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Abstract

Observable operator models (OOMs) and related models are one of the most im-
portant and powerful tools for modeling and analyzing stochastic systems. They
can exactly describe dynamics of finite-rank systems, and be efficiently learned
from data by moment based algorithms. Almost all OOM learning algorithms
are developed based on the assumption of equilibrium data which is very difficult
to guarantee in real life, especially for complex processes with large time scales.
In this paper, we derive a nonequilibrium learning algorithm for OOMs, which
dismisses this assumption and can effectively extract the equilibrium dynamics of
a system from nonequilibrium observation data. In addition, we propose binless
OOMs for the application of nonequilibrium learning to continuous-valued sys-
tems. In comparison with the other OOMs with continuous observations, binless
OOMs can achieve consistent estimation from nonequilibrium data with only linear
computational complexity.

1 Introduction

In the last two decades, a collection of highly related dynamical models including observable
operator models (OOMs) [1–3], predictive state representations [4–6] and spectral learning based
hidden Markov models [7, 8], have become powerful and increasingly popular tools for analysis of
dynamical data. These models are largely similar and can be unified in a general learning framework
of multiplicity automata, or equivalently sequential systems [9, 10]. We focus in this paper only on
stochastic systems without control inputs. Because all of above mentioned models can be expressed
in the form of OOMs for such systems, we will refer to them as OOMs below.

In contrast with the other commonly used models such as Markov models [11], Langevin models
[12], traditional hidden Markov models (HMMs) [13] and recurrent neural networks [14], OOMs
can exactly characterize the dynamics of a stochastic system without any a priori knowledge except
the assumption of finite dynamical rank (i.e., the rank of Hankel matrix) [10], and the parameter
estimation can be efficiently performed by the method of moments for discrete-valued systems
without solving any intractable inverse or optimization problem.

A major challenge for OOM based dynamical modeling approaches arises from nonequilibrium
data. In most literature, the observation data are assumed to be equilibrium so that the expected
values of observables associated with OOM learning can be reliably computed by simple averaging.
However, the equilibrium assumption can be approximately satisfied only if most of observation data
are generated after the system has mixed. In many practical situations, especially where metastable
physical or chemical processes are involved, this assumption can be severely violated due to the
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limit of experimental technique or computational capacity. A notable example is the distributed
computing project Folding@home [15], which explores protein folding processes that occur on the
timescales of microseconds to milliseconds based on molecular dynamics simulations on the order of
nanoseconds in length. In such a case, it is still unknown how to obtain promising estimates of OOMs
from nonequilibrium data consisting of short trajectories. In [16], a hybrid estimation algorithm was
proposed to improve OOM learning of large-time-scale processes by using both dynamic and static
data, but it still requires assumption of equilibrium data. One solution to reduce the statistical bias
caused by nonequilibrium data is to discard the observation data generated before the system reaches
steady state, which is a common trick in applied statistics [17]. Obviously, this way suffers from
substantial information loss and is infeasible when observation trajectories are shorter than mixing
times. Another possible way would be to learn OOMs by likelihood-based estimation instead of
moment-based estimation, but there is no effective maximum likelihood or Bayesian estimator of
OOMs until now. The maximum pseudo-likelihood estimator of OOMs proposed in [18] demands
high computational cost and its consistency is yet unverified.

Another difficulty for OOM based modeling approaches is learning with continuous data, where
density estimation problems are involved. The density estimation can be performed by parametric
methods such as the fuzzy interpolation [19] and the kernel density estimation [8]. But these methods
would reduce the flexibility of OOMs for dynamical modeling because of their limited expressive
capacity. Recently, a kernel embedding based OOM learning algorithm was proposed to cope with
continuous data [20], which avoids explicit density estimation and learns OOMs in a nonparametric
manner. However, the kernel embedding usually yields a very large computational complexity, which
greatly limits practical applications of this algorithm to real-world systems.

The purpose of this paper is to address the challenge of nonequilibrium learning of OOMs due to the
requirements of analysis of both discrete- and continuous-valued systems. We provide a modified
moment-based method for discrete-valued stochastic systems which allows us to consistently estimate
the equilibrium dynamics from nonequilibrium data, and then extend this method to OOM learning
with continuous observations in a binless manner. In comparison with the existing learning methods
for continuous OOMs, the proposed binless method does not rely on any density estimator, and can
achieve consistent estimation with linear computational complexity in data size even if the equilibrium
assumption of observations does not hold. Moreover, some numerical experiments are provided to
demonstrate the capability of the proposed nonequilibrium learning methods.

2 Preliminaries

2.1 Notation

In this paper, we use P to denote probability distribution for discrete random variables and probability
density for continuous random variables. The indicator function of event e is denoted by 1e and
the dirac delta function centered at x is denoted by δx (·). For a given process {at}, we write the
subsequence (ak, ak+1, . . . , ak′) as ak:k′ , and E∞[at] , limt→∞ E[at] means the expected value of
at in equilibrium if the limit exists. In addition, the convergence in probability is denoted by

p→.

2.2 Observable operator models

Anm-dimensional observable operator model (OOM) with observation spaceO can be represented by
a tupleM = (ω, {Ξ(x)}x∈O,σ), which consists of an initial state vector ω ∈ R1×m, an evaluation
vector σ ∈ Rm×1 and an observable operator matrix Ξ(x) ∈ Rm×m associated to each element
x ∈ O.M defines a stochastic process {xt} in O as

P (x1:t|M) = ωΞ(x1:t)σ (1)

with Ξ(x1:t) , Ξ(x1) . . .Ξ(xt). It is interesting to note that (1) can also be represented in the form
of state space models as

ωt = (ωt−1Ξ(xt)σ)
−1
ωt−1Ξ(xt)

P (xt+1|ωt) = ωtΞ(xt+1)σ (2)
Here the internal state ωt in (2) is a sufficient statistics the process at each time t, which contains all
the information needed to predict the future observations and is initialized by ω0 = ω. It is clear that
two OOMsM andM′ are equivalent if and only if P (x1:t|M) ≡ P (x1:t|M′).
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Algorithm 1 General procedure for OOM learning
INPUT: Observation trajectories generated by a stochastic process {xt} in O
OUTPUT: M̂ = (ω̂, {Ξ̂(x)}x∈O, σ̂)
PARAMETER: m: dimension of the OOM. D1, D2: numbers of feature functions. L: order of

feature functions.
1: Construct feature functions φ1 = (ϕ1,1, . . . , ϕ1,D1)> and φ2 = (ϕ2,1, . . . , ϕ2,D2)>, where

each ϕi,j is a mapping from OL to R and D1, D2 ≥ m.
2: Approximate

φ̄1 , E∞ [φ1(xt+1:t+L)] , φ̄2 , E∞ [φ2(xt+1:t+L)] (6)

