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Abstract. We derive fast solvers for discrete elliptic variational inequalities

of the second kind as resulting from the approximation by piecewise linear

�nite elements. Following the �rst part of this paper, monotone multigrid

methods are considered as extended underrelaxations. Again, the coarse

grid corrections are localized by suitable constraints, which in this case are

�xed by �ne grid smoothing. We consider the standard monotone multigrid

method induced by the multilevel nodal basis and a truncated version. Global

convergence results and asymptotic estimates for the convergence rates are

given. The numerical results indicate a signi�cant improvement in e�ciency

compared with previous multigrid approaches.
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Chapter 1

Introduction

Let 
 be a polygonal domain in the Euclidean space R

2

. We consider the

optimization problem

u 2 H

1

0

(
) : J (u) + �(u) � J (v) + �(v); v 2 H

1

0

(
); (1.1)

where the quadratic functional J ,

J (v) =

1

2

a(v; v)� `(v); (1.2)

is induced by a continuous, symmetric and H

1

0

(
){elliptic bilinear form a(�; �)

and a linear functional ` 2 H

�1

(
). The convex functional � of the form

�(v) =

Z




�(v(x)) dx; (1.3)

is generated by a scalar convex function �. Denoting z

�

= min fz; 0g and

z

+

= max fz; 0g for z 2 R, then � is taken to be the piecewise quadratic

convex function

�(z) =

1

2

a

1

(z��

0

)

2

�

�s

1

(z��

0

)

�

+

1

2

a

2

(z��

0

)

2

+

+s

2

(z��

0

)

+

; z 2 R; (1.4)

with �xed �

0

2 R and non{negative constants a

1

; a

2

; s

1

; s

2

2 R. More general

boundary conditions can be treated in the usual way.

It is well{known (c.f. Glowinski [8]) that (1.1) can be equivalently rewritten

as the elliptic variational inequality of the second kind

u 2 H

1

0

(
) : a(u; v� u) + �(v)� �(u) � `(v � u) ; v 2 H

1

0

(
); (1.5)

and admits a unique solution u 2 H

1

0

(
). Note that (1.1) becomes a lower

(or upper) obstacle problem, if s

1

(or s

2

) tends to in�nity.

Non{smooth optimization problems of the form (1.1) arise in a large scale of

applications, ranging from friction problems or non{linear materials in elas-

ticity to the spatial problems resulting from the implicit time{discretization

of two{phase Stefan problems. Roughly speaking, the underlying physical

situation is smooth in the di�erent phases u < �

0

and u > �

0

, respectively,

but changes in a discontinuous way as u passes the threshold �

0

. We refer to

Duvaut and Lions [4], Glowinski [8] and Elliot and Ockendon [7] for numerous

examples and further information.

Let T

j

be a given partition of 
 in triangles t 2 T

j

with minimal diameter

of order 2

�j

. The set of interior nodes is called N

j

. Discretizing (1.1) by

1



continuous, piecewise linear �nite elements S

j

� H

1

0

(
), we obtain the �nite

dimensional problem

u

j

2 S

j

: J (u

j

) + �

j

(u

j

) � J (v) + �

j

(v); v 2 S

j

: (1.6)

Observe that the functional � is approximated by S

j

{interpolation of the

integrand �(v), giving

�

j

(v) =

Z




X

p2N

j

�(v(p))�

(j)

p

(x) dx; (1.7)

where �

j

= f�

(j)

p

; p 2 N

j

g stands for the nodal basis in S

j

. Of course, (1.6)

is uniquely solvable and can be reformulated as the variational inequality

u

j

2 S

j

: a(u

j

; v � u

j

) + �

j

(v)� �

j

(u

j

) � `(v � u

j

); v 2 S

j

: (1.8)

For convergence results we refer to Elliot [6].

In this paper we will derive fast solvers for the discrete problem (1.6). Clas-

sical relaxation methods based on the successive optimization of the energy

J + �

j

in the direction of the nodal basis are discussed to some extend by

Glowinski [8]. To overcome the well{known drawbacks of such single{grid

relaxations, Hoppe and Kornhuber [15] have derived a multigrid algorithm,

which was applied successfully to various practical problems [13, 16]. As a

basic construction principle, the di�erent phases must not be coupled by the

coarse grid correction. Using advanced relaxation strategies of Hackbusch

and Reusken [11, 12], Hoppe [14] recently derived a globally dampened ver-

sion displaying a considerable improvement in asymptotic e�ciency rates.

The construction of the previous multigrid methods was based on the full

approximation scheme so that the possible implementation as a multigrid V{

cycle was clear from the very beginning. However, suitable conditions for con-

vergence were less obvious. Following the �rst part of this paper [18], we will

derive monotone multigrid methods by extending the set of (high{frequent)

search directions �

j

by additional (intentionally low{frequent) search direc-

tions. As a consequence, our construction starts with a globally convergent

method, which then is modi�ed in such a way that the e�cient implementa-

tion as a multigrid V{cycle becomes possible while the global convergence is

retained. It is the main advantage of our approach that such modi�cations

can be studied in an elementary way.

The corresponding theoretical framework will be derived in the next section.

We formally introduce extended relaxation methods and describe so{called

quasioptimal approximations, preserving the global convergence and asymp-

totically optimal convergence rates.

The actual construction of quasioptimal approximations takes place in Sec-

tion 3. The reasoning is guided by the basic observation that the standard
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V{cycle for linear problems relies on simple representations of linear opera-

tors and linear functionals on the coarse grid spaces. For nonlinear problems

such (approximate) representations can be expected only locally. Conse-

quently, the coarse-grid corrections of our monotone multigrid methods are

obtained from certain obstacle problems, which are �xed by the preceding

�ne grid smoothing. In this way, the coupling of di�erent phases is not ex-

cluded. Following the �rst part of this paper [18], we consider a standard

monotone multigrid method and a truncated variant, relying on the multi-

level nodal basis and its adaptation to the actual guess of the free boundary,

respectively. Both methods can be regarded as permanent extensions of the

classical multigrid method and of the corresponding algorithms presented

in [18]. By construction, we obtain global convergence and the asymptotic

convergence rates are bounded by 1 �O(j

�3

).

