
Reversible integrators for particle
based reaction-di�usion simulations

MSc thesis

Christoph Fröhner

November 6, 2015



Contents

1 Introduction 3

2 Literature review 6

3 Motivation 8

4 Model 12
4.1 Brownian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Interaction potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Achieving reversibility 18
5.1 In dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 In reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Unimolecular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Bimolecular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 So�ware revreaddy 27

7 E�ect on dynamics 32
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 Deceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 E�ect on reactions 40
8.1 ReaDDy benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Volume unconserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9 Conclusion & Outlook 49

2



1 Introduction
Biological life relies on the interplay of proteins, membranes and other molecules, of
which thousands of copies exist in a typical cell. To understand the function of every
molecule in a given process, one approach is to model the system in a computational
environment. With the help of such simulations one has the opportunity to resolve e.g.
conformational changes of a protein or the transport of an ion through a membrane. In
classical Molecular Dynamics (MD) simulations this is achieved by an all-atom model
where time is integrated in discrete timesteps which are on the order of femtoseconds to
resolve the fast dynamics of water molecules. This is computationally expensive to do,
since often the rare events happen on large timescales that are beyond the scope of MD
simulations. To be able to resolve e.g. whole reaction chains or the transport of many
molecules through a cell in a spatio-temporal manner one can use reaction-di�usion
methods. One of these are deterministic reaction-di�usion equations. These govern the
time evolution of a set of concentrations of species u(x,t ) that generally depend on time
and space. The time evolution can then be found by solving the following set of equations

∂u(x,t )
∂t

= D∆u(x,t ) + f (u), (1.1)

where ∂/∂t is the time derivative, D is the di�usion tensor, ∆ is the Laplacian and f (u)
is an arbitrarily complicated function that describes the behavior of the system. The
problem with such a description is that it relies on concentrations of particles. In systems
where the di�erence of having one particle or zero particles of a certain species is crucial,
this description cannot be used to study such a system.1

Another method to study cellular systems are stochastic particle-based reaction-di�usion
simulations (which are the focus of this thesis). In such simulations objects of interest
such as proteins are considered as particles. Dynamics are realized by random motion of
particles in discrete timesteps. The time evolution of such a method could be written as

ψ (t + 1) = R Dψ (t ), (1.2)

where ψ (t ) is now a vector containing all particles, their positions and properties at
timestep t , D propagates the particles in space due to di�usion, R performs reactions, i.e.
particles change their species or form other species by means of bimolecular reactions.2

1Another method which is able to resolve single particles combined with reactions is the chemical
master equation, but it is not further mentioned here because we focus on methods that treat space
continuously.

2We will call D and R propagators, not to be confused with the propagators of Quantum Mechanics
which reprensent probabilities. For us they will represent operators acting on the state of a system.
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Often water molecules are not modeled explicitly in a reaction-di�usion simulation to
reduce computational cost. Using such a method enables to explore longer times as
compared to Molecular Dynamics simulations and at the same time being able to consider
systems with only a few particles of a species as opposed to deterministic reaction-
di�usion equations. There are already software packages using di�erent algorithms and
levels of detail to adress this topic [1].

When modeling real world systems, another important concept is the detailed balance
condition. It connects the probability of any elementary process with its reverse process.
Consider any system undergoing a transition from state a to state b, the detailed balance
condition reads

p (a → b)π (a) = p (b → a)π (b). (1.3)

Here p (a → b) denotes the transition probability from state a to b and π (a) is the
equilibrium probability of being in state a which is often related to the energy of state a.
This relation is a su�cient condition for the system to be in equilibrium. For systems in
equilibrium the entropy is maximal and approaching this maximum is a behavior which
is expected from real world systems. This is why detailed balance is often demanded of
computational models that represent real world applications. One can immediately see
that the relation is invariant upon exchanging states a and b, which clari�es why the
term microscopic reversibility is often used as a synonym, if the transition a → b occurs
during a time interval. Having introduced the most important concepts mentioned in
this thesis, we can pose the actual question.

The question for this particular project is: How does an integrator, that enforces (local)
detailed balance on dynamics D and/or reactions R, in�uence the results of particle
based reaction-di�usion simulations?

Answering these questions will improve the method of reaction-di�usion itself. A
method which can be used to understand processes such as the synaptic vesicle exocytosis,
where clustering of Syntaxin appears to be a key factor [1, 2]. Also it will help to
understand the e�ects of crowding on reactions in living cells [3], which is experimentally
hard to observe. Schöneberg et al. [1] provide the following �elds of application for
highly detailed reaction-di�usion simulations:

• Compartmentalization and con�nement
• Macromolecular crowding
• Particle-particle potentials
• Oligomerization and self assembly
• Molecular shape

Most cellular environments feature these aspects, making reaction-di�usion simulations
an appropriate tool to investigate these systems. An application example is depicted in
�gure 1.1.
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Figure 1.1: A high level of detail in reaction-di�usion simulations en-
ables shaping of elongated proteins such as syntaxin shown
as red particles with Habc domains in dark grey or Synapto-
brevin in orange/yellow. Vesicle exocytosis can be modeled
with the help of these. Figure by Schöneberg et al. [4].
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2 Literature review
To this day there are several software packages implementing reaction- di�usion using
di�erent methods. Some examples are Cell++ [5], Smoldyn [6], eGFRD [7] and ReaDDy [4].
Cell++ treats particles as points and continuous space is divided into cubic subvolumes
of di�erent types, which de�nes di�usion properties of molecules in that region. It
also features molecule densities (called small molecules) in addition to discrete particles
(called large molecules). The large molecules are propagated using Brownian Dynamics
in continuous space, while the small molecules’ densities are constant within one cubic
subvolume and change depending on their neighbouring cube’s density according to the
di�usion equation. Smoldyn similarly propagates particles in space and time with a �xed
timestep and lets second order reactions happen when two particles are within a certain
range of each other.

eGFRD [7] uses a di�erent approach compared to the �rst two. Instead of incrementing
the time in equally spaced steps van Zon et al. developed an event based method called
Green’s Functions Reaction Dynamics. This method uses analytical solutions of the
Smoluchowski equation to draw new positions for isolated particles instead of propagat-
ing them step by step. Also if two particles are within a certain range a solution of the
Smoluchowski equation for a two particle system is used to determine the probability of
a second order reaction. This leads to a very e�cient algorithm since there is little com-
putation needed to propagate isolated particles for large timesteps. In these approaches
particle repulsion is governed by an overlap rejection.

ReaDDy [4] utilizes potentials to deal with particle-particle-interaction or particle-
geometry-interaction and propagates spherical particles with a �xed timestep using
Brownian Dynamics. Reactions occur with a given microscopical reaction rate when
particles come closer than a certain reactive distance depending on the particle species.
The highly detailed computational models of ReaDDy have proved useful in investigat-
ing mesoscopic biological systems thereby supporting experimental results and their
interpretation. In the work of Gunkel et al. [8] di�erent reaction-di�usion models of
the arrangement of rhodopsin in retinal rod-cells were compared. One model supports
the idea of single photon responses by spatially con�ning transducin molecules. The
feature of interaction potentials in ReaDDy has helped Ullrich et al. [9] to understand
the clustering of Synatxin proteins on the neuronal membrane, which is involved in the
fusion of synaptical vesicles with the neuronal membrane. The cluster size and their
distribution are in agreement with experimental observations from super-resolution
microscopy. From the computational model insight on the interaction between Syntaxin
proteins is gained. The model and methods used throughout the present work are based
on the approach of ReaDDy as will be further explained in section 4.

To combine the idea of Monte Carlo methods with Brownian Dynamics is long known
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and turns out to be faster converging than standard Metropolis Monte Carlo [10, 11]. In
such a Smart Monte Carlo method the moves are not proposed by uniform displacement
of particles but rather a Brownian Dynamics step (also considering forces). Also to
combine Grand Canonical Monte Carlo (GCMC) [12] with Brownian Dynamics has been
applied. Im et al. [13] used this method to simulate an ion channel, where the Grand
Canonical character (meaning the �uctuating particle numbers) was deployed in the
surrounding region of the ion channel but not within the ion channel itself.
Morelli and Ten Wolde [14] proposed a method to implement a reaction-di�usion

algorithm that obeys detailed balance with respect to a bimolecular reaction. In their
approach particles are displaced subsequently according to Brownian Dynamics and
volume exclusion is accomplished by rejection of such a step. If a step would lead to
an overlap of possible reaction partners, e.g. A and B that can react to C , this reaction
step is accepted with the correct probability that ful�lls the detailed balance condition.
The backward reaction / dissociation event is performed vice versa, i.e. it occurs with
the correct probability and places the educts such that reversibility is guaranteed. This
method reproduces the particle concentrations of an equivalent system of ordinary
di�erential equations or chemical master equations.

Using a Metropolis-Hastings [15] method to enforce detailed balance together with a
highly detailed particle based reaction di�usion simulation as it is proposed here has not
been realized. The motivation for that approach shall be given in the following.
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3 Motivation
It was stated before that the approach used here is based on Schöneberg et al.’s ReaDDy
software [4], where spherical particles are propagated in time using Brownian Dynamics
and reactions occur with pre-speci�ed microscopic rates. In their paper is an example
system which they use to test binary reactions in a crowded environment. The motivation
for improving their method is best explained by means of this example system.