C1,2 , E∞
[
φ1(xt−L:t−1)φ2(xt:t+L−1)>

]
(7)

C1,3 (x) , E∞
[
1xt=x · φ1(xt−L:t−1)φ2(xt+1:t+L)>

]
, ∀x ∈ O (8)

by their empirical means ˆ̄φ1, ˆ̄φ2, Ĉ1,2 and Ĉ1,3 (x) over observation data.
3: Choose matrix F1 ∈ RD1×m,F2 ∈ RD2×m such that F>1 Ĉ1,2F2 is invertible.
4: Compute

σ̂ =
(
F>1 Ĉ1,2F2

)−1
F>1

ˆ̄φ1 (9)

Ξ̂(x) =
(
F>1 Ĉ1,2F2

)−1
F>1 Ĉ1,3(x)F2, ∀x ∈ O (10)

ω̂ = ˆ̄φ>2 F2 (11)

3 Learning OOMs using moments

3.1 Algorithm

Here and hereafter, we only consider the case that the observation space O is a finite set. (Learning
with continuous observations will be discussed in Section 5.) A large number of largely similar
methods have been developed to learn OOMs from discrete data, and the generic learning procedure
of these methods is summarized in Algorithm 1 by omitting details of algorithm implementation and
parameter choice. For convenience of description and analysis, we specify in this paper the formula
for calculating ˆ̄φ1, ˆ̄φ2, Ĉ1,2 and Ĉ1,3 (x) in Line 2 of Algorithm 1 as follows:

ˆ̄φ1 ,
1

N

N∑
n=1

φ1(~s 1
n), ˆ̄φ2 ,

1

N

N∑
n=1

φ1(~s 2
n) (3)

Ĉ1,2 ,
1

N

N∑
n=1

φ1(~s 1
n)φ2(~s 2

n)> (4)

Ĉ1,3 (x) ,
1

N

N∑
n=1

1s2n=xφ1(~s 1
n)φ2(~s 3

n)>, ∀x ∈ O (5)

Here {(~s 1
n , s

2
n, ~s

3
n)}Ns=1 is the collection of all subsequences of length (2L+ 1) appearing in ob-

servation data (N = T − 2L for a single observation trajectory of length T ). For instance, if an
observation subsequence xt−L:t+L is denoted by (~s 1

n , s
2
n, ~s

3
n) with some n, then ~s 1

n = xt−L:t−1 and
~s 3
n = xt+1:t+L represents the prefix and suffix of xt−L:t+L of length L, s2n = xt is the intermediate

observation value, and ~s 2
n = xt:t+L−1 is an “intermediate part” of the subsequence of length L

starting from time t (see Fig. 1 for a graphical illustration).

Algorithm 1 is much more efficient than the commonly used likelihood-based learning algorithms
and does not suffer from local optima issues. In addition, and more importantly, this algorithm can
be shown to be consistent if the observation data are equilibrium so that empirical estimates of φ̄1,
φ̄2, C1,2 and C1,3 (x) converge to their true values with increasing data size (see, e.g., [3, 8, 10] for
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Figure 1: Illustration of variables ~s 1
n , s2n, ~s 3

n and ~s 2
n used in Eqs. (3)-(5) with (~s 1

n , s
2
n, ~s

3
n) = xt−L:t+L

and L = 3.

related works). However, the consistent estimation of OOMs with nonequilibrium data is still an
unsolved problem.

3.2 Theoretical analysis

We now analyze statistical properties of the OOM learning algorithm without the assumption of
equilibrium observations. Before stating our main result, some assumptions on observation data are
listed as follows:
Assumption 1. The observation data consists of I independent trajectories of length T produced
by a stochastic process {xt}, and the data size tends to infinity with (i) I →∞ and T = T0 or (ii)
T →∞ and I = I0.
Assumption 2. {xt} is driven by an m-dimensional OOMM = (ω, {Ξ(x)}x∈O,σ), and satisfies

1

T ′

T ′∑
t=1

ft
p→ E∞ [ft] = E∞ [ft|x1:k] (12)

as T ′ →∞ for all k, l, x1:k and ft = f (xt:t+l−1).

Assumption 3. The limit of F>1 Ĉ1,2F2 ∈ Rm×m is invertible.

Notice that we do not assume stationarity of processes as previously done in the literature, and
Assumption 2 only states the asymptotic stationarity of {xt}. Therefore, estimates of φ̄1, φ̄2,
C1,2 and C1,3 (x) obtained from empirical means may not be consistent if lengths of observation
trajectories are kept at finite values (i.e., Case (i) in Assumption 1). Assumption 3 ensures that the
limit of M̂ given by Algorithm 1 is well defined.

Based on the above assumptions, we have the following theorem concerning the consistency of the
OOM learning algorithm (see Appendix A.1 for proof):

Theorem 1. Under Assumptions 1-3, the estimated OOM M̂ = (ω̂, {Ξ̂(x)}x∈O, σ̂) given by
Algorithm 1 satisfies

σ̂
p→ σeq, Ξ̂ (x)

p→ Ξeq(x), ∀x ∈ O (13)
whereMeq = (ωeq, {Ξeq(x)}x∈O,σeq) is an m-dimensional OOM equivalent toM.

This theorem is central in this paper, and implies that the moment based learning algorithm can achieve
consistent estimation of all parameters of OOMs except initial state vectors even for nonequilibrium
data. (ω̂

p→ ωeq does not hold in most cases except when {xt} is stationary. See Appendix A.1
for details). It can be further generalized according to requirements in more complicated situations
where, for example, the data set consists of both several long trajectories and many short trajectories
or trajectories are not independent from each other. The following two generalizations are particularly
worth mentioning due to their importance for practical applications:

1. The i-th observation trajectories is generated by OOM M = (ωi, {Ξ(x)}x∈O,σ) for
i = 1, . . . , I (i.e., observations are generated with multiple different initial conditions), and
the mean value of {ωi}Ii=1 tends to a constant in probability for I →∞.