In our numerical experiments reported in the �nal section, we basically found

the same behavior as for obstacle problems (c.f. [18]). In particular, for good

initial iterates as obtained by nested iteration, the overall convergence is

dominated by the optimal asymptotic convergence rates, which are inherited

from the related linear case. Compared to previous multigrid methods, this

leads to a signi�cant improvement in asymptotic e�ciency.

Of course, our approach is not restricted to the special problem (1.6). We

chose the very simple functional � (and the related functionals �

j

) in order

to keep the exposition as clear as possible. However, the basic convergence

results to be presented extend without change to any functional �

j

of the form

(1.7) with � replaced by arbitrary scalar, convex functionals �

p

, p 2 N

j

.

For example, the restriction of the optimization (1.1) to a convex subset

K � H

1

0

(
) of obstacle{type would cause no changes of the theoretical results

and only minor modi�cations of the multigrid algorithms. If not explicitly

otherwise stated, all our algorithmic considerations and convergence results

are independent of the space dimension.
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Chapter 2

Extended Relaxation Methods

Let (M

�

)

��0

be a given sequence of �nite subsets M

�

� S

j

, � � 0, with the

property

�

j

= f�

(j)

p

j p 2 N

j

g �M

�

; � � 0: (2.1)

Recall that �

(j)

p

, p 2 N

j

, denote the nodal basis functions of the given �nite

element space S

j

. Each set M

�

= f�

�

1

; : : : ; �

�

m

�

g is ordered in a suitable way

and we assume that all functions �

�

l

are non{negative, i.e. that

0 � �

�

l

(p); p 2 N

j

; (2.2)

holds for all �

�

l

2M

�

, � � 0. The elements of M

�

c

= M

�

n�

j

are intended to

play the role of coarse grid functions with large support, in contrast to the

�ne grid functions contained in �

j

.

The extended relaxation method induced by (M

�

)

��0

is resulting from the

successiveminimization of the energy J+�

j

in the search directions �

�

l

2M

�

.

More precisely, we introduce the splitting

S

j

=

m

�

X

l=1

V

�

l

; V

�

l

= spanf�

�

l

g; � � 0; (2.3)

of S

j

in the one{dimensional subspaces V

�

l

� S

j

. Then, for a given iterate

u

�

j

2 S

j

, we compute a sequence of intermediate iterates w

�

l

, l = 0; : : : ;m

�

,

from the m

�

local subproblems

v

�

l

2 V

�

l

: J (w

l�1

+ v

�

l

) + �

j

(w

l�1

+ v

�

l

) �

� J (w

l�1

+ v) + �

j

(w

l�1

+ v); v 2 V

�

l

;

(2.4)

setting w

�

0

= u

�

j

and w

�

l

= w

�

l�1

+ v

�

l

, l = 1; : : : ;m

�

. The next iterate is given

by u

�+1

j

= w

�

m

�

.

Of course (2.4) is just the nonlinear multiplicative Schwarz method induced

by the splitting (2.3). Observe that M

�

may change in each iteration step,

so that the corresponding splitting can be iteratively adapted to the actual

discrete free boundary. By construction, the extended relaxation (2.4) is

monotone in the sense that

J (w

�

l

) + �

j

(w

�

l

) � J (w

�

l�1

) + �

j

(w

�

l�1

): (2.5)

For notational convenience, the index � will be frequently suppressed in the

sequel.
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Before investigating the convergence of extended relaxation methods, we will

consider the (approximate) solution of the local subproblems (2.4). It is easily

seen that (2.4) admits a unique solution and can be equivalently rewritten

as the following variational inequality

v

�

l

2 V

l

: a(v

�

l

; v � v

�

l

) + �

j

(w

l�1

+ v)� �

j

(w

l�1

+ v

�

l

) �

� `(v � v

�

l

)� a(w

l�1

; v � v

�

l

); v 2 V

l

:

(2.6)

This formulation avoids the derivative of the convex functional �

j

, which

does not exist in the classical sense. However, using subdi�erential calculus

(c.f. Ekeland and Temam [5] or Clarke [2]), we can reformulate (2.4) as the

di�erential inclusion

v

�

l

2 V

l

: 0 2 a(v

�

l

; v)+ a(w

l�1

; v)� `(v)+ @�

j

(w

l�1

+ v

�

l

)(v); v 2 V

l

: (2.7)

Here, the subset @�

j

(w) � S

0

j

denotes the set of subgradients of �

j

at w 2 S.

Denoting v

�

l

= z

�

l

�

l

, the inclusion (2.7) can be rewritten as the scalar di�er-

ential inclusion

z

�

l

2 R : 0 2 a

ll

z

�

l

� r

l

+ @�

l

(z

�

l

); (2.8)

where we have used the de�nitions

a

ll

= a(�

l

; �

l

); r

l

= `(�

l

)� a(w

l�1

; �

l

)

and @�

l

(z) � R denotes the subdi�erential of the scalar convex function

�

l

(z) = �

j

(w

l�1

+ z�

l

); z 2 R:

Recall that �

l

= �

�

l

is depending on �. Using the abbreviation jpj =

R




�

(j)

p

(x) dx and the representation (1.7), we obtain

�

l

(z) =

X

p2N

j

�(w

l�1

(p) + z�

l

(p))jpj; z 2 R: (2.9)

Exploiting (2.2), the subdi�erential @�

l

is a scalar, maximal monotone mul-

tifunction consisting of a weighted sum of translated subdi�erentials of the

given scalar, convex function �,

@�

l

(z) =

X

p2N

j

�

l

(p) @�(w

l�1

(p) + z�

l

(p))jpj; z 2 R: (2.10)

Note that the subdi�erential @� is the maximal monotone multifunction

@�(z) =

8

>

<

>

:

a

1

(z � �

0

)� s

1

if z < �

0

[� s

1

; s

2

] if z = �

0

:

a

2

(z � �

0

) + s

2

if z > �

0

(2.11)
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For �ne grid functions �

l

= �

(j)

p

l

2 �

j

, the sum in (2.10) is reducing to

@�

l

(z) = @�(w

l�1

(p

l

) + z�

(j)

p

l

)jp

l

j; �

(j)

p

l

2 �

j

:

Hence, the subdi�erentials @�

l

corresponding to coarse grid functions �

l

2

M

c

are the sum of their �ne grid counterparts. In multigrid terminology

this means that the evaluation of the subdi�erentials on coarse grids can be

performed by canonical weighted restriction.

