
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Ralf Kornhub er Rainer Roitzsch

On Adaptive Grid Refinement in the
Presence of Internal or Boundary Layers

Preprint SC 89-5 (November 1989)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Strasse 10
1000 Berlin 31
Verantwortlich: Dr. Klaus Andre
Umschlagsatz und Druck: Rabe KG Buch- und Offsetdruck Berlin

ISSN 0933-7911

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbrunner Str. 10
1000 Berlin 31
Verantwortlich: Dr. Klaus Andre
Umschlagsatz und Drück: Rabe KG Buch-und Offsetdruck Berlin

ISSN 0933-7911
• i ;

Ralf Kornhuber Rainer Roitzsch

On Adaptive Grid Refinement in the
Presence of Internal or Boundary Layers

Abstract

We propose an anisotropic refinement strategy which is specially designed
for the efficient numerical resolution of internal and boundary layers. This
strategy is based on the directed refinement of single triangles together with
adaptive multilevel grid orientation. Compared to usual methods, the new
anisotropic refinement ends up in more stable and more accurate solutions
at much less computational cost. This is demonstrated by several numerical
examples.

Keywords: Adaptive finite elements, directed refinement, adaptive grid
orientation, convection diffusion equation, internal and boundary layers.

Subject Classification: AMS(MOS): 35J70, 35L67, 65N30, 76D30

Contents

Introduction 1

1 Isotropie refinement 3

2 Directed refinement 5

3 Local grid orientation 11

3.1 Construction of a discrete layer 11

3.2 Multilevel grid orientation 14

4 Anisotropic refinement 20

5 Implementation 21

6 Numerical Results 26

References 38

Introduction
Finite element methods for linear elliptic boundary value problems fix an
approximate solution in some finite dimensional trial space, requiring that
the residual is orthogonal to a suitable subspace of test functions. Adaptive
methods appropriately enlarge the trial space if the obtained approximation
is deemed too inaccurate.

For simplicity, we will choose the approximate solutions to be continuous and
piecewise linear on some triangulation of the underlying polygonal domain.
Then the enlargement of the trial space is equivalent to the refinement of
some suitably selected triangles. In this way starting from some initial trian­
gulation, a certain refinement strategy produces a sequence of triangulations
which are hoped to suit better and better to the given problem.

As the refinement of single triangles determines the local structure of the
resulting triangulation, it should reflect as much as possible the expected local
behaviour of the exact solution. In this sense the well-known regular (red)
refinement introduced by Bank [5] is well matched with the local character
of isotropic or almost isotropic problems.

On the other hand many practical problems in the field of fluid dynamics,
combustion, or semi-conductor device simulation turn out to be anisotropic
as the principal elliptic part is dominated by lower order convective terms.
As a consequence internal and boundary layers are typically occurring in
the solutions. In numerical approximations accuracy implies a very small
mesh size only in a certain refinement direction orthogonal to the actual
layer. Following the layer the mesh size may be comparably large. Hence
the adaptive generation of optimal triangulations can be achieved only by
special anisotropic refinement strategies, as indicated by Hackbusch [11], p.
226. Nevertheless convection dominated problems are frequently treated with
standard isotropic refinements, leading to lots of problems both in complexity
and stability.

On this background the present paper is concerned with the further inves­
tigation of a suitable anisotropic refinement strategy that has been recently
introduced by the authors in [15]. After a short description of the usual
isotropic refinement, the so-called directed (blue) refinement is introduced
in the second chapter. This refinement may be regarded as a generalization of
the bisection of only one of the two step sizes in case of a rectangular grid. As
blue refinement should be performed only close to the numerical layer given
by the approximate solution, the numerical layer has to be located somehow
in the triangulation. A straightforward algorithm to construct a so-called
discrete layer consisting of edges of the triangulation is given in Section 3.1.

1

To make sure that blue refinement is feasibled and is carried out in the de­
sired direction, the edges constituting the discrete layer have to be adjusted
to the numerical layer which is usually not known a priori. A corresponding
adaptive grid orientation is described in Section 3.2. The desired anisotropic
refinement strategy is finally compiled in the fourth chapter. Then Chapter
5 contains some remarks on implementation and data structures. In the final
chapter we present some numerical examples demonstrating the efficiency of
the proposed method.

The authors want to express their sincere thanks to S. Wacker for her careful
typing of the manuscript and P. Deuflhard and our colleagues at the Konrad-
Zuse-Zentrum for lots of stimulating discussions.

2

1. Isotropie refinement
Let 0 be a polygonal domain in IR2. Then a triangulation T of Q, is a set of
triangles such that Q, is the union of all triangles t G T and such that the
intersection of two triangles t, t' € T either consists of a common edge or a
common vertex or is empty. The set of all continuos functions on U which are
linear on each t 6 T is called S(T). To obtain a sufficiently accurate solution
we intend to produce a sequence of triangulations T\, T2, T3, . . . by successive
refinement of a given initial triangulation T0. Thus the triangulation Tk+i on
(refinement) level k + 1 results from the application of a certain refinement
strategy to 7*. A refinement strategy consists of some manipulation of an
actual triangulation including the refinement of single triangles, together
with the detection of suitable a posteriori information which is connecting
the actual refinement to the given problem. In the sequel we will be mainly
interested in the question how to manipulate a triangulation, pointing out
what a posteriori information is used in the different steps.
Let us roughly recall a well-known refinement strategy due to Bank et al.
[4], referring to Bank [2], Leinen[16], and Deuflhard et al.[9] for recent devel­
opments.

The presented strategy inherits its isotropic character from the regular (red)
refinement which is performed by dividing a triangle t into four similar sub-
triangles, as shown in Figure 1.1. These subtriangles will be called sons of
the triangle t.

Figure 1.1 Red refinement

Note that in case of a rectangular grid the bisection of the stepsizes hx,
hy is recovered. To remedy irregular nodes an additional irregular (green)
refinement is required which is illustrated in Figure 1.2 .
Now the isotropic refinement of a triangulation 7jt on level k reads as follows.

3

Figure 1.2 Green refinement

Algorithm 1.1: Isotropic refinement

Step 1: If k > 0, undo all green refinements.

Step 2: Mark a subset of 7Jt for refinement.

Step 3: Apply the red refinement to all marked triangles.

Step 4: Continue the red refinement of such triangles t € T which possess
more than one refined neighbour.

Step 5: Apply the green refinement to all triangles with one refined neigh­
bour.

Obviously the first step guarantees a minimal angle condition. Suitable a
posteriori error estimates should be incorporated in Step 2.

As indicated in [11] this construction does not necessaryly produce a nested
sequence of triangulations. But following Bank et al. [3], a possibly different,
nested sequence % = TQ,T{, ... ,Tl_x,Tk' = 7^, being uniquely determined
by T0 and Tk, may be constructed a posteriori.

