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Summary. We consider the approximate solution of selfadjoint elliptic
problems in three space dimensions by piecewise linear finite elements with
respect to a highly non–uniform tetrahedral mesh which is generated adap-
tively. The arising linear systems are solved iteratively by the conjugate
gradient method provided with a multilevel preconditioner. Here, the accu-
racy of the iterative solution is coupled with the discretization error. As the
performance of hierarchical bases preconditioners deteriorate in three space
dimensions, the BPX preconditioner is used, taking special care of an effi-
cient implementation. Reliable a–posteriori estimates for the discretization
error are derived from a local comparison with the approximation resulting
from piecewise quadratic elements. To illustrate the theoretical results, we
consider a familiar model problem involving reentrant corners and a real–
life problem arising from hyperthermia, a recent clinical method for cancer
therapy.

1 Introduction

Let Ω ⊂ R
3 be a polyhedral domain. We consider elliptic boundary value

problems in the variational form

Find u ∈ H1
0 (Ω) such that a(u, v) = �(v) , v ∈ H1

0 (Ω) (1)

with a symmetric, H 1
0 (Ω)–elliptic bilinear form a(·, ·) defined by

a(v, w) =
∫
Ω

3∑
i,j=1

ai,j∂iv∂jw dx (2)

and some functional � ∈ H−1(Ω). Of course, more general boundary condi-
tions may be incorporated in the usual way.
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In the presence of complicated space geometries, discontinuous coefficients
etc., the numerical solution of this problem in three space dimensions requires
a sophisticated reduction of the computational amount of work. Only then
we can hope to break through the complexity barrier of many important
problems of the natural sciences and technology. Here the concept of adap-
tivity, i.e., the automatic distribution of the nodes used in the discretization,
becomes more and more important. Additionally, multigrid or multilevel
methods should be used to provide an efficient solution of the arising lin-
ear system. In two space dimensions adaptivity has already quite a history,
whereas the appearance of multilevel methods is still more recent. Among
the most popular codes in this field there is NFEARS due to Mesztenyi and
Rheinboldt 24, PLTMG due to Bank 3 which is based on the hierarchical basis
multigrid method and KASKADE due to Deuflhard,Leinen and Yserentant
14, where the conjugate gradient method preconditioned by the hierarchical
basis is utilized. It is well–known that the good properties of the hierarchi-
cal basis are restricted to the 2–D case so that for three space dimensions
the BPX preconditioner proposed by Bramble, Pasciak and Xu 10 should be
used.

It is the purpose of this paper to collect well–known results on 3–D mesh
refinement 6, 18, 34 and the BPX preconditioner 7, 9, 10, 13, 25 and on the other
hand to extend related results on 2D–a–posteriori error estimates 14 and the
data structures of the adaptive finite element code KASKADE 23, 27, 28 to
obtain an adaptive multilevel finite element code for the adaptive multilevel
treatment of (1) in three space dimensions.

The following three sections are devoted to the description of mesh refine-
ment, preconditioning and a–posteriori error estimation which are the basic
modules of any adaptive multilevel method. Special care is paid to an effi-
cient implementation of the BPX preconditioner. For a detailed description
of the underlying data structures we refer to Erdmann and Roitzsch 15. The
performance of the code is illustrated by two numerical examples reported
in the final section.

2 Local Refinement

A partition T of the computational domain Ω ∈ R
3 into tetrahedra is called

triangulation. Throughout this paper we consider triangulations which are
conforming in the sense that the intersection of two different tetrahedra t, t̄ ∈
T either consists of a common triangular face, a common edge, a common
vertex or is empty.