For �ne grid functions �

l

= �

(j)

p

l

2 �

j

, the local problems (2.8) can be easily

solved by means of

z

�

l

= �

0

� w

l�1

(p

l

) +

8

>

<

>

:

(r

p

l

+ s

1

)=(a

p

l

+ a

1

); r

p

l

< �s

1

0; r

p

l

2 [�s

1

; s

2

]

(r

p

l

� s

2

)=(a

p

l

+ a

2

); r

p

l

> s

2

; (2.12)

denoting

a

p

l

= a

ll

=jp

l

j; r

p

l

= (r

l

� a

ll

(�

0

� w

l�1

(p

l

)))=jp

l

j:

The situation is more di�cult if �

l

2M

c

. The main reason is that the number

of critical values of @�

l

, where @�

l

is set{valued, is growing with the number

of nodes p 2 N

j

\ int supp �

l

. Recall that supp �

l

is assumed to be large for

�

l

2 M

c

. This motivates the approximation of @�

l

by scalar multifunctions

@	

l

for �

l

2M

c

. In abuse of our preceding notation, the multifunctions @	

l

do not need to be subdi�erentials.

Assume that @	

l

is maximal monotone on D

l

� R, D

l

6= �. Then D

l

must be a (possibly degenerated) interval. If D

l

is bounded from above,

say sup D

l

= z

0

, then sup @	

l

(z) tends to 1 as z tends to z

0

. Hence, we

formally set @	

l

(z) =1 for all z =2 D

l

, z � z

0

. In the same way, we extend

@	

l

by �1, if D

l

is bounded from below.

A maximal monotone multifunction @	

l

is called a monotone approximation

of @�

l

, if

sup @	

l

(z) � sup @�

l

(z); z � 0;

inf @	

l

(z) � inf @�

l

(z); z � 0:

(2.13)

In particular, we have @�

l

(0) � @	

l

(0). This motivates the trivial choice

@	

l

= @	

1

, with @	

1

(0) = (�1;1) de�ned on D

1

= f0g. As a further

example, consider the �nite di�erences @	

l

(z) = (�

l

((q+1)z)��

l

(z))=(qz),

with some �xed q 6= 0, providing a monotone approximation for z 6= 0. Other

variants of practical interest will be described in the next section.

The approximations @	

l

, �

l

2 M

c

, give rise to the approximate subproblems

z

l

2 R : 0 2 a

ll

z

l

� r

l

+ @	

l

(z

l

); �

l

2M

c

: (2.14)

The resulting approximate coarse grid corrections are given by v

l

= z

l

�

l

.

We will need the following location principle, which can be shown by standard

arguments from convex analysis.
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Lemma 2.1 Assume that F is a scalar, strongly maximal monotone multi-

function on D

F

� R, which is extended to R n D

F

as described above. Let

[z

0

; z

1

] � R and

inf F (z

0

) � 0 � sup F (z

1

):

Then there is a unique � 2 [z

0

; z

1

], such that 0 2 F (�).

If @	

l

is a monotone approximation, then Lemma 2.1 applied to

F (z) = a

ll

z � r

l

+ @	

l

(z); z 2 R; (2.15)

shows that the approximate subproblem (2.14) admits a unique solution z

l

.

We now generalize a related result from the �rst part of this paper [18].

Lemma 2.2 Assume that @	

l

is a monotone approximation of @�

l

. Then

the corrections v

�

l

and v

l

, computed from (2.8) and (2.14), respectively, are

related by

v

l

= !

l

v

�

l

; !

l

2 [0; 1]: (2.16)

Proof. We will make use of the strongly maximal multifunction F (z) de-

�ned in (2.15). Assume that the solution z

�

l

of (2.8) is non{negative. Utilizing

(2.13), we easily get

inf F (0) � 0 � sup F (z

�

l

)

and Lemma 2.1 yields 0 � z

l

� z

�

l

. In the remaining case, the assertion

follows in a symmetrical way.

An approximate scheme based on exact �ne grid corrections v

�

l

, �

l

2 �

j

, and

dampened coarse grid corrections v

l

= !

l

v

�

l

, !

l

2 [0; 1], �

l

2M

c

, respectively,

is called extended underrelaxation. Lemma 2.2 states that an extended under-

relaxation is induced by a sequence of monotone approximations (@	

�

l

)

��0

.

Note that the classical single grid relaxation is recovered by the trivial choice

@	

l

= @	

1

for �

l

2M

c

.

It follows from the convexity of J + �

j

that extended underrelaxations pre-

serve the monotonicity (2.5). The following Theorem is an immediate con-

sequence of this property and the convergence of the �ne grid relaxation.

Theorem 2.1 An extended underrelaxation is globally convergent.

We omit the proof, which can be almost literally taken from [18]. As a by{

product, we obtain the convergence of the whole sequence of intermediate

iterates w

�

l

,

w

�

l

! u

j

; � !1: (2.17)

7



We have described a general approach to construct convergent iterative schemes

by selecting suitable search directions (M

�

)

��0

and monotone approximations

(	

�

l

)

��0

. Note that only the representation (2.12) of the exact solution of the

�ne grid problems makes use of the actual choice of the scalar function �. As

a consequence, Theorem 2.1 remains valid for all functionals �

j

of the form

(1.7), which are represented by a family of arbitrary scalar, convex functions

�

p

, p 2 N

j

.