2. Matrices F1 and F2 are not constant but given by the singular value decomposition of Ĉ1,2

as in the spectral learning algorithm [21, 7, 22].

We show in Appendix A that the above two generalizations do not affect the consistency of Ξ̂ (x)
and σ̂. In fact, it can be proved by similar proofs that all theoretical conclusions in this paper hold for
the two generalizations.
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4 Nonequilibrium learning of OOMs

According to the discussion in the previous section, the only remaining problem for learning OOMs
from nonequilibrium data is how to estimate initial state vectors. Considering that the purpose of
dynamical modeling is to predict properties of the system in equilibrium in many situations, here we
only approximate equilibrium values of internal states of OOMs (see below) rather than actual initial
state vectors, because the latter depend on initial conditions of data generation and the former are
more physically interesting for analysis of equilibrium dynamics.

Given parameters ofMeq in Theorem 1, the equilibrium value of the internal state is defined as

ω̄eq = lim
t→∞

ωeqΞeq(O)t (14)

if the limit exists, where Ξeq(O) =
∑
x∈O Ξeq(x). Then the equilibrium dynamics of {xt} can be

characterized as
lim
t→∞

P (xt+1:t+k = z1:k) = ω̄eqΞeq(z1:k)σeq (15)

From (14) and (15), we have{
ω̄eqΞeq(O) = limt→∞ ωeqΞeq(O)t+1 = ω̄eq

ω̄eqσeq = limt→∞
∑
x∈O P (xt+1 = x) = 1

(16)

This motivates the following nonequilibrium learning algorithm for OOMs: Perform Algorithm 1 to
get Ξ̂ (x) and σ̂ and calculate ω̂ by a quandratic programming problem

ω̂ = arg min
w∈{w|wσ̂=1}

∥∥∥wΞ̂(O)−w
∥∥∥2 (17)

(See Appendix A.4 for a closed-form expression of the solution to (17).)

The existence and uniqueness of ω̄eq are shown in Appendix A.4, which yield the following theorem:

Theorem 2. Under Assumptions 1-3, the estimated OOM M̂ provided by the nonequilibrium learning
algorithm satisfies

P
(
x1:l = z1:l|M̂

)
p→ lim
t→∞

P (xt+1:t+l = z1:l) (18)

for all l and z1:l.
Remark 1. Some OOM learning algorithms for equilibrium data [23] also calculate ω̂ based on (16),
where feature functions φ1,φ2 and matrices F1,F2 are specifically constructed so that ω̂Ξ̂(O) =
ω̂, ω̂σ̂ = 1 can be exactly satisfied even if the statistical noise is considered. In comparison with
these algorithms, the nonequilibrium learning algorithm does not require such a restriction, and is
shown to be applicable to nonequilibrium data.

5 Binless learning of OOMs

We now consider how to learn OOMs from continuous data. In the case of a real observation space
O ⊂ Rd,M defines probability densities of paths of {xt} as in (1), and C1,3 (x) becomes a matrix-
valued density function C1,3 (x) = 1

dxE∞
[
1xt∈dx · φ1(xt−L:t−1)φ2(xt+1:t+L)>

]
with general

feature functions φ1,φ2 on Rd, which is difficult to approximate for each x ∈ O. The existing
continuous learning algorithms overcome this problem by using parametric methods [19, 8] or kernel
embeddings [20], but none of them can achieve consistent estimation with a low computational
complexity like discrete learning algorithms even for equilibrium data.

Here we present a binless strategy to perform dynamical modeling with continuous and nonequi-
librium data, which simply views each available observation as a discrete probability atom in the
observation space and approximates C1,3 (x) by

Ĉ1,3 (x) =
1

N

N∑
n=1

δs2n (x)φ1(~s 1
n)φ2(~s 3

n)> (19)

instead of (5). Using this strategy, a binless OOM M̂ = (ω̂, {Ξ̂(x)}x∈O, σ̂) with the observable
operator matrix Ξ̂(x) =

∑
z∈X Ŵzδz (x) supported on X = {s2n}Nn=1 can be constructed by
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Algorithm 2 Nonequilibrium learning procedure of Binless OOMs
INPUT: Observation trajectories generated by a stochastic process {xt} in O ⊂ Rd
OUTPUT: Binless OOM M̂ = (ω̂, {Ξ̂(x)}x∈O, σ̂)

1: Construct feature functions φ1 : RLd 7→ RD1 and φ2 : RLd 7→ RD2 with D1, D2 ≥ m.
2: Calculate φ̄1, φ̄2,C1,2,C1,3 (x) by (3), (4) and (19).
3: Choose matrix F1 ∈ RD1×m,F2 ∈ RD2×m such that F>1 Ĉ1,2F2 is invertible.
4: Compute σ̂, ω̂ and Ξ̂(x) =

∑
z∈X Ŵzδz (x) by (9), (17) and

Ŵs2n
=

1

N

(
F>1 Ĉ1,2F2

)−1
F>1 φ1(~s 1

n)φ2(~s 3
n)>F2 (21)

where Ξ̂(O) =
´

dx Ξ̂(x) =
∑
z∈X Ŵz .

nonequilibrium learning with computational complexity O (N) as in Algorithm 2, where feature
functions can be selected as splines, radial basis functions or other commonly used activation functions
for single-layer neural networks in practice in order to digest adequate dynamical information from
observation data. Note the binless strategy can be applied to more general cases where observations
are strings, graphs or other structured variables, and is very similar to that used in Monte Carlo
integration or nonparametric maximum likelihood estimation [24]. Although we cannot use the
binless OOM to evaluate path probability densities of {xt} as in (18), the equilibrium expectation of
any observable gt = g (xt+1:t+r) of {xt} can be approximated as

E∞ [gt] ≈ E
[
gt|M̂

]
=

∑
x1:r∈X r

g (x1:r) ω̂Ŵz1 . . .Ŵzr σ̂ (20)

By adding a technical assumption, our previous result on consistency of nonequilibrium learning of
OOMs can extended to the binless case as follows (see Appendix A.4 for proof):
Assumption 4. The observation space O is a closed set in Rd and feature functions φ1,φ2 are
bounded on OL.
Theorem 3. Under Assumptions 1-4, the binless OOM provided by Algorithm 2 satisfies

E
[
g (x1:r) |M̂

]
p→ E∞ [g (xt+1:t+r)] (22)

(i) for all continuous functions g : Or 7→ R.