Starting with an intentionally coarse triangulation T0 of Ω we want to pro-
duce a sequence T0, . . . , Tj of increasingly fine triangulations by the successive
refinement of certain tetrahedra on which the solution is deemed too inac-
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Figure 1. Regular Refinement of a Triangle
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Figure 2. Regular Refinement of the Triangular Faces

curate. In this section we will consider the geometrical aspects of the local
refinement referring to Section 3 for the a–posteriori estimates which gov-
ern the underlying selection process. In particular, we are interested in a
refinement process which is stable in the following sense: For each t ∈ Tj the
ratio of the diameter diam(t) and the radius of the largest interior ball ρ(t)
remains uniformly bounded, i.e.,

σ(t) = diam(t)/ρ(t) ≤ c , t ∈ Tj , (3)

holds with a constant c independent of the refinement level j.

Extensions of the well-known regular (red) refinement of Bank and al. 4,
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Figure 3. Four Tetrahedra and an Octahedron

depicted in Figure 1, to three space dimensions have been considered by
various authors. We will briefly summarize the results of Zhang 34, Go Ong
18 and Bey 6. Note that a related refinement was proposed by Bänsch 5. By
connecting the midpoints of the edges of a given tetrahedron t as shown in the
Figure 2, we obtain four new tetrahedra t1, . . . , t4 each of which corresponds
to a vertex of t. Apart from these four tetrahedra there still remains an
octahedron as illustrated in Figure 3. Note that this procedure provides a
2–D regular refinement of the triangular faces of t. We split the remaining
octahedron in two pyramids each of which is separated in two tetrahedra.
It is obvious from Figure 4 that the resulting splitting of the octahedron
in four tetrahedra t5, . . . , t8 is not unique, but depends on the selection of
the interior diagonal of the octahedron which can be chosen in exactly three
different ways. Each choice of this diagonal provides a regular refinement
of the given tetrahedron t. One possibility is illustrated in Figure 5. There
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Figure 4. Splitting of the Remaining Octahedron in Two Pyramids

are well–known examples showing that successive regular refinement may
be unstable in the sense of (3), if the diagonal interior edge is not selected
properly 34.

However, it has been shown by Zhang 34 that the choice of the shortest
diagonal leads to stable refinements if the triangular faces of the initial tri-
angulation T0 have no obtuse angles. A strategy proposed by Go Ong 18 and
Bey 6 relies on affine transformations to a reference tetrahedron and provides
a stable regular refinement without any restrictions on T0. Note that in our
numerical experiments both strategies lead to comparable results.

As in the 2–D case we use irregular (green) closures to obtain a conform-
ing triangulation after the regular refinement of a proper subset of Tj. In
particular, we consider three different cases:

• Green-I: A tetrahedron with only one refined edge is bisected as shown
in Figure 6.

• Green-II: A tetrahedron with two refined edges is divided into three or
four tetrahedra as shown in Figure 7.

• Green-III: A tetrahedron with three refined edges of the same triangular
face is divided into four tetrahedra as shown in Figure 8.

Note that irregular refinement does not introduce new nodal points.

In order to describe a complete refinement step we use the following de-
notations. As usual, a refined tetrahedron is said to be the father of its
sub–tetrahedra, which in turn are called sons. We define the depth of a
tetrahedron as the number of its ancestors. Finally, a tetrahedron is called
regular if it is either contained in T0 or is resulting from regular refinement.
Otherwise it is called irregular.
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Figure 5. Splitting of the Remaining Octahedron in Four Tetrahedra Based on

the Diagonal (5,9)

Now assume that a subset T̄j ⊂ Tj has been marked for refinement based
on some selection process. To preserve the stability (3) of the refinement
process irregular tetrahedra must not be further refined. Hence, all green
refinements are skipped replacing irregular tetrahedra contained in T̄j by their
fathers. After the regular refinement of all t ∈ T̄j , there may exist tetrahedra
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Figure 6. Green-I Closure

Figure 7. Green-II Closure

with edges which are refined twice or with three or more bisected edges
corresponding to different triangular faces. Regular refinement is continued
until no such tetrahedra are left. Now the remaining nonconforming vertices
are remedied by green closure.