The given system consists of spherical particles con�ned to a cubic volume. There
are three particle species in this system called A, B and C . All species have a speci�c
radius and di�usion constant. The particle radii are chosen such that the sum of volume
of particles A and B is equal to the volume of particle C . A snapshot of this system is
given in �gure 3.1.

Figure 3.1: The system shown here is used to test bimolecular reactions
in which two blue (small) particles react to one yellow (large)
particle and vice versa. The volume occupation by particles
is 30%. Figure taken from Schöneberg et al. [4].

There is one reaction that can occur forward and backward, namely

A + B
kon,micro


ko�

C (3.1)

where ko� is the reaction rate that describes how frequent a particle of typeC dissociates
into two particles A and B in units of s−1. The on reaction is characterized by kon,micro,
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which is the microscopic rate of two particles A and B reacting if they have formed an
encounter complex before by di�using close to each other up to a certain distance. So
the units of this microscopic rate kon,micro is also s−1. If one is to observe the overall rate
called kon,macro with which the on-reaction takes place, one would expect that it is lower
than the microscopic rate since particles �rst have to encounter. For the approximation
that the system is well stirred or in other words, that particles can move freely without
volume exclusion e�ects, an analytic solution is at hand. This rate provided by Erban et
al. [16] reads

kon,macro = 4πDAB


RAB −

√
DAB

kon,micro
tanh *.

,
RAB

√
kon,micro
DAB

+/
-


DAB = DA + DB

RAB = RA + RB,

(3.2)

which relates the microscopic kon,micro with the macroscopic reaction rate kon,macro. Here
DA and DB are the di�usion constants, RA and RB are the radii of particles A and B
respectively. Note that the units of the macroscopic rate are now m3 s−1. With the help
this one can obtain a solution of the concentrations of particle species by means of
ordinary di�erential equations (ODE), which represents the well stirred approximation.
This ODE solution can be compared to the results of the ReaDDy software. Exactly this
is depicted in �gure 3.2. One can clearly see that in the case of no particle repulsion the
well stirred case is exactly represented, due to the fact that the dynamic timestep is four
magnitudes faster than the reaction rates. The more interesting part here is the case when
particle-particle potentials are switched on (solid lines in the plot). In ReaDDy harmonic
repulsion potentials are used, which in e�ect reduces the reaction volume available to
particles A and B in the on-reaction. Hence the e�ective macroscopic on-rate observed is
lower than before. This results in slower reaction kinetics, meaning that an equilibrium
state is reached much slower. Furthermore with particle repulsion the equilibrium ratios
of concentrations di�er from the well stirred case.

The actual problem about these observations is that we cannot assure that reactions
are done carefully enough, because in ReaDDy an on-reaction takes place only when
particles A and B meet. That means that the e�ective on-rate depends strongly on the
particle densities. Whereas the o� -reaction always takes place with the same e�ective
rate, which is purely described by the microscopic rate ko� . So the o� -rate is completely
independent of the environment. This fact hints towards an imbalance of the bimolecular
reaction being present.

To illustrate the problem further assume an o� -reaction taking place in a very crowded
system. For example one particleC dissociates into particlesA and B and new positions for
those particles are drawn randomly in the vicinity of the reaction taking place. This case
is shown in �gure 3.3. It could happen that particles overlap strongly after the reaction
because one of the newly created particles was placed inside another particle. Such a
state would mean a drastic increase in potential energy and be physically unreasonable.
To avoid such states one must carefully place new particles and/or be able to reject such
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Figure 3.2: The concentrations of particle species A, B and C as a func-
tion of time starting with only A and B particles in the ex-
ample system of ReaDDy. The given rates correspond to the
bimolecular reaction given in equation 3.1. The dotted line
gives the solution from ordinary di�erential equations, de-
scribed by the macroscopic rates ko� and kon,macro (see equa-
tion 3.2). The solid lines give the concentrations computed
from ReaDDy simulation, once with and without volume ex-
clusion / particle repulsion. The timestep used for Brownian
Dynamics was 10−10 s. Figure taken from Schöneberg et al.
[4].

steps. The overall goal is to impose detailed balance on the simulation, meaning that every
timestep forward will be executed considering the step backward. The exact scheme will
be given in section 5.
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Figure 3.3: A particle C in the middle dissociates into two particles A
and B (dashed circles). The system is so crowded that at the
new position of one particle there was already a particle,
leading to a large overlap of particles after the reaction and
an increase in potential energy.
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4 Model
In this chapter we will explain the model used to realize the reaction- di�usion simulations.
Afterwards the new features of the integration scheme that implement detailed balance
are stated in section 5.

To achieve simulations of biological system with the help of reaction- di�usion, we
will use a similar model as ReaDDy [4]. This means that every object of interest is
modeled by spherical particles that have a certain radius. All of these particles live in
a continuous three- dimensional space at a certain �xed time. In contrast to space, the
time is discretized in our model and the timespan between two points in time is usually
referred to as timestep, often denoted as τ . Given a system of particles at a certain time t ,
the next state of the system at time t + τ is calculated using Brownian Dynamics. Also
there will be interaction potentials involved, which are used to realize particle repulsion
or cellular geometry. These aspects describe the dynamics part of our propagator D
mentioned in equation (1.2). Finally particles will be able to react, meaning that their type
can change with a �xed rate (unimolecular reaction) or that they react together with other
particles to form yet another particle (bimolecular reaction). This would describe the
reactions part of our propagator R. With the explanations given in this section we will
be able to propagate a given system from stateψ (t ) toψ (t + τ ). In the style of equation
(1.2) we will denote this as

ψ (t + τ ) = R0D0ψ (t ) (4.1)

where D0 is the Brownian Dynamics propagator and R0 our default reaction propagator,
andψ (t ) is a short-hand notation for the state of the whole system. The details of D0
and R0 are now explained in detail.

4.1 Brownian Dynamics
We start by stating the Langevin [17] equation for a single particle

m
d2x
dt2 = −

1
µ

dx
dt − ∇U (x ) + η(t ), (4.2)

which is an equation of motion similar to Newton’s equation of motion for particles
involving a force due to a potential energy U and a non- deterministic noise term η.
Furtherm is the mass of the particle, x its position and µ its mobility. Such an equation
will result in a partly random motion of particles. This is why such an equation of motion
is called stochastic. The exact form of η is yet unspeci�ed, but we know its �rst and
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second moment
〈η(t )〉 = 0

〈η(t )η(t ′)〉 = 2δ (t − t ′) kBT /µ,
(4.3)

where δ (t − t ′) is the Dirac delta function, kB is the Boltzmann constant and T is the
temperature. The delta function states also that the random forces acting on the particle
are uncorrelated.

From the equation (4.2) we �nally want to arrive at an expression giving us the new
position at a timestep τ later given the old position x . Therefore we make an important
assumption by setting the left hand part of equation (4.2) to zero. Assuming that there
is no net acceleration for large times, which means that we will make an error on short
times, but the long term behavior is mostly determined by the friction, noise and the
potential energy. We further multiply the equation with µ and arrive at the following
expression

dx
dt = −

D

kBT
∇U (x ) + ξ (t ) (4.4)

where we de�ned the random velocity ξ (t ) := µ η(t ). Making use of the Einstein-
Smoluchowski relation D = µ kBT which relates the di�usion constant D with the
mobility and the temperature, we can rewrite the moments (4.3) of the random velocity

〈ξ (t )〉 = 0
〈ξ (t )ξ (t ′)〉 = 2D δ (t − t ′).

(4.5)

We now discretize the time so that we can integrate it successively. Therefore an
Euler-Maruyama method is used. This transition from continuous to discrete time means
the following changes

dx
dt →

xt+τ − xt
τ

δ (t − t ′) →
δtt ′

τ
,

(4.6)

where xt is the position before the timestep and xt+τ is the position after the timestep.
The Dirac delta function changes to a Kronecker delta divided by the timestep to get
the correct normalization. After de�ning the random position change from the random
velocity Rt = τ ξ (t ), we can �nally formulate the equation that propagates particles as it
is done in ReaDDy and in this work as well (at �rst)

xt+τ = xt − τ
D

kBT
∇U (xt ) + Rt . (4.7)

This integration scheme is often called Brownian Dynamics1. We can again write the
moments of the random position change, but we will from now on associate the drawn
random numbers with a normal distribution or Gaussian distribution. Up to now we have
given the values in one spatial dimension, but the whole equation is easily generalized

1In the literature the random component Rt is ofttimes called the di�erential of a Wiener process dWt and
the integration scheme written in rescaled units as dXt = −∇U (Xt )dt +

√
2β−1dWt with β = 1/kBT
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for three dimensions if spatial variables become vectors (which will be bold print in this
document)

〈Rt 〉 = 0
〈RtRt ′〉 = 2Dτ δtt ′ (1D)
〈RtRt ′〉 = 6Dτ δtt ′ (3D).

(4.8)

With this we have the tools to describe the dynamics of any given system consisting of
particles and potentials U , which leads to the next part of our model.

4.2 Interaction potentials
We have mentioned how particles are propagated in time if the potentials U and the
resulting forces −∇U are known. In this work we divide potentials in two classes. First
order potentials and second order potentials. First order potentials are only dependent on
the coordinates of one particle and are used to realize cellular geometries, e.g. membranes
or other con�nements. Second order potentials depend on the relative coordinate of two
particles and are used to realize particle interactions, e.g. particle repulsion or attraction.

