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Abstract. Let u ∈ H be the exact solution of a given self–adjoint elliptic
boundary value problem, which is approximated by some ũ ∈ S, S being a
suitable finite element space. Efficient and reliable a posteriori estimates of
the error jj u − ũ jj, measuring the (local) quality of ũ, play a crucial role in
termination criteria and in the adaptive refinement of the underlying mesh.
A well–known class of error estimates can be derived systematically by local-
izing the discretized defect problem using domain decomposition techniques.
In the present paper, we provide a guideline for the theoretical analysis of
such error estimates. We further clarify the relation to other concepts. Our
analysis leads to new error estimates, which are specially suited to three
space dimensions. The theoretical results are illustrated by numerical com-
putations.
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Chapter �

Introduction

Assume that the solution space H of a given selfadjoint elliptic problem is
approximated by a suitable subspace S ⊂ H and that we have computed
an approximation ũ ∈ S of the exact solution u ∈ H. We are interested in
efficient and reliable estimates of the corresponding error jju− ũ jj, measuring
the (local) quality of the approximation ũ. Among the variety of different
concepts (see for example the bibliographies included in the monographs of
Johnson [13], Szabo and Babuška [17] or Zienkiewicz and Taylor [21]) we
frequently recover the following two major steps

• Discretize the defect problem with respect to an enlarged space Q ⊂ H.

• Localize the discrete defect problem by domain decomposition.

For example, the discretization of the defect problem played a prominent role
in the paper of Bank and Weiser [5], while meanwhile standard techniques of
domain decomposition were developed in the pioneering work of Babuška and
Rheinboldt [2]. To our knowledge, the explicit hierarchical preconditioning
of the discretized defect problem first appeared in a paper of Deuflhard,
Leinen and Yserentant [8]. This construction principle has been extended
successfully from selfadjoint elliptic equations to a variety of other problems
(c.f. for example [4, 6, 7, 14, 12]).
However, this recent work concentrates on most simple finite element

spaces S and Q, where the proofs of reliability and efficiency of the resulting
error estimates are immediate. In the present paper, we intend to provide
a guideline for the analysis of more complicated situations. Using finite ele-
ments of higher order as a model example, it becomes clear, where to branch
off in other special cases. We further clarify the relation to other residual
based error estimates, resulting from apparently different concepts. By the
way, this unification leads to a better understanding of previous results. As a
further outcome of our theoretical considerations, we explain why error esti-
mation is more difficult in three than in two space dimensions and introduce
so–called hybrid error estimates to remedy those problems.
The paper is organized as follows.
In the next section, we consider the discretization of the defect equation.

It turns out that we obtain efficient and reliable error estimates, if and only if
Q satisfies a saturation assumption (C0). This result also gives some insight
in the principal limitations of a posteriori error estimation.
The application of domain decomposition to the discrete defect equation

is considered in Section 3. Without striving for utmost generality, we restrict
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our considerations to affine finite elements (c.f. condition (C1)) and we as-
sume that the splitting of the enlarged space Q into the original space S
and an extension V is induced by the interpolation operator (c.f. condition
(C2)). We emphasize that the main result stated in Theorem 4.1 can be ex-
tended to any other splitting of Q, which is stable in the sense of Oswald [15].
This indicates how to proceed in the case of non–affine elements, playing a
crucial role for higher order problems. Of course, the interpolation operator
can be replaced by other stable (quasi) projections, which may be of some
importance in connection with h–p methods.
In Section 4, we reformulate the well–known Babuška–Miller estimate [3]

for two-dimensional problems in terms of so–called hierarchical p extensions
V , taking advantage of related work by Verfürth [18, 19]. This may be a
typical example, how locally equivalent error estimates can be formulated in
quite different ways.
It is shown in the final section that Babuška–Miller type estimates and

hierarchical p extensions do not coincide any more in three space dimensions.
This gives rise to hybrid error estimates, which may be regarded as a union
of the two original concepts. The numerical properties are compared in the
case of a model example, showing that the hybrid estimates perform better
than their single components.
Acknowledgments The authors want to thank P. Deuflhard for en-

couragement and discussions, as well as R. Roitzsch and J. Ackermann for
computational assistance.
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Chapter �

Discrete Defect Problems

Let Ω be a bounded, polygonal (polyhedral) domain in the Euclidean space
R
d, d = 2, 3. For simplicity, we consider the variational problem

u ∈ H1
0 (Ω) : a(u, v) = (f, v), v ∈ H1

0 (Ω), (2.1)

with the bilinear form a(·, ·) given by

a(v, w) =
d∑

i,j=1

∫
Ω
aij∂iv∂jw dx, v, w ∈ H1

0 (Ω),

and
(f, v) =

∫
Ω
fv dx, f, v ∈ L2(Ω),

denoting the usual scalar product in L2(Ω). We assume that aij ∈ L∞(Ω),
satisfying aij(x) = aji(x), i, j = 1, . . . , d, and

α0|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ α1|ξ|2, ξ ∈ R
d, 0 < α0 ≤ α1, (2.2)

for almost all x ∈ Ω. More general boundary conditions may be incorporated
in the usual way.
We will make frequent use of the energy norm jj v jj = a(v, v)1/2 of v ∈

H1
0 (Ω) and of the equivalent (semi) norm |v|1 = (

∑d
i=1

∫
Ω(∂iv)

