xt)t≥0 evolves according to the generator La and produces costs
according to c(·,a). This evolution and the arising costs cannot be observed, one can only
determine the state Xt1 at time t1 by making a test which produces costs kinfo. Given the
state of the process at time t1, the procedure restarts. The resulting observation times (tj)j∈N0

which are recursively determined by this procedure identify the moments in time where the
state of the process is observed and a decision has to be taken. We call the related process of
observations (Xtj )j∈N0 the observation process.

In this setting, the state tests are assumed to give instantaneous and full information such
that the state of the process at the observation times is known with certainty. Moreover, we
assume that during a time interval (tj ,tj+1) the action is constant, i.e. it cannot be changed
blindly without making a test to determine the state. A control policy in this setting is given
by a function

u :S→A×(0,∞], u(x) = (a(x),τ(x)),

declaring for each state x∈S a lag time τ(x)∈ (0,∞] defining the time length for the next
period of hidden progress as well as an action a(x)∈A(x) which will be applied during this
period of time. We denote the set of all these policies by Uinfo.

We explicitly allow the parameter τ(x) to be infinite. The choice of τ(x) =∞ has a rea-
sonable interpretation: It simply means to make no further tests at all, but to let the process
run under constant control forever. We set

e−λ∞ := 0 and eLa∞ := lim
t→∞

eLat,

assuming that this limit exists; otherwise we set eLa∞ := I. (In fact, the definition of eLa∞ is
of no further significance as this expression will always be multiplied by e−λ∞= 0.) By this
definition, all analytic expressions will have a straightforward interpretation for cases of infinite
lag times.
In contrast, the value τ(x) = 0 is excluded by the following argument: A vanishing lag time
would mean to immediately repeat a state test, which delivers no further information but
produces additional costs kinfo>0 and is therefore not reasonable.



S. Winkelmann. MDP with Information Costs 4

The observation times (tj)j∈N0 given by t0 = 0 and tj+1 = tj+τ(Xtj ) are random variables that
depend on the process evolution and may take on the value ∞; in this regard we interpret
tj+∞ :=∞ for tj<∞ as well as ∞+∞ :=∞.

Given an initial distribution ν on S, a policy u∈Uinfo defines a probability measure Puν on
the set of possible state-action-realizations{

(Xt,At)t≥0 : Xt∈S,At∈A ∀t≥0
}

with observation times (tj)j∈N0 by

• Puν (X0 =x) =ν(x), Puν (t0 = 0) = 1,

• Puν (tj+1 = t|tj =s,Xs=x) = δs+τ(x)(t) for j∈N0, t>s≥0,

• Puν (At∈B|tj≤ t<tj+1,Xtj =x) = δa(x)(B) for B∈B(A), tj<∞,

• ∂
∂tP

u
ν (Xt=x|At=a) =

∑
y∈SLa(y,x)Puν (Xt=y|At=a) for x∈S, a∈A.

We write Pux for ν= δx (deterministic start in x∈S) and denote the corresponding expectation
values by Euν resp. Eux.

Figure 1 illustrates the controlled process (Xt)t≥0 for a fixed policy u∈Uinfo.
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Figure 1: Controlled Markov process with information costs. Possible trajectory of
a rarely observable MDP given a deterministic stationary policy u. Starting in a (known)
state x∈S at time t0 the dynamics of the process during the time interval [t0,t0 +τ(x)) are
determined by the generator La(x), i.e. the process stays in x for some random period of time
which is exponentially distributed with parameter −La(x)(x,x) and then jumps to a state y 6=x

with probability La(x)(x,y)
−La(x)(x,x) . However, these dynamics are unobserved which is illustrated by

the transparency of the corresponding lines and dots. We only get a pointwise information
about the state of the process at time t1 = t0 +τ(x). Given this state Xt1 =z, the control is
adapted and the procedure restarts.
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2.2 Criterion of long-run average costs
Within the original Markov control theory, the criterion of long-run average costs is one of the
most studied performance criteria. It is not self-evident how the existing definitions of this cost
criterion can be transferred to the novel setting of information costs because the observation
times and information costs have to be weighted in an suitable way. An adequate reformulation
is the following.

Definition 2.1 (The expected average cost criterion). Given an initial state x∈S, the long-run
expected average costs under control u∈Uinfo are defined by

J(x,u) := limsup
T→∞

Eux

 1
T

∑
j∈N0
tj<T

(∫ tj+1∧T

tj

c(Xs,a(Xtj ))ds+kinfo

), (2.2)

where tj+1∧T := min{tj+1,T}. The corresponding value function of optimal average costs is
given by

V (x) := inf
u∈Uinfo

J(x,u).

Note that in (2.2) the function c is evaluated in the first argument at Xs with s running
over time, while in the second argument it is evaluated at a(Xtj ) with tj fixed for each interval.
This follows from the fact that the state (which cannot be observed during such an interval)
changes as usual, while the action stays the same.

Remark 2.2. In the case of finite lag times τ(x) (resulting in finite testing times (tj)j=0,1,...)
we can rewrite the average-cost criterion (2.2) as

J(x,u) = limsup
n→∞

Eux

 1
tn

n−1∑
j=0

(∫ tj+1

tj

c(Xs,a(Xtj ))ds+kinfo

). (2.3)

For infinite tj, however, this expression has no direct interpretation, which motivates to choose
the more general notation given in equation (2.2).

Under certain conditions - which will be proposed now - the function J(x,u) of average costs
does not depend on the state x but is given by a constant.

Ergodic dynamics and finite lag times.

In the setting of information costs, the dynamics of the controlled process are named to be
ergodic if the observation process (Xtj )j∈N0 is irreducible. Note that this property only depends
on the part of the policy u(x) = (a(x),τ(x)) declaring the action a(x) for each state x∈S, while
the lag times τ(x) are irrelevant.

For the case of ergodic dynamics, we tend to express the cost functional J(x,u) for a given
policy u∈Uinfo with finite lag times (i.e. τ(x)<∞ for all x∈S) in terms of a stationary
distribution of the process (Xt)t≥0. However, the controlled process (Xt)t≥0 itself is not a
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Markov process: Which generator determines the dynamics of the process at time t depends
on the last observation Xtn with tn= max{tj : j∈N,tj≤ t} and not on the actual state Xt. In
other words, the past (and not only the present) is relevant for the future evolution of the
process. It is therefore not clear how a stationary distribution could be characterized.
Being aware that also the costs produced by the process at time t depend on the last observation
Xtn , the idea is to consider the observation process (Xtj )j∈N0 which is itself a Markov process
with discrete index. Its transition matrix Pu is given by

Pu(x,y) =eLa(x)τ(x)(x,y) for all x,y∈S. (2.4)

Let us denote the stationary distribution with respect to Pu by µ, i.e. we assume µ∈R|S| to be
a probability vector with µPu=µ. For ergodic dynamics this stationary distribution is unique.
Each time the observation process (Xtj )j∈N0 is in state x∈S, the costs per unit of time during
the following time interval [tj ,tj+τ(x)) of constant control are given by