In the remainder of this section, we will investigate the asymptotic behavior

of extended underrelaxations. Denote

N

�

j

(v) = fp 2 N

j

j v(p) = �

0

g; v 2 S

j

;

and N

�

l

(v) = N

j

n N

�

j

(v). The critical points p 2 N

�

j

(v) will take the role

of the active points occurring in solution of obstacle problems. The discrete

problem (1.6) is called non{degenerate, if

p 2 N

�

j

(u

j

)) `(�

(j)

p

)� a(u

j

; �

(j)

p

) 2 int @�

j

(u

j

)(�

(j)

p

): (2.18)

This condition describes the stability of the critical nodesN

�

j

(u

j

) with respect

to small perturbations of u

j

. The discrete phases N

�

j

(v) and N

+

j

(v) of a

function v 2 S

j

consist of all nodes p 2 N

j

with v(p) < �

0

and v(p) > �

0

,

respectively.

We say that M

�

is ordered from �ne to coarse, if �

l

= �

(j)

p

l

and p

l

2

int supp �

�

l

0

implies l < l

0

for all �

l

2 �

j

and �

l

0

2 M

�

c

. The sequence

(M

�

)

��0

is called positive and bounded, if there are positive constants c, C

not depending on �, such that

0 < c � �

�

l

(p) � C; p 2 int supp �

�

l

\N

j

; �

�

l

2M

�

; (2.19)

holds uniformly for � � 0. A positive, bounded sequence (M

�

)

��0

is called

regular, if N

�

j

(w

�

l

) = N

�

j

(u

j

), � � �

0

, implies that the sets M

�

also remain

invariant for � � �

0

.

Lemma 2.3 Assume that the discrete problem (1.6) is non{degenerate. If

(M

�

)

��0

is positive, bounded and ordered from �ne to coarse, then the phases

of the intermediate iterates w

�

l

, l = 1; : : : ;m

�

, resulting from an extended

underrelaxation induced by (M

�

)

��0

, converge to the phases of u

j

in the sense

that

N

�

j

(w

�

l

) = N

�

j

(u

j

); N

�

j

(w

�

l

) = N

�

j

(u

j

); N

+

j

(w

�

l

) = N

+

j

(u

j

) (2.20)

holds for � � �

0

, l = 1; : : : ;m

�

, and some �

0

� 0.

8



Proof. It is easily seen that the convergence (2.17) of the whole sequence

w

�

l

implies that there is a �

1

� 0 with the property

N

�

j

(u

j

) � N

�

j

(w

�

l

); N

+

j

(u

j

) � N

+

j

(w

�

l

); � � �

1

: (2.21)

Then, the assertion easily follows from the inclusion N

�

j

(u

j

) � N

�

j

(w

�

l

) for

large �. This is what we are going to show now. As a �rst step, we derive

the extended non{degeneracy condition

`(�

�

l

)� a(u

j

; �

�

l

) 2 I

l

� int @�

j

(u

j

)(�

�

l

); � � 0; (2.22)

for all �

�

l

2 M

�

with the property int supp �

�

l

\ N

�

j

(u

j

) 6= �. The closed

intervals I

l

� R are de�ned by

I

l

= fz 2 Rj jz � (`(�

�

l

)� a(u

j

; �

�

l

))j � "g

and " is independent of l or �. Indeed, as a consequence of the non{

degeneracy condition (2.18), we can �nd an "

j

> 0 such that (2.22) holds for

all �

�

l

= �

(j)

p

l

2 �

j

. Taking the constant c from (2.19), it is easily checked

that (2.22) is valid for all �

�

l

2M

�

, if " satis�es 0 < " � c "

j

.

Because (M

�

)

��0

is bounded, the functionals a(�; �

�

l

) 2 S

0

j

are uniformly

bounded in l, �. Hence, utilizing (2.22) and the convergence of w

�

l

, we can

�nd a threshold �

2

� �

1

such that

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 int @�

j

(u

j

)(�

(j)

p

l

); � � �

2

; (2.23)

holds for all p

l

2 N

�

j

(u

j

). Consider some �xed p

l

2 N

�

j

(u

j

) and recall that w

�

l

is resulting from the �ne grid correction associated with �

(j)

p

l

. This property

can be rewritten as

`(�

(j)

p

l

)� a(w

�

l

; �

(j)

p

l

) 2 @�

j

(w

�

l

)(�

(j)

p

l

): (2.24)

Using the representation @�

j

(w)(�

(j)

p

) = @�(w(p))jpj, w 2 S

j

, and the mono-

tonicity of @�, it follows from (2.23) and (2.24) that w

�

l

(p

l

) = u

j

(p

l

) = �

0

.

Hence, the �ne grid correction makes sure that for large � each critical point

of u

j

is a critical point of the corresponding intermediate iterate. We still

have to show that these critical points are not a�ected by the coarse grid

correction, i.e. that

int supp �

�

l

\ N

�

j

(u

j

) 6= �) v

�

l

= v

l

= 0; � � �

3

; (2.25)

holds for �

�

l

2 M

�

c

and a suitable �

3

� �

2

. Let �

�

l

2 M

�

c

and int supp �

�

l

\

N

�

j

(u

j

) 6= �. As (M

�

)

��0

is ordered from �ne to coarse, we can assume

inductively that the values of w

�

l�1

in p 2 int supp �

�

l

\ N

�

j

(u

j

) were �xed

to �

0

by the preceding �ne grid corrections and were not changed by possible

9



preceding coarse grid corrections. In this case, we can use (2.22) and the

continuity of the derivative @�(z) in z 6= �

0

to �nd a �

3

� �

2

such that

`(�

�

l

)� a(w

�

l�1

; �

�

l

) 2 @�

j

(w

�

l�1

)(�

�

l

); � � �

3

: (2.26)

Using our `scalar' notation (2.8), (2.26) can be rewritten as r

l

2 @�

l

(0),

giving z

�

l

= 0. This completes the proof.