4

2. Directed refinement
In this chapter we will introduce a refinement of single triangles, giving pref­
erence to a certain direction which has to be derived in advance from a
posteriori information.

Let us first consider the most simple case of a rectangular grid. Clearly the
uniform refinement in direction of the y-axis is done by bisecting only hy.
Applied to the corresponding triangulation, this leads to the directed or blue
refinement which is illustrated in Figure 2.1. .

Figure 2.1 Blue refinement of a rectangular grid

Obviously the triangles resulting from directed refinement are no longer a
subdivision of a single triangle, but of the quadrangle formed by two triangles
with a common diagonal edge. Thus directed refinement always works on a
couple of two triangles, making the situation more complicated than in the
regular case.
A formal generalization of blue refinement to any two triangles with a com­
mon edge does not make much sense, and is not even feasible. To incorporate
a direction in the local refinement we first state the following definition.

Definition 2.1 Let a given direction g be orthogonal to the edge e of the
triangle t. If only the bisection of at least one of the two remaining edges is
intended, we say that t is marked for refinement in direction g.

Note that Definition 2.1 requires some previous selection of edges for refine­
ment. Now we are ready to extend the blue refinement to a more general
situation.

Definition 2.2 Let t,t' be triangles with a common edge called diagonal
and associated directions g = g(t) and g' = g(t'). Suppose that the following
conditions hold.

(Bl) t and t' are marked for refinement in the directions g and g'.

5

(B2) Both triangles £ and £' have a common refinement direction g — g'
which is not orthogonal to the diagonal.

(B3) If the diagonal is removed, the resulting quadrangle does not degenerate
to a triangle.

Then the directed (blue) refinement of £, £' is defined according to Figure 2.2.

Figure 2.2 Blue refinement

The triangles £1, £2 a n d t[, £2 are called sons of £ and £', respectively.

Note that (Bl) refers to a posteriori information, according to Definition 2.1.
The other conditions (B2) and (B3) make sure that the triangles £ and £'
are well matched. In particular blue refinement of £, £' is defined only if a
trapezium is formed by the union of £ and £'.

Remark 2.3 According to Definition 2.1 the condition (Bl) implies that
the direction of the edges is connected with the refinement direction. As the
latter is depending on the approximate solution, the triangulation may have
to be rearranged adaptively. We will come back to this problem in the next
chapter.

Remark 2.4 Obviously the equality of directions required in (Bl) and (B2)
will never hold in numerical practise. Hence in the numerical experiments
reported below the conditions (Bl) and (B2) are weakened in the sense that
an angle ip is regarded as zero if | sin(y?)| < 6 with 6 = 0.15.

Remark 2.5 If blue refinement is involved in the generation of a sequence
of triangulations %, %_... ,7^, k > 0, then it is not possible to reconstruct
a nested sequence of triangulations T0 = 7^', T{,..., T^_^ Ty. = Tk as in the
isotropic case.

We now turn to the investigation of the interior angles resulting from suc­
cessive blue refinement. Here we will use the notations introduced in Figure
2.3.

6

Figure 2.3 Evolution of interior angles

L e m m a 2.6 Suppose that blue refinement of t, t' in vertical direction g is
possible according to (Bl), (B2), (B3) and that the supplementary condition
(B4) is fulfilled.

(B4) The angles in t, t' satisfy the relations ß > min(a, 7) and ß' > min(a', 7').

Then the estimate

max(a,-, # , 7,-) + min(#, 7,) < max(a, ß, 7) + min(/3,7) (2.1)

holds for i = 1,2.

Proof: Obviously we have

ßi = ß, a,- + 7,- = a + 7 , «' = 1,2 (2.2)

Now with the help of (2.2), the assertion is checked for each relation of the
sizes of a, ß, 7 that is allowed by (B4).

For example consider the case a < ß < 7. Then

max(a,/?,7) + rnin(/?,7) = o:t- + ft + 7 , - - a , * = 1,2. (2.3)

Let 7,- = max(a,-,)8i,7,-). Then /?,• = min(^j,7,), and the assertion follows
from a,- > a. The remaining cases are treated in a similar way. •

As a direct consequence of Lemma 2.6 we obtain the following maximal
angle condition. Here successive refinement of a triangle t is understood as
subsequent refinement of t and its actual descendants.

7

Propos i t ion 2.7 Let t^°\t^\t^\... denote a sequence of triangles re­
sulting from successive blue refinement of t = t^ in the same direction g
according to the conditions (Bl), . . . , (B4). Then

max(a (i) , /3 (i) , 7(j)) < max(a, ß, 7) + min(/3, 7) , j = 0 , 1 , . . . (2.4)

holds, with a.Ü\ ß ^ \ ^ denoting the interior angles of t^\ j = 0,1, —

Proof: The proof is obvious from (2.1). •

R e m a r k 2.8 The estimate (2.4) is sharp, if a = max(a, ß, 7), but may be
much too pessimistic if a < max(a,/?,7). In the latter case it can be shown
by elementary considerations that

ai + minOÖ,- ,^)^!* , »' = 1,2, (2.5)

with the denotations taken from Figure 2.3. Now it is straightforward to
prove the following extension of the estimate (2.4). Under the assumptions
of Proposition 2.7 we have

max(a (j) , ß(j\ 7(i)) < max{max(a, ß, 7) + min(a, ß, 7), |TT} , (2.6)

for j = 0 , 1 ,

We have seen that interior angles remain bounded away from T under suc­
cessive blue refinement. On the other hand blue refinement may lead to
arbitrary stretched triangles so that the green closure may produce arbitrary
obtuse angles as illustrated in Figure 2.4.

Figure 2.4 Green refinement in case of acute angles

For this reason green refinement of a triangle t is allowed only if the following
condition is satisfied.

(G) t is resulting from an initial triangle by not more than q blue refine­
ments.

Here the parameter q is indicating the degeneracy to be expected. We have
chosen q = 1 for our numerical examples.

8

Remark 2.9 As a consequence of condition (G) all triangles with only one
refined edge and more than q blue predecessors are refined in the regular way.
Note that this strategy may bring about avalanches of forced red refinement
on higher levels. Indeed every red refinement caused by (G) may lead again
to the forced refinement of neighbouring triangles. This problem does not
occur, if irregular nodes are introduced which is common practice in the case
of quadrilateral elements.

Let us complete this chapter by some remarks on stretched finite elements
as created by successive blue refinements. As we have seen above, interior
angles remain bounded away from -K by a constant depending on the initial
triangulation. Hence a maximum angle condition is always fulfilled. But
still the resulting angles may become arbitrary small, violating the minimum
angle condition that is usually required in finite elements.
Now it is well-known that the order of the interpolation error is not affected
by small angles (see [20], [13] or [1]). Only a maximum angle condition is
required.