C(x,a(x),τ(x)) :=Ea(x)
x

(
1

τ(x)

∫ τ(x)

0
c(Xs,a(x))ds

)
. (2.5)

In order to include the information costs kinfo appearing at the end of this time interval, we
define

C̃(x,a(x),τ(x)) :=C(x,a(x),τ(x))+ kinfo

τ(x) . (2.6)

In other words, this is the cost rate for all times t≥0 at which the last observation of the
underlying process (Xt)t≥0 has been x. Now the question is: What is the average proportion
of time for this situation to appear? Naturally, we can calculate this proportion – let us denote
it by µ̃(x) – by multiplying the value of the stationary distribution µ(x) (specifying how often
this situation appears) by the lag time τ(x) (denoting how long the situation remains), followed
by a scaling with respect to the weighted average of lag times, i.e. we set

µ̃(x) = µ(x)τ(x)∑
y∈S µ(y)τ(y) . (2.7)

Lemma 2.3. For a policy u∈Uinfo with finite lag times and unique stationary distribution µ
(fulfilling µPu=µ) the long-term average costs are given by the µ̃-weighted average of C̃, i.e.
it holds

J(x,u) =
∑
y∈S

µ̃(y)C̃(y,u(y)) = 〈µ̃,C̃u〉=:ηu for all x∈S (2.8)

with C̃u(x) := C̃(x,u(x)).

Proof. As the state space is assumed to be finite and the policy is homogeneous in time, the cost
function c(Xs,a(Xtj )) appearing in (2.3) is bounded, such that, by the dominated convergence
theorem, we can take the limit into the expectation and get

J(x,u) =Eux

limsup
n→∞

1
tn

n−1∑
j=0

(∫ tj+1

tj

c(Xs,a(Xtj ))ds+kinfo

). (2.9)
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We rewrite tn=
∑n−1
j=0 τ(Xtj ) and apply the strong law of large numbers to find

tn ∼ n ·
∑
y∈S

µ(y)τ(y) (a.s.) for n→∞

as well as
n−1∑
j=0

(∫ tj+1

tj

c(Xs,a(Xtj ))ds+kinfo

)
∼ n

∑
y∈S

µ(y) ·τ(y) · C̃ (y,a(y),τ(y)) (a.s.) for n→∞.

Inserting into (2.9) delivers

J(x,u) = Eux

∑
y∈S

µ(y)τ(y)∑
z∈S µ(z)τ(z) · C̃ (y,a(y),τ(y))


= Eux

∑
y∈S

µ̃(y) · C̃ (y,a(y),τ(y))


=
∑
y∈S

µ̃(y) · C̃ (y,a(y),τ(y))

independent of x, which gives (2.8).

3 Average optimality
In this section we present our main result, Theorem 3.1, which states the analogy between a
given MDP with information costs and a freely observable MDP. By means of this analogy it
will be possible to directly reformulate the central Bellman equation of average optimality for
the setting of rare state observation.

3.1 An equivalent freely observable Markov decision process
Consider the Markov control model with information costs (2.1) and let (Xt)t≥0 be the con-
trolled process given a policy u∈Uinfo. The idea is to formulate another Markov control pro-
cess (Yt)t≥0 which is freely observable but has the same long-term average costs as the process
(Xt)t≥0. To this end, we consider the process (tj ,Xtj )j∈N0 of observation times and observa-
tions of the given process (Xt)t≥0. In a first step, we again consider finite lag times. What is
the expected time the observation process (Xtj )j∈N0 stays in some state x∈S before switching
to another state y 6=x when action a∈A and lag time τ ∈ (0,∞) are chosen? That is, what is
the expectation value of the “residence time”

r(x) := min{tj : j∈N,Xtj 6=x}

given that X0 =x? As the underlying process (Xt)t≥0 can still or again be in state x after time
τ , this residence time can be any multiple of τ . The number of time intervals of length τ that
pass before the state of the observation process changes for the first time after starting in x∈S
is geometrically distributed with parameter p(x) := 1−eLaτ (x,x), and so it holds

E(r(x)) = τ

p(x) = τ

1−eLaτ (x,x) .
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Under the condition that a transition takes place, the transition probabilities for the observation
process (Xtj )j∈N0 are given by

eLaτ (x,y)∑
ỹ∈S,ỹ 6=xe

Laτ (x,ỹ) .

Adopting these characteristics of the observation process, we define for each action a∈A and
each lag time τ ∈ (0,∞) a generator Ga,τ ∈R|S|,|S| by

Ga,τ (x,y) := 1
τ
eLaτ (x,y) fory 6=x, Ga,τ (x,x) :=−1

τ

(
1−eLaτ (x,x)

)
. (3.10)

For τ =∞ we set
Ga,∞(x,y) := 0 ∀y∈S (3.11)

which is convenient in the sense that the observation process (Xtj )j∈N0 will never leave a state
x∈S with τ(x) =∞ because no further tests are made. (The underlying process (Xt)t≥0 of
course switches between the states as usual.) Moreover, by this choice we obtain

lim
τ→∞

Ga,τ =Ga,∞ (3.12)

which will be relevant for future statements.

The information process (Yt)t≥0.

Now, we define the process (Yt)t≥0 to be a completely observable Markov decision process with
state space S, action space A×(0,∞] and set of generators {Ga,τ :a∈A,τ ∈ (0,∞]}. Given
a∈A and τ ∈ (0,∞], the dynamics of the process (Yt)t≥0 are determined by Ga,τ . That is, the
control parameters stay the same, however, their interpretation changes: τ has no longer an
interpretation of a lag time between observations but only – together with a – determines the
generator. The process (Yt)t≥0 is freely observable at all times and the generator is adapted as
soon as a transition takes place, i.e. for a given policy u(x) = (a(x),τ(x)) the process is driven
by the generator Gu with

Gu(x,y) :=Ga(x),τ(x)(x,y) for all x,y∈S.

In terms of the transition matrix Pu defined in (2.4) it holds, as for finite τ(x),

Gu=


. . . 0

1
τ(x)

0
. . .

(Pu−I),

where I ∈R|S|,|S| is the identity matrix. By interpreting 1
∞ := 0 this equation holds for infinite

lag times, as well, no matter how the corresponding entries of the transition matrix Pu are
defined.

The two processes (Yt)t≥0 and (Xt)t≥0 are completely independent of each other. However,
as for the average dynamics, the process (Yt)t≥0 can be seen as the continuous analogue of the
observation process (Xtj )j∈N0 : By construction, the expected residence times coincide for these
two processes, and a transition of the process (Yt)t≥0 to another state refers to getting a new
information about the process (Xt)t≥0. In this sense, the process (Yt)t≥0 can be interpreted as
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an information process, reflecting the average dynamics of the information about the process
(Xt)t≥0.