(ii) for all bounded and Borel measurable functions g : Or 7→ R, if there exist constants ξ̄ and
ξ so that ‖Ξ (x)‖ ≤ ξ̄ and limt→∞ P (xt+1:t+r = z1:r) ≥ ξ for all x ∈ O and z1:r ∈ Or.

Note that we do not assume the observed dynamics coincides with a parametric model defined by
feature functions in Theorem 3. This theorem shows that binless OOMs allow us to consistently and
efficiently extract equilibrium histograms, principle components, time-cross correlations, etc., of a
dynamical systems from nonequilibrium data, which is important especially for thermodynamic and
kinetic analysis in computational physics and chemistry.
Remark 2. The computational complexity of (20) is O (Nr), which is unaffordable for large data sets
if r > 1. In this paper, we focus on estimation of specific observables in the forms of E∞ [a (xt)]
and E∞ [a (xt) b (xt+k)] by binless OOMs, which only require O (N) time. The efficient estimation
of E∞ [g (xt+1:t+r)] for general g with is outside the scope of this paper and will be dealt with
separately in another paper.

6 Applications

In this section, we evaluate our algorithms on two stochastic systems driven by Brownian dynamics
and the molecular dynamics of alanine dipeptide, and compare them to several alternatives. The
detailed settings of simulations and algorithms are provided in Appendix B.
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(a) (b) 

(c) (d) 

Figure 2: Comparison of modeling methods for a one-dimensional diffusion process. (a) Potential
function. (b) Estimates of the difference between equilibrium probabilities of I and II given by the
traditional OOM, HMM and OOM using nonequilibrium learning (NL-OOM) with O = {I, II}. (c)
Estimates of the probability difference given by the empirical estimator, HMM and Binless OOM
(BL-OOM) using nonequilibrium learning with O = [0, 2]. (d) Equilibrium histograms of {xt} with
100 uniform bins estimated from trajectories with length 50. The initial x0 are uniformly drawn from
[0, 0.5], length of each trajectory is T = 50 ∼ 1000 and the number of trajectories is [105/T ]. Error
bars are standard deviations over 30 independent experiments.

Brownian dynamics Fig. 2(a) shows the potential function of a one-dimensional diffusion process
{xt} on [0, 2] driven by Brownian dynamics, where the state space is discretized into two clusters
I, II. It is obvious that the equilibrium probability of finding xt in I is smaller than that of xt ∈ II,
because the potential well contained in II is deeper than the other one. In this example, all simulations
are performed by starting from a uniform distribution on [0, 0.2], which imples that simulations
are highly nonequilibrium and it is difficult to accurately estimate the equilibrium probabilities
ProbI = E∞ [1xt∈I] and ProbII = E∞ [1xt∈II] of I and II from the simulation data. We first utilize
the traditional OOM learning, expectation–maximization based HMM learning and the proposed
nonequilibrium learning algorithm of OOMs to estimate ProbI and ProbII by assuming that we only
know which cluster the xt is in for each time t, i.e., the observation space O = {I, II}. Fig. 2(b)
summarizes the estimation results with different simulation lengths. It can be seen that estimates given
by the traditional OOM and the HMM are far away from true values even for the largest simulation
length T = 1000. In addition, it is worth pointing out that estimates given by the traditional OOM are
very similar to empirical means of 1xt∈I and 1xt∈II because the OOM learning algorithm is essentially
a moment matching algorithm and the estimated moments cannot be corrected in the traditional
learning algorithm. (See Fig. 2(c). Note that the empirical estimates of ProbI and ProbII are the
same for discrete and continuous observations.) In contrast to previous methods, the nonequilibrium
learning based OOM effectively reduce the statistical bias in the nonequilibrium data, and achieves
statistically correct estimation at T = 300.

Figs. 2(c) and 2(d) plot estimates of the equilibrium state distribution given by the empirical estimator,
HMM and binless OOM using nonequilibrium learning under the condition that the value of xt is
exactly known and O = [0, 2], where the empirical estimator calculates statistics through averaging
over all observations. The observation model of the HMM is constructed based on 100 uniform bins
on the state space, where samples within the same bin are assumed to be independent. With such
a fine discretization, the performance of the HMM is improved, but estimation errors of the HMM
for short trajectory lengths are still large. Here, the proposed binless OOM significantly outperform
the other methods, and its estimates are very close to true values even for extremely small short
trajectories.
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(a) (b) 

Figure 3: Comparison of modeling methods for a two-dimensional diffusion process. (a) Potential
function. (b) Estimates of the coefficient vector wTICA ∈ R2 of the first TIC with lag time 100,
which depends on E∞ [xt], E∞

[
xtx
>
t

]
, and E∞

[
xtx
>
t+τ

]
. The initial x0 are uniformly drawn from

[−2, 0] × [−2, 0], length of each trajectory is T = 200 ∼ 2500 and the number of trajectories is
[105/T ]. Error bars are standard deviations over 30 independent experiments.

(a) (b) 

Figure 4: Comparison of modeling methods for molecular dynamics of alanine dipeptide. (a) Reduced
free energy. (b) Estimates of π, the vector of equilibrium probabilities of metastable states I ∼ V,
where the horizontal axis denotes the total simulation time T × I . Length of each trajectory is
T = 10ns and the number of trajectories is I = 150 ∼ 1500. Error bars are standard deviations over
30 independent experiments.

Fig. 3 provides an example of applying binless OOMs to kinetic analysis. The goal of this ex-
periment is to perform the time-structure based independent component (TIC) analysis [25] of a
two-dimensional Brownian dynamics based on nonequilibrium observation data. Fig. 3(b) displays
the estimation errors of the coefficient vector of the first TIC obtained from different learning models,
which also demonstrates the superiority of the proposed binless OOM method.

Alanine dipeptide Alanine dipeptide is a small molecule which consists of two alanine amino acid
units, and its configuration can be described by two backbone dihedral angles. Fig. 4(a) shows the
potential profile of the alanine dipeptide with respect to the two angles, which contains five metastable
states. We perform multiple short molecular dynamics simulations starting from the metastable state
IV, where each simulation length is 10ns, and utilizes different methods to approximate the stationary
distribution of the five metastable states. As shown in Fig. 4(b), the proposed binless OOM yields
lower estimation error compared to each of the alternatives.