On the other hand almost degenerate elements are commonly suspected to
increase the condition number of the corresponding stiffness matrix (see
for instance [21] p. 17). We will give a simple example, showing that the
condition number might even be improved, if the triangles are degenerating
in an appropriate way.

Let us first consider the discretization of the Laplacian

uxx + uyy = 1 on ft - [0,1] x [0,1], (0 „,
u | r = 0 onT = dft K >

by linear finite elements on a uniform rectangular grid, generating the stan­
dard five-point difference scheme. Now both the condition number, behaving
like 0(\/h2

x + l/h2
y), and the Z2-error of order ö{hx + h2

y) are minimized for
equal stepsizes hx = hy, or equivalently for nice triangulations.
Now the same argument leads to very different results in the case of anisotropic
problems which are of special interest here. Replacing problem (2.7) by

euxx + uyy = l on ft = [0,1] x [0,1], (l? o\
u | r = 0 o n r = dft { >

with 0 < e < 1 we obtain a condition number of order ü(e/hx + \/h2
y) and

an £2-error bound of C(e)(h2
x/e + h2

y) by simple transformation of variables.
Hence in this case the choice of hx = y/ehy turns out to be optimal, resulting
in degenerating elements for e —* 0.

A straightforward extensionof the above reasoning covers complicated situa­
tions. Assuming as in (Bl) that the triangulation is locally oriented to the

9

actual layer, we obtain that the size of neighbouring angles should be of order
of the width of the layer.

Finally these heuristic arguments are strengthened by numerical experiments
showing that the anisotropic refinement strategy involving blue refinements
ends up in much better conditioned systems than the usual isotropic tech­
nique.

10

3. Local grid orientation
Blue refinements, as introduced in the preceding chapter, are intended to ren­
der a both efficient and highly accurate resolution of an interior or boundary
layer. Hence blue refinements should be applied only in the neighbourhood
of this layer, while the usual red refinements are appropriate in the remain­
ing parts of the domain. For this reason a suitable neighbourhood of the
layer has to be detected from the actual approximate solution. In addition
blue refinement is allowed by (Bl) only if the actual triangulation is locally
oriented in the direction of the layer.

To meet these difficulties, actual blue refinements have to be prepared by the
following two steps. First the numerical layer is approximated by a polygonal
consisting of edges of the actual triangulation which is called discrete layer.
In the next step the discrete layer is further adjusted by a multilevel grid
orientation. Finally all triangles neighbouring the oriented discrete layer are
candidates for blue refinement. A detailed description of the whole procedure
is given in the following two sections.

3.1 Construction of a discrete layer

Let u : Q, —• IR be some real valued function on Cl. Then a curve 7 C f l
with the property that || gradu|| is descending much quicker in both normal
directions than in tangential direction of 7 is called layer of u. In the sequel
we assume that u is the exact solution of our given problem with a single
layer 7 C fi which allows for a bijective parametrization. Hence bifurcations
and loops are excluded so that no interaction of layers is considered.
Assume that a hierarchy of triangulations T0, ...Tk, k > 1 has been con­
structed and that an approximate solution Uk has been computed on Tk. We
prepare the construction of the discrete layer by some notations.
Let Ek and Vk denote the sets of edges and vertices of triangles in 7*. We
will write t = [e0, ei,e2] or e = [po,Pi], representing a triangle t G 7jt by its
edges e0 ,ei ,e2 G £k or an edge e G £jt by its ends po,p\ G Vk, respectively.
This notation does not express a certain orientation. If a node p G Vk is
resulting from the bisection of an edge E G £k-i, we write p = m(E), calling
p the midpoint of E.

The sets Tk, £&, Vk can be decomposed in the disjunct subsets Tk\ Zk, V3
k,

j = 0 , . . . , k, where

Tk = Tk n% ,_ ,
T{ = {teTknTjAt^T^} j = l,...,k {->

and £jj, V3
k, j = 0 , . . . , fc, are defined analogously. Following Bank et al.[3]

11

the elements of 7^, E\. and V{ are called level j triangles, edges and vertices,
respectively.

A triangle t is said to have (refinement) depth j , if it is resulting from j
successive refinements of an initial triangle T G %. The subset of all triangles
t G Tk with maximal depth is called 7̂ ,fc- Finally Vk,k and £k,k denote the
subsets of all vertices and edges of triangles t G Tk,k, respectively.

Now we are ready to give a precise definition of a discrete layer.

Definition 3.1 A polygonal approximation 7^ of a layer 7 consisting of
edges e,- = [p,-_i,p,-] G ££ := £\ f)£k,k,i = l , . . . , n , with vertices pi G Vy. : =
V\ Pi Vk,k,i = 0 , . . . , n , is called discrete layer. We write 7^ = (e,-)f=1 or
7fc = (Pt)lU> equivalently.

Note that the approximation of 7 is performed only in the region of maximal
depth.

Remark 3.2 Each p G V\ originates from the subdivision of an edge E G

£k-i- We define the subset £^1\ C £k-\ by

£i*}i = {Ee£k-i\m(E)£P;}. (3.2)

Then we may equivalently represent the discrete layer 7^ = (pi)iLQ by 7* =
(-E,)"=o with E{ G ^ _ ! and p, = m{Ei), i = 0 , . . . , n. This representation is
illustrated in Figure 3.1 and will be frequently used in the sequel.

Figure 3.1 Discrete layer

A straightforward way to establish a discrete layer 7^ consists of the following
two steps.

• Determine a setup point p(°) G P£ as close as possible to the numerical
layer detected from the approximate solution Uk-

12

• Starting from p(°\ follow the numerical layer in its two directions to fix
the remaining vertices p(±l\ i = 1 , . . . , m±.

Finally we may rename the vertices p(*\ i = —m~,. . . , m + , to obtain *)k =
(Pi)?=o- Let us now study how to perform each of these steps.
As the detection of a posteriori information is not our primary interest here,
we simply characterize the discrete layer by the occurrence of steep gradients.
The main idea is to represent 7^ as a sequence of edges Ei €• £*_i, i = 0 , . . . , n
which are intersecting the numerical layer. Hence fi(Ei), i = 0 , . . . ,n, with y.
defined by

M £) = | g ' (, ^ : y . B = [f t , f t] € f & (3.3)

should be large. This is leading to the following algorithm to construct
7* = (Et)**.

Algorithm 3.3: Construction of %

Step 1: Determine a setup edge E^ € Sk-\ with the property

li(EW) = max ß(E) , (3.4)

together with a setup triangle T^ G Tk-\ neighbouring E^°\

Step 2: If T(°) = [E^\E^E2\ is blue refined, then E^ and T ^ are deter­
mined according to Fig 3.2. Else select E^\ such that

y(E^) = m&x{li(E1),(i(E2)} (3.5)

holds. Then T(1) is the triangle neighbouring r<°> and £W.