It remains to define a new cost function such that for each policy the average costs of the
information process (Yt)t≥0 coincide with those of the process (Xt)t≥0. In fact, an adequate
choice is just given by the cost function C̃(x,a,τ) defined in (2.6) denoting the average costs
within the time interval [0,τ) of hidden progress under the condition that the process (Xt)t≥0
starts in state x∈S and action a∈A is chosen. For infinite lag times we set

C̃(x,a,∞) =C(x,a,∞) := lim
T→∞

Eax

(
1
T

∫ T

0
c(Xs,a)ds

)
. (3.13)

Now we can formulate our main result: the analogy of the processes (Xt)t≥0 and (Yt)t≥0 with
respect to the average cost criterion.

Theorem 3.1. For each policy u∈Uinfo the freely observable MDP (Yt)t≥0 with generators Ga,τ
and cost function C̃ has the same expected average costs as the rarely observable MDP (Xt)t≥0,
i.e. it holds

lim
T→∞

Eux

(
1
T

∫ T

0
C̃(Ys,u(Ys))ds

)
=J(x,u) (3.14)

with J(x,u) defined in (2.2).

Note that in (3.14) the second argument u(Ys) of the cost function C̃ is running in time,
whereas in the definition (2.2) of J(x,u) it was evaluated at the beginning tj of a time interval.

Proof of Theorem 3.1. For ergodic dynamics and finite lag times we only need to show that µ̃
(defined in (2.7)) is the stationary distribution for the process (Yt)t≥0, which simply follows
from

µ̃Gu= 1∑
y∈S τ(y)µ(y) (µPu−µI) = 0

because µPu=µ. Then it holds

lim
T→∞

Eux

(
1
T

∫ T

0
C̃(Ys,u(Ys))ds

)
=
∑
y∈S

µ̃(y)C̃(y,u(y)) =J(x,u) ∀x∈S, (3.15)

compare (2.8).
In the case of non-ergodic dynamics under the policy u∈Uinfo, let S=C1∪ ...∪Cd∪D be the
split-up of the state space for the observation process (Xtj )j∈N into d mutually disjoint com-
munication classes C1,...,Cd and a set D of transient states D={x∈S :π(x) = 0} where π is
the corresponding maximal stationary distribution on S, see [6, 25] for background details.
For each class Ck there exists a stationary distribution µk on S with µkPu=µk such that
Ck ={x∈S :µk(x)>0}. We first assume all lag times to be finite which implies that the same
split-up holds for the underlying process (Xt)t≥0. Moreover, by defining µ̃k(x) := µk(x)τ(x)∑

y∈S
µk(y)τ(y)

we obtain for each k= 1,...,d a stationary distribution of the process (Yt)t≥0 with µ̃k(x)>0 if
and only if µk(x)>0. Thereby, also the space decompositions of the processes (Xtj )j∈N and
(Yt)t≥0 agree. For each initial state x belonging to a class Ck the long-term average costs for
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both (Xt)t≥0 and (Yt)t≥0 are given by the µ̃k-weighted average of the costs function C̃, compare
Equation (3.15) with µ̃ replaced by µ̃k. Let ηk denote this constant of average costs for the
class Ck. For an initial state x∈D, the long-term average costs J(x,u) for the process (Xt) are
given by a weighted average of the constants ηk,

J(x,u) =
d∑
k=1

qk(x)ηk

with the weight qk(x) :=Pux(Xt∈Ck for some t>0) referring to the probability to end up in
class Ck after starting in x. The weights are characterized by the recursion

qk(x) =
∑
y∈S

Pux(Xt∈Ck for some t>τ(x)|Xτ(x) =y) ·Pux(Xτ(x) =y)

=
∑
y∈Ck

Pu(x,y)+
∑
z∈D

Pu(x,z)qk(z) (3.16)

resulting from the law of total probability with respect to the state Xτ(x) at the first observation
time τ(x). In the same way we can rewrite the cost functional for (Yt) giving

lim
T→∞

Eux

(
1
T

∫ T

0
C̃(Ys,u(Ys))ds

)
=

d∑
k=1

q̃k(x)ηk

where the weights q̃k(x) :=Pux(Yt∈Ck for some t>0) are characterized by

q̃k(x) =
∑
y∈Ck

Gu(x,y)
−Gu(x,x) +

∑
z∈D,z 6=x

Gu(x,z)
−Gu(x,x) q̃k(z)

which is the law of total probability with respect to the state of (Yt) after its first jump. We
define the vector pk ∈R|D| by pk(x) :=

∑
y∈Ck

Gu(x,y)
−Gu(x,x) and the matrix A∈R|D|,|D| by A(x,z) :=

Gu(x,z)
−Gu(x,x) and get

q̃k = (I−A)−1pk

where I ∈R|D|,|D| is the identity matrix. On the other hand, we can convert (3.16) into

(1−Pu(x,x))qk(x) =
∑
y∈Ck

Pu(x,y)+
∑

z∈D,z 6=x
Pu(x,z)qk(z) (3.17)

which - noting that by definition (3.10) it holds Pu(x,x) = 1+τ(x)Gu(x,x) - is equivalent to

qk(x) = −
∑
y∈Ck

Pu(x,y)
τ(x)Gu(x,x)−

∑
z∈D,z 6=x

Pu(x,z)
τ(x)Gu(x,x)qk(z)

(3.10)= −
∑
y∈Ck

Gu(x,y)
Gu(x,x)−

∑
z∈D,z 6=x

Gu(x,z)
Gu(x,x)qk(z).

In total we obtain
qk = (I−A)−1pk = q̃k
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and with it the equality of average costs of the processes (Xt) and (Yt).
This analysis can easily be extended to infinite lag times by observing that each state x∈S
with τ(x) =∞ builds on its own a communication class Ck ={x} for both processes (Xtj )j∈N0

and (Yt)t≥0.1 Then, for x with τ(x) =∞ we have

lim
T→∞

Eux

(
1
T

∫ T

0
C̃(Ys,u(Ys))ds

)
= lim

T→∞
Eux

(
1
T

∫ T

0
C̃(x,a(x),∞)ds

)
= C̃(x,a(x),∞)

= J(x,u),

compare (3.13) and (2.2), while for the states with finite lag times the average costs are as before
given by the weighted average of constants ηk with conform weights for both processes.

Example 3.2 (Two states). In order to get an impression of how the processes (Xt)t≥0
and (Yt)t≥0 evolve over time, we consider a simple 2-state-example with S={x1,x2} and
A=A(x1) =A(x2) ={a1,a2} as well as

L1 =
(
−0.01 0.01
0.01 −0.01

)
, L2 =

(
−0.1 0.1
0.1 −0.1

)
and c(x,a) = cS(x)+cA(a), where cS(x1) = 0, cS(x2) = 10, cA(a1) = 0, cA(a2) = 2. In this set-
ting, x1 is the “good” state: As long as the process is in state x1, it does not produce any costs,
while when being in state x2, it produces costs at rate cS(x2) = 10. Depending on the applica-
tion, these states could - e.g. within medical therapy - refer to “healthy” and “diseased” with
costs representing health damage; or - within machine maintenance - refer to “efficient” and
“broken” with costs representing loss of profit. The first action is free of charge (cA(a1) = 0),
but has a small rate to push the process back to state x1 when being in state x2, while the
costly action a2 increases this rate. For the policy u(x) = (a(x),τ(x)) we choose a(x1) =a1,
τ(x1) = 5, a(x2) =a2, τ(x2) = 2. Calculating the corresponding transition matrix Pu, the sta-
tionary distributions µ and µ̃ and the cost function C̃ delivers a constant of long-term average
costs

ηu=
∑
x∈S

µ̃(x)C̃(x,u(x)) = 1.5989.