7 Conclusion

In this paper, we investigated the statistical properties of the general OOM learning procedure
for nonequilibrium data, and developed a general framework for learning dynamical models from
nonequilibrium data. Under this framework, the existing learning approaches of OOMs and the other
related models can be conveniently and efficiently applied to nonequilibrium (discrete or continuous)
data by using the nonequilibrium learning technique and the binless learning technique. The main
ideas of the two techniques are to correct the model parameters by the algebraic constraints under
the equilibrium condition and to handle continuous observations in a binless manner. Interesting
directions of future research include analysis of approximation error of nonequilibrium learning with
finite data size and applications of nonequilibrium learning to controlled systems.
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Supplementary Information
A Proofs

A.1 Proof of Theorem 1

For convenience, here we define

ω′(T ) =
1

T − 2L
ω

T−2L∑
t=1

Ξ(O)t−1

and
Gσ =

∑
z1:L

φ2(z1:L)σ>Ξ(z1:L)> (A.1)

Part (1) We first show the theorem in the case of T = T0 and I →∞.

Let
Gω =

∑
z1:L

φ1(z1:L)ω′(T0)Ξ(z1:L) (A.2)

Since I →∞, we have

ˆ̄φ1
p→ E

[
ˆ̄φ1

]
= Gωσ

ˆ̄φ>2
p→ E

[
ˆ̄φ>2

]
= ω′(T0)G>σ

Ĉ1,2
p→ E

[
Ĉ1,2

]
= GωG>σ

Ĉ1,3 (x)
p→ E

[
Ĉ1,2 (x)

]
= GωΞ(x)G>σ

In addition, we can obtain from Assumption 3 that

rank (Gω) = rank
(
F>1 Gω

)
= rank (Gσ) = rank

(
G>σF2

)
= m

Therefore, M̂ satisfies

ω̂ = ˆ̄φ>2 F2

p→ ω′(T0)GσF2

Ξ̂ (x) =
(
F>1 Ĉ1,2F2

)−1
F>1 Ĉ1,3 (x) F2

p→
(
F>1 GωG>σF2

)−1
F>1 GωΞ(x)G>σF2

= Ξeq(x)

σ̂ =
(
F>1 Ĉ1,2F2

)−1
F>1

ˆ̄φ1

p→
(
F>1 GωG>σF2

)−1
F>1 Gωσ

= σeq

whereMeq = (ωeq, {Ξeq(x)}x∈O,σeq) is an OOM which equivalent toM as

ωeq = ωG>σF2

Ξeq(x) =
(
G>σF2

)−1
Ξ(x)

(
G>σF2

)
σeq =

(
G>σF2

)−1
σ (A.3)

Note ω̂
p→ ωeq does not hold in general cases.

1



Part (2) We now consider the case of I = I0 and T →∞.

According to Assumption 2, the limit

Ĉ1,2
p→ E∞

[
φ1(xt−L:t−1)φ2(xt:t+L−1)>

]
= lim

k→∞

∑
z1:L

φ1(z1:L)ωΞ (O)
k

Ξ(z1:L)G>σ

exists. Then

ˆ̄φ1
p→ E∞ [φ1(xt−L:t−1)] = Gωσ

ˆ̄φ>2
p→ E∞

[
φ2(xt:t+L−1)>

]
= lim
k→∞

ωΞ (O)
k

G>σF2

Ĉ1,2
p→ E∞

[
Ĉ1,2

]
= GωG>σ

Ĉ1,3 (x)
p→ E∞

[
Ĉ1,2 (x)

]
= GωΞ(x)G>σ

with
Gω = lim

k→∞

∑
z1:L

φ1(z1:L)ωΞ (O)
k

Ξ(z1:L) (A.4)

and we can get

rank (Gω) = rank
(
F>1 Gω

)
= rank (Gσ) = rank

(
G>σF2

)
= m

according to Assumption 3.

Therefore,

ω̂
p→ lim

k→∞
ωΞ (O)

k
G>σF2

Ξ̂ (x)
p→ Ξeq(x)

σ̂
p→ σeq

whereMeq = (ωeq, {Ξeq(x)}x∈O,σeq) has the same definition as in (A.3). Note ω̂
p→ ωeq does

not hold in general cases where ωΞ (O) 6= ω.

A.2 Asymptotic correctness of nonequilibrium learning with different initial states

If the i-th observation trajectories is generated by OOMM = (ωi, {Ξ(x)}x∈O,σ) for i = 1, . . . , I ,
and

ω′′ =

{
1
I

∑I
i=1 ω

i, for T →∞
plimI→∞

1
I

∑I
i=1 ω

i, for I →∞

the asymptotic correctness can also shown as in Appendix A.1 by setting

Gω =
∑
z1:L

φ1(z1:L)ω′(T0)Ξ(z1:L)

with

ω′(T ) =
1

T − 2L
ω′′

T−2L∑
t=1

Ξ(O)t−1

for I →∞, and

Gω = lim
k→∞

∑
z1:L

φ1(z1:L)ω′′Ξ (O)
k

Ξ(z1:L)

for T →∞.
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A.3 Asymptotic correctness of nonequilibrium learning based on the spectral learning
algorithm

In the spectral learning algorithm, matrices F1 and F2 are given by singular value decomposition
(SVD) as

F1 = U, F2 = VΣ−1 (A.5)

where Σ ∈ Rm×m is a diagonal matrix contains the top m singular values of Ĉ1,2, and U and V

consist of the corresponding m left and right singular vectors of Ĉ1,2. In this appendix, we will prove
the following theorem:

Theorem 4. Under Assumptions 1 and 2, for the estimated OOM M̂ = (ω̂, {Ξ̂(x)}x∈O, σ̂) given by
Algorithm 1 with F1,F2 defined by (A.5), there exists an OOMM′ = (ω′, {Ξ′(x)}x∈O,σ′) which
is equivalent to M̂ and satisfies

Ξ′(x)
p→ Ξeq(x), ∀x ∈ O (A.6)

σ′
p→ σeq (A.7)

whereMeq = (ωeq, {Ξeq(x)}x∈O,σeq) is an m-dimensional OOM equivalent toM, if the rank of
the limit of Ĉ1,2 is not less than m.