Extending the well–known data structures from the 2–D case 15, the triangu-
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Figure 8. Green-III Closure

lations produced by this dynamic refinement process are stored as a sequence
T0, . . . , Tj with the properties:

(T1) Each vertex of Tk+1 which does not belong to Tk, is vertex of a regular
tetrahedron, 0 ≤ k < j.

(T2) Irregular tetrahedra have no sons.

(T3) The father of each tetrahedron t ∈ Tk+1\Tk has depth k, 0 ≤ k < j.

The rule (T3) allows for the reconstruction of the whole sequence T0, . . . , Tj
of triangulations from T0 and Tj alone and the first two rules have been
already mentioned above. Note that j indicates the maximal depth and
not the number of dynamic refinement steps. The properties (T1 - T3) are
meanwhile standard in the framework of multilevel methods 8, 14, 21, 33.

3 Preconditioning

Assume that a nested sequence T0, . . . , Tj of triangulations satisfying (T1 –
T3) has been constructed. In this section we focus on the efficient iterative
solution of the linear system resulting from the finite element discretization

Find uj ∈ Sj such that a(uj, v) = �(v) , v ∈ Sj (4)

of the variational problem (1). Here we make use of the finite element spaces
Sk ⊂ H1

0 (Ω), k = 0, . . . j, denoting the subspace of all functions which are
linear on each tetrahedron t ∈ Tk and continuous on Ω.
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In particular, we describe an efficient implementation due to Bornemann 7 of
the well–known BPX preconditioner 10, 33, 9 in the case of highly nonuniform
grids.

As a consequence of (T1 –T3) we have

S0 ⊂ S1 ⊂ . . . ⊂ Sj.
By Nk we denote the nodal points of Tk which do not belong to the boundary
∂Ω. Let {ψk1 , . . . , ψknk} be the nodal basis of the space Sk. We arrange the
nodal basis in such a way that for some mk ≤ nk, k > 0,

ψk1 , . . . , ψ
k
mk

�∈ Sk−1

and
ψkmk+1, . . . , ψ

k
nk

∈ Sk−1.

This extends formally to m0 = n0. Note that the case mk = nk corresponds
to uniform refinement of Tk−1 to Tk and the case mk < nk to nonuniform
refinement which will be usually the case. The members of the set

Ψk = {ψk1 , . . . , ψkmk
}

are just those nodal basis functions of depth k which are new, i.e., are gener-
ated by the refinement process. We call the unique nodal point x for which
ψ(x) = 1 the supporting point of the nodal basis function ψ. Denoting the
set of edges of Tk which are not part of the boundary ∂Ω by Ek, we will use
the subset Ēk−1 = Ek−1\Ek of those edges which have been bisected for Tk.
The following result is crucial for our implementation.

Lemma 1 The nodal basis functions of Ψk, k ≥ 1, are supported exactly by
those nodal points of Nk which are vertices and midpoints of edges e ∈ Ēk−1.
The total number

∑j
k=0mk of mutually different basis functions is bounded

according to
j∑

k=0

mk ≤ (5nj − 2n0)/3.

Proof. The first part is an immediate consequence of the refinement rule
(T1). For the second part denote the set of vertices and of midpoints of Ēk−1

by ver(Ēk−1) and mid(Ēk−1), respectively. Hence we have

mk = #ver(Ēk−1) + #mid(Ēk−1).

Each vertex of ver(Ēk−1) belongs as a vertex of a tetrahedron to at least
three edges of Ēk−1, thus #ver(Ēk−1) ≤ 1

3
· 2 · #Ēk−1. By means of rule (T1)

we obtain mid(Ēk−1) = Nk \ Nk−1, which implies #Ēk−1 = #mid(Ēk−1) =
#(Nk \Nk−1) = nk − nk−1. Thus we have mk ≤ 5/3(nk − nk−1) which yields
the assertion.
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Remark 2 Note that Lemma 1 does not contain any assumptions on the
progression of the number of unknowns nk.