Figure 2 shows the accumulated costs

Jt(x1,u) :=
n(t)−1∑
j=0

(∫ tj+1

tj

c(Xs,a(Xtj ))ds+kinfo

)
+
∫ t

tn(t)

c(Xs,a(Xtn(t)))ds, (3.18)

n(t) := max{j∈N : tj≤ t},

up to time t>0 for a realization of the process (Xt)t≥0 starting in X0 =x1 and given control
u. It contains a detailed view for the time interval t∈ [495,515] which illustrates the structure
of cost increase for the situation of information costs. We can see that after the observation at

1Note that now the split-up of space for the underlying process (Xt)t≥0 might disagree.
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Figure 2: Accumulated costs for (Xt)t≥0. Accumulated costs Jt(x1,u) defined in (3.18)
up to time t≥0 for a trajectory of the MDP (Xt)t≥0 with information costs kinfo described in
Example 3.2. The long-term asymptotics are given by ηu · t= 1.5989 · t. The detail shows the
cost increase for the time period t∈ [495,515]. The dashed lines are located at the observation
times tj ; at each of these observation times the costs increase instantaneously by kinfo. The
gray area indicates the period of time where the process (Xt)t≥0 is in state x2, while it is in
state x1 at all other times.

time t= 501 the process switches to state x2 which leads to a higher increase in the costs. At
time t= 506 this switch is observed and the action is adapted. Now the more expensive action
a2 leads again to a higher increase in the costs, but at the same time accelerates the return to
state x1 which happens at t≈508.4. At time t= 510 this is realized and action a2 is replaced by
action a1. Every observation leads to a jump in the accumulated costs of size kinfo = 1.
Equivalent graphs are given for the freely observable process (Yt)t≥0: Figure 3 shows the accu-
mulated costs

J̃t(x1,u) :=
∫ t

0
C̃(Ys,u(Ys))ds (3.19)

up to time t>0 for a realization of the process (Yt)t≥0 starting in Y0 =x1 and given control u.
It contains the details for the time interval t∈ [730,750]. For the process (Yt)t≥0 a change in the
state is followed by an instantaneous change in the action, and so there are only two increase
rates: A low increase C̃(x1,a1,5) (induced by the information costs kinfo that are included in
C̃) when the process is in state x1, and a high increase C̃(x2,a2,2) (induced by positive action-
and state costs and kinfo) when the process is in state x2.

The preceding analysis permits a straightforward translation of the original Markov control
theory to the new setting of Markov control with information costs and policies with finite lag
times. We just have to understand the results presented in a wide range of MDP literature in
terms of the designed freely observable MDP (Yt)t≥0. This will be done now.

The optimal control problem consists of finding an average optimal policy. In order to
guaranty the existence of an average-cost optimal policy, it is common standard to make several
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Figure 3: Accumulated costs for the information process (Yt)t≥0. Accumulated costs
J̃t(x1,u) defined in (3.19) up to time t≥0 for a trajectory of the equivalent freely observable
MDP (Yt)t≥0 given Example 3.2. Like for the process (Xt)t≥0 the long-term asymptotics are
given by ηu · t= 1.5989 · t. The detail shows the cost increase for the time period t∈ [730,750].
Again, the gray area indicates the period of time where the process (Yt)t≥0 is in state x2, while
it is in state x1 at all other times. Observations are continuous (and cost-free) over time and
the action is immediately adapted after a switch of the state occurs.

assumptions concerning the transition rates and the other model parameters, compare [13, 15,
16, 35, 36] and others. Some of these assumptions become redundant in the case of a finite
state space which is considered here. The relevant assumptions concern - on the one hand - the
compactness of the action space and - on the other hand - the ergodicity of the process.

One of the relevant assumption is typically called optimality condition and states that the
set of available actions A(x) is compact for each state x and that the cost function and the
generator entries are continuous with respect to the action parameter. For the process (Yt)t≥0
the set of available actions for a state x∈S is of the form A(x)×(0,∞] which is not compact.
However, we can state that, by kinfo>0, it holds

lim
τ(x)→0

J(x,u) =∞ ∀x∈S,

such that we can locate a lower bound ε>0 for the optimal lag times. This way, the relevant
set of actions can be restricted to the set A(x)× [ε,∞] and so the compactness condition is
naturally fulfilled as long as A(x) is compact. It remains to note that the new cost function C̃
defined in (2.6) and the generators Ga,τ defined in (3.10) are all continuous in τ (compare the
statement in (3.12) and the definition in (3.13) for τ =∞), such that the continuity condition
only needs to be checked for A(x).

Assumption 3.3. a) The set of available actions A(x) is compact for each state x∈S.
b) For all x,y∈S and τ ∈ (0,∞], the functions C̃(x,a,τ) and Ga,τ (x,y) are continuous in a∈
A(x).
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The second relevant assumption concerns the ergodicity of the controlled process which - in
the setting of finite state spaces and continuous dynamics - means that the process has to be
irreducible. As for finite lag times, the process (Yt)t≥0 is irreducible as long as the observation
process (Xtj )j∈N0 is irreducible (compare again the definition of the generators Ga,τ defined in
(3.10)) which leads to the following assumption.

Assumption 3.4. For each state x∈S it holds

eLaτ (x,y)>0

for all y∈S, a∈A(x) and τ ∈ (0,∞).

The case of infinite lag times will require a separate investigation as it breaches the ergodicity
condition by Ga,∞(x,y) = 0 ∀x,y∈S, see (3.11).

3.2 The average-cost optimality equation in the setting of information
costs

Given the analogy of the processes (Xt)t≥0 (MDP with information costs) and the corresponding
information process (Yt)t≥0 (completely observable MDP), we will now reproduce some of the
common results of original Markov control theory to the new setting of information costs.

Average costs ηu for a given policy u∈ Uinfo.

In the original theory, the constant of average costs for a (not necessarily optimal) policy u∈U
may be characterized by a system of linear equations. The same holds within the setting of
information costs:

Lemma 3.5. Suppose that Assumption 3.4 holds and let u∈Uinfo be a given policy with finite
lag times. Then we have the following facts.

a) There exists a function v :S→R such that the corresponding constant ηu of long-run
expected average costs defined in (2.8) fulfills the equation

ηu = C̃(x,a(x),τ(x))+
∑
y∈S

Ga(x),τ(x)(x,y)v(y) ∀x∈S (3.20)

with C̃ resp. Ga,τ defined in (2.6) resp. (3.10).

b) The constant ηu is uniquely determined by (3.20) and coincides with the first entry of the
vector

(E−Gu)−1C̃u,

where

E :=

 1 0 .. . 0
...

...
...