Proof. According to Appendix A.1, the limit of Ĉ1,2 can be expressed as

Ĉ1,2
p→ GωG>σ

where Gω and Gσ have the same definitions as in Appendix A.1. So the limit of Ĉ1,2 has rank m.
By the Eckart-Young-Mirsky Theorem, Ĉtrun

1,2 = UΣV> is the best rank m approximation to Ĉ1,2

and therefore

Ĉtrun
1,2

p→ GωG>σ

Let

GωG>σ = ŨΣ̃Ṽ>

be the SVD of GωG>σ ,

F̃1 = Ũ, F̃2 = ṼΣ̃
−1

andMeq = (ωeq, {Ξeq(x)}x∈O,σeq) be an OOM which is equivalent toM with

ωeq = ωG>σ F̃2

Ξeq(x) =
(
G>σ F̃2

)−1
Ξ(x)

(
G>σ F̃2

)
σeq =

(
G>σ F̃2

)−1
σ

We can obtain from the Wedin Theorem and the continuity of singular values of matrice that

min
R

∥∥∥UR− Ũ
∥∥∥ =

∥∥∥UU>Ũ− Ũ
∥∥∥ p→ 0

min
R

∥∥∥VR− Ṽ
∥∥∥ =

∥∥∥VV>Ṽ − Ṽ
∥∥∥ p→ 0

Σ
p→ Σ̃
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Therefore, we can construct an OOMM′ = (ω′, {Ξ′(x)}x∈O,σ′) with

ω′ = ω̂
(
ΣV>ṼΣ̃

−1)
= ˆ̄φ>2 VV>ṼΣ̃

−1

Ξ′(x) =
(
ΣV>ṼΣ̃

−1)−1
Ξ̂ (x)

(
ΣV>ṼΣ̃

−1)
=

(
Ũ>UU>Ĉ1,2ṼΣ̃

−1)−1
Ũ>UU>Ĉ1,3 (x) VV>ṼΣ̃

−1

σ′ =
(
ΣV>ṼΣ̃

−1)−1
σ̂

=
(
Ũ>UU>Ĉ1,2VV>ṼΣ̃

−1)−1
Ũ>UU> ˆ̄φ1

which is equivalent to M̂ and satisfies

Ξ′(x)
p→

(
Ũ>GωG>σ ṼΣ̃

−1)−1
Ũ>GωΞ(x)G>σ ṼΣ̃

−1

= Ξeq(x)

σ′
p→

(
Ũ>GωG>σ ṼΣ̃

−1)−1
Ũ>Gωσ

= σeq

It is worth pointing out that we can also show conclusions of Theorems 2 and 3 with (A.5) by using
similar proofs. The details proofs are omitted because they are trivial.

A.4 Proof of Theorem 2

Part (1) We first show that there is an OOM M̄eq = (ω̄eq, {Ξeq(x)}x∈O,σeq) which can describe
the equilibrium dynamics of {xt}, where Ξeq(x) and σeq are defined in (A.3).

In the case of T = T0 and I →∞, we can obtain from Assumptions 2 and 3 that

lim
k→∞

GωΞ(O)kG>σ = lim
k→∞

1

T0 − 2L

T0−2L−1∑
t=0

E
[
φ1 (xt+1:t+L)φ2 (xt+L+k+1:t+2L+k)

>
]

=

(
1

T0 − 2L

T0−2L−1∑
t=0

E [φ1 (xt+1:t+L)]

)(
E∞

[
φ2 (xt+1:t+L)

>
])

= Gωσ
(
E∞

[
φ2 (xt+1:t+L)

>
])

⇒ lim
k→∞

Ξ(O)k = σω̄ (A.8)

with
ω̄ =

(
E∞

[
φ2 (xt+1:t+L)

>
])

G+>
σ (A.9)

where Gω and Gσ are defined by (A.2) and (A.1), and G+
σ denotes the Moore-Penrose pseudoinverse

of Gσ . Then

lim
t→∞

P (xt+1:t+l = z1:l) = lim
t→∞

ωΞ(O)tΞ(z1:l)σ

= ωΞ(O)σω̄Ξ(z1:l)σ

= ω̄Ξ(z1:l)σ

= ω̄eqΞeq(z1:l)σeq

with
ω̄eq = ω̄G>σF2 (A.10)
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In the case of T = T0 and I → ∞, because rank (Gω) = m for Gω defined by (A.4), there is a
sufficiently large but finite T ′ so that rank (G′ω) = m with

G′ω =
∑
z1:L

φ1(z1:L)ωΞ (O)
T ′

Ξ(z1:L)

Considering

lim
k→∞

G′ωΞ(O)kG>σ = lim
k→∞

E
[
φ1 (xT ′+1:T ′+L)φ2 (xT ′+L+k+1:T ′+2L+k)

>
]

= G′ωσ
(
E∞

[
φ2 (xt+1:t+L)

>
])

⇒ lim
k→∞

Ξ(O)k = σω̄ (A.11)

with ω̄ defined by (A.9), we can also conclude that

lim
t→∞

P (xt+1:t+l = z1:l) = ω̄eqΞeq(z1:l)σeq

with ω̄eq defined by (A.10).

Note in both cases, ω̄eq satisfies ωeq limk→∞Ξ(O)k = ω̄eq and

ω̄eqΞeq(O) = lim
t→∞

ωeqΞeq(O)t+1

= ω̄eq

ω̄eqσeq = ω̄eqΞeq(O)σeq

= lim
t→∞

∑
x∈O

P (xt = x) = 1

Part (2) In this part, we show that

wΞeq(O) = w, wσeq = 1

has a unique solution w = ω̄eq.

According to Appendix A.1 and (A.8), (A.11), if wΞeq(O) = w and wσeq = 1, we have

w = lim
k→∞

wΞeq(O)k

= lim
k→∞

w
(
G>σF2

)−1
Ξ(O)k

(
G>σF2

)
= w

(
G>σF2

)−1
σω̄

(
G>σF2

)
= wσeqω̄eq

= ω̄eq

Part (3) We now show Theorem 2.