Once the correct phases

N

j

= N

�

j

(u

j

) [N

�

j

(u

j

) [N

+

j

(u

j

) (2.27)

are known, we can de�ne the bilinear form b

u

j

(v;w),

b

u

j

(v;w) =

X

p2N

�

j

(u

j

)

a

1

v(p)w(p)jpj +

+

X

p2N

+

j

(u

j

)

a

2

v(p)w(p)jpj; v; w 2 S

j

;

(2.28)

and the functional f

u

j

(v),

f

u

j

(v) =

X

p2N

�

j

(u

j

)

(s

1

+ a

1

�

0

)v(p)jpj �

�

X

p2N

+

j

(u

j

)

(s

2

� a

2

�

0

)v(p)jpj; v 2 S

j

:

(2.29)

Denoting

a

u

j

(v;w) = a(v;w) + b

u

j

(v;w); `

u

j

(v) = `(v) + f

u

j

(v); (2.30)

it is easily checked that the desired solution u

j

satis�es the variational equal-

ity

a

u

j

(u

j

; v) = `

u

j

(v); v 2 S

�

j

; (2.31)

where the reduced subspace S

�

j

� S

j

is de�ned by

S

�

j

= fv 2 S

j

j v(p) = 0; p 2 N

�

j

(u

j

)g:

If M

�

is regular and we asymptotically have M

�

= M

�

, then the reduced set

M

�

= f� 2M

�

j �(p) = 0; p 2 N

�

j

(u

j

)g �M

�

;

is inducing an extended relaxation method for the iterative solution of (2.31).

The corresponding corrections v

�

l

2 V

l

in the direction of �

l

2 M

�

are com-

puted from the linear local subproblems

v

�

l

2 V

l

: a

u

j

(v

�

l

; v) = `

u

j

(v)� a(w

l�1

; v); v 2 V

l

: (2.32)
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Assuming that the original discrete problem (1.6) is non{degenerate, it is eas-

ily seen that an extended relaxation induced by a regular sequence (M

�

)

��0

is asymptotically reducing to the linear scheme (2.32). In order to obtain

a related result for extended underrelaxations, we have to impose further

restrictions on the local approximations.

A sequence of monotone approximations (@	

�

l

)

��0

is called quasioptimal, if

the convergence of the intermediate iterates w

�

l

and of their critical values

N

�

j

(w

�

l

) implies that there is a �

0

� 0 and an open interval I � R, which

contains 0 and is not depending on �, l, such that

@	

�

l

(z) = @�

�

l

(z); z 2 I; � � �

0

; (2.33)

holds for all �

�

l

with �(p) = 0, p 2 N

�

j

(u

j

).

Now we are ready to state the main result of this section.

Theorem 2.2 Assume that the discrete problem (1.6) is non{degenerate.

Then the extended underrelaxation induced by regular search directions (M

�

)

��0

and quasioptimal local approximations (@	

�

l

)

��0

is reducing to the extended

relaxation (2.32) for � � �

0

and some �

0

� 0.

Proof. It follows from Lemma 2.3 that N

�

j

(w

�

l

) = N

�

j

(u

j

) holds for � � �

1

and some suitable �

1

� 0. The exact local corrections v

�;�

l

= z

�;�

l

�

�

l

tend to

zero. Hence, we can �nd a �

0

� �

1

so that z

�;�

l

2 I, � � �

0

. Then it follows

from (2.33) that z

�

l

= z

�;�

l

, � � �

0

. This completes the proof.

Theorem 2.2 states that for non{degenerate problems all extended underre-

laxations, which are induced by a �xed sequence (M

�

)

��0

and various qua-

sioptimal approximations, asymptotically coincide. This includes the origi-

nal extended relaxation itself. In the case of good initial iterates (\good"

with respect to the stability of the actual critical set N

�

j

(u

j

)), this optimal

asymptotic behavior dominates the whole iteration process. We refer to the

numerical experiments reported below.
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Chapter 3

Monotone Multigrid Methods

Assume that T

j

is resulting from j re�nements of an intentionally coarse tri-

angulation T

0

. In this way, we obtain a sequence of triangulations T

0

; : : : ;T

j

and corresponding nested �nite element spaces S

0

� : : : � S

j

. Though the

algorithms and convergence results to be presented can be easily general-

ized to the non{uniform case, we assume for notational convenience that the

triangulations are uniformly re�ned. More precisely, each triangle t 2 T

k

is subdivided in four congruent subtriangles in order to produce the next

triangulation T

k+1

.

Collecting the nodal basis functions from all re�nement levels, we de�ne the

multilevel nodal basis �,

� = f�

(j)

p

1

; �

(j)

p

2

: : : ; �

(j)

p

n

j

; : : : ; �

(0)

p

1

; : : : ; �

(0)

p

n

0

g; (3.1)

with m = n

j

+ : : : + n

0

elements. As indicated in (3.1), � is ordered from

�ne to coarse. An extended underrelaxation induced by a regular sequence

(M

�

)

��0

and quasioptimal local approximations (	

�

l

)

��0

is called monotone

multigrid method, if the reduced multilevel nodal basis �

�

= f� 2 �j�(p) = 0,

p 2 N

�

j

(u

j

)g � � is contained in the corresponding reduced set M

�

.

We �rst consider the constant search directions M

�

= �, � � 0, with coarse

grid functions given by �

c

= � n �

j

. In this way, we will generalize the

standard monotone multigrid method proposed in the �rst part of this paper

[18]. It is clear that � is regular.

Due to the ordering of the search directions �, each iteration step starts with

a �ne grid smoothing of the given iterate u

�

j

, involving the search directions

�

l

2 �

j

. Recall that the corresponding local �ne grid corrections can be

easily computed from (2.12).

Then, we basically want to improve the resulting intermediate iterate w

�

n

j

by

successive minimization of the energy J+�

j

in the coarse grid directions �

l

2

�

c

. To take advantage of the simple representation of linear operators and

linear functionals on the coarse spaces S

k

� S

j

, 0 � k < j, which is crucial for

the optimal complexity of classical multigrid methods, we want to restrict the

scalar corrections z

l

to such intervals, on which the subdi�erentials @�

�

l

(z) =

@�

j

(w

�

l�1

+ z�

l

)(�

l

) are linear. In this case, we can evaluate the coarse grid

corrections v

l

= z

l

�

l

without visiting the �ne grid.