1 0 .. . 0

∈R|S|,|S|,
and C̃u(x) = C̃(x,a(x),τ(x)).
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The proof of Lemma 3.5 can be found in the Appendix.
In the case of infinite lag times the long-term average costs might depend on the initial state:

Imagine a policy u∈Uinfo fulfilling τ(x) = τ(y) =∞ but a(x) 6=a(y) for two states x 6=y. That
is, starting in X0 =x∈S the process (Xt)t≥0 will forever be steered by La(x) and produce costs
according to c(·,a(x)), while for X0 =y∈S action a(y) determines the remaining dynamics.
Generally, it will hold C(x,a(x),∞) 6=C(y,a(y),∞) for the corresponding long-term average
costs, and with it

J(x,u) 6=J(y,u).
This is consistent with the choice of the generator Ga,∞, compare (3.11): Its zero entries refer to
the fact that for the equivalent control process (Yt)t≥0 the considered states x,y are absorbing.
In other words, given infinite lag times, the dynamics of (Yt)t≥0 are not ergodic and so the
long-term average costs are in general not given by a constant. If in this situation there exists
another state z∈S with finite lag time τ(z)<∞, the process will (after starting in z) reach
one of the two states x,y after some random period of time, and thus the expected long-term
average costs will be a weighted average of J(x,u) and J(y,u).

We can conclude that the statement of Lemma 3.5 has no direct analogue for infinite lag
times. Instead, in this case the calculation of the long-term average costs requires a separate
analysis for each of the given states. Fortunately, such a separate analysis will be redundant in
the case of optimal policies. The described situation with J(x,u) 6=J(y,u) naturally excludes
the referring policy u from being optimal as it either holds J(x,u)>J(y,u) or J(x,u)<J(y,u).
In the first case the long-term average costs when starting in x could be decreased by choosing
action a(y) instead of the given a(x) which would lead to a policy ũ with

J(x,ũ) =C(x,a(y),∞) (∗)= C(y,a(y),∞) =J(y,u)<J(x,u).

The second equality (∗) is due to the fact that the underlying dynamics are assumed to be
ergodic such that the long-term average costs in the case of infinite lag times only depend on
the action but not on the initial state. In the case of J(x,u)<J(y,u) we simply interchange
the roles of x and y in order to show that the given policy u cannot be optimal. By this
argumentation we can see that the long-term average costs of an optimal policy actually will
be given by a constant. We will now use this insight for the analysis of optimal policies.

Optimal policy and value function.

Also the value function of optimal average costs is characterized by a system of equations, which
is the central statement of Markov control theory. It is expressed in the Bellman equation which
we will now formulate for MDP‘s with information costs.

Theorem 3.6 (Average cost optimality equation for a rarely observable MDP). Given the
Markov control model (2.1) with information cost parameter kinfo>0 and nonnegative cost
function c, consider the average cost criterion J(x,u). Suppose that Assumptions 3.3 and 3.4
are satisfied. Then the following statements hold.

a) There exists a function v∗ :S→R and a constant g≥0 satisfying

g= inf
a∈A

τ∈(0,∞]

C(x,a,τ)+ kinfo

τ
+
∑
y∈S

Ga,τ (x,y)v∗(y)

 ∀x∈S. (3.21)



S. Winkelmann. MDP with Information Costs 16

b) It holds g= infu∈Uinfo J(x,u) for all x∈S.

c) Any policy u∈Uinfo realizing the minimum in (3.21) is average cost optimal.

Proof. For the original theory of a completely observable Markov decision process these state-
ments are well known, see e.g. Theorem 7.8 in [14] or Theorem 4.1 in [35]. I.e., they hold
for the information process (Yt)t≥0 which - by construction and making use of Theorem 3.1 -
directly implies a) and b). Part c) follows from Lemma 3.5.

As described in Section 3.1, the existence of an optimal policy realizing the minimum in
equation (3.21) is guaranteed by Assumption 3.3. Theorem 3.6 states that this optimal policy is
deterministic and stationary. The value function of optimal average costs is given by a constant

η∗ := inf
u∈Uinfo

ηu=V (x) ∀x∈S. (3.22)

At the same time, the “new” optimality equation (3.21) allows to transfer the common dynamic
programming algorithms to the given framework of costly state observations. The numerical
implementation requires a discretization with respect to the lag time parameter τ .

Example 3.2 (cont.) The optimal policy for the 2-state-example 3.2 with different cost pa-
rameters is given in Table 1. The “good” state x1 causes the application of a1, while the “bad”
state x2 requires the application of the more expensive action a2 for a short time. An increase
of the information costs induces an increase in the lag times (compare the first two rows).
Higher action costs cA(a2), however, reduce the time for its application (compare row 1 and
3). Increasing the state costs cS(x2) results in decreasing lag times but increasing average costs
(compare row 1 and row 4). For very high information costs, testing cannot be afforded at all
and action a2 is applied for both states (see row 5).

cS(x2) cA(a2) kinfo a∗(x1) a∗(x2) τ∗(x1) τ∗(x2) η∗

10 2 1 a1 a2 5.3 1.3 1.59
10 2 2 a1 a2 7.7 1.8 1.79
10 3 1 a1 a2 5.4 1.2 1.68
20 2 1 a1 a2 3.7 1.0 2.69
10 2 1000 a2 a2 ∞ ∞ 7.00

Table 1: Parameter dependent optimal policy and optimal average costs for the
2-state-example. This table shows the optimal policy for Example 3.2 and different values
of cS(x2), cA(a2) and kinfo, given the average-cost criterion. In state x1 (resp. x2) one has
to choose action a∗(x1) (resp. a∗(x2)) for a time period τ∗(x1) (resp. τ∗(x2)) which results in
optimal costs η∗ (independent of the state).

4 Cost analysis
Given the Markov control model with information costs (2.1), an evident question is how the
corresponding value function of optimal long-run average costs is related to the value function of
the original control problem (without information costs). In the new setting, the value function
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contains not only the process costs (defined by the cost function c) but also the information
costs induced by kinfo, see Definition 2.1. In order to reveal the connection between the two
settings, we will - in a first step - analyze how the constant of average costs can be split up
into different components. Furthermore, we will investigate the influence of the information
cost parameter with respect to the value function and the optimal policy. We will complete
the cost analysis by providing a short insight into the effect that deviations from the optimal
policy might have regarding the related costs.

4.1 Splitting of Average Costs into Components
In the following, we intend to calculate - given a control policy - the part of the constant
of average costs which is caused by the information costs. In the same time, this delivers a
constant of net costs containing only the state and action costs.