As a �rst order potential example, a harmonic repulsive in�nite sized wall is useful for
con�ning particles to a volume. The potential energy U and the force F of such a wall is
de�ned as

U =



κr 2 if r ≤ 0
0 if r > 0

F =



−2κr n if r ≤ 0
0 if r > 0,

(4.9)

where κ is a parameter specifying the strength of repulsion, n is the normal vector of the
plane and r is the closest distance of the particle to the wall de�ned as

r = (r − x0) · n.

Here x0 is an arbitrary point of the plane and r is the position of the particle.
For second order potentials, we will mostly use harmonic repulsion of particles and

sometimes Lennard-Jones interaction. The harmonic repulsion of two particles i and j at
positions ri and rj is de�ned as

U =



κ
(
rij − ρij

)2
if rij ≤ ρij

0 if rij > ρij

Fi =



2κ
(
rij − ρij

)
rij/rij if rij ≤ ρij

0 if rij > ρij ,

(4.10)

where rij = rj−ri and rij is the euclidean norm of rij . Further ρij = ρi+ρj is the sum of the
radii of the two particles. In essence this means, if the particles’ centers are closer than
the sum of their radii, the particles will repulse each other. The strength of the repulsion
is determined by the parameter κ and repulsion itself is rather soft and will allow particles
to overlap partly. This soft potential is especially sensible when we consider complete
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proteins as a sphere. It also lets us choose a larger timestep as compared to hard-sphere
potentials.

The Lennard-Jones interaction potential is well studied and is used here mostly to
test if Brownian Dynamics works as expected. Also it is an alternative representing
hard spheres as this potential is rather sti� and requires smaller timesteps to minimize
discretization errors and keep the simulation stable. To represent a biological system
with reaction-di�usion however it is not recommended. The potential U and the force F
between particles i and j with positions ri and rj read

U = 4ϵ


(
σ

rij

)12
−

(
σ

rij

)6

Fi =
24ϵ
r 2ij


2
(
σ

rij

)12
−

(
σ

rij

)6
rij

(4.11)

where ϵ is an energy parameter and σ is a parameter describing the range of the potential.
Often σ is chosen to represent the sum of the radii of the particles. We will however
in accordance with the soft potential set σ such that when the distance of particles is
exactly the sum of the radii, the potential is at its minimum, which is the case at 21/6σ .
So if ρij = ρ is the sum of the particles’ radii, then σ = 2− 1

6 ρ. Further we will use a
cuto�-distance of 2.5ρ.

With the integrator and the potentials we have everything at hand to simulate a system
with �xed number of particles, which de�nes our propagator D0 stated in equation (4.1).
In most biological applications particles change their state or react with one another,
which has to be covered as well.

4.3 Reactions
In ReaDDy [4] and also in this work the most important reactions are unimolecular
reactions and bimolecular reactions. These can for example represent the state change of

Unimolecular
Conversion

Bimolecular
Fusion

Figure 4.1: Reversible reactions that are considered. Note that all rates
are microscopic by construction and come in units of s−1.
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a protein from an inactive to an active state or the association of a protein and ligand or
the activation by a messenger particle.

Unimolecular reactions (Conversion) can occur at all times with a probability

p = 1 − e−kon/o� τ , (4.12)

which is the Poisson probability of a reaction event occuring during the timespan τ .2 For
small timesteps compared to the characteristic reaction time k−1on/o� , also the approxima-
tion

p ≈ kon/o� τ (4.13)
holds. When a unimolecular reaction occurs, e.g. in the on direction, then particle A
would be destroyed and a new particle B will be placed at the same position.

For bimolecular on reactions (Fusion) the mechanism is di�erent. In addition to the
two reaction rates given in table 4.1 we also need a reaction distance R. Only when the
two educts A and B are within a distance of R a reaction to form a particle C can occur
with a probability as given in equation (4.13) where the rate now is the microscopical
association rate kon.3 When such a reaction occurs the two particles A and B are deleted
and a new particleC is placed in between them such that the center of mass is conserved.
To illustrate this consider �gure 4.2. The blue dashed lines represent particles A and B
at positions rA and rB . They are seperated by a vector rAB = rB − rA, whose length r is

Figure 4.2: Scheme to conserve the center of mass during bimolecular
reaction in both directions. r is the distance of particles A
and B. The ρi correspond to the collision radii of particles
and xi are the weighted distances of the particles from the
center of mass.

smaller than the reaction distance r < R. The particles’ collision radii are ρA and ρB . We
assume that the particles have a mass which depends cubic on their collision radius. If
we want to conserve the center of mass when particles A and B are deleted, we have to
place the new particle C in between A and B with the exact position weighted with the
cubic radii of particles. The new position rC of particle C is then

rC = rA + xA rAB = rB − xB rAB (4.14)
2This timespan τ is not necessarily the same timestep mentioned in the dynamics/di�usion part. It might

be useful to choose the reaction timestep as an integral multiple of the di�usion timestep, as long as
the reaction timestep is still small enough compared to the fastest reaction rate

3From here on we will call the microscopic association rate kon and the macroscopic kon,macro
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Here the weights xA and xB represent the mass of the particles normalized according to
xA + xB = 1 and read

xA =
ρ3A

ρ3A + ρ
3
B

xB =
ρ3B

ρ3A + ρ
3
B

(4.15)

In the case of this bimolecular on reaction the e�ective reaction rate kon,macro then depends
on the system. For non- interacting particles in three dimensional space the e�ective
rate was already given in equation (3.2), where RAB then corresponds to the distance R at
which the enounter complex is formed.

For the bimolecular o� reaction (Fission), the case is similar to unimolecular reactions
and a reaction event can always occur with probability (4.13). When this happens new
positions for particles A and B must be found. At �rst a random orientation n is created.
This is a random unit vector, that is uniform with respect to spherical coordinates. Then
the distance of particles r is determined. It is drawn from a distribution f (r ), which will
be discussed in chapter 5. The new positions rA and rB are then calculated such that the
center of mass is again conserved

rA = rC − r xA n
rB = rC + r xB n

(4.16)

With the execution of unimolecular and bimolecular reactions we have de�ned our
default reactions propagator R0 stated in equation (4.1). In the following we will extend
these by introducing the reversibility / detailed balance feature, which is the main aspect
of this work.
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5 Achieving reversibility
In chapter 3 a system is given where forward and backward rates of a bimolecular
reaction are not balanced in the sense that in the backwards reaction two new particles
are positioned without considering the rest of the system. That could lead to physically
unreasonable states, that have a large increase in system energy. To correct this, we will
enforce detailed balance. Another motivation to do so is that we want to ensure that the
studied systems are sampled correctly, to avoid high energetic states to be visited too
frequently as this cannot be assumed for pure Brownian Dynamics [18, 19]. Before doing
so we have to clarify if it is sensible to enforce detailed balance on reaction-di�usion
simulations that often represent models of biological systems.

Assume you were to model the ATP production of a Mitochondrion by means of
stochastic reaction-di�usion simulations. When one treats the Mitochondrion or just the
ATP-syntase complex in a closed simulation box, one can never observe the process of
chemi-osmosis in its fullness, since the real world process relies on the constant in-�ux
and out-�ux of several components/molecules involved. In other words, the process can
only work with an ongoing �ow of energy in- and out of the system. If a living system is
treated in a closed environment it will simply stop functioning. Qian et al. [20] puts it
like “In terms of physical chemistry, a closed system has no life”.

Another important insight is that a global equilibrium can only exist in a closed system.
Most systems that we are interested in live far from global equilibrium. In such systems
however one can often observe so called non-equilibrium steady states. The problem
that occurs when we want to model systems realistically is that the detailed balance
condition (1.3) is constructed for systems that have a probability distribution π (a) that
corresponds to global equilibrium. For non-equilibrium systems we can still formulate a
so called local detailed balance [21] or generalized detailed balance [22], which is a weaker
constraint than global detailed balance. A non-equilibrium system may violate global
detailed balance but still ful�ll local detailed balance [23]. The latter will be implemented
in this work and both concepts should converge to the same method when dealing with
closed systems. We denote both concepts as

global detailed balance: p (a → b)

p (b → a)
=
π (b)

π (a)
(1.3)

local detailed balance: p (a → b)

p (b → a)
= exp

(
∆S

kB

)
(5.1)

By p (a → b) we denote the transition probability of going from state a to b and π (a)
is the equilibrium probability of being in state a. The main di�erence between these
two de�nitions is that instead of the equilibrium probabilities we just need to know the
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change of entropy ∆S for the local detailed balance. Since we are dealing with systems
in contact with a heat bath and variable particle numbers, we will calculate the entropy
based on the grand-canonical ensemble. This means that the energy function of interest is
the grand potential Φ [24]. It can be viewed as the free Helmholtz energy of a system with
varying particle numbers which creates additional energy terms for adding/removing
particles to/from the system. It is de�ned as

Φ = E −TS −
∑
s

µsNs (5.2)

where E describes the internal energy terms, T is the temperature, µs is the chemical
energy for particle species s , that describes the energy change when the number of
s-particles increases from Ns to Ns + 1. When we calculate the change of entropy using
equation (5.2) we get

∆S = −
1
T

*
,
∆Φ +

∑
s

µs∆Ns
+
-
. (5.3)

Here we have assumed that the internal energy remains constant ∆E = 0. If any internal
con�gurations of particles should change, we will account for that with a unimolecular
reaction that incorporates the appropriate change of energy via the chemical energy. We
have further assumed that the chemical energy µs of species s does not depend on the
state of the system. This leads to our �nal expression for local detailed balance

p (a → b)

p (b → a)
= exp *

,
−β


∆Φ +

∑
s

µs∆Ns


+
-

(5.4)

with β = 1/kBT . The term ∆Φ then accounts for all potential energy changes that
correspond to the interactions that were introduced in chapter 4. Enforcing local detailed
balance will still guarantee that entropy increases as the system evolves even without
global equilibrium, which allows us to study non-equilibrium systems.