Figure 3.2 Construction of 7^

Step 3: Repeat Step 2 inductively with the index 0 replaced by i = 1,2, . . . ,
until r (, + 1) is not refined or the boundary of Cl is reached. In this
case, set m+ = i and continue with the next step.

13

Step 4: Denote the triangle neighbouring T^ and E^ by T (_ 1) . Then re­
peat the process described in Step 2 and Step 3 with T^0' replaced
by T(-1) to construct the sequence E^\ i = — 1 , . . . , m~.

We say that a triangle t is neighbouring another, if both have a common edge
and t is neighbouring an edge e, if t = [e, el5 e2].

3.2 Multilevel grid orientation

Suppose that a discrete layer 7^ = (pf-)£=o ^ ^ t c a n be constructed in some
suitable way. Recall that 7* may equivalently be written as jk — (-£•»)£=() ^
£k-i o r Ik — (e»')"=i C ££. In the sequel, we assume that 7^ has no loops or
equivalently that p,- 7̂ pj for i ^ j and z, j = 0 , . . . , n. Further suppose that
a refinement direction g(t) is given for every t £ TkM- It follows from the
definition of the layer 7, that the level curves of u are a good approximation
of g±. Hence the choice

g(t) = gr<LdUk\t,teTKk, (3.6)

will be used in the sequel.

As 7fc = (e,)"=1 is constructed to approximate the layer 7, it is natural to
start the search for pairs of triangles for possible blue refinement with the
triangles £,- and f, neighbouring the edges e,-, i = 1 , . . . ,n. Now recall that
according to Definition 1.2 and (Bl) the condition

(e,-,<7(t)) = 0, t = ti,t
i (3.7)

is necessary for the blue refinement of £,• or V with (•,•) denoting the usual
scalar product in IR2. For this reason, either the layer 7 must be known a
priori, so that a corresponding choice of the initial triangulation % is possible,
or the directions of et-, i = 1 , . . . , n have to be adjusted to g(t), t = £,-, V in
advance of an actual refinement step. For example, in case of a uniform,
vertical refinement direction the part of a triangulation shown in Figure 3.1
should be transformed in the oriented triangulation illustrated in Figure 3.3.

This gives rise to a multilevel grid orientation that will be described in the
sequel.

Let us start with the two level orientation of a triangulation Tk. Assume that
an approximate solution Uk has been computed on 7* with k > 0. Then an
oriented triangulation T£ is obtained as follows.

14

Po '
C l \ . e2 _ V ^ 3 >y 64 "' ' >. N .

K Pl * . \ Pl

" ' " • \

Figure 3.3 Adjusted discrete layer

Algorithm 3.4: Two level grid orientation

Step 1: Construct a discrete layer 7* = (p,-)I=o C Vk which is equivalently

written as 7* = (£?,-)?=0 C 4 - i o r 7fc = (e.)"=i C ££.

Step 2: Determine a sequence of directions G;, i = l , . . . , n , by suitable
restriction of the refinement directions g(t),t £ Tk,k to the edges et-,
i = 1 , . . . ,n .

Step 3: If possible, determine a sequence of vertices p*, i = 0 , . . . , n, with the
following properties

P*eEi, t = 0 , . . . , n (3.8)

(e*,G0 = 0, e; = [ri_ l fpj], » = !.••• >»» (3.9)

and

Elb*-P,ir = min, (3.10)
i = 0

where the minimum in (3.10) is taken over all sequences of vertices
satisfying (3.8) and (3.9). Then Tk* is obtained by moving the ver­
tices pi to p*, i = 0 , . . . , n.
Else the two grid orientation failed and Tk is left unchanged.

Step 4: Compute U*k € S{T£) by interpolation of Uk € S(Tk).

Remark 3.5 Clearly condition (3.7) results from (3.9) only if (7; = g(t),
t = ti, V. Even if exact equality is weakened for numerical purposes, it follows
that blue refinement will be performed only if the direction of the numerical
layer varies very little in the neighbourhood of 7*..

Let us consider each step of Algorithm 3.4 in some detail.

15

The construction of a discrete layer has been discussed in the preceding

section.

Let us discuss the choice of a suitable restriction of the refinement direction g.
As g is constant on each triangle t £ Tk a simple restriction of order 0 is well
suited in this case (see for example Wesseling [23]). Note tha t each e,- € ~fk is
intersecting either a red refined triangle T,- € 7jt_i or a quadrangle Qi = T;UT/
of a pair of blue refined triangles T{, T- € Tk-i. Let t?, j — 1 , . . . , 4, denote
the sons of T:- or Tt-, T(, respectively. Then G,- is defined by

Gt = Gi(P) = £ ^ 9 (t i) , P = Tu Qu (3.11)

with a(P) denoting the area of the triangle or quadrangle P.

Let us turn to the investigation of Step 3. To allow the variation of the actual
vertices in the direction of J5,-, we define

Pi(si) = m{Ei) + jEu 5,-€lR, t = 0 , . . . , n (3.12)

and

ei(a,-_i,a,-) = [pi-i(s,--i),Pi(sO] , « = l , . . . , n . (3.13)

Note tha t p,- = pi(0) and et- = e,(0,0) are recovered for s,- = 0. Obviously the
points pi, i = 0 , . . . , n , satisfy (3.8) if and only if

\si\ < 1 , t = 0 , . . . , n (3.14)

holds. On the other hand, simple calculation shows tha t the condition (3.9)
applied to e,- reduces to the linear system

a,st- — bi-iSi-i = c,-, i = 1 , . . . , n (3.15)

for the unknowns 5,- with coefficients at-, &,-_x given by

at = i(E t-, G,-) , 6i_i = i(Ei-uGi) , ^ = - (c , - ,GO , t = 1 , . . . ,n. (3.16)

Finally (3.10) can be writ ten as

n

^ 5 ? = min . (3.17)
t=0

For the moment, let us neglect the restriction (3.14) and consider the unre­
stricted problem which consists only of the system (3.15) together with the
additional condition (3.17).

16

Proposition 3.6 Assume that the condition

a , / 0 , * = l , . . . , n (3.18)

holds. Then the unique solution of the unrestricted problem is given by

si = s\0) + Asf} , i = 0,...,n (3.19)

where

^=(t/,^)/(tl.sP)2) (3.20)

and s\ , s\ , i = 0 , . . . , n, given recursively by

4°) = 0, s\0) = - (i . - ^ ä + c,), i = 1 , . . . , n (3.21)

4 1 } = 1, ^ = - f c . - i s ä , i = l , . . . , n . (3.22)
a,-

Proof: Obviously a(°) = (4 ° \ • • •, 40)) and s ^ = (s ^ , • • •, stf) defined by
(3.21) and (3.22) are particular and homogeneous solutions of (3.15), respec­
tively. As a consequence of (3.18) the solution space of (3.15) has dimension
one, yielding the representation (3.19). Finally (3.20) follows easily from
(3.17).