Again, we assume ergodic dynamics and finite lag times. For the setting of information
costs, the constant ηu of long-run average costs for a policy u is the µ̃-weighted average of the
cost function C̃ defined in (2.6), compare Lemma 2.3. By this definition it is obvious to split
up the constant ηu of total average costs into average information costs ηinfo and average net
costs ηnet =ηu−ηinfo by setting

ηinfo :=
∑
x∈S

µ̃(x) · kinfo

τ(x) = kinfo∑
y∈S µ(y)τ(y) , ηnet :=

∑
x∈S

µ̃(x) ·C(x,a(x),τ(x)) (4.23)

with C defined in (2.5).
If the cost function c is of the form c(x,a) = cS(x)+cA(a) (which means that state and

action costs are independent of each other) we can write

C̃(x,a,τ) =CS(x,a,τ)+cA(a)+ kinfo

τ
,

where
CS(x,a,τ) :=Eax

(
1
τ

∫ τ

0
cS (Xs) ds

)
(4.24)

are the expected average state costs during the following time interval of constant control after
starting in state x. This leads to a further splitting of the net costs ηnet =ηS+ηA into average
state costs and average action costs by setting

ηS :=
∑
x∈S

µ̃(x) ·CS(x,a(x),τ(x)), ηA :=
∑
x∈S

µ̃(x) ·cA(a(x)). (4.25)

In total, we get a split-up of the long-run average costs given a policy u into components of
information costs, state costs and action cost

ηu=ηinfo +ηS+ηA.

We can now reformulate Lemma 3.5, which characterizes the constant ηu of total average
costs, for the components ηinfo, ηS and ηA.
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Lemma 4.1 (Cost splitting). Suppose that Assumption 3.4 holds and let u∈Uinfo be a given
policy with finite lag times. Then the constant ηu of long-term average costs is given by a split-
up of the form ηu=ηinfo +ηS+ηA, where the average information costs ηinfo are given by the
first entry of the vector

kinfo ·(E−Gu)−1


...
1

τ(x)
...

,
while the average action costs ηA are given by the first entry of the vector

(E−Gu)−1cA

with cA(x) := cA(a(x)) for all x∈S, and the average state costs ηS are given by the first entry
of the vector

(E−Gu)−1CS

with CS(x) :=CS(x,a(x),τ(x)) for all x∈S, compare (4.24).

All three statements of Lemma 4.1 follow directly from Lemma 3.5 by setting for each case
two of the three components cS , cA and kinfo in C̃ to zero, which results in a cost functional
containing only information-, action- or state costs, respectively.

In the case of infinite lag times the average information costs vanish since no state tests are
made. (This even holds for a state with finite lag time as long as it communicates with an-
other state with infinite lag time because – in the long run – this state will almost surely
be reached, and so the number of tests will stay finite.) The action costs and the state
costs possibly depend on the state: The average action costs of a state x∈S with infinite
lag time τ(x) =∞ are given by cA(a(x)) and the corresponding average state costs are given
by limT→∞Ea(x)

x

(
1
T

∫ T
0 cS(Xs)ds

)
.

The presented cost splitting is by itself an interesting tool to analyze the structure of the
value function for a given control problem. For instance, within an application in medical
science (compare [8, 33, 34]) the state costs can be associated with the health damage of a
patient. In this case, it is of fundamental interest to extract the state costs from the total costs
in order to assess the impact of a medical therapy on the health status of the patient.
As another advantage, we are now able to make an unbiased comparison to the case of cost-free
information.

Comparison to the original Markov control problem.

In this setting of ergodic dynamics, assume that there exists an optimal policy u∗∈Uinfo and
let

η∗=ηu∗ =η∗info +η∗S+η∗A

denote the split-up for the corresponding constant of optimal average costs according to the
definitions given in (4.23) and (4.25). Naturally, the value η∗ should exceed the optimal costs of
the related original control problem where information is free of charge. A comparison of both
settings is given in Figure 4 for the 2-state-example 3.2. Here, even the net costs η∗net =η∗S+η∗A
(blue and green area) exceed the total costs of the original model. This relation holds in general
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and should be intuitive: In order to guarantee an (overall) optimal control, the points in time
where the action is adapted have to coincide with the jumping times of the process. Otherwise,
there will be periods in time where the influence on the process is not optimal.
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Figure 4: Cost splitting for the 2-state-example. The constant of optimal average costs
η∗ defined in (3.22) for Example 3.2 is divided into its components η∗S , η∗A and η∗info and
compared to the free information case where the splitting is given by η∗S+η∗A. The respective
cost parameters are given by cS(x2) = 10, cA(a2) = 2 and kinfo = 1, compare first row of Table 1.

4.2 Monotonicity and Continuity with respect to kinfo

Given the insight into the characteristics of the constant η∗ and its different components, we now
turn to the analysis of the central parameter kinfo and its influence on the optimal costs resp. the
optimal lag times. The questions to be answered in the following are: Is the constant of optimal
average costs η∗ monotone and continuous with respect to kinfo? And how do the optimal lag
times depend on kinfo? Of special interest is the limit case kinfo→0: Our observations will again
confirm the intuitive relation to the original control problem with kinfo = 0. All statements are
based on the ergodicity Assumption 3.4.

Monotonicity and continuity of η∗ with respect to kinfo.

Theorem 4.2 (Monotonicity of η∗ with respect to kinfo). Let η∗= infu∈Uinfo J(x,u) be the
constant of optimal average costs for a given control problem with information costs kinfo.
Changing the parameter kinfo of information costs to k̃info with k̃info<kinfo results in optimal
average costs η̃∗ with

η̃∗≤η∗.

Proof. Let u∗ be the optimal policy with respect to the parameter kinfo, i.e. it holds η∗=J(x,u∗)
for all x. For a fixed policy, the cost functional J defined in (2.2), is obviously monotone in
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kinfo. This yields
η̃∗≤ J̃(x,u∗)≤J(x,u∗) =η∗

where J̃ is the cost functional for the parameter k̃info.

As for the continuity of η∗ with respect to kinfo we have to distinguish between kinfo>0 and
kinfo = 0.

Lemma 4.3 (Continuity of η∗ with respect to kinfo at kinfo>0). The constant η∗ of optimal
average costs is continuous with respect to kinfo>0.

Proof. We show continuity from the right. (For continuity from the left the argumentation is
analogue.) For a given kinfo>0 consider the corresponding optimal policy u∗ and the constant
η∗=J(x,u∗) of optimal average costs. Applying the policy u∗ to the situation of higher infor-
mation costs k̃info =kinfo +δ>kinfo, δ>0, increases only the information costs (as a part of the
cost functional J), namely by the factor k̃info

kinfo
= kinfo+δ

kinfo
>1, such that - for the corresponding

cost functional J̃ - it holds
J̃(x,u∗)≤ kinfo +δ

kinfo
η∗ ∀x∈S.

Let η̃∗ denote the optimal average costs given the parameter k̃info. From η̃∗≤ J̃(x,u∗)∀x∈S it
follows

η̃∗≤ kinfo +δ

kinfo
η∗=η∗+ δ

kinfo
η∗,

and, using the monotonicity of η∗ with respect to kinfo (see Lemma 4.2),

0<η̃∗−η∗≤ δ

kinfo
η∗.

Hence, given an ε>0, we can choose δ< ε·kinfo
η∗ to guarantee |η̃∗−η∗|<ε, which completes the

proof.

Lemma 4.4 (Continuity of η∗ with respect to kinfo at kinfo = 0). Given a Markov control model
with information costs, let η∗kinfo

denote the optimal average costs depending on the parameter
kinfo. Let η0 denote the optimal average costs of the corresponding original Markov Control
model (without information costs). It holds

η∗kinfo

kinfo→0−−−−−→η0.