To achieve local detailed balance, we will modify our propagators already mentioned in
equation (4.1). An acceptance step in the fashion of Metropolis-Hastings [15] is performed
after the system has been propagated for one timestep. To be more precise, one acceptance
step is done after the Brownian Dynamics step D and one after the reaction step R . One
could write the new procedure similar to equation (4.1) as

ψ (t + τ ) = Racc R0DaccD0ψ (t ) (5.5)

In other words this means that we will propagate the particles according to Brownian
Dynamics D0. In the acceptance step Dacc we will either accept this new state or return
to the old state. The same applies for reactions R. In any case the clock will then be
advanced from t to t + τ . If we perform the simulations without the acceptance steps
we will call it irreversible. If we use the acceptance steps, then the simulation will be
called reversible. We will now derive the expressions for the proposal and acceptance
probabilities.
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The condition we want to ful�ll is given in equation (5.4) when going from state a
to state b. Local detailed balance states that this condition must hold for all elementary
processes. It also means that the elementary processes, here displacements and reactions,
must be reversible. To �nd the probability of accepting a step or not we will split the
conditional probabilities in (1.3) as follows

p (a → b) = q(a → b)α (a → b) (5.6)

where we have splitted the total probability of going from a to b into the proposal
probability q(a → b) and the acceptance probability α (a → b). It can be shown that local
detailed balance (5.1) is ful�lled by the acceptance probability

α (a → b) = min
{
1, q(b → a)

q(a → b)
e−β[∆Φ+

∑
s µs∆Ns ]

}
. (5.7)

We will now derive the needed expressions of acceptance probabilities in the case of pure
particle displacements and then of pure reactions.

5.1 In dynamics
In the case of pure dynamics D without reactions and thereby a constant number of
particles, we can formulate the acceptance probability (5.7) by knowing that our Brownian
Dynamics integrator proposes positions that have a mean dependent on the deterministic
displacement due to forces (second term on right-hand side of eq. (4.7) ) and a variance of
2Dτ in every spatial component. In three dimensions the proposal probability q(a → b)
reads

q(a → b) = (4πDτ )−3/2 exp
[
−
(∆x − βDτFa )2

4Dτ

]
(5.8)

where ∆x = xb −xa are the displacements of particles, Fa are the forces acting on particles
in state a and β−1 = kBT is the inverse thermal energy. The backward probability is
de�ned analogously. The entropy change is represented by the Boltzmann distributions
in the constant particle number case

e−β[∆Φ+
∑
s µs∆Ns ] = e−β∆U (5.9)

with the potential energy di�erence ∆U = Ub −Ua . After plugging these expressions into
(5.7) and rearranging we get1

α (a → b) = min
{
1, e−β

[
1
2∆x·(Fb+Fa )+

βDτ
4 (F2b−F

2
a )+∆U

]}
(5.10)

Summing up we will propose the new state with probability q(a → b) during theD0 step
and we will accept it with the probability α (a → b) during the Dacc step.

1Note that the term ∆x · (Fb + Fa ) is meant to be the dot product or euclidean inner product.
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5.2 In reactions
When considering the reaction step R0 and Racc, we will multiply the acceptances of
every individual reaction occuring. This is necessary because we are considering di�erent
types of reactions as already stated in section 4.3. These are unimolecular and bimolecular.
Assuming that within a timestep, there are M reaction events proposed. Then the total
acceptance probability is

α (a → b) = min


1,

M∏
i

αi



(5.11)

where the individual αi have a familiar form

αi =
qi (b → a)

qi (a → b)
e−β[∆Φ+∆µi ]. (5.12)

Here the qi (b → a) and qi (a → b) are now the proposal probabilities of a single reaction
occuring. We have now denoted ∆µi as the change of chemical energy during the reaction
i . Furthermore we will assume that this change of chemical energy corresponds to the
ratio of the microscopic reaction rates

ki,on
ki,o�

= e−β∆µi . (5.13)

In the modeling picture this means, that a reaction that consumes a large amount of
energy is less frequent than the reverse reaction where the overall system energy is
decreased. To illustrate such a situation consider �gure 5.1. Assume you know of the
interaction of two particles A and A and the according potential energy function looks
like in �gure 5.1. If you would observe such a system of two A particles at a certain
temperature T you would see them often trapped within a distance x0 of each other but
you would also observe them sometimes seperated by a distance larger than x0. If we
want to build a reaction model out of such a system we would treat the two particles
individually when they are far apart and treat them as a single particleC when they come
closer than the distance x0. This problem is equivalent to the Kramers problem [25].
Then the rates kon and ko� correspond to the change in chemical energy ∆µ as given in
equation (5.13)

In addition to local detailed balance, we want another constraint to be ful�lled when
considering reactions.

constraint: in very dilute systems or in the absence of other particles,
reactions should occur with an acceptance probability of 1. Only in crowded
environments should the acceptance decrease.

(5.14)

This will ensure that the macroscopic reaction rates correspond to those, that can be
calculated by means of ordinary di�erential equations.

We will now derive the expressions for the acceptance probabilities for the two possible
reactions based on their proposal probabilities and the according change of entropy.
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Figure 5.1: Example what a reaction model could describe and how the
rates depend on the energy change.

5.2.1 Unimolecular
In the unimolecular reaction

A
kon


ko�

B (5.15)

we already stated in equation (4.13) the probability of proposing a reaction of this type.
If state a is associated with the particle type A and state b with the type B, then we can
write

qon = konτ qo� = ko�τ . (5.16)

Applying equation (5.13) we get

ko�
kon
= e+β (µB−µA ) = e+β∆µ (5.17)

with the chemical energy µ of the particle species A and B. The entropy change in this
case reads

e∆S/kB = e−β[∆Φ+
∑
s µs∆Ns ] = e−β∆U e−β∆µ . (5.18)

Gathering all equations we can state the acceptance probability for both directions of the
unimolecular reaction (5.15)

Unimolecular reaction: αi = e−β∆U . (5.19)
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This means that we only have to consider the potential energy changes like particle
repulsion etc. when performing a unimolecular reaction.

5.2.2 Bimolecular
Consider the bimolecular (Fusion) reaction

A + B
kon,R


ko�

C (5.20)

where R is the reaction distance of this reaction. We will distinguish between the case
of the forward/on reaction and the backward/o� reaction and calculate the proposal
probabilities �rst.

The forward reaction can occur only when particles A and B are within distance R,
then the proposal probability is

qon = konτ (5.21)

and particle C will be placed such that the center of mass is conserved as described in
chapter 4. The backward reaction C → A + B can always occur with probability ko�τ
and the particles A and B are put at a distance r away from each other. This distance r is
drawn from a probability distribution f (r ) so that the probability of putting them at r is
f (r )dr. The form of f depends on the interaction potential between particles A and B,
called UAB . We denote it as

f (r ) = Z−1e−βUAB (r ) with r ∈ [0,R] (5.22)

and the normalisation constant Z , de�ned as

Z =

∫ R

0
e−βUAB (r )dr (5.23)

In general the de�nition of f means that distances r where the interaction is weak are
favored over distances where the interaction is strong. We can write down the proposal
probability of the backward reaction as

qo� = ko�τ f (r )dr (5.24)

From equations (5.21) and (5.24) we can formulate the acceptance probability for the
forward reaction using equation (5.12) and the fact that the reaction rates cancel out the
change of chemical energy

αon = f (r ) dr e−β∆Φ

The change of grand potential consists only of potential energy changes ∆U with the
environment (other particles or geometrical constraints). Plugging in f we get

αon = Z−1 e−βUAB (r )e−β∆U
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This can be easy calculated during the simulation but if we want to ful�ll the constraint
(5.14) we need to make sure that

Z =

∫ R

0
e−βUAB (r )dr = 1 (5.25)

because in the dilute case the term ∆U is exactly −UAB (r ) and the acceptance probability
becomes 1. The same calculation and arguments hold for the reverse process and we can
state the acceptance probabilities for both forward and backward reaction

Bimolecular reaction:
αon = e−βUAB (r )e−β∆U

αo� = e+βUAB (r )e−β∆U
(5.26)

Still we have to �gure out how to accomplish the correct normalization Z = 1. The
answer lies in the reaction distance R, that we have not made any assumptions about. In
the model of ReaDDy [4] the reaction distance was some arbitrary parameter that had
to be chosen by the modeler even without any knowledge about the distance at which
reactions become important. We will chose the reaction distance R such that∫ R

0
e−βUAB (r )dr = 1 (5.27)

We will illustrate how this turns out if you assume that the interaction between particle A
and B is a harmonic repulsion as described in section 4.2. We vary the collision distance
ρ of particles and solve the root �nding problem∫ R

0
e−βUAB (r )dr − 1 = 0

This is easily solvable with standard numeric methods such as bi-section, since the
integrand is never negative and there is always exactly one solution R that solves the
problem. The result can be seen in �gure 5.2. One can see that in the case of a repulsive
interaction the reaction distance found is always larger than the collision distance of
particles R > ρ. It is also evident that the reaction distance converges to some value as
the interaction vanishes

R → const as ρ → 0.
The question is now what this constant value is. Fortunately there is already an answer
to this question. It was already given in chapter 3. The formula provided by Erban [16]
relates the microscopic reaction rate kon with the reaction distance R and the macroscopic
kon,macro the case of no interaction. We state it here again

kon,macro = 4πD

R −

√
D

kon
tanh *

,
R

√
kon
D

+
-


(3.2)

The R in this equation corresponds to the R in �gure 5.2 at ρ = 0 (no interaction), thus
connecting the reaction distance to the other parameters one might already know, e.g.
from experiments or other simulations.
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Figure 5.2: The reaction distance R as a function of the collision dis-
tance ρ of particles with harmonic repulsion. The dashed
line shows “naive” choosing of the reaction distance. The
red solid line shows the reaction distance when normalized
as given in the text. Inset are the parameters of the used
potential, given in rescaled units.