As shown by Yserentant 33, the BPX preconditioner can be written in scaled
form as B : Sj → Sj with

Br = A−1
0 Q0r +

j∑
k=0

∑
ψ∈Ψk

(r, ψ)

a(ψ, ψ)
ψ (5)

for any r ∈ Sj. Here (·, ·) denotes a scaled L2–scalar product and Q0 : Sj →
S0 the L2–like projection associated with (·, ·).
The evaluation of the residual from the linear system associated with (4)
amounts to the computation of the values (r, ψ) for the nodal basis ψ =
ψj1, . . . , ψ

j
nj

of Sj. Thus we have to perform restriction operations in order
to get the values for all ψ occurring in (5). Then division by a(ψ, ψ) is
just a diagonal scaling in a linear space of dimension

∑j
k=0mk. Finally we

have to reformulate the result in the nodal basis of Sj leading to a related
interpolation. A more detailed analysis, extending the arguments of Chan 12

and Griebel 19 to the non–uniform case, leads to the following factorization
of the matrix representation Br of Br:

Br = SDSTr. (6)

Here B is a nj ×nj matrix specified below and the vectors r,Br ∈ R
nj have

the entries

r =

⎡
⎢⎢⎣

(r, ψj1)
...

(r, ψjnj)

⎤
⎥⎥⎦Br =

⎡
⎢⎢⎣

(Br)(x1)
...

(Br)(xnj)

⎤
⎥⎥⎦ .

The
∑j
k=0mk ×

∑j
k=0mk matrix D is given by

D =

⎡
⎢⎢⎢⎢⎣

A−1
0

0
. . .

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

D0

D1

. . .

Dj

⎤
⎥⎥⎥⎥⎦

withmk×mk diagonal matricesDk = diag
(
a(ψk1 , ψ

k
1)

−1, . . . , a(ψkmk
, ψkmk

)−1
)
,

while the nj ×
∑j
k=0mk matrix S has the representation

S = Sj
j−1 . . .S

2
1S

1
0 (7)

where

Sk+1
k : Rnk × R

mk+1 × . . .× R
mj → R

nk+1 × R
mk+2 × . . .× R

mj
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is given by the matrix

Sk+1
k =

⎡
⎢⎣ P k+1

k

Ik+1,k+1

0
Ik+2,j

⎤
⎥⎦ .

Here Ik,j denotes the identity of dimension mk + . . .+mj and P
k+1
k : Rnk →

R
nk+1 the matrix induced by the interpolation operator Sk → Sk+1. The

entry Ik+1,k+1 is responsible for keeping trace of the sum in the BPX precon-
ditioner (5).

According to (7) the
∑j
k=0mk × nj matrix ST can be written as

S =
(
S1

0

)T (
S2

1

)T
. . .

(
Sj
j−1

)T
(8)

where
(
Sk+1
k

)T
=

⎡
⎢⎣

Rk
k+1

Ik+1,k+1 0
Ik+2,j

⎤
⎥⎦ .

Here the matrix
Rk
k+1 =

(
P k+1
k

)T

is the representation of the canonical restriction operator. The interpolations
P k+1
k and the restrictions Rk

k+1 are implemented as described by Yserentant
32 in case of the hierarchical basis preconditioner. Using the corresponding
result on the complexity of the hierarchical basis preconditioner, the following
proposition is an immediate consequence of Lemma 1 and the representation
(6).

Proposition 3 The evaluation of Br for some vector r involves

O
⎛
⎝ j∑
k=0

mk

⎞
⎠ = O(nj)

floating point operations and the same order of additional storage.