Following this basic idea, we de�ne the closed, convex subset K

�

j

� S

j

,

K

�

j

= fv 2 S

j

j '

�

j

(p) � v(p) � '

�

j

(p); p 2 N

j

g;
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where the obstacles '

�

j

; '

�

j

2 S

j

are given by

'

�

j

(p) =

(

�1; w

�

n

j

(p) < �

0

�

0

; w

�

n

j

(p) � �

0

; '

�

j

(p) =

(

�

0

; w

�

n

j

(p) � �

0

1; w

�

n

j

(p) > �

0

(3.2)

for all p 2 N

j

. As usual, the index � will be frequently skipped in the sequel.

By construction of the obstacles '

j

and '

j

, the functional �

j

on K

j

can be

rewritten in the form

�

j

(v) =

1

2

b

w

n

j

(v; v)� f

w

n

j

(v); v 2 K

j

: (3.3)

The bilinear form b

w

n

j

(�; �) and the functional f

w

n

j

on S

j

are de�ned by (2.28)

and (2.29), respectively, replacing u

j

by w

n

j

. Observe that the underlying

approximate splitting

N

j

= N

�

j

(w

n

j

) [ N

�

j

(w

n

j

) [N

+

j

(w

n

j

) (3.4)

is �xed by the �ne grid smoothing.

We will impose the condition w

l

2 K

j

on the remaining intermediate iterates

w

l

, l = n

j

+ 1; � � � ;m. Equivalently, the coarse grid corrections must not

cause a change of phase. In particular, the values w

n

j

(p) = �

0

at the critical

points p 2 N

�

j

(w

n

j

) remain invariant. We emphasize, that the coupling of

the phases by the coarse grid correction is not excluded.

The restricted successive minimization of the energy functional J +�

j

on K

j

in the directions �

l

2 �

c

leads to the same type of local obstacle problems

as we have already considered in the �rst part of this paper [18]. Hence, we

can directly apply all the arguments and algorithms presented therein.

In particular, the exact solution of the resulting local obstacle problems is still

not available at reasonable cost. For an approximation we use quasioptimal

local obstacles  

l

,  

l

2 V

l

= spanf�

l

g generated by monotone recursive

restriction of the defect obstacles '

j

�w

l�1

, '

j

�w

l�1

2 S

j

. Introducing the

bilinear form a

w

n

j

(�; �) and the functional `

w

n

j

on S

j

according to (2.30) and

the local constraints D

l

� V

l

,

D

l

= fv 2 V

l

j  

l

(p) � v(p) �  

l

(p); p 2 N

j

g;

the (approximate) coarse grid corrections v

l

are �nally computed from

v

l

2 D

l

: a

w

n

j

(v

l

; v � v

l

) � `

w

n

j

(v � v

l

)� a

w

n

j

(w

l�1

; v � v

l

); v 2 D

l

; (3.5)

for all l = n

j

+1; � � � ;m. Note that the resulting standard monotone multigrid

method can be implemented as a classical V{cycle. We refer to [18] for details.
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To apply the convergence theory developed in the preceding section, we re-

formulate (3.5) as a scalar inclusion of the form (2.14). For this reason, we

de�ne the scalar, convex functions 	

l

,

	

l

(z) = �

j

(w

l�1

+ z�

l

) + �

l

(z); z 2 R; �

l

2 �

c

; (3.6)

with �

l

denoting the characteristic function of I

l

= fz 2 R j z�

l

2 D

l

g � R.

Then, it is easily checked that (3.5) can be reformulated as

z

l

2 I

l

: 0 2 a

ll

z

l

� r

l

+ @	

l

(z

l

) (3.7)

and v

l

= z

l

�

l

. Recall the notation a

ll

= a(�

l

; �

l

) and r

l

= `(�

l

)� a(w

l�1

; �

l

).

Lemma 3.1 The subdi�erentials of the scalar functions (	

�

l

)

��0

de�ned in

(3.6) are quasioptimal approximations (@	

l

)

��0

.

Proof. Consider some arbitrary, �xed � � 0 and a �xed l, �

l

2 �

c

. Being

monotone restrictions of the defect obstacles '

j

� w

l�1

and '

j

� w

l�1

, the

local defect obstacles  

l

and  

l

satisfy

'

j

� w

l�1

�  

l

� 0 �  

l

� '

j

� w

l�1

: (3.8)

Hence, 0 2 I

l

. Now the monotonicity (2.5) follows from

	

l

(z) = �

l

(z) + �

l

(z); z 2 R; (3.9)

and simple arguments from convex analysis.

Assume that the intermediate iterates w

�

l

and their critical points N

�

j

(w

�

l

)

converge to u

j

and N

�

j

(u

j

), respectively. Choose �

0

� 0 such that N

�

j

(w

�

l

) =

N

�

j

(u

j

) for � � �

0

, l = 1; : : : ;m. Then the obstacles '

�

j

, '

�

j

and the cor-

responding constraints K

�

j

remain invariant, say K

�

j

= K

�

j

for � � �

0

. It is

easily checked that u

j

is the solution of the double obstacle problem

u

j

2 K

�

j

: a

u

j

(u

j

; v � u

j

) � `

u

j

(v � u

j

); v 2 K

�

j

:

Note that the corresponding active set of u

j

coincides with the critical set

N

�

(u

j

). By the de�nition of the quasioptimality of  

�

l

, and  

�

l

(c.f. [18, 19]),

there is a positive number  

�

2 R and a threshold �

1

� �

0

, such that

 

�

l

(p) � � 

�

< 0 <  

�

�  

�

l

(p); p 2 N

j

\ int supp �

l

; � � �

1

; (3.10)

holds if �

l

is vanishing on N

�

j

(u

j

). Setting I = (� 

�

;  

�

), it is obvious that

0 2 I � I

l

so that

@	

�

l

(z) = @�

�

l

(z); z 2 I; � � �

1

; (3.11)
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is valid for all l with int supp �

l

\N

�

j

(u

j

) = �. This completes the proof.