5.3 Summary
We will now give a summary of the new methods in the style of equation (1.2). See table
5.1 for an overview of the di�erent used integration variants. This notation will become
useful when we simulate systems di�erently. For example the algorithm that ReaDDy
implements can be described by the notation

ψ (t + τ ) = R0D0ψ (t ).

In principle one could also choose di�erent timesteps for the dynamics and the reactions,
e.g. assuming that the reaction timestep is 100 times the dynamics timestep we could
write

ψ (t + 100τ ) = R0(100τ )D0(τ )
100ψ (t )

where the argument of D and R denote how “far” the system will be propagated.
In the following chapters we will often simulate either the dynamics or the reactions

reversibly, i.e. either
ψ (t + τ ) = R0DaccD0ψ (t )

or
ψ (t + τ ) = RaccRMD0ψ (t ).
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Object Explanation
ψ (t ) state of the system at time t
ψ (t + τ ) state of the system one timestep τ later
D0 Brownian Dynamics propagator, displaces particles

∆x = βDτFt +
√
2Dτ N3D

Dacc accept the new state with probability
α = min

{
1, e−β

[
1
2∆x·(Ft+τ+Ft )+

βDτ
4 (F2t+τ−F2t )+∆U

]}
R0 Default reaction propagator

Unimolecular A
kon


ko�

B

Bimolecular A + B
kon,R


ko�

C (with arbitrary R)

RM Modi�ed reaction propagator
Unimolecular A

kon


ko�

B

Bimolecular A + B
kon,R


ko�

C

(with R chosen such that 1 =
∫ R

0 e−βUAB (r )dr )
Racc accept the new state with probability α = min {1,∏i αi }

Unimolecular αon = e−β∆U

αo� = e−β∆U

Bimolecular αon = Z−1e−β (∆U+UAB )

αo� = Ze−β (∆U−UAB )

Table 5.1: Overview of the di�erent methods and their propagators that were introduced.
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6 So�ware revreaddy
In the past chapter we have derived all methods in principle. However we are dealing with
stochastic methods that require numerical implementation. Therefore a small software-
package was written, called revreaddy, which is shorthand notation for reversible ReaDDy.
It is available via github (see [26]). To investigate the local detailed balance and its e�ects
on the dynamics and the reactions of a simulated system, revreaddy is mainly written in
C++ (with C++11 standard) as a fast object oriented programming language. This C++
code is written as generic as possible to make a simulation kernel that can simulate many
di�erent systems only depending on the input by the user (which is mainly the author
itself).

This input from the user is in the form of Python scripts. The Python program-
ming/scripting language enables to prepare even complex systems with very little e�ort.
These python scripts have access to the C++ software via a C-extension, which is gen-
erated with the help of Cython. This scheme is depicted in �gure 6.1. The functions
and variables accessible to the user are only to con�gure a system, i.e. determine its
particle types and their propoerties, add interaction potentials to act between particles,
add reactions between speci�ed particle types that occur with speci�c reaction rates.
Also the system parameters like the timestep, the temperature and the boxsize - periodic
or not - are determined. Furthermore the user has access to start the simulation, after
which the C++ program runs for the speci�ed number of timesteps and only returns to
the Python layer when it is �nished.

How the C++ code works in principle is shown in �gure 6.2. The main loop over the
range of the maximum number of timesteps is depicted there in pseudocode. This loop is
called when the run() function executes. In the beginning the current state is saved to
be called again later if the step was rejected. The state consists of the particle positions,
the forces acting on them and the total system energy. Then the position of particles
are displaced using Brownian Dynamics. To compare the new state to the old state the
forces have to be calculated again. The function acceptanceDynamics() determines the
acceptance probability of the dynamics-step. According to this probability, the step gets
either accepted (nothing happens) or rejected (the old state is invoked again). The same
procedure is performed for the reactions. After these two steps the observables for time t
are recorded and the next iteration starts.

Observables
The output can also be con�gured before executing the simulation with the help of
the Python scripts. There are several observables that are evaluated on the run and
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saved to disk in con�gurable intervals and formats. These observables are: the mean
squared displacement, the radial distribution function, the probability density along one
coordinate, the number of particles of a certain type, the total energy, the acceptance
probabilities and �nally the trajectory. The observables are saved to binary HDF5 �les
[27, 28]. We will now explain two observables a bit more detailed.

The mean squared displacement (MSD) is a quantity that can give insight on how far
particles travel on average within a certain timespan t . This quantity is often written as

MSD = 〈(r(t ) − r0)2〉N (t )

where r(t ) is the position of a particle at time t and r0 was its position at time t = 0. The
mean 〈.〉N is taken over the ensemble consisting of N particles.1 In revreaddy one has
to specify a particle type at �rst, whose MSD has to be recorded. When taking the �rst
sample, say at time t = 0, the positions r0 are saved together with the particles unique
ids. When another sample is recorded at a later time t then the quantity 〈(r(t ) − r0)2〉N (t )

is calculated for the particles whose unique ids were saved at time t = 0. This way
the ensemble of observed particles N (t ) might decrease over time because some of the
particles that existed at t = 0 do not exist anymore, but at least the expression for the
MSD is still exact.

We will derive the theoretical expectation for the MSD in the case of free di�usion.
Let c (x ,t ) be the probability distribution of a particle that shall be positioned at x = 0
when t = 0 and that di�uses according to a Wiener process. The di�usion equation holds
(cf. equation 1.1)

∂c (x ,t )

∂t
= D
∂2c (x ,t )

∂x2
(6.1)

Consider the time evolution of the mean squared displacement of c’s x variable

∂〈x2〉

∂t
=
∂

∂t

∫
x2c (x ,t )dx =

∫
x2
∂c (x ,t )

∂t
dx =

∫
x2D
∂2c (x ,t )

∂x2
dx

where we have used the exchangeability of the derivative and the integral and equation
(6.1). Integration by parts can be applied twice where the boundary terms vanish since
c (x ,t ) is zero for x → ±∞. Hence

∂〈x2〉

∂t
= 2D

∫
c (x ,t )dx = 2D

since c (x ,t ) is normalized to 1. We can now write the MSD as a function of the time

〈x2〉 = 2Dt 1-dimensional
〈r2〉 = 6Dt 3-dimensional

(6.2)

The di�erence to our measured MSDs is that we average over ensemble of particles
instead of the space x of some probability distribution.

1In principle the number N (t ) can depend on time as well as in reaction-di�usion simulations the number
of particles changes.
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Another important observable is the radial distribution function, RDF or д(r ). It
describes how the distances r of particles with respect to each other are distributed. We
will use this often to assure that a system is equilibrated, although not shown here for
every application example. It is de�ned as

д(r ) =
number of particles counted at r

number of particles in an ideal gas at r =
n(r )

nideal(r )
.

In an ideal gas all particles are distributed uniformly in space. If we choose one particle
and count all particles that have a distance in the interval between r and r + dr we will
�nd that

nideal(r ) =
N

V
4πr 2dr

where N /V is the number density of the ideal gas and 4πr 2dr is the volume of the
spherical shell with width dr . With this the RDF becomes

д(r ) =
n(r )V

N 4πr 2dr (6.3)

In revreaddy dr is the bin size of the histogram which is used to count the number n(r ).
We will often average this quantity over the whole ensemble of particles N as well as
over the timespan T . This is denoted by 〈д(r )〉N ,T .
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Figure 6.1: Scheme of the revreaddy-software. On the low level C++ side, not all compo-
nents are shown.
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Figure 6.2: Pseudocode of the revreaddy main loop, given in python-style syntax. The
symbols on the right correspond to those given in section 5.3 and represent
the propagators of the simulation.
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7 E�ect on dynamics
We will in this section see how the reversibility feature introduced in section 5 will a�ect
the dynamics of well studied systems in four scenarios Overview, E�ciency, Deceleration
and Sampling. Note that these scenarios are given in rescaled units (see Appendix), which
is why there are no units given in the �gures and tables.