Remark 3.7 Let a,j — (Ej,Gj) = 0 for some fixed j = 1 , . . . ,n violating
the condition (3.18). Then the edge Ej which has been constructed to inter­
sect the numerical layer, turns out to be parallel to it. Hence the violation of
(3.18) indicates that the discrete layer jk has not been constructed correctly.

As the solution s*,i = 0 , . . . ,n of the unrestricted problem is uniquely de­
termined, the restricted problem admits no solution, if \s*\ > 1 for some
i = 1 , . . . , n, with s* = (s j , . . . , s*) computed from (3.19).

Moreover, the case 5,- = 1 has to be prohibited replacing (3.14) by the stronger
condition

max Is,-1 < v < 1 , (3.23)
t=0,...,7l ' * ' — V '

with the parameter v > 0 limiting the degeneration of triangles with vertex
p,-,i = 0 , . . . ,n. On the other hand, too small corrections are not worth to
be carried out and might even deteriorate the results, so that

max ||s,-£,-|| > fx > 0 (3.24)
«=0,...,n

is additionally required. In our numerical experiments we have used v = 0.8
and /i = 0.001.

17

Let us summarize in detail how to perform Step 3 of Algorithm 3.3 .

The two grid orientation failed, if one of the conditions (3.18) or (3.23) is
violated. Else the new vertices p*, i = 0 , . . . , n are given by

„ . _ / * (* :) if (3-24) holds
Pi ~ \ Pi else * ~ U'

where the displacements s*, i = 0 , . . . , n, are computed according to (3.19).

The final Step 4 in Algorithm 3.4 is easily performed by onedimensional
interpolation on the edges Ei,i = 1 , . . . , n.

Let us now come back to the crucial condition (3.23).

Obviously the violation of (3.23) indicates that the preceding triangulation
7fc_i is not sufficiently adapted to the approximate solution Uk- Hence the
orientation of Tk has to be be prepared by the orientation of Tk-\- In this way
we may descend to some coarsest level r^ > 1. Choosing r* = 1 in the first
orientation step the condition (3.23) is satisfied, if the initial triangulation
% only roughly reflects the behaviour of Uk. In most practical applications
the choice of % may be additionally supported by physical considerations.

This multilevel approach requires the restriction of the refinement direction
g(t),t € Tk to lower levels and an interpolation of the approximate solution
Uk- Clearly the restriction of g to levels j < k can be performed by successive
application of Step 2 of Algorithm 3.3. Let us briefly discuss the interpolation
of Uk to Tk*. Here the deformation of triangles T G Tj resulting from the
orientation on some level j < k is inherited by the sons of these triangles
which belong to the triangulations 7} + i , . . . , Tk- Hence the orientation of Tj
will produce a whole sequence of new triangulations 7^*, Tj'+11..., Tk. As the
displaced nodes Vk\(Vk l~l Vk) cannot be located as easily as in the two level
case, the interpolation of Uk from Tk to Tk and finally to Tk becomes more
complicated.

The following multilevel grid orientation provides the oriented triangulation
Tk together with the oriented discrete layer ~jk = (e*)"_0 on level k.

Algorithm 3.8: Multilevel grid orientation

Step 1: In the first multilevel orientation step choose rk = 1. In future steps
rk is equal to the coarsest level on which the triangulation has been
modified in the preceding multilevel orientation.

Step 2: Initialize j := rk, Uk := Uk and %:=% for i = rk,... ,k.

Step 3: Compute the refinement directions g(t) = g r a d ^ | t , i € Tk, and
restrict them to the coarse triangles T € Tj.

18

Step 4: Perform a two level orientation of 7} according to Algorithm 3.3 ,
changing the triangulations 7}, 7J-+1 , . . . , % into TJ, TJ+1,..., Tk.

Step 5: Compute U'k G S{Tk) by interpolation of \Jk £ S{Tk).

Step 6: If j = k set Tk* := tfc', t/J := Ü'k and stop. Else set j := j + 1, % :=
7j ' ,i = j , . . .,k, Uk '•= U'k and continue with Step 3.

In case the two level orientation fails and r* > 1, we may restart with Step
2 and r* := r^ — 1. If Step 4 fails with Tk = 1, the algorithm should notify
the user to choose 7^ more appropriately and stop.

Remark 3.9 In most of all practical applications, the direction of the layer
is recognized on comparatively low levels, while much finer triangulations are
needed to obtain sufficient accuracy of the approximate solutions. Hence the
number k — rk of levels touched by the multilevel orientation, decreases with
increasing k. On higher levels no orientation is performed any more in view
of (3.24) .

19

4. Anisotropie refinement
We are now ready to compile an anisotropic refinement algorithm which is
especially designed for the efficient resolution of internal or boundary layers.
Starting with some given initial triangulation To we perform ko > 0 uniform
red refinements in advance of the first anisotropic refinement step. Note that
To is not affected by the following orientation and hence should be chosen very
coarse. In view of Definition 3.1, kQ must be greater than zero. Assuming
that a hierarchy of triangulations T0,...,Tk,k > k0, has been constructed
and that an approximate solution Uk has been computed on T^, anisotropic
refinement is performed as follows.

Algorithm 4.1: Anisotropic refinement

Step 1: Compute an oriented triangulation Tk* together with an oriented
discrete layer 7^ = (e*)"=1, according to Algorithm 3.8.

Step 2: Skip all green refinements.

Step 3: Mark a subset of edges S* C £k for refinement.

Step 4: Search for pairs for possible blue refinement. Start with the trian­
gles neighbouring e*, i = 1, . . . n, and continue in actual refinement
direction.

Step 5: Mark the remaining triangles t € Tk neighbouring an edge e € £f
for refinement.

Step 6: Apply the red refinement to all marked triangles.

Step 7: Continue the red refinement of all triangles t € Tk which either
have more than one refined neighbour, or which have exactly one
neighbour but are not allowed for green refinement according to (G).

Step 8: Apply the green refinement to all triangles with one refined neigh­
bour.

If no layer is present, Step 1 and Step 4 are skipped to reduce the algorithm
to the isotropic refinement presented in the first chapter.

20

5. Implementation
The adaptive finite element code Kaskade described in [19] is used as a basis
for an implementation of the anisotropic refinement strategy. For this pur­
pose the underlying data structures developed by Leinen [16] were extended
in an appropriate way.