Proof. For the proof we need the insight that Lemma 3.5 can be applied to the original case
of vanishing information costs kinfo = 0 where a policy only consists of choosing an action a(x)
for each state: One has to replace Ga(x),τ(x) by La(x) and C̃(x,a(x),τ(x)) by c(x,a(x)).
Now let a0 :S→A be the optimal policy of the original Markov control problem. Defining
ca0(x) := c(x,a0(x)) and La0(x,y) :=La0(x)(x,y) for x,y∈S, the application of Lemma 3.5 de-
livers

η0 = ca0(x)+(La0v)(x) ∀x∈S,
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Figure 5: kinfo vs. optimal average costs for the 2-state-example. The constant of
optimal average costs η∗kinfo

for Example 3.2 depending on the information costs kinfo in a
logarithmic scale. For kinfo = 1 the values agree with the one given in Table 1 (η∗= 1.59). For
kinfo = 10−10 the value is close to the optimal costs of the original model (η∗≈1.09).

where v is a suitable function on S. Given kinfo>0, set τ(x) = τ∗=
√
kinfo for all x∈S and

consider the policy u(x) = (a0(x),τ∗) which is in general not optimal. According to Lemma 3.5
the average costs ηkinfo induced by this policy u are given by the first component of

vkinfo := (E−Gu)−1
C̃u,

where, for the given policy u,

C̃u(x) = C̃(x,a0(x),τ∗) =Ea0(x)
x

(
1
τ∗

∫ τ∗

0
c(Xs,a0(x))ds

)
+ kinfo

τ∗
.

We analyze the vector vkinfo for vanishing information costs: From kinfo→0 it follows τ∗→
0 and kinfo

τ∗ = kinfo√
kinfo
→0. By the definition of Gu given in (3.10) and the properties of the

generator matrix La0 it holds Gu
τ∗→0−−−−→La0 . Next, using ca(x) := c(x,a) and the properties of

the generator matrices La, we have

Eux

(
1
τ∗

∫ τ∗

0
c(Xs,a0(x))ds

)
= 1
τ∗

∫ τ∗

0

(
eLa0(x)sca0(x)

)
(x)ds τ∗→0−−−−→ ca0(x)(x).

Putting everything together we get

vkinfo
kinfo→0−−−−−→ (E−La0)−1

ca0 ,

which, again applying Lemma 3.5 to the case kinfo = 0, delivers η0 in its first component, i.e. it
holds vkinfo(1) kinfo→0−−−−−→η0. Noting that η0≤η∗kinfo

≤vkinfo(1) =ηkinfo completes the proof.

Figure 5 shows the optimal average costs η∗ as a function of kinfo for the 2-state-example 3.2.
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Connection between kinfo and τ∗.

Knowing that the constant η∗ of optimal average costs is monotone and continuous in kinfo,
we now analyze the structure of the optimal policy depending on kinfo. How do the optimal
lag times τ∗(x) change when kinfo changes? Intuitively, a reduction of the information costs
should lead to a higher frequency of tests, or, equivalently, to smaller lag times. However, as
the following simple example shows, such a monotonicity does not hold in general.

Example 4.5 (No monotonicity in τ∗). We consider a 3-state-model with S={x1,xI ,x2} where
xI refers to an “intermediate” state, A={a1,a2} and

L1 =

−0.1 0.1 0
0.1 −0.2 0.1
0 0 0

 , L2 =

−0.1 0.1 0
1 −1.1 0.1
0 15 −15

,
as well as c(x,a) = cS(x)+cA(a) with cS(x1) = cS(xI) = 0, cS(x2) = 10, cA(a1) = 0, cA(a2) = 2.
Similar to Example 3.2, x2 is the “bad” state producing a lot of state costs, and a2 is the
expensive action driving the process quickly out of this “bad” state and towards the “safe” state
x1, while for the free action a1, state x2 is absorbing. We calculate the optimal policy for
different kinfo and observe the following structure. It holds a∗(x1) =a1 and a∗(x2) =a2 for all
kinfo>0, whereas for the intermediate state the optimal action depends on kinfo. For kinfo<0.12
the optimal action is given by a∗(xI) =a1, while for kinfo≥0.12 it holds a∗(xI) =a2. For x1 and
x2 the optimal lag time τ∗ is monotone and continuous in kinfo. However, for the intermediate
state xI there is a point of discontinuity at kinfo = 0.12: With the switchover in the optimal
action, the optimal lag time decreases in a volatile way. Only for areas of constant action the
lag time τ∗(xI) increases with kinfo, see Figure 6. The corresponding optimal average costs are
shown in Figure 7.
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Figure 6: kinfo vs. optimal lag times for the 3-state-example 4.5. The optimal lag times
τ∗(x) for Example 4.5 depending on the information costs kinfo. At kinfo = 0.12 the optimal lag
time τ∗(xI) of the intermediate state performs a jump.



S. Winkelmann. MDP with Information Costs 23

Interpretation: This structure can be explained by the effect that both actions have on the
process in the intermediate state xI : In the short run, action a1 is preferred because it is free of
charge (c(xI ,a1) = 0). However, given a1, the process is more likely to switch next to the “bad”
state x2, such that a soon following test and control adaption is required in order to prevent the
process from spending much time in state x2. If the test is too expensive (kinfo>0.12) such a
safeguarding is not affordable and it is better to choose the “safe” (but more expensive) action
a2 in order to push the process towards the “good” state x1. In order to avoid too many action
costs, a (more or less) quickly following test indicates whether the process returned to state x1
such that the action can be adapted.
In order to understand what happens at the breaking point kinfo = 0.12 one can formulate “con-
ditional” optimal policies: fixing the action for the intermediate state xI to a1 resp. a2, the
(conditional) optimal lag times τ∗1 (xI) and τ∗2 (xI) are continuous and monotone functions of
kinfo. The corresponding functions of conditional optimal costs have an intersection point at
kinfo = 0.12. More precisely it holds η∗1(kinfo)−η∗2(kinfo)<0 (resp. = 0 resp. >0) for kinfo<0.12
(resp. kinfo = 0.12 resp. kinfo>0.12). Now the connection should be clear: The overall minimal
costs are the minimum of the conditional optimal costs.
For vanishing information costs the optimal lag times converge to zero, which gives a reasonable
connection to the original Markov control model.
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Figure 7: kinfo vs. optimal average costs for the 3-state-example 4.5. The constant
of optimal average costs for Example 4.5 depending on the information costs kinfo, compare
Lemma 4.4.

4.3 Sensitivity with respect to Lag Times τ (x)
Finally, we shortly investigate the sensitivity of the constant of average costs with respect to
the lag times τ : Given the optimal policy, how do small deviations from the optimal lag time τ∗
affect the cost functional? The motivation is given by real-world applications: Due to practical
restrictions, an exact adherence of the calculated optimal lag times might not be possible.
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In fact, the answer to this question is already given in Section 2: The continuity of both
the generators Gu and the cost functions C̃u with respect to τ(x) for all x∈S implies that
the average costs ηu are continuous with respect to the lag time parameter, as well. This is a
reassuring fact in the sense that deviations from the optimal lag times – as long as they are not
too large – will not lead to crucial changes in the costs.