7.1 Overview
The scenario introduced here will give an overview of how the integrator performs with
respect to the acceptance rate and how this can change over time. The system is a typical
textbook example, where particles are con�ned to a cubic volume and then are released
into a volume of doubled size. There are 1000 particles and no reactions. All particles are
soft particles with the harmonic repulsion given in equations (4.10). In the beginning all
particles are in the left container, which is surrounded by six wall potentials (see equation
4.9) ) that con�ne the cubic volume. The right container has the same size as the other
one but they are still seperated by one of the wall potentials. At time t0 this seperating
wall potential is removed so that particles are free to di�use into the empty second box.
Four snapshots at times t0 to t3 are given in �gure 7.1. These show how the particles �ll

Figure 7.1: Four snapshots of the simulation Overview at times t0 top-
left, t1 top-right, t2 bottom-left, t3 bottom-right. Shown is
the projection on the x-z-plane, meaning that the x direction
is towards the right and the z direction is upwards.

out the available volume. All parameters used are collected in table 7.1. The integration
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Figure 7.2: The plots for the scenario Overview. Left: The acceptance of
the dynamic integration step as a function of time shown
here with a lagtime of 2000τ . The acceptance is directly
obtained from the calculation of eq. (5.10). Right: The prob-
ability distribution of �nding a particle projected on the x
coordinate at di�erent times of the simulation. The times
correspond to those given in table 7.1 and �gure 7.1.

scheme here can be denoted as (cf. table 5.1)

ψ (t + τ ) = DaccD0ψ (t ),

which means that no reactions are considered. We only observe the so called dynamical
acceptance probability.

parameter value
number of particles 1000
particle radius 0.5
particle repulsion coe�. k 10
wall repulsion coe�. k 10
volume before t0 1000
volume after t0 2000

parameter value
timestep τ 2×10-5

time t0 0
time t1 2
time t2 22
time t3 62
periodic boundaries NO

Table 7.1: Parameters used in the simulation Overview given in rescaled units.

The interesting part is now how the acceptance probability de�ned in equation (5.10)
changes as a function of time. This behavior is shown in �gure 7.2. It is obvious that the
mean acceptance increases as the density of the system decreases. This is mostly due
to less particle overlaps and by that smaller di�erences in energy as the local density of
particles decreases. This e�ect also depends on the timestep. As the timestep increases
the acceptance decreases, which is quanti�ed in the next scenario.
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7.2 E�iciency
At this point we have seen that the acceptance can change as a function of time. We will
show here that it depends also on the size of the timestep τ and the choice of particle
potentials.

First we will de�ne the e�ciency η, that tells us how far we e�ectively propagate our
system in time when we use a timestep τ

η = τ 〈α (t → t + τ ) 〉T (7.1)

where α (t → t + τ ) is the acceptance probability for one timestep of the dynamics of the
whole system which was given in equation (5.10). This quantity is averaged over the
complete timespan T .

The system used to characterize η is a cubic volume with periodic boundary conditions.
It contains 256 particles. The simulation is then run for di�erent timesteps and two
di�erent potentials (harmonic repulsion and Lennard-Jones), while the average e�ciency
is determined. The parameters are given in table 7.2. As in the scenario before we
propagate the system according to

ψ (t + τ ) = DaccD0ψ (t ).

The results of the measurements of the acceptance and the e�ciency are given in �gure

parameter value
number of particles 256
boxlength 16
particle radius 1
harmonic repulsion coe�. κ 2

parameter value
Lennard-Jones coe�. ϵ 1
timestep τ 10-6 - 101

averaging timespan T 10000τ
periodic boundaries YES

Table 7.2: Parameters used in scenario E�ciency given in rescaled units.

7.3. As expected the acceptance decreases as the timestep increases. This is because the
integration error by Brownian Dynamics increases with a more coarse discretization.
The Metropolis-Hastings correction then has to make up for that. In general we can
also see that a sti�er potential means also a lower acceptance. This becomes clear for
example when looking at τ = 5 × 10−2 in the e�ciency plot of �gure 7.3. At this point
the soft potential is several orders of magnitude more e�cient. From the same plot it
becomes clear, that the e�ciency has a maximum which depends on the system. For
both potentials this maximum is in the region where the acceptance is about 50%, which
might not be a desirable working point as will be seen in the next section.

7.3 Deceleration
We have seen how the acceptance probability depends on system parameters in the
previous two scenarios. We will now see that the new Metropolis-Hastings correction
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Figure 7.3: Bottom: The acceptance probability averaged over 10000
timesteps as a function of the timestep τ for two di�erent
particle interaction potentials. Top: The e�ciency η as a
function of the timestep τ for two di�erent potentials.

slows the systems dynamics down by a factor of the average acceptance ratio. Therefore
we use a system very similar to the E�ciency scenario. This time we have 300 particles
in a slightly smaller periodic box. To increase the e�ect of acceptance reduction, the
Lennard-Jones interaction is used for particles. Figure 7.4 shows a snapshot of the system
and the given parameters. In the given system we measure the mean squared displacement
of particles as a function time. This is done with the reversibilty feature (called reversible)
and without it (called irreversible)

irreversible ψ (t + τ ) = D0ψ (t )

reversible ψ (t + τ ) = DaccD0ψ (t ).

Each one is repeated 100 times to average over the values and reduce statistical errors.
Note that the mean squared displacement is calculated on the �y such that a particle, that
leaves the box on one side and enters on the other is recognized by the program. In this
way it is possible to track the real travelled distance of particles without having boundary
e�ects, where the mean squared displacement approaches a �nal value. The results of
these measurements are given in �gure 7.5. The irreversible case shows exact agreement
to the free di�usion equation solution for small timescales (ballistic di�usion). In both
cases reversible and irreversible the curves show qualitatively the same behavior but the
reversible system is slower. Meaning that if you were to rescale the time in the reversible
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parameter value
number of particles 300
boxlength 13
particle radius 1
Lennard-Jones coe�. ϵ 1
timestep τ 10-5

periodic boundaries YES

Figure 7.4: Snapshot of the Deceleration scenario (left) and the used
parameters given in rescaled units (right).

Figure 7.5: The mean squared displacement as a function of time in
the Deceleration scenario. Errorbars are left out since they
are smaller than the dot markers itself. The solid lines are
�tted to the ballistic regime t < 10−3. The red line exactly
represents the 6D slope one would expect from the di�usion
equation. The blue line has the same slope multiplied by
the average acceptance probability. At around t = 10−2
subdi�usive behavior starts and towards the end it becomes
linear again.
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case by a factor of the average acceptance probability you would recover the irreversible
case. This might work in this example where the average acceptance probability is
constant during time. But in general this not the case, see scenario Overview, where the
acceptance probability depends strongly on time.

One method to make up for that would be to rescale every individual timestep by its
calculated acceptance probability. But it turned out that this method leads to wrong
sampling of the equilibrium distribution.

7.4 Sampling
We have seen in the previous sections that the acceptance step can slow down the
dynamics of any system, depending on how small the acceptance probability is. On the
other hand we gain the correct sampling of energetic states, which will be demonstrated
here by the Sampling. To accomplish this we will perform two single-particle simulations
and observe the sampling of the probability density of the particle. A single particle will
be di�using in three dimensions and is subject to a potential energy landscape. This
potential only depends on one spatial coordinate z. In the other directions, periodic
boundary conditions are realised. In both cases a relatively large timestep is chosen to
enhance the e�ect of discretisation errors in the Brownian Dynamics scheme. As in the
scenarios before we will compare the two di�erent integration schemes

irreversible ψ (t + τ ) = D0ψ (t )

reversible ψ (t + τ ) = DaccD0ψ (t ).

The two potentials represent well studied toy-models. One of them is the harmonic
potential, which is given in rescaled units as

harmonic U (z) = 2z2. (7.2)

The other potential is a double-well potential that has some extra parameters to determine
the distance of the two minima. We denote this potential as

double-well U (z) = 2
[(z
L
−
3a
8

)4
−

(z
L
−
3a
8

)2
+ a

(z
L
−
3a
8

)3]
(7.3)

where a is a parameter that is here set to a = 0.3. Then the L parameter connects to
the distance of the two minima like L = distance of minima/1.47267 and we set the
distance of minima to 2. The two potentials are plotted in �gure 7.6 together with all the
parameters used. The results of both potential landscapes can be seen in �gure 7.7. The
mean acceptance probabilities for the reversible cases are in both simulations

harmonic potential 〈α〉T = 84%
double-well potential 〈α〉T = 95%

The shown exact solution to the problem is a Boltzmann distribution ρ (z)
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parameter value
number of particles 1
di�usion coe�cient D 0.1
periodic boundary conditions YES (in x and y)
averaging timespan T 100000τ
timestep harmonic potential τ 2
timestep double-well potential τ 0.1

Figure 7.6: Top: The two potentials used to investigate the sampling
of a single Brownian particle. Bottom: Parameters used in
scenario Sampling given in rescaled units.

ρ (z) = Z−1e−βU (z) Z =

∫ +∞

−∞

e−βU (z)dz. (7.4)

One can clearly see that the deviation from the exact sampling is much smaller for the
reversible case in favor of the metropolised method, which is not suprising since our local
detailed balance method becomes the detailed balance method in equilibrium systems.
This method is designed such that that the system converges to the correct distribution (
in our case ρ (z)).
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Figure 7.7: A histogram of the particles’ visited z positions. The bin
width is 0.01 in both cases. The irreversible case coresponds
to standard Brownian Dynamics. The reversible case con-
tains an acceptance step (see text).
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8 E�ect on reactions
Up to now all application examples were performed without reactions, i.e. with constant
particle numbers. We will now study two scenarios that include reactions. The �rst
will be the ReaDDy benchmark system, which was already mentioned in chapter 3 that
focusses on bimolecular reactions. The second example will inlcude both unimolecular
and bimolecular reactions that do not conserve total volume of all particles, which is why
we call it volume unconserved.