Basic types . The objects of a triangulation, i.e. points, edges and tri­
angles are stored as compact data (records, structures - the nomenclature
depends on the programming language). These objects are identified as a
whole through one identifier (pointer, address, index) which allows the ref­
erence to the elements of the objects.
The data types of the basic objects are collected in Tables 5.1, 5.2 and 5.3.

x>y
boundP

x,y-coordinate
boundary type descriptor

next
l a s t
l eve l

identifier of the next point
identifier of the previous edge
number of refinement level

indexP
vector

number of point
associated array of real numbers

Table 5.1 Data type for the point object

p l ,p2
[pm]
t l , t 2
boundP

identifier of end points
identifier of midpoints
identifier of neighbour triangles
boundary type descriptor

next
l a s t
f a the r
f i r s tSon
l eve l
type

identifier of the next edge
identifier of the previous edge
identifier of the father edge
identifier of the first son edge
refinement level
refinement type descriptor

vector associated array of real numbers

Table 5.2 Data type for the edge object

21

e l , e 2 , e 3
[pl ,p2,p3]

identifier of the edges
identifier of the points

next
l a s t
father
son
l e v e l
type

identifier of the next triangle
identifier of the previous triangle
identifier of the father triangle
identifier of the first son triangle
refinement level
refinement type descriptor

vector associated array of real numbers

Table 5.3 Data type for the triangle object

The first group of elements is necessary to define the object, the second con­
tains structural information (and should be hidden to the user), the third
is the storage for the actual computation. Redundant elements are marked
by brackets, they are included for efficiency reasons or programming conve­
nience.

The elements of a data type are accessed by "functions" which might be
(depending on the implementation) directly accessed as defined in some pro­
gramming languages or indirectly by macros or functions.

Triangulations. The data types for points, edges and triangles are com­
bined in the triangulation data structure which is used by the following
groups of functions

• application of user functions on sets of points, edges or triangles (see
Table 5.4);

• procedures to refine the current triangulation adaptively and

• procedures to create and delete complete triangulations.

The actual algorithms used to implement these functions are hidden to the
user. In our implementation we use double linked lists and (for edges and
triangles) trees as indicated by the structural information in Tables 5.1, 5.2
and 5.3.

Invariants. The actual refinement process is done in a systematic way.
Therefore a set of additional rules for the data types or their relationship
hold:

22

ApplyP apply a function on all points selected
a l l
i n i t i a l

d i r i c h l e t

l i s t

select all points
select all points of the initial
triangulation
select all points on the boundary
with Dirichlet boundary condition
select all points in list l i s t

ApplyE
ApplyT
ApplyLevel

apply a function on all edges selected
apply a function on all triangles selected
apply a function on all points, edges or triangles
of a given refinement level

Table 5.4 Some functions to access the triangulation data structure

• The fields p i , p2, t l , t 2 of an edge and p i , p2, p3, e l , e2, e3 of a
triangle are never changed.

• Edges are refined in a natural way, the direction is maintained. This
means that

ed->firstSon->pl = ed->pl
ed->firstSon->p2 = ed->pm

holds for a refined edge ed.

• The sequence of points p i , p2, p3 and edges e l , e2, e3 of a triangle
are mathematical positive oriented, p i lies opposite e l and so on.

• The fourth son of a red triangle triangle is the middle triangle. The
first son is near pi and so on.

• Rules exist for blue refinement allowing the straight forward access to
the inner or the opposite edge.

To clarify this approach we give some examples of the usage of the triangu­
lation data structure.

Example 5.1 This example shows the red refinement of selected triangles
occurring in Steps 2, 3 of Algorithm 1.1 and Steps 5, 6 of Algorithm 4.1,
respectively. A triangle is refined (in the "red" fashion), if it carries a quantity
(s) greater than a certain threshold (theta , a global variable) in one of its
edges . These numbers may be computed by an error estimator or some
related procedure.

23

global real theta;

integer function RefLocal(e)

edge identifier e;

if(RA(e,s)>theta)

RefRed(e->tl);RefRed(e->t2);

endif;

return takeNext;

endfunction;

procedure Ref Adapt ivelyO
OpenForRefinement();

ApplyE(RefLocal,all);

CloseRefinement();

endprocedure;

The procedure Ref Red marks a triangle to be refined. The actual refinement
is invoked by calling CloseRef inement. The macro RA is used to access the
associated array. The constant takeNext signals ApplyT to take the next
triangle of the triangulation.

Example 5.2 This example demonstrates the recursive approach to find
the triangle which contains a given point p. It may be used in Step 5 of
Algorithm 2.8 . First we search the triangle T G % which is including p.
Then the sons of T are tested recursively. Again we have to consider the
whole quadrangle tö t' in case of blue refinement of some triangle t. Note
that ApplyT stops the process if TestTriangle returns stopApply.

global point identifier lookForP;
global triangle identifier includesP;

integer function TestTriangle(t)

triangle identifier t;

if (Includes(lookForP, t))

if (firstSon(t)=nil)

includesP=t;

return stopApply;

endif;

if (TestTriangle(SONl(t))=stopApply)

return stopApply; endif;

if (TestTriangle(S0N2(t))=stopApply)

return stopApply; endif;

24

if (type(t)=blue)

if (TestTriangle(BLUENEIGHBOR(t))=stopApply)
return stopApply; endif;

endif;

if (type(t)=green)

return takeNext; endif;

if (TestTriangle(S0N3(t))=stopApply)

return stopApply; endif;

if (TestTriangle(S0N4(t))=stopApply)

return stopApply; endif;

endif;

return takeNext;

endfunction;

triangle identifier function FindTriangle(p)

point identifier p;

lookForP := p;

includesP := nil;

ApplyT (TestTriangle, initial);

return includesP;

endfunction;

The function Includes checks, if p lays within the boundary of the triangle
t . The macros f i r s tSon and type denote access to the corresponding fields
of the data type for triangles, blue and green are constants for t y p e (t)
which is set if t was refined in the blue or green fashion. SONl to S0N4 are
macros to access the identifiers of the sons of a triangle. BLUENEIGHBOR(t)
gives the triangle t' to cover the complete quadrangle.

25

6. Numerical Results
In this chapter the anisotropic refinement strategy developed above is applied
to the resolution of internal and boundary layers generated by the simple
convection diffusion equation

-eAu + ß-gi&du = f onft = (0 , l) x (0 , l) ,

du (6-1)

u\r0 = uQ , — |ri = o onöfi = r 0 ur 1 , r o n r 1 = 0
f) Fi

with ß • gradu = ßx-K~u + ßy-K~u-

We will shortly sketch an appropriate finite element discretization of (6.1).
Let T be a triangulation of Q,. Then the standard Galerkin method for the
approximate solution of (6.1) reads as follows.
Find U G S(T) with the property U\r0 — u0 so that

e(grad U, grad v) + (ß • grad U, v) = (/, v) (6.2)

holds for all v G S(T) satisfying u|r0 = 0.