Remark 4 Note that additional storage is not necessary, if we interpolate
after the scaling on each level k, thus performing j V–cycles with varying
depth. In this case, the computational complexity is of order O(jnj)

4 A–Posteriori Error Estimates

Let u ∈ H1
0 (Ω) denote the exact solution of (1), uj ∈ Sj the exact solution

of the approximate problem (4) and ũj ∈ Sj an approximate solution of
(4). In particular, ũj may result from a certain number of steps of some
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iterative solver applied to (4). As only ũj is known in actual computations,
we are interested in local a–posteriori error estimates for the total error ε :=
‖u − ũj‖ and the iteration error δ := ‖uj − ũj‖. Here we use the energy
norm ‖ ·‖ = a(·, ·)1/2 induced by the actual bilinear form. Assuming that δ is
small enough, the local contributions of the total error will be used as local
error indicators in the adaptive refinement process. This concept has been
introduced by Babuška and Rheinboldt 1 and is well established in adaptive
finite element methods 3, 8, 14, 22, 21, 23, 30.

We will first derive a–posteriori estimates ε̃ of the total error ε which are
reliable and efficient in the sense that

γ0ε̃ ≤ ‖u− ũj‖ ≤ γ1ε̃ (9)

holds with positive constants γ0, γ1 independent of j. Let us briefly recall
the basic approach of Deuflhard, Leinen and Yserentant 14. Replacing Sj in
(4) by the subspace Qj ⊂ H1

0 (Ω) of continuous functions which are piecewise
quadratic on each tetrahedron t ∈ Tj , we obtain the piecewise quadratic
approximation Uj of u. Now u − ũj is approximated by the solution Dj =
Uj − ũj of the following defect problem.

Find Dj ∈ Qj, such that a(Dj, v) = r(v) , v ∈ Qj , (10)

where the residual r ∈ H−1(Ω) is defined by r = � − a(ũj, ·). The next
assumption is crucial for the following considerations

(Q) The piecewise quadratic approximation Uj of u is of higher accuracy
than uj, i.e. we have

‖u− Uj‖ ≤ q‖u− uj‖ ,

with some fixed q < 1.

Recall that Uj is even of higher order than uj, if the given data are sufficiently
smooth 11. Compare Fritzsch and Oswald 17 for the case of reentrant corners.
The next lemma is a consequence of the orthogonality properties of the finite
element approximations uj and Uj

8.

Lemma 5 Assume that (Q) holds and that ε̃ satisfies

cε̃ ≤ ‖Dj‖ ≤ Cε̃. (11)

Then ε̃ satisfies (9) with γ0 = c and γ1 = C
√
1/(1 − q2).
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To find ε̃ with the property (11) at reasonable cost, we localize the defect
problem (10) replacing a(·, ·) by some other symmetric, positive definite bi-
linear form ã(·, ·) on Qj ×Qj. We obtain the modified defect problem:

Find D̃j ∈ Qj, such that ã(D̃j , v) = r(v) , v ∈ Qj. (12)

with solution D̃j . The next Lemma states that spectrally equivalentmodifica-
tions of a(·, ·) provide reliable and efficient error estimates. For an elementary
proof we refer to Deuflhard, Leinen and Yserentant 14.

Lemma 6 Assume that ã(·, ·) is a symmetric bilinear form with the property

c|v|ã ≤ ‖v‖ ≤ C|v|ã , (13)

where |v|ã := ã(v, v)1/2, v ∈ Qj. Then the estimates (11) hold with ε̃ :=
|D̃j |ã.

In view of these general results, we are left with the problem to find a spec-
trally equivalent preconditioner ã(·, ·) for a(·, ·)|Qj×Qj . Recall that Ej is de-
noting the interior edges of Tj. Then we make use of the two–level splitting

Qj = SL ⊕ SQ

consisting of SL := Sj and SQ := span{μe| e ∈ Ej}, where the quadratic
bubbles μe ∈ Qj are defined by μe(p) = 0, p ∈ Nj, and μe(midpoint of ē) =
δe,ē, ē ∈ Ej (Kronecker delta). Note that this splitting is independent of the
space dimension. Utilizing the representation v = vL +

∑
e∈Ej veμe, v ∈ Qj,

the quadratic form ã(·, ·) is defined by

ã(v, w) = b(vL, wL) +
∑
e∈Ej

vewea(μe, μe) , v, w ∈ Qj. (14)

Here b(·, ·) := (B·, ·) denotes the symmetric bilinear form induced by the
BPX preconditioner considered in the preceding section. We can state the
main result of this section.