8.1 ReaDDy benchmark
The scenario investigated here was mentioned in the ReaDDy paper by Schöneberg et
al. [4] and used to demonstrate a bimolecular reaction in a spatiotemporal manner. The
reaction of interest reads

A + B
kon,R


ko�

C

where in the forward/on reaction two particles A and B have to come within a distance of
R to react with the microscopic rate kon. The backward/o� reaction can always occur with
the microscopic rate ko� . The system starts with only A and B particles of equal amount
and eventually relaxes to an equilibrium state, which depends on all system parameters.
This procedure is done with and without particle repulsion, which is harmonic repulsion.
Particles start to repulse when their distance is smaller than the sum of their radii. The
radii ρ of particles A, B and C are chosen such that total volume is conserved during
a reaction, i.e. vA + vB = vC . The radii of particles then also connect to their di�usion
coe�cient D and the temperature kBT = β−1 via the Einstein-Stokes relation

D =
kBT

6πηρ
where η is the viscosity. The parameters are chosen to represent conditions similar to
cellular cytosol at room temperature. Considered is a simulation box which has six
con�ning surfaces that are modeled as repulsive wall potentials (cf. equation (4.9)). The
box dimensions are 100 × 100 × 100 nm3 and nm are the natural units used in this setup.
The volume occupation by particles in this box is 30%, which means that there are 2357
A and 2357 B particles in the beginning. The timestep is τ = 10−10 s and in the ReaDDy
paper the maximum time is T = 10 µs = 100,000 × τ .

The main di�erence between our revreaddy setup and the ReaDDy setup is the integra-
tion scheme. In the style of equation (1.2) we formulate the ReaDDy integration scheme
as

ψ (t + τ ) = R0D0ψ (t )
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(for explanation of the symbols see table 5.1) and the revreaddy scheme reads

ψ (t + τ ) = RaccRMD0ψ (t )

where after every reaction step, an acceptance step is included. Note that we also modify
the reaction step itself according to the constraint (5.14). In essence this modi�cation
means that we increase the reaction distance R to make up for the decreasing reaction
volume when introducing particle repulsion. Thus this modi�cation is only applied in
the with-repulsion case. More information on determining R see section 5.2.2.

parameter value
number of particles 2357- 4714
particle radius ρA 1.5 nm
particle radius ρB 3.0 nm
particle radius ρC 3.12 nm
di�usion coe�cient DA 143.1 × 106 nm2s-1

di�usion coe�cient DB 71.6 × 106 nm2s-1

di�usion coe�cient DC 68.82 × 106 nm2s-1

reaction distance (ReaDDy) R 4.5 nm
reaction distance (revreaddy w/ rep.) R 4.891 nm
reaction rate kon 106 s-1

reaction rate ko� 5 × 104 s-1

macroscopic reaction rate kon,macro 3.678 × 108 nm3 s-1

timestep τ 10-10 s
simulation length T 100,000 τ or 200,000 τ
periodic boundaries NO
box volume 100 × 100 × 100nm3

temperature kBT 2.437 kJ mol-1 (20 ◦C)

Table 8.1: Parameters used in the simulation Readdy benchmark.

The main observable in this scenario is the number of particles of a certain species at a
given time t . We will also compare these to the solution of a set of ordinary di�erential
equations (ODE). The approach to these is given in the appendix. We will denote the
concentrations of particles as A(t ), B (t ) and C (t ). Then the ODEs for this system read

dB (t )
dt =

dA(t )
dt = −kon,macroA(t )

2 + ko�C (t )

dC (t )
dt = +kon,macroA(t )

2 − ko�C (t )

(8.1)

Here we have already used the constraints that A(t ) = B (t ) ∀t . The macroscopic rate
kon,macro is determined with equation (3.2) from the reaction distances of particles A and
B and their di�usion coe�cients and the microscopic reaction rate kon [16]. The set
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of ODEs (8.1) is naively integrated with an Euler-Maruyama method with the initial
conditions

A(0) = B (0) = 3.9mM C (0) = 0.

The results of the simulations are seen in �gure 8.1.1 The ODE are described well by
both methods ReaDDy and revreaddy in the case of no repulsion, although we can see
that the revreaddy concentrations vary slightly from the ODE solution which is due to
rejections of reaction steps at the boundary of the system, where energy terms arise. More
interesting is the case when repulsion is switched on. In the ReaDDy case, this resulted in
slower reaction kinetics and a di�erent equilibrium ratio of particle concentrations. In the
revreaddy method we can also observe slower reaction kinetics but the concentrations of
particles eventually converge to the equilibrium concentrations that are also predicted
by the ODE method.

Concluding, our new method seems to assure convergence to the ODE solution. If this
is a wanted e�ect however depends on the model and the system under consideration.

8.2 Volume unconserved
We have seen our new method acting on a system with one bimolecular reaction. We will
now look at the behavior, when we consider a system of two coupled reactions I and II

A +A
kon,I,R


ko�,I

B
kon,II


ko�,II

C . (8.2)

All rates are microscopic. We design the system such that in the end, all species have the
same concentrations in an ODE description.

A(t → ∞) = B (t → ∞) = C (t → ∞) (8.3)

This is accomplished by matching the e�ective, macroscopic rates, i.e.

kon,macro,I ×A(t → ∞) = ko�,I = kon,II = ko�,II (8.4)

where the macroscopic reaction rate kon,macro,I can be determined by equation (3.2) that
describes the case of no interaction in between A particles. We will design the parameters
of particles such that the total volume of particles during the reaction I is not conserved
in the following sense

2vA = vC vB > vC (8.5)

Note that the ODE approach cannot capture this detail and we will expect deviation. We
will also perform this simulation with volume conservation. We will investigate the three
cases

1Note the deviation of the initial concentrations. It occurs that the scaling of the concentration was
miscalculated in the ReaDDy paper (or in this work). However the author could not resolve this issue,
but it is only a scaling factor. The qualitative results are the same.
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• no interaction (w/o rep.)

• repulsion - volume conserved (w/ rep. vol. cons.)

• repulsion - volume not conserved (w/ rep. vol. uncons.)

Let us �nd out how to ful�ll the condition (8.4). The problem reduces to �nding the
relation between the on-rate kon,macro,I, the o�-rate ko�,I and the equilibrium concentration
of A(t ). The system of ODEs reads

dA(t )
dt = −kon,macro,IA(t )

2 + ko�,I B (t ) (8.6)

dB (t )
dt = +kon,macro,IA(t )

2 − ko�,I B (t ) − kon,II B (t ) + ko�,IIC (t ) (8.7)

dC (t )
dt = +kon,II B (t ) − ko�,IIC (t ) (8.8)

At equilibrium or for t → ∞ we have a stationary situation

dA(t )
dt

�����t→∞
=

dB (t )
dt

�����t→∞
=

dC (t )
dt

�����t→∞
= 0

Utilizing our constraint (8.3), the rate equation (8.6) becomes

0 = −kon,macro,IA(t → ∞)2 + ko�,IA(t → ∞).

We make use of the conservation of particles when starting only with A particles

A(t ) + B (t ) +C (t ) = A(0)∀t

⇒ A(t → ∞) =
A(0)
3

We can �nd the rate ko�,I as
ko�,I =

A(0)
3 kon,macro,I (8.9)

The procedure of setting the rates is then the following:

• Set particle radii, reaction distance and di�usion coe�cients in the no-interaction
case

• Set the microscopic on-rate of reaction I

• Find the macroscopic on-rate of reaction I from equation (3.2)

• Use equation (8.9) to get the backward rate

• Set the remaining rates equal to that, see equation (8.4)
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The ODEs are then again solved with an Euler-Maruyama integration, with the initial
condition A(0) = 0.00896 (in rescaled units).

All values in the revreaddy simulation are in rescaled units that correspond to similar
conditions as the scenario before (ReaDDy benchmark). These conditions are similar to
cellular cytosol with 30 % volume occupation when only A and C particles are present.
Rescaled units means that we measure lengths in nm, time in ns and energies in kBT at
room temperature, i.e. 2.437 kJmol−1. All parameters in rescaled units are given in table
8.2.

parameter value
lengthscale 10−9 m
timescale 10−9 s
energyscale kBT = 2.437 kJmol−1
particle radii ρA 2
particle radii ρB 2.7501 (vol. uncons.)
particle radii ρB 2.5198 (vol. cons.)
particle radii ρC 2.5198
di�usion coe�cient DA 0.10734
di�usion coe�cient DB 0.07806
di�usion coe�cient DC 0.08520
reaction distance without repulsion R 4
reaction distance with repulsion R 4.391
reaction rate kon,I 0.001
reaction rate kon,macro,I 0.26032
reaction rate ko�,I 7.774×10−4
reaction rates ko�,I = kon,II = ko�,II
periodic box dimensions V = 50 × 50 × 50
initial A particles 1120
initial density 0.00896

Table 8.2: Parameters used in the simulation volume unconserved.