The optimization problem (17) can be equivalently transformed into an unconstrained problem

ω̂ = min
w

∥∥∥wprojΞ̂(O)−wproj
∥∥∥2 +

∥∥wproj −w
∥∥2

where
wproj = w

(
I− σ̂σ̂+)+ σ̂+ (A.12)

denotes the projection of w on the space {w|wσ̂ = 1}, I denotes the identity matrix of appropriate
dimension, and ω̄eq is the unique solution if Ξ̂(O) = Ξeq(O) and σ̂ = σeq according to the
conclusion in Part (2). Then we can obtain that ω̂

p→ ω̄eq according to Theorem 2.7 in [1], which
yields the conclusion of Theorem 2.
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Part (4) We derive in this part the closed-form solution to (17).

Since the projection of w on the space {w|wσ̂ = 1} is wproj defined by(A.12), (17) can be equivalent
transformed into

min
w

∥∥∥w (I− σ̂σ̂+) (Ξ̂(O)− I
)

+ σ̂+
(
Ξ̂(O)− I

)∥∥∥2
The solution to this problem is

w∗ = −σ̂+
(
Ξ̂(O)− I

)((
I− σ̂σ̂+) (Ξ̂(O)− I

))+
which provides the optimal value of ω̂ as

ω̂ = w∗
(
I− σ̂σ̂+)+ σ̂+

= σ̂+ − σ̂+
(
Ξ̂(O)− I

)((
I− σ̂σ̂+) (Ξ̂(O)− I

))+ (
I− σ̂σ̂+) (A.13)

A.5 Proof of Theorem 3

Here we only consider the consistency of the binless OOM as I → ∞. The proof can be easily
to extended to the case of T → ∞. In addition, we denote E∞[g(xt+1:t+r)] and E[g(x1:r)|M̂] by
E∞[g] and EM̂[g] for convenience of notation.

Part (1) We first show that Theorem 3 holds for g (xt+1:t+r) = 1xt+1:t+r∈Bi1×Bi2×...×Bir , where
B1, . . . ,BK is a partition of O, i1:r ∈ {1, . . . ,K}r, and 1e denotes the indicator function of event
e. In this case, we can construct a discrete OOM with observation space {B1, . . . ,BK} by the
nonequilibrium learning algorithm, which can provide the same estimate of E∞ [g (xt+1:t+r)] as M̂.
Therefore, we can show EM̂[g]

p→ E∞[g] by using the similar proof of Theorem 2.

Part (2) We now consider the case that g is a continuous function. According to the Heine-Cantor
theorem, g is also uniformly continuous. Then, for an abitrary ε > 0, we can construct a simple
function

ĝ(xt+1:t+r) =
∑

i1,...,ir

ci1i2...ir1xt+1:t+r∈Bi1×...×Bir

so that
|g(z1:r)− ĝ(z1:r)| ≤ ε, ∀z1:r ∈ Or

where {B1, . . . ,BK} is a partition of O. Then, we have

|E∞[g]− E∞[ĝ]| ≤ E∞[|g − ĝ|] ≤ ε

and ∣∣E∞[ĝ]− EM̂[ĝ]
∣∣ p→ 0

as I →∞ according to the conclusion of Part (1), where E∞[g] = E∞[g(xt+1:t+r)] and EM̂[g] =

E[g(x1:r)|M̂].

It can be known from Assumption 4, there exists a constant ξ such that

1maxx∈X‖Ξ̂(x)‖<ξ/|X |
p→ 1 (A.14)

Under the condition that maxx∈X

∥∥∥Ξ̂(x)
∥∥∥ < ξ/ |X |, we have

∣∣EM̂[ĝ]− EM̂[g]
∣∣ = ω̂0

( ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r)) Ξ̂(z1:r)

)
σ̂

≤ ‖ω̂0‖ ‖σ̂‖

( ∑
z1:r∈X r

ξrε

|X |r

)
= ‖ω̂0‖ ‖σ̂‖ ξrε
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In addition, considering that we can show as in Appendix A.1 that ω̂
p→ ω̄eq and σ̂

p→ σeq, we can
obtain

1‖ω̂‖‖σ̂‖≤ξ0
p→ 1 (A.15)

and
1|EM̂[ĝ]−EM̂[g]|≤ξ0ξrε

p→ 1

where ξ0 is a constant larger than ‖ω̄eq‖ · ‖σeq‖.
Based on the above analysis and the fact that∣∣E∞[g]− EM̂[g]

∣∣ =
∣∣E∞[g]− E∞[ĝ] + E∞[ĝ]− EM̂[ĝ] + EM̂[ĝ]− EM̂[g]

∣∣
≤ |E∞[g]− E∞[ĝ]|+

∣∣E∞[ĝ]− EM̂[ĝ]
∣∣+
∣∣EM̂[ĝ]− EM̂[g]

∣∣
we can get

Pr
(∣∣E∞[g]− EM̂[g]

∣∣ ≤ (ξ0ξ
r + 2) ε

)
≥ Pr

(
|E∞[g]− E∞[ĝ]| ≤ ε,

∣∣E∞[ĝ]− EM̂[ĝ]
∣∣ ≤ ε,∣∣EM̂[ĝ]− EM̂[g]

∣∣ ≤ ξ0ξrε)
→ 1

Because this equation holds for all ε > 0, we can conclude that EM̂[g]
p→ E∞[g].

Part (3) In this part, we prove the conclusion of the theorem in the case where g is a Borel
measurable function and bounded with |g(z1:r)| < ξg for all z1:r ∈ Or, and there exist constants ξ̄
and ξ so that ‖Ξ (x)‖ ≤ ξ̄ and limt→∞ P (xt+1:t+r = z1:r) ≥ ξ for all x ∈ O and z1:r ∈ Or.