Theorem 1 Assume that (Q) is satisfied and that D̃j is the solution of the
localized defect problem (12) with ã(·, ·) defined by (14). Then the total error
estimate ε̃ := |D̃j |ã is efficient and reliable in the sense that

γ0 ε̃ ≤ ‖u− ũj‖ ≤ γ1 ε̃ (15)

holds with γ0 = c, γ1 = C
√
1/(1 − q2) and constants c, C depending only on

the shape regularity of T0 and the ellipticity of a(·, ·).
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Proof. In view of Lemma 5, Lemma 6 and uniform bound of the condition
number related to the BPX preconditioner ( see Oswald 25, Dahmen and
Kunoth 13, Bornemann and Yserentant 9 and the included references ), we
only have to show that a(·, ·) and a�(·, ·) defined by

a�(v, w) = a(vL, wL) +
∑
e∈Ej

vewea(μe, μe) , v, w ∈ Qj ,

are spectrally equivalent with constants depending only on the shape regular-
ity of T0 and the ellipticity of a(·, ·). By the triangle inequality and Cauchy’s
inequality we have

at(v, v) ≤ (‖vL‖+
∑
e∈Ej

‖veμe‖)2 ≤ 7 a�t (v, v), (16)

where the subscript t indicates the restriction of the bilinear form to some
tetrahedron t ∈ Tj. The converse estimate

a�t (v, v) ≤ C at(v, v) (17)

follows by the usual affine transformation technique, exploiting the ellipticity
of a(·, ·).
By the definition of ã(·, ·) the contributions ηe = (D̃e)

2a(μe, μe) of the edges
e ∈ Ej to the total error are completely decoupled. The only time consuming
part in the computation of ηe is the evaluation of a(μe, μe), e ∈ Ej and of
the residual r|Qj . We will use the local contributions ηe, e ∈ Ej as local error
indicators in the adaptive refinement process. In particular, a tetrahedron
t ∈ Tj is marked for refinement, if the value ηe of at least one of its edges e
exceeds a certain threshold ση̄. Here η̄ is a guess of the maximal local error
arising on the next level in case of uniform refinement and σ < 1 is a safety
factor. In the numerical examples reported in the final section, η̄ is computed
by local extrapolation 1, 7 and we chose σ = 0.5.

To obtain an estimate δ̃ for the iteration error, we use the linear defect
problem

Find d̃j ∈ Sj such that b(d̃j, v) = r(v) , v ∈ Sj (18)

We only have to rewrite the spectral equivalence of the BPX preconditioner
to prove the following Theorem.

Theorem 2 Let d̃j be the solution of the linear defect problem (18). Then
the iterative error estimate δ̃ := |d̃j |b is reliable and efficient in the sense that
the estimates

β0δ̃ ≤ ‖uj − ũj‖ ≤ β1δ̃ (19)

hold with constants β0, β1 depending only on the shape regularity of T0 and
the ellipticity of a(·, ·).
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Remark 7 The evaluation of (18) represents the preconditioning of the
residual which takes place in each step of the preconditioned cg–iteration.
Hence δ̃ is available without additional computational work.

Remark 8 Using the splitting D̃j = D̃L
j = D̃Q

j we immediately have D̃L
j =

d̃Lj . Nevertheless the contributions from inexact solution and discretization
are not completely decoupled, as ũj enters the right hand side of the local
defect problems for the quadratical part d̃Q.