For details we refer to Ciarlet [7], Johnson [14] or any other book on finite
elements.

If 0 < e < 1 and \\ß\\ = (ßl + ß^)1/2 « 1, the convection term ß • gradu
dominates the Laplacian so that internal or boundary layers may occur in
the solution u of (6.1). Now it is well-known that the standard Galerkin
method (6.2) produces non-physical oscillations where the solution u is non-
smooth as long as T is not excessively fine. In view of the physical domain
of dependence of the nodal points, stabilizing artificial diffusion should act
only in the flux direction ß. This reasoning leads to the following streamline
diffusion method introduced by Hughes et al. in [12].
Find U G S(T) with the property U\rQ = «o so that

e(grad U, grad v) + (ß • grad U,v + Sß • grad v) = (f,v + 6ß • grad v) (6.3)

holds for all v £ S(T) satisfying v\r0 — 0.

Here 8 : fl —* IR is a positive, piecewise constant function, modeling the local
step-size in flux direction. The definition

S(t) = diameter of t in direction ß , t £ T (6.4)

will be used in the sequel.

It has been shown by Johnson et al. that the streamline diffusion method
combines good stability properties with almost optimal accuracy. Neverthe­
less the resulting scheme is not monotone so that oscillations may still occur.

26

This may be remedied by an additional shock capturing term described in
[18] which on the other hand tends to smear out sharp fronts or jumps.
For details we refer to the monograph of Johnson [14] and the bibUography
therein. As it turns out that stability may be also achieved by adaptively
oriented grids, the streamline diffusion method (6.2) without shock capturing
will be used in the following numerical examples

The application of a finite element method to the problem (6.1) requires
the solution of a nonsymmetric linear system. For this purpose, we use the
symmetric Gauß-Seidel iteration with relaxation parameter u = 0.6. The
iteration is stopped, if the residual is less than 10 - 5 .

Finally the anisotropic refinement of some triangulation 7jt requires the se­
lection of a subset £* C £k of edges to be subdivided. In order to fix a simple
test environment, these edges are determined simply by the gradient of the
corresponding approximate solution [/*. To be precise, let

/ N I Uk(Pl) ~ Ukjfr) 1 , v r. (R .
s{e) = JJ , e = {p1,p2) etk (6.5)

and

5=E^)i^r1 (6-6)

with |£fc| denoting the number of elements of £*. Then an edge e G £\. is
marked for refinement, if

5(e) > 6 := (S (6.7)

with some constant £ > 0. We will use £ = 1.5 in the sequel.

Example 6.1: Bounda ry layers. In many problems of practical interest
the appearance of boundary layers is known in advance. In this case the
direction of a layer 7 is given a priori by the geometry of f2 and we may
choose an initial triangulation % so that blue refinement can be applied
directly without a preceding orientation of the actual triangulation.

As a simple example we chose problem (6.1) with e = 10 - s , ß = (0,1),
/ = 1 and homogeneous Dirichlet boundary conditions. It is easily seen
that the exact solution exhibits an ordinary boundary layer at the outflow
boundary r o u t = {(x,y) € dCl\y = 1} and the birth of a parabolic layer at
the characteristic boundary Tch^ = {(x,y) € dCl\0 < y < 1}.
We start with the initial triangulation T0 illustrated in Figure 6.1 .

The first approximation U2 is computed on the triangulation T2 resulting
from k0 = 2 uniform red refinements of %. Figure 6.2 shows T2 together
with the level curves of Uj.

To prepare blue refinement a discrete layer 72 is constructed according to
Algorithm 2.3. The resulting polygonal is marked by a dotted line in Fig-

27

Figure 6.1 Initial Triangulation %

Figure 6.2 T~i with level curves of Ui

ure 6.2 and only partly coincides with the expected result. Though better
performance is obtained on higher levels, this example confirms that a more
reliable way of detecting discrete layers should be developed.
Now blue refinement takes place in the neighbourhood of 72 based on the con­
ditions (Bl) - (B4) stated in the second chapter. The resulting triangulation
T3 together with the level curves of U3 is shown in Figure 6.3.

Watch the forgotten triangle at the outflow boundary which is lacking a

28

Figure 6.3 T3 with level curves of U3

blue partner and hence remains for red refinement. Again the dotted line
represents the discrete layer 73 which is now in better accordance with our
expectations.

Figure 6.4 74 with level curves of U4

The situation after one further anisotropic refinement step is illustrated in
Figure 6.4. Due to the angle condition (B4) successive blue refinement is
performed in a natural way. Note that the red refined triangle indicated
above will reproduce similar situations on higher levels. This effect, which

29

may be weakened by a more sophisticated initial triangulation, somewhat
disturbs the beauty of the resulting triangulations but is of minor importance
from the computational point of view.

We continued our calculations up to level 7. Figure 6.5 shows the final
triangulation % together with a zoom of the situation close to the left upper
edge including the level curves of U7.

Figure 6.5 Triangulation % (347 nodes) and zoom.

Figure 6.6 Triangulation T7 (1178 nodes) and zoom.

For comparison we repeated the calculations, this time using simple isotropic

30

refinement according to Algorithm l . i . The corresponding results are shown
in Figure 6.6.

The resulting triangulation % involves more than 3 times the number of
nodes of % which allows even for a sharper resolution of the layer.

Example 6.2: Linear interior layer. Using our model problem (6.1) we
produce a parabolic internal layer 7 by transporting a discontinuity in the
inflow condition across the computational domain Cl. In this example we
keep the flux direction ß = const to obtain a linear layer.

For actual computation we choose e — 10 - 5 , ß = (1.0, 0.5), / = 0, and

, s f 0 y > 0.3 , , _
«<>(*,!/) = j ! y < 0 . 3 ' (*'y) € r °

with r 0 = r i n = {{x,y) e dn\ma,x(x,y) < 1} and I*! = Tout = dü\T-m.
It is easily seen that then the exact solution shows a linear internal layer
proceeding from the discontinuity (0.0,0.3) G T^ in the flux direction ß to
(1.0,0.8) € Tout.

The initial triangulation % is chosen as coarse as possible and displayed in
Figure 6.7.

Figure 6.7 Initial triangulation %.

To illustrate the orientation process we start our calculation on the triangu­
lation 71, resulting from ko = 1 uniform refinement of %. Figure 6.8 shows
on the left the triangulation 7i together with the level curves of the approx­
imation U\. The discrete layer 71 detected by Algorithm 3.3 is marked by

31

a dotted line. On the right hand side we display the oriented triangulation
7̂ * with the discrete layer 7J adjusted perpendicular to the local refinement
direction.

Figure 6.8 7i with level curves of U\ and oriented triangulation T{.

The corresponding situation after another uniform refinement step is shown
in Figure 6.9. Of course we also might have started with two uniform refine­
ments of TQ with very similar results.