According to Theorem 2.2 in [2], for an arbitrary ε > 0, there is a continuous function ĝ′ satisfies
E∞[1xt+1:t+r∈Kε(ĝ′)] < ε, where Kε(ĝ′) = {z1:r|z1:r ∈ Or, |ĝ′(z1:r)− g(z1:r)| > ε}. Define

ĝ(z1:r) =

{
ĝ′(z1:r), |ĝ′(z1:r)| ≤ ξg
−ξg, ĝ′(z1:r) < −ξg
ξg, ĝ′(z1:r) > ξg

It can be seen that ĝ is a continuous function which is also satisfies E∞[1xt+1:t+r∈Kε(ĝ)] < ε and
bounded with |ĝ(z1:r)| < ξg . So the difference between E∞[g] and E∞[ĝ] satisfies

|E∞[g]− E∞[ĝ]| ≤ E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)|]
= E∞[1xt+1:t+r∈Kε(ĝ)]E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)| |xt+1:t+r ∈ Kε(ĝ)]

+E∞[1xt+1:t+r /∈Kε(ĝ)]E∞ [|g(xt+1:t+r)− ĝ(xt+1:t+r)| |xt+1:t+r /∈ Kε(ĝ)]

≤ ε · 2ξg + ε = (2ξg + 1) ε

For the difference between E∞[ĝ] and EM̂[ĝ], we can obtain from the above that
∣∣E∞[ĝ]− EM̂[ĝ]

∣∣ p→
0 as I →∞ by considering that ĝ is continuous, which implies that there is an I0 such that

Pr
(∣∣E∞[ĝ]− EM̂[ĝ]

∣∣ > ε
)
< ε, ∀I > I0

Next, let us consider the value of
∣∣EM̂[ĝ]− EM̂[g]

∣∣. Note that

∣∣EM̂[ĝ]− EM̂[g]
∣∣ ≤ ‖ω̂0‖ ‖σ̂‖

∥∥∥∥∥ ∑
z1:n∈X r

(ĝ(z1:r)− g(z1:r)) Ξ̂(z1:r)

∥∥∥∥∥
<

ξ0ξ
r

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
under the condition that

∥∥∥Ξ̂(x)
∥∥∥ < ξ/ |X | and ‖ω̂‖ ‖σ̂‖ ≤ ξ0. Therefore, there exists an I1 such that

Pr

(∣∣EM̂[ĝ]− EM̂[g]
∣∣ ≥ ξ0ξ

r

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
)
< ε, ∀I > I1 (A.16)
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due to (A.14) and (A.15). Let x′1:r denotes a random sample taken uniformly from X r. We can obtain
that

P (x′1:r) = P (x′1) . . .P (x′r)

≤
(
‖ω‖ ‖σ‖ ξO ξ̄

)r
where ξO ≥

∥∥∥Ξ (O)
k
∥∥∥ for any k ≥ 0. Note ξO <∞ because we can show the existing of the limit

of {
∥∥∥Ξ (O)

0
∥∥∥ ,∥∥∥Ξ (O)

1
∥∥∥ , . . .} by similar steps in Appendix A.4. Thus

E

[
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
]
≤ E [E [|ĝ(x′1:r)− g(x′1:r)| |X ]]

= E [|ĝ(x′1:r)− g(x′1:r)|]
= E

[
1x′

1:r∈Kε(ĝ)
]
E [|ĝ(x′1:r)− g(x′1:r)| |x′1:r ∈ Kε(ĝ)]

+E
[
1x′

1:r /∈Kε(ĝ)
]
E [|ĝ(x′1:r)− g(x′1:r)| |x′1:r /∈ Kε(ĝ)]

≤ ξµε · 2ξg + ε = (2ξgξµ + 1) ε

where ξµ =
(
‖ω‖ ‖σ‖ ξO ξ̄

)r
/ξ. By the Markov’s inequality, we have

Pr

[
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣ ≥ √ε
]
≤ (2ξgξµ + 1)

√
ε (A.17)

Combining (A.16) and (A.17) leads to

Pr
(∣∣EM̂[ĝ]− EM̂[g]

∣∣ ≥ ξ0ξr√ε) ≤ Pr

(∣∣EM̂[ĝ]− EM̂[g]
∣∣ ≥ ξ0ξ

r

|X |r

∣∣∣∣∣ ∑
z1:r∈Xr

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣
)

+ Pr

(
1

|X |r

∣∣∣∣∣ ∑
z1:r∈X r

(ĝ(z1:r)− g(z1:r))

∣∣∣∣∣ ≥ √ε
)

≤ ε+ (2ξgξµ + 1)
√
ε

for all I > I1.

From all the above, we have
Pr
(∣∣E∞[g]− EM̂[g]

∣∣ ≤ 2(ξg + 1)ε+ ξ0ξ
r
√
ε
)

≥ Pr
(∣∣E∞[ĝ]− EM̂[ĝ]

∣∣ ≤ ε, ∣∣EM̂[ĝ]− EM̂[g]
∣∣ ≤ ξ0ξr√ε)

≥ 1− Pr
(∣∣E∞[ĝ]− EM̂[ĝ]

∣∣ > ε
)
− Pr

(∣∣EM̂[ĝ]− EM̂[g]
∣∣ > ξ0ξ

r
√
ε
)

≥ 1− 2ε− (2ξgξµ + 1)
√
ε

for all I > max{I0, I1}, which yields EM̂[g]
p→ E∞[g] due to the arbitrariness of ε.

B Settings in applications

B.1 Models

The diffusion processes in Section 6 are driven by the Brownian dynamics

dxt = −∇V (xt)dt+
√

2β−1dWt

with β = 0.3, sample interval 0.002s,

V (x) =

∑5
i=1 (|x− ci|+ 0.001)

−2
ui∑5

i=1 (|x− ci|+ 0.001)
−2

for the one-dimensional process, and β = 2, sample interval 0.01s,

V (x) = − log

(
3∑
i=1

piN (x|µi,Σi)

)
for the two-dimensional process, where c1:5 = (−0.3, 0.5, 1, 1.5, 2.3), u1:5 = (21, 4, 8,−1, 20),
p1:3 = (0.25, 0.25, 0.5), µ1 = (0,−0.5), µ2 = (−1, 0.5), µ3 = (1,−0.5). The simulation details of
alanine dipeptide is given in [3].
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B.2 Algorithms

The parameters of discrete OOMs are chosen as: L = 3, m = 10, F1,F2 are given by the truncated
SVD and φ1 = φ2 are indicator functions of all OL observation subsequences with length L.

The parameters of binless OOMs are almost the same as discrete ones, except φ1 = φ2 are Gaussian
activation functions with random weights of functional link neural networks with D1 = D2 = 100.

The number of hidden states of HMMs is 10. For continuous data, we partition the state space into
100 discrete bins k-mean clustering (except for the one-dimensional process), and then learn HMMs
by the EM algorithm under the assumption that samples within the same bin are drawn independently.
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