In order to get an idea of how ηu depends on τ , we consider the 2-state-example 3.2.
Figure 8 shows the impact of changes in τ(x1) resp. τ(x2) when all other parameters are fixed
to be optimal. In both cases, the net costs ηnet are monotonously increasing in τ , whereas
the total costs η exhibit a unique minimum. However, around these minima, there exists a
wide area of values where the constant η of long-term average costs is nearly constant, which
indicates a low sensitivity with respect to the lag times for this concrete example.
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Figure 8: Sensitivity with respect to τ for the 2-state-example.
A: Lag time τ(x1) vs. long-term average costs η and ηnet for fixed τ(x2) = 1.3 and a(x1) = 1,
a(x2) = 2. B: Lag time τ(x2) vs. long-term average costs η and ηnet for fixed τ(x1) = 5.3 and
a(x1) = 1, a(x2) = 2.
All other parameters coincide with those given in the first line of Table 1, i.e. cS(x2) = 10,
cA(a2) = 2, kinfo = 1. The minimum of the total average costs η is attained at τ∗(x1) = 5.3
(panel A) resp. τ∗(x2) = 1.3 (panel B) with η=η∗= 1.59 which is consistent with the values of
the optimal policy declared in Table 1.

Remark 4.6. As for numerical consequences we can state the following: In the case of a low
sensitivity of the cost functional with respect to the lag time parameter τ – as it is given in panel
A of Figure 8 – the problem of finding the minimum solution is numerically ill-conditioned. A
gradient descent with respect to τ would be extremely slow because the gradient would almost
vanish within a wide area around the minimum solution. However, in many real-world appli-
cations, the lag time parameter naturally exhibits some kind of discrete quality given by the
considered time unit (years/days/hours/seconds...) and tests cannot be placed arbitrarily exact
in time anyway, which overcomes this difficulty of exact optimization. For example, for medical
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tests or machine checkups a day declaration might be realistic and sufficient, compare the medi-
cal application proposed in [8,33,34]. This suggests to discretize the domain of the parameter τ
in a suitable way. Furthermore, for practical purpose, a nearby solution is completely satisfying
as long as the resulting costs are close to optimal, which is exactly given in this situation of low
sensitivity.

5 Conclusion
We presented a quite general setting for continuous-time Markov decision processes which are
not permanently observable. The observation of the process takes place at singular points in
time which themselves are subject to the control of the decision maker. As every observation
produces a fixed amount of information costs, a careful choice of the observation times is
required in order to avoid an expansion of costs. Depending on the state observation, the
decision maker chooses an action which determines the stochastic dynamics of the process
within the next time interval of blind progress.

The approach is motivated by the fact that in many real-world applications a permanent
observation and control of the process under consideration is not feasible. Especially situations
in the context of medical therapy suggest that state examinations are costly and therefore rare,
see [8, 33, 34] where the theory is applied in order to determine optimal treatment strategies
against HIV-1. While these works consider the criterion of discounted costs, we here developed
the theory for the criterion of long term average costs which requires a completely different
approach. It turned out that the given MDP with incomplete information can be reformulated
by an equivalent fully observable MDP. This main result allowed for an elegant transfer of
the well-known theory to the new setting. Especially, we managed to reconstruct the Bellman
equation which - as in the usual Markov control theory - characterizes both the optimal policy
and the value function of optimal average costs.

Our analysis is based on the two fundamental assumptions that a state test always delivers
instantaneous and perfect information and that the action can only be adapted after such a test.
A question of interest is how far these assumptions can be eased in order to further generalize
the control model. Finding an answer to this question proves to be a topic of future research.
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APPENDIX
Proof of Lemma 3.5. We begin with part b) and show the uniqueness of the constant.
Assume that ρ∈R and v :S→R fulfill

ρ= C̃(x,a(x),τ(x))+
∑
y∈S

Ga(x),τ(x)(x,y)v(y) for allx∈S. (5.26)

Due to the structure of the generator matrix Gu it holds Gu(v+d) =Guv for any constant
vector d∈R|S| such that we can set v(1) =ρ without loss of generality. Equation (5.26) can
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now be written as Ev= C̃u+Guv which yields

v= (E−Gu)−1C̃u.

The matrix E−Gu is invertible by the following argumentation. If it was not invertible the
equation

(E−Gu)w= 0 (5.27)
would have a solution w 6= 0. Now, equation (5.27) is equivalent to w(1) = (Guw)(x) for all
x∈S. However, for xmin := argminw(x) and xmax := argmaxw(x) we have

(Guw)(xmin) =
∑

y 6=xmin

Gu(xmin,y) ·(w(y)−w(xmin))≥0

and
(Guw)(xmax) =

∑
y 6=xmax

Gu(xmax,y) ·(w(y)−w(xmax))≤0.

This leads to 0≤ (Guw)(xmin) =w(1) = (Guw)(xmax)≤0 which means that w(1) has to be zero,
and thus Guw= 0 holds. This equation, however, is fulfilled by any constant vector w. As
we assumed the process to be ergodic, the eigenvalue 0 is of multiplicity one, which means
that such a constant w is the only possible choice. This implies w(x) =w(1) = 0 for all x, in
contradiction to w 6= 0.
This means that, given the side constraint v(1) =ρ, the quantities ρ and v are uniquely defined
by Gu and C̃u. (Without this side constraint, the constant ρ is still unique, whereas v can be
replaced by v+d for any constant vector d∈R|S|.)
It remains to show that ρ=ηu which is part a) of the theorem. Fixing the generator Gu, we con-
sider the function f :R|S|→R given by f(c) =

(
(E−Gu)−1c

)
(1) = c(x)+(Gu(E−Gu)−1c)(x) =

c(x)+(Guvc)(x), independent of x∈S. (We write vc in order to underline the dependence of
the vector v on the cost function c.) This function delivers the constant ρ depending on the
cost function c. As f is obviously linear in c, by the Riesz representation theorem (see e.g. [30])
there exists a vector w∈R|S| such that

f(c) = 〈w,c〉.

Applying f to a vector of the form Guc yields f(Guc) = (Guc)(x)+(Gu(E−Gu)−1c)(x) =
(Guc)(x)+(Guvc)(x) =Gu(c+vc)(x) =ρ for all x. Now the last equality corresponds to
equation (5.26) by setting the cost function to zero such that the constant ρ is given by
f(0) = 〈w,0〉= 0. We get f(Guc) = 0 and with it

f(Guc) = 〈w,Guc〉= 〈G′uw,c〉= 0

for all c∈R|S|. By choosing c(1) = 1 and c(x) = 0 for all x 6= 1 we get 〈G′uw,c〉= (G′uw)(1) =
0, and equivalently we can deduce (G′uw)(x) = 0 for all other x∈S. However, the resulting
equation G′uw= 0 is exactly the characterization for the stationary distribution µu such that
w=µu and with it f(c) = 〈µu,c〉=ηu which proves a).
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