Exploiting recent estimates of the convergence rates for the linear reduced

problem (c.f. [18, 19]), the following theorem is an immediate consequence

of Lemma 3.1 and Theorem 2.2.

Theorem 3.1 The standard monotone multigrid method induced by the local

coarse grid problems (3.5) is globally convergent.

If additionally the discrete problem (1.6) is non{degenerate, then the phases

also converge and the a posteriori error estimate

ku

j

� u

�+1

j

k � (1� c(j + 1)

�3

)ku

j

� u

�

j

k (3.12)

holds for � � �

0

with suitable �

0

� 0. Here k � k

2

= a(�; �) denotes the energy

norm and the positive constant c < 1 depends only on the ellipticity of a(�; �)

and on the initial triangulation T

0

.

Note that the error estimate (3.12) requires no additional regularity assump-

tions. On the other hand, this result is restricted to two space dimensions.

We refer to [18, 19] for a detailed discussion.

Obviously, there are no contributions from coarse grid functions �

l

2 �

c

n�

�

,

once the correct phases are �xed. However, the reduced splitting induced

by �

�

may be rather poor, leading to unsatisfying asymptotic convergence

rates (c.f. [18, 19]). Following [18], we will extend the set �

�

by suitable

truncations of the coarse grid functions �

l

2 �

c

n �

�

.

In each iteration step, we adapt �

c

to the critical set N

�

j

(w

�

n

j

) of the smoo-

thened iterate w

�

n

j

. More precisely, the actual coarse grid search directions

~

�

�

c

are given by

~

�

�

c

= f

~

� j

~

� = T

�

j;k

�

(k)

p

; �

(k)

p

2 �

c

; p 2 N

j

n N

�

j

(w

n

j

)g: (3.13)

The truncation operators T

�

j;k

,

T

�

j;k

= I

S

�

j

: : : I

S

�

k+1

; k = 0; : : : ; j � 1; (3.14)

are resulting from recursive S

�

k

{interpolation denoted by I

S

�

k

: S

j

! S

�

k

. The

reduced spaces S

�

k

� S

k

,

S

�

k

= fv 2 S

k

j v(p) = 0; p 2 N

�

k

g; k = 0; : : : ; j; (3.15)

consist of the functions v 2 S

k

vanishing on the restricted critical sets

N

�

k

= N

k

\N

�

j

(w

�

n

j

), k = 0; : : : ; j. The ordering of

~

�

�

c

= f

~

�

n

j

+1

; : : : ;

~

�

m

�

g is

inherited from �

c

. It is easily checked that

~

�

�

= �

j

[

~

�

�

c

, � � 0, is regular.
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In particular, we have

~

�

�

=

~

�

�

, � � �

0

, with some �xed

~

�

�

, if the phases

remain invariant for � � �

0

. Note that �

�

�

~

�

�

holds by construction.

As before, we use quasioptimal restrictions

~

 

l

and

~

 

l

of the defect obstacles

'

j

� w

l�1

and '

j

� w

l�1

to de�ne the local constraints

~

D

l

�

~

V

l

= spanf

~

�

l

g,

~

D

l

= fv 2

~

V

l

j

~

 

l

(p) � v(p) �

~

 

l

(p); p 2 N

j

g;

~

�

l

2

~

�

c

:

For all

~

�

l

2

~

�

c

, the coarse grid corrections ~v

l

are computed from

~v

l

2

~

D

l

: a

w

n

j

(~v

l

; v� ~v

l

) � `

w

n

j

(v� ~v

l

)� a

w

n

j

(w

l�1

; v� ~v

l

); v 2

~

D

l

; (3.16)

In this way, we have derived a truncated monotone multigrid method.

The next theorem follows almost literally in the same way as Theorem 3.1.

Theorem 3.2 The truncated monotone multigrid method induced by the lo-

cal coarse grid problems (3.16) is globally convergent.

If additionally the discrete problem (1.6) is non{degenerate, then the phases

also converge and the a posteriori error estimate

ku

j

� u

�+1

j

k � (1� c(j + 1)

�3

)ku

j

� u

�

j

k (3.17)

holds for � � �

0

with suitable �

0

� 0. The positive constant c < 1 depends

only on the ellipticity of a(�; �) and on the initial triangulation T

0

.

Both the standard and the truncated version can be implemented as a V{

cycle with non{linear Gauss{Seidel smoothing (2.12) on the �ne grid and

projected Gauss{Seidel smoothing on the coarse levels. This carries over to

the adaptive case. Other variants including W{cycles or symmetric Gauss{

Seidel smoothing can be obtained in a similar way.
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Chapter 4

Numerical Experiments

The non{linear evolution equation

@

@t

H(U) ��U = F; in 
� (0; T ); (4.1)

with suitable initial and boundary conditions describes the heat conduction

in 
 undergoing a change of phase. H is a generalized enthalpy or heat

content, U is a generalized temperature and F is a body heating term. The

enthalpy H is a scalar maximal monotone multifunction,

H(z) =

8

>

<

>

:

c

1

(z � �

0

)=�

1

if z < �

0

[0; L] if z = �

0

;

c

2

(z � �

0

)=�

2

+ L if z > �

0

z 2 R; (4.2)

which is set{valued at the phase change temperature �

0

. The positive con-

stants c

i

; �

i

, i = 1; 2, describe the thermal properties in the two di�erent

phases and L > 0 stands for the latent heat.