To preserve the over all accuracy by the iterative solution of (4), the iteration
should be continued until the related total error εj = ‖u− ũj‖ is of the order
of the discretization error ‖u− uj‖. We assume that the discretization error
is bounded in terms of the number of unknowns nj = #Nj.

(D) The estimate

‖u− uj‖ ≤ c n
−1/3
j

holds with a constant c independent of j.

In case of a uniform mesh with mesh size h = n
−1/3
j the assumption (D)

is reducing to the well–known a priori error estimate of the H1–error. For
related results in the nonuniform case we refer to Babuška, Kellogg and
Pitkäranta 2.

The following proposition gives a sufficient criterion to ensure the same
asymptotic behavior of the total error and the discretization error.

Proposition 9 Assume that (D) is satisfied. Let δ0 = 0 and assume that

δk ≤ ρ (
nk−1

nk
)1/3 εk−1 (20)

holds for 1 ≤ k ≤ j with some fixed ρ < 1, then we have the estimate

εj ≤ c
1

1− ρ
(nj)

−1/3. (21)

Proof. The assertion follows by inductive application of (20).

Note that the accuracy may still be deteriorated in exceptional cases when
the discretization error behaves better than expected in (D).

As only the a–posteriori estimates δ̃ and ε̃j−1 are available in actual compu-
tations, we replace (20) by the stopping criterion

δ̃j ≤ ρ (
nj−1

nj
)1/3 ε̃j−1 , j ≥ 1 , (22)

starting with the direct solution on level 0. In this case the order of accuracy
is preserved in the sense of (21) if ρ satisfies ρ < γ0/β1 with γ0 and β1 taken
from (15) and (19). We chose ρ = 0.01 for our numerical experiments.
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5 Numerical Results

The modules described in the preceding sections are implemented by suitable
extension of the adaptive finite element code KASKADE 14, 16, 27, 28. For
details we refer to the 3–D ELLKASK Programmer’s Manual 15. In this
section we report the numerical results for a model problem involving a corner
singularity and the so–called Bio–Heat–Transfer equation ( BHT equation )
arising in clinical hyperthermia.

Example 1: Corner Singularity. We consider the homogeneous boundary
value problem for the Laplacian arising from the choice ai,j = δi,j, i, j =
1, . . . , 3 ( Kronecker delta ) and

�(v) =
∫
Ω
v dx, v ∈ H1

0 (Ω),

in our basic problem (1). The computational domain Ω is given by

Ω = (−1, 1) × (−1, 1)× (−1, 1) \ [0, 1)× [0, 1)× [0, 1),

and we use the initial triangulation T0 depicted in Figure 9.

Figure 9. Surface of the Initial Triangulation of Ω

To study the effect of preconditioning, we perform four uniform refinement
steps and solve the resulting discrete problems iteratively by the conjugate
gradient method using the initial iterate u

(0)
j = 0 and the stopping criterion

16



Figure 10. BPX Preconditioning on Uniform Triangulations

Figure 11. Surface of the Triangulation T6 on Refinement Level 7

δ̃j < 1.E − 12 with δ̃j obtained from (18). Figure 10 shows the number of
iteration steps comparing the BPX preconditioner with the unpreconditioned
case.

As expected, the unpreconditioned conjugate gradient method results in an
exponential growth of the number of iterations, while the BPX preconditioner
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Figure 12. Clipping of the Triangulation T6 at z=0

tends to be asymptotically optimal with increasing j.

level depth N BPX prec. tp
[iterations] [s ∗ 10−4]

1 1 117 1 1.4
2 2 463 3 1.4
3 3 938 1 2.1
4 4 4281 4 2.4
5 4 5789 1 2.7
6 5 6948 1 3.0
7 6 17526 2 3.0

Table 1. Iteration History for Example 1

Now we apply the adaptive procedure described in the preceding section to
obtain the sequence of triangulations T1, . . .T6 from T0. Of course, we used
the approximation ũj−1 ∈ Sj−1 ⊂ Sj from the preceding level as an initial
guess for the iterative solution. Together with the stopping criterion (22)
and the rapid convergence of the preconditioned cg–method this leads to a
very moderate number of iterations. A detailed iteration history is given in
Table 1. Here tp denotes the elapsed CPU – time for the iteration process
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Figure 13. Discretization Error and A–Posteriori Error Estimation

over the number of iterations and nodal points. Observe that tp saturates
with increasing j, as predicted in Proposition 3.