The revreaddy simulation procedure is as follows. We start initially with 1120 A parti-
cles in the simulation box without any reactions. According to which case is simulated
(w/o rep., w/ rep. vol. uncons. or w/ rep. vol. cons.), the system is equilibrated via pure
Brownian Dynamics. If the system is equilibrated is checked with the radial distribution
function д(r ) of the particles. Also the mean squared displacement is observed to check
whether the systems behave as expected. These observables are given in �gure 8.2. We
can see that in the case of no repulsion the particles behave like free particles, as is
expected without any interactions. The radial distribution shows that particle distances
are uncorrelated and the mean squared displacement reproduces the exact solution of the
driftless di�usion equation that was given in section 6. The case with repulsion shows
di�erent behavior. From the radial distribution function it is clear that particles are rarely
overlapping. It is also evident that the probability of �nding a particle at the point where
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particles start to overlap is largest (see �gure 8.2, dashed red line in the RDF plot). Also
the mean squared displacement shows some di�erences in the case of interaction. We
can see ballistic di�usion in the �rst few timesteps and then a transition region (probably
power law behavior), while in the end the exponent seems to be quadratic again. This is
in agreement with Höfling et al. [29], who studied di�usion in crowded environments.

After this initial equilibration phase the reactions are switched on and the systems
propagate according to

ψ (t + τ ) = RaccRMD0ψ (t )

(see table 5.1 for reference). During this phase the number of particles are recorded as a
function of time. The results of this procedure are given in �gure 8.3. In the case without
particle repulsion, the concentration as a function of time of the revreaddy simulation
exactly represent the ODE solution. This is expected because no interaction also means
that no energy terms arise that might decrease the acceptance probability during the
reaction step. The center graph in �gure 8.3 shows the case of particle repulsion where
radii of particles A, B and C are chosen so that total volume is always conserved. The
reaction kinetics are slowed slightly. This can be explained by the obstruction that two
potential reaction partners face in a crowded environment. Also the equilibrium values of
concentrations are shifted. Most prominent for the A particles, the concentration deviates
about 20% from its ODE value. This e�ect might be explained by the dissociation step
B → A +A being rejected more often than the association step A +A→ B because the
dissociation certainly leads to more overlap of particles and thus more energetic penalties
than the association step, which most often is accompanied by a decrease in energy which
is favorable. For B and C the concentrations vary only little. In general this case still
reproduces the overall ODE behavior while incorporating realistic crowding e�ects as
well. As in the scenario before this behavior might be wanted or not (further discussion
in the conclusion). In the third case we have particle repulsion and the particle B is larger
than C , making the state B an improbable one by construction. This is re�ected in the
results as well. Due to rejection of steps, the whole process is slowed even further. As
expected the state B is less populated than the other two. In this case, also C is more
favorable than A.
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Figure 8.1: Results of the simulation of the bimolecular reactionA + B
kon,R


ko�

C ,
namely the concentrations of particles. Top: ReaDDy. Bottom:
revreaddy, with a modi�ed reaction scheme. Note the di�erent
simulation lengths.

46



Figure 8.2: Preparation of the scenario volume unconserved, with only A particles present.
Shown are: The radial distribution function averaged over all 1120 particles
and 100 timesteps. The mean squared displacement as a function of time
averaged over all 1120 particles. A snapshot of the system after equilibration.
Left: without particle repulsion. Right: with soft/harmonic repulsion.
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Figure 8.3: Results of the scenario volume unconserved. Reactions were performed with
the acceptance/rejection scheme. Dynamics are purely Brownian Dynamics.
The whole simulation was performed ten times to average the concentrations
over a larger ensemble. Shown are particle concentrations as a function of
time. Top: The case without particle repulsion. Mid: With repulsion and
conserved volume. Bottom: With repulsion but unconserved volume.
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9 Conclusion & Outlook
This thesis deals with the method of stochastic particle based reaction-di�usion simula-
tions. More precisely, we applied an alternative scheme to spatiotemporal simulations like
the framework of ReaDDy. The main motivation was to enforce detailed balance or local
detailed balance to the integration scheme and thus make the simulation more realistic.
Especially when considering systems of few particle numbers or in the absence of global
equilibrium, care must be taken not to bias the system by “wrong” elementary operations
(di�usion and reactions in our case). The method to enforce local detailed balance was
to introduce an acceptance step in the style of Metropolis and Hastings. This model
was implemented1 in a software called revreaddy and compared to the ReaDDy results.
We investigated e�ects of our method on pure dynamics without reactions and then
investigated the e�ects on reactions with standard Brownian Dynamics.2

The e�ect of our method on dynamics showed that we get slowed down systems but
correct sampling of the energetic landscape. In terms of local detailed balance this means
that a state of maximum entropy is approached during the course of the simulation. For
reactions the results are similar. We get slower reaction kinetics but the equilibrium
concentrations of particles show reasonable behavior in comparison to solutions of
ordinary di�erential equations that neglect space. If the behavior of approaching an ODE
solution is desirable is left to the modeler. It might prove useful when one knows about
the macroscopic kinetics and wants to incorporate spatial e�ects such as crowding or
obstructed di�usion in the model.

The correct “speed” of a system AND the correct sampling can only be satis�ed in the
limit of the acceptance α → 1. This can always be approached by making the timestep
small enough, but this becomes infeasible, mostly for one reason.

The acceptance probability α is an extensive variable of the underlying system. This is
iilustrated in �gure 9.1 on the left. Assume an equilibrated system (blue box) that can be
well described by a set of quantities such as the volumeV , number of particles N , entropy
S , energy Φ, temperature T , pressure P and chemical potential µ. Now consider a system
which is 8 times “bigger”. This means that the extensive variables N ,V ,S ,Φ also take
new values which are 8 times larger. On the other hand the intensive variables T ,P ,µ
remain the same as before. The acceptance probability is as we have seen in section 7.2
largely dependent on the timestep τ , which is a model parameter, but it is also dependent
on the number of particles N and the volume V . This is what makes it hard to observe

1The implementation of the method was a large part throughout the research phase.
2A combined application was not performed as it lead to dynamically frustrated systems just when the

reactions were becoming important with respect to system size. This problem is further discussed in
the text.
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Figure 9.1: Left: The acceptance α is an extensive variable. Right: Two
subsystems, membrane bound and free particles, together
in one simulation.

large systems with such a method. The exact form of how α scales with the extensive
variables is denoted by f . An interesting future task would be to �nd out what this f is.

Another issue can be illustrated with the help of �gure 9.1 on the right. Assume a
system with two types of particles. One bound to a membrane and very crowded. The
other freely di�using in space. When one calculates the acceptance α in such a system and
propagates particles as we have done it, the “speed” with which the free particles di�use
will highly depend on the acceptance, which is dominated by the e�ects of the dense
membrane system. But in the model that we have described so far the free particles do not
even interact with the membrane system. So why should the free particles be in�uenced
by the membrane particles? An integration scheme that resolves this paradoxon and still
satis�es local detailed balance is needed. This would also be an interesting question to
pose.
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Appendix

Rescaled units
For generality and simplicity most of the simulation examples are given in rescaled
(dimensionless) units. The results can be applied to di�erent situations recovering the
real units with some constraint, that will be given here.

The goal is to reduce the integrator (4.7) to a unitless, normalized form to fully utilize
machine precision. We also want to keep D as a per-particle property and not eliminate
via the Einstein-Smoluchowski relation. We state it here again

xt+τ = xt − τ
D

kBT
∇U (xt ) + Rt . (4.7)

Also the variance of the noise term

〈RtRt ′〉 = 2Dτ δtt ′ (4.8)

will be a�ected. We start by de�ning the new dimensionless quantities

Ũ = U /kBT x̃ = x/h t̃ = t/λ (9.1)

This also means
∇̃ = ∇h τ̃ = τ/λ D̃ = D

λ

h2
(9.2)

Putting this all in (4.7) we get

x̃t+τ = x̃t − τ̃ D̃∇̃Ũ (xt ) +
Rt
h

(9.3)

We further de�ne the new rescaled random displacement

R̃t = Rt/h, (9.4)

which alters the second moment

〈R̃t R̃t ′〉 = 2τ̃ D̃δtt ′ (9.5)

Summarizing we get, when leaving out the tildes, our rescaled integration equation

xt+τ = xt − τD∇U (xt ) + Rt with 〈RtRt ′〉 = 2τD δtt ′ (9.6)

Its form has not changed a lot except that we do not need to compute kBT anymore. To
recover the real world units, the formulas (9.1) and (9.2) must be used.
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ODE description
In some applications we compare the results of the spatio-temporal revreaddy algorithm
with a description by ordinary di�erential equations (ODE). This is based on equation
(1.1) which reads

∂u(x,t )
∂t

= D∆u(x,t ) + f (u), (1.1)

For the simplest and most well behaved reaction systems and for non-interacting species
we can neglect the di�usion term and are left with

du(t )
dt = f (u) (9.7)

If u(t ) = [uA(t ), uB (t ), uC (t ), . . . ] are the individual concentrations of the species A,
B and C , then f (u) contains the change of concentration that corresponds to a set of
reactions. For example, consider the chemical reaction system

∅
k+
→ A A

k−
→ ∅

with reaction rates k+ and k−. In this case equation (9.7) becomes

duA(t )
dt = k+ − k−uA(t )

with the solution
uA(t ) = uA(0) e−k−t +

k+
k−

(
1 − e−k− t

)
Note the di�erent units of the reaction rates k+ and k−.

In the present thesis we investigate systems which include unimolecular and bimolec-
ular reactions. In these cases the set of equations can become more complicated. To
obtain the solution however we integrate equation (9.7) by means of an Euler-Maruyama
scheme.

du(t )
dt ≈

u(t + 1) − u(t )
∆t

⇒ u(t + 1) = u(t ) + ∆t · f (u(t ))
(9.8)
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