Discretizing (4.1) in time by the backward Euler scheme with respect to a

uniform step size � > 0, the spatial problems at the di�erent time levels

t

k

= k� can be identi�ed with problems of the form (1.1). The solution

u = U

�

(�; t

k

) is the approximation at the actual time step, the bilinear form

a(v;w) = � (rv;rw) is generated by the Laplacian and the functional ` is

given by `(v) = (�F

k

+ H

k�1

; v) with F

k

= F (�; t

k

) and a suitable function

H

k�1

2 H(U

�

(�; t

k�1

)). The brackets (�; �) denote the canonical scalar product

in L

2

(
). Finally, we choose a

i

= c

i

=�

i

, i = 1; 2, and s

1

= 0, s

2

= L so

that the piecewise quadratic function � de�ned in (1.3) satis�es @� = H.

This semi{discretization has been used by Jerome [17] to establish existence

and uniqueness of the continuous solution U and also provides a general

framework for a variety of numerical methods. We refer to Hoppe [14] and

the literature cited therein.

To illustrate the numerical properties of our monotone multigrid methods,

we will concentrate on a simple model problem, which has been already

considered by Hoppe and Kornhuber [15] and Hoppe [14]. The space{time

domain 
� (0; T ) is speci�ed by 
 = (0; 1)

2

and T = 0:5, while the physical

data are c

1

= 2, �

1

= 1, c

2

= 6, �

2

= 2 and �

0

= 0, L = 1. Using the

(physical) temperature �,

�(x

1

; x

2

; t) = (x

1

� 0:5)

2

+ (x

2

� 0:5)

2

� exp(�4t)=4; (x

1

; x

2

) 2 
; t > 0;
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the source term F is given by

F (x

1

; x

2

; t) =

(

c

1

exp(�4t)� 4�

1

if � < 0

c

2

exp(�4t)� 4�

2

if � > 0

; (x

1

; x

2

) 2 
; t > 0:

Then the generalized temperature U,

U = �

1

� if � � 0; U = �

2

� if � � 0;

is the solution of (4.1). Initial and boundary conditions taken from the exact

solution U .

As in [14, 15], we choose the time step � = 0:0125. To obtain an initial trian-

gulation T

0

, a partition of 
 in two triangles is regularly re�ned. Starting with

T

0

, we apply successive uniform re�nement to obtain a sequence of triangula-

tions T

0

; : : : ;T

7

. The resulting discrete problems (1.6) are solved iteratively

by the standard monotone multigrid method STDKH (c.f. Theorem 3.1)

and the truncated version TRCKH (c.f. Theorem 3.2). The implementation

was carried out in the framework of the �nite element code KASKADE (c.f.

Erdmann, Lang and Roitzsch [1]) and we used a SPARC IPX Workstation

for the computations.

Figure 4.1: Iteration History

Let us consider the convergence behavior for the spatial problem resulting

from the initial time step. In our �rst experiment the re�nement level is �xed

to j = 6 and we apply both multigrid methods to the initial iterate u

0

= 0.

The resulting iterative errors with respect to the energy norm are depicted

in Figure 4.1. Obviously, the iteration history can be separated in three

di�erent parts. First, we observe a rapid decrease due to the fast elimination
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of the high frequent terms. In the following transient phase the algorithm

determines the correct free boundary until �nally the asymptotic behavior of

the reduced linear iteration is reached. Obviously, TRCKH heavily bene�ts

from the adaptive truncation of the standard search directions, providing a

tremendous improvement of the asymptotic convergence rates.

Figure 4.2: Asymptotic Convergence Rates

We now concentrate on the variation of the convergence behavior with in-

creasing re�nement level j. For the �xed initial iterate u

0

= 0 the transient

convergence rates seem to be uniformly bounded but the number of transient

steps grows considerably with increasing j. However, using reasonable ini-

tial iterates as resulting from nested iteration, we found that the transient

steps were vanishing completely or (for large j) were reduced to a very small

number. Starting with the interpolated solution from the previous level, we

consider the asymptotic convergence rates �

j

given by

�

j

=

�

0

q

"

�

0

j

="

0

j

; j = 0; : : : ; 7; (4.3)

where "

�

j

denotes the iterative error after � iteration steps. To be compatible

with [14, 15], the error is measured in the l

2

{norm and we choose �

0

such

that "

�

0

j

< 10:

�8

. The resulting asymptotic convergence rates of STDKH and

TRCKH over the levels j = 1; : : : ; 7 are shown in Figure 4.2. Obviously, the

convergence rates only slightly deteriorate with increasing j.

To compare TRCKH with previous multigrid methods, we consider the algo-

rithmsMGSTEF2 (c.f. [15]) and the dampened version DMGSTEF (c.f.[14]).

As a basic construction principle of both methods, the coarse grid correction

is restricted to the interior of the (approximate) phases, which have been
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�xed by �ne grid smoothing. In addition, DMGSTEF uses advanced relax-

ation strategies in the spirit of Hackbusch and Reusken [11, 12], leading to

global convergence results and signi�cantly improved asymptotic e�ciency

rates. The asymptotic e�ciency rates q

j

are obtained by multiplying the

number �

0

of iterations appearing in (4.3) by a certain work unit. A work

unit corresponds to one symmetric Gauss{Seidel step on the �nest level j.

Table 1 below displays the resulting asymptotic e�ciency rates q

5

for TR-

CKH, MGSTEF2 and DMGSTEF at the time levels t = 10k� , k = 1; : : : ; 5.

The values for MGSTEF2 and DMGSTEF are taken from [14]. Similar re-

sults are obtained for the remaining time steps.

t=0.10 t=0.20 t=0.30 t=0.40 t=0.50

TRCKH 0.20 0.23 0.21 0.19 0.19

DMGSTEF 0.34 0.31 0.33 0.30 0.29

MGSTEF2 0.50 0.45 0.50 0.44 0.43

Table 4.1: Asymptotic E�ciency Rates

Though we did not (yet) apply a suitable ordering of the unknowns or ad-

ditional relaxation techniques, TRCKH performs best for all time levels.

Unlike the other two methods, TRCKH allows the coupling of the phases by

the (truncated) search directions. This leads to a larger coarse grid space,

which is the reason for the improved convergence.

Acknowledgements. The author wants to thank R. Roitzsch for compu-

tational assistance.
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