Finally, the Figures 11 and 12 illustrate the final triangulation T6 showing
the expected concentration of nodes in the neighborhood of the singularities.

The development of the discretization error and the a–posteriori error esti-
mate resulting from (12) is depicted in Figure 13. To compute the ”exact”
error, we performed a uniform refinement on level 5 (not on level 7 for lack of
memory) and determined the difference to the corresponding solution. For a

comparison, the dotted line shows the optimal asymptotic behavior O(n
−1/3
j )

of the error which is well–known from approximation theory. Note that these
results confirm our assumption (D) mentioned in Section 4.

Example 2: The Bio–Heat–Transport Equation. In order to demon-
strate the applicability of our code to real life problems combining various
difficulties as complex geometry and/or discontinuous coefficients, we con-
sider a problem arising in hyperthermia.

Hyperthermia is a therapy based on the observation that local heating may
slow down or even stop the growth of a tumor, especially if it is applied in
combination with other methods like chemotherapy or radiotherapy. The
deep heating of the tissue is obtained by an electric field which is generated
by pairs of antennas. The antennas are either fixed on the skin or implanted
in the tissue itself. Of course the position of the antennas and frequency
of the electric field have to be chosen properly to achieve a local heating of
the tumor without the surrounding tissue 31. This requires the efficient and
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Figure 14. Surface of the Initial Triangulation of the Skull

level depth N BPX prec. tp
[iterations] [s ∗ 10−4]

1 1 2085 4 2.6
2 2 2354 2 3.4
3 3 3234 2 3.4
4 3 3825 2 3.3
5 4 7562 3 3.2
6 4 12167 3 3.1
7 5 16313 2 3.3

Table 2. Iteration History for Example 2

robust solution of the BHT equation: 26

Find u ∈ H1
0 (Ω) such that a(u, v) + (qu, v) = (f, v), v ∈ H1

0 (Ω), (23)

modeling the temperature distribution u for a given electric field E. Note
that E together with nonhomogeneous Dirichlet boundary conditions is in-
corporated in the source term f , while the temperature flow is modeled by
the bilinear form a(·, ·) and q. The coefficients aij and q are taken piece-
wise constant on different tissues. We refer to Seebaß 29 for a more detailed
explanation and the numerical data of the following example.

We consider the heating of a tumor which is contained in a human skull by the
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Figure 15. Clipping of the Triangulation T5 on Refinement Level 7

Figure 16. Isolines of Temperature on the Clipping Plane

electric field resulting from three implanted antennas. A suitable description
of the computational domain Ω is obtained by computer tomography. Figure
14 is showing the surface of Ω and the initial triangulation T0 which is given by
Seebaß 29. Note that T0 is chosen such that different tissues as bone, brain and
tumor belong to different tetrahedra. Finally, the additional Helmholtz term
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appearing in (23) has to be incorporated properly in the BPX preconditioner
as proposed by Bornemann 8. Performing 7 adaptive refinement steps we
obtain the iteration history reported in Table 2. Again the results confirm
the efficiency of the proposed multilevel method and its implementation. As
expected, the refinement concentrates on the neighborhood of the antennas
and the tumor in the interior of the skull where we have high gradients of
the temperature. This is illustrated by Figures 15 and 16 showing the final
triangulation T5 and the level curves of the temperature on some clipping
plane. Here the different tissues are indicated by black (bone), white (brain)
and grey (tumor).

All computations have been carried out on a SUN Sparc IPX.
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