Figure 6.9 T2 with level curves of U2 and oriented triangulation T£.

Now Figures 6.10 and 6.11 show the successive blue refinement close to the
internal layer on the following levels 3 and 4. As a consequence of (3.24) no
further orientation is performed on level 4.

32

Figure 6.10 T3 with level curves of U3 and oriented triangulation T£.

Figure 6.11 % with level curves of U4.

Again anisotropic refinement is continued up to level 7. The final triangula­
tion T7 together with the level curves of [/7 is shown in Figure 6.12.

The corresponding results based on simple isotropic refinement are illustrated
in Figure 6.13.

Obviously the resolution of the layer is much worse though almost ten times
more grid points are involved in the calculation. Furthermore a consider­
able stabilizing effect of the oriented triangulation is observed. Indeed by

33

Figure 6.12 % (118 nodes) and level curves of U7.

Figure 6.13 % (1462 nodes) and level curves of U%.

the use of oriented grids the different phases of the solution are separated
properly so that the physical domain of dependence is modeled correctly by
the discretization. Following Courant, Friedrichs, and Lewy [8] this yields
good stability of the method. In this simple case the resulting scheme may
also be viewed as a local characteristic method which is well suited for the
approximation of the dominant convection term.

34

Example 6.3: Curved interior layer. Let us change the flux direction
to ß = (y, —x) and the boundary conditions to

, x f 0 y > 0.7 , x „
u0(x,y) = i 1 * < 0 J , (x , y) € r 0 ,

with To = Tin = {(x,y) € dft|a; = 0 or y = 1} and I \ = r o u t = <9ft\rin. The
other parameters are kept from the previous Example 6.2.

Again we use the initial triangulation T0 displayed in Figure 6.7
The first approximation U3 is computed on the triangulation T3 resulting from
&o = 3 uniform refinements of T0. Now Figure 6.14 shows the orientation of
Tz emphasizing the multilevel structure of the algorithm. The dotted line in
the right picture is showing the oriented discrete layer 73 on the actual level.
The further orientation on level 4 is illustrated in Figure 6.15 .

The final triangulation TT together with £/7 is shown in Figure 6.16 . As the
local flux direction is not modeled exactly by the linear edges, the results
are less optimal than in the preceding example. Still the usual isotropic
refinement yields worse results at much more computational cost as follows
from Figure 6.17.

35

Figure 6.14 7-j with level curves of C/3 and the oriented triangulation 7^*.

Figure 6.15 7i with level curves of U4 and the oriented triangulation 7^*.

36

Figure 6.16 ly (356 nodes) and level curves of U7.

Figure 6.17 T7 (1887 nodes) and level curves of U7.

37

References
[1] I. Babuska, A.K. Aziz: On the Angle Condition in the Finite Element

Method. SIAM J. Num. Anal. Vol 13, No.2 p. 214-226 (1976).

[2] R.E. Bank: PLTMG Users Guide, Edition 5.0. Technical Report, De­
partment of Mathematics, University of California at San Diego (1988).

[3] R.E. Bank, T.F. Dupont, H. Yserentant: The Hierarchical Basis Multi-
grid Method. Num. Math. 52, p. 427-458 (1988).

[4] R.E. Bank, A.H. Sherman, A. Weiser: Refinement Algorithms and Data
Structures for Regular Local Mesh Refinement. Scientific Computing,
R. Stepleman et al. (eds.), Amsterdam: IMACS North-Holland, p. 3-17
(1983).

[5] R.E. Bank, A. Weiser: Some a-posteriori Error Estimators for Elliptic
Partial Differential Equations. Math. Comp. 44, p. 283-301 (1985).

[6] R.E. Bank, H. Yserentant: Some Remarks on the Hierarchical Basis
Multigrid Method. To appear.

[7] P.G. Ciarlet: The Finite Element Method for Elliptic Problems. North-
Holland, Amsterdam (1978).

[8] R. Courant, K.O. Friedrichs, H. Lewy: Über die partiellen Differential­
gleichungen der Physik. Math. Ann. 100, p. 32-74 (1928).

[9] P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hier­
archical Finite Element Code. IMPACT 1, p. 3-35 (1989).

[10] W. Eckhaus: Asymptotic Analysis of Singular Perturbation Problems.
North-Holland Amsterdam, New York, Oxford (1979).

[11] W. Hackbusch: Multi-Grid Methods and Applications. Springer Verlag,
Berlin, Heidelberg (1985).

[12] T.J.R. Hughes, A. Brooks: A Multidimensional Upwind Scheme with
no Crosswind Diffusion. In: Finite Element Methods for Convection
Dominated Flows. T.J.R. Hughes (ed.), AMD, Vol. 34 (ASME, New
York) p. 19-35 (1979).

[13] P. Jamet: Estimation d' erreur pour des elements finis droits presque
degeneres. R.A.I.R.O., Serie Analyse Numerique, 10, No. 3, p. 43-61
(1976).

38

[14] C. Johnson: Numerical Solutions of Partial Differential Equations by the
Finite Element Method. Cambridge University Press, Cambridge (1987).

[15] R. Kornhuber, R. Roitzsch: Adaptive Finite-Element-Methoden
für Konvektionsdominierte Randwertprobleme. Proceedings of the 4.
TECFLAM-Seminar, Stuttgart p. 103-116 (1988).

[16] P. Leinen: Work done in preparation of a dissertation (1989).

[17] P.A. Markowich: The Stationary Semiconductor Device Equations.
Springer Verlag Wien, New York (1986).

[18] A.Mizukami, T.J.R. Hughes: A Petrov-Galerkin Finite Element Method
for Convection-Dominated Flows: An Accurate Upwinding Technique
for Satisfying the Maximum Principle. Comput. Meths. Appl. Mech.
Engrg. 50, p.181-193 (1985)

[19] R. Roitzsch: KASKADE Programmer's Manual. Technical Report
TR89-5, Konrad-Zuse-Zentrum Berlin (1989).

[20] J.L. Synge: The Hypercicle in Mathematical Physics. Cambridge Uni­
versity Press, New York (1957).

[21] F. Thomasset: Implementation of Finite Element Methods for Navier-
Stokes Equations. Springer Verlag New York, Heidelberg, Berlin (1981).

[22] M.I. Visik, L.A. Lyusternik: Regular Degeneration and Boundary Layer
for Linear Differential Equations with Small Parameter. American
Mathematical Society Translations, Series 2, Vol. 20 p. 239-364 (1962).
Springer Verlag New York, Heidelberg, Berlin (1981).

[23] P. Wesseling: Cell-Centered Multigrid for Interface Problems. In: Multi-
grid Methods: Theory, Applications and Supercomputing. (Ed. S. Mc-
Cormick), p. 631-641, Marcel Dekker, New York (1988).

39