2 dx)1/2.
With conforming finite element methods in mind, we approximate the

solution space H1
0 (Ω) by a suitable finite dimensional subspace S ⊂ H1

0 (Ω).
The corresponding approximation uS ∈ H1

0 (Ω) of the exact solution u ∈
H1

0 (Ω) is the unique solution of the discrete variational problem

uS ∈ S : a(uS , v) = (f, v), v ∈ S. (2.3)

In most practical calculations, only a further approximation ũ ∈ S of uS
is available. For example, ũ may result from the iterative solution of (2.3).
In the remainder of this paper, we concentrate on estimates of the total
error jj u − ũ jj, measuring the quality of the overall approximation of u.
Here, the algebraic error jjuS− ũ jj may interfere with the discretization error
jj u − uS jj. Estimates, which provide upper and lower bounds for the total
error, are called reliable and efficient, respectively. Of course, reliability is
more important than efficiency, but unfortunately it turns out to be more
difficult to obtain.
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For given ũ ∈ S, the desired defect d = u− ũ ∈ H1
0 (Ω) is the solution of

d ∈ H1
0 (Ω) : a(d, v) = rũ(v), v ∈ H1

0 (Ω), (2.4)

where the right–hand side

rũ(v) = (f, v)− a(ũ, v), v ∈ H1
0 (Ω),

denotes the residual of ũ. To discretize the continuous defect problem (2.4),
we introduce an enlarged subspace Q ⊂ H1

0 (Ω),

Q = S + V ,
by adding the finite dimensional subspace V ⊂ H1

0 (Ω) to the given space S.
The resulting discrete defect problem

dQ ∈ Q : a(dQ, v) = rũ(v), v ∈ Q, (2.5)

provides the approximation dQ of the exact defect d. Under certain con-
ditions, the discrete error jj dQ jj will turn out to be a reliable and efficient
estimate of the total error.
Observe that the discrete defect dQ ∈ Q can be rewritten as

dQ = uQ − ũ,

where uQ ∈ Q is the solution of the extended problem

uQ ∈ Q : a(uQ, v) = (f, v), v ∈ Q. (2.6)

On the other hand, we can utilize the Ritz projection PQ : H1
0 (Ω) → Q,

defined by

PQw ∈ Q : a(PQw, v) = a(w, v), v ∈ Q, w ∈ H1
0 (Ω),

to see that dQ = PQd is just the orthogonal projection of d ∈ H1
0 (Ω) to Q. As

orthogonal projections have unit norm, we have the following lower bound.

Proposition 2.1 The discrete defect dQ = uQ − ũ satisfies

jj uQ − ũ jj ≤ jj u− ũ jj . (2.7)

To derive an upper bound, we have to utilize a saturation assumption

(C0) jju− uQ jj ≤ β jj u− uS jj, β < 1.

Obviously, (C0) states that the larger space Q ⊃ S must lead to a better
approximation uQ �= uS .

Theorem 2.1 The saturation assumption (C0) is equivalent to each of the
following upper estimates

jju− ũ jj ≤ (1− β2)−1/2 jjuQ − ũ jj, ∀ũ ∈ S, (2.8)

and
jju− uS jj ≤ (1 − β2)−1/2 jj uQ − uS jj . (2.9)

5



Proof. We first show that (C0) implies (2.8). Let ũ ∈ S. Exploiting the
orthogonality

a(uQ − u, ũ) = a(uQ − u, uQ) = 0,

resulting from (2.6), we obtain by elementary calculations and (C0) that

jjuQ − ũ jj2 = jj u− ũ jj2− jj u− uQ jj2 ≥ (1− β2) jj u− ũ jj2 .

It is clear that (2.8) implies (2.9). To show that (C0) follows from (2.9),
we calculate

‖u− uS‖2 = ‖u− uQ‖2 + ‖uQ − uS‖2 ≥ ‖u− uQ‖2 + (1 − β2)‖u− uS‖2,

providing the saturation (C0).

Consider a sequence of spaces Sl, and extensions Vl, l = 0, 1, . . .. If the
corresponding enlarged spaces Ql allow for approximations uQl

of higher or-
der, then the resulting error estimates are asymptotically exact. However, it
is not known a priori, at which index l the asymptotic behavior starts.
In fact, for fixed S and any finite dimensional extension V , we can find

nontrivial right–hand sides, such that the saturation assumption (C0) is vi-
olated.

Proposition 2.2 Assume that the subspace L ⊂ L2(Ω) satisfies

dim L > dim V . (2.10)

Then there is at least one non–vanishing right–hand side f ∈ L so that the
discrete problems (2.3) and (2.6) have the same solutions uQ = uS.

Proof. Consider the defect operator

D : L → S⊥, f �→ uQ − uS,

where S⊥ denotes the (energy) orthogonal complement of S in Q. Because
of

dim L > dim V ≥ dim S⊥

the operator D cannot be one-to-one. Therefore exists the asserted nontrivial
element f in the kernel of D.

In view of Theorem 2.1 and Proposition 2.2, the subspace V has to be
well–suited to the considered data in order to give upper bounds of the total
error. In this sense, the reliability of a posteriori error estimates is still based
on certain a priori information.
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Chapter �

Local Defect Problems

Let T be a partition of Ω in triangular (tetrahedral) elements. The sets of
interior edges (and triangular faces) of the elements T ∈ T are called E (and
F), respectively. Denoting by hT and ρT the diameters of the circumscribed
and of the inscribed ball of an elementT ∈ T , the shape regularity σ of T is an
upper bound of the aspect ratio hT /ρT for all T ∈ T . Finally, let the partition
T be conforming in the sense that the intersection of two different elements
of T is either a common vertex, a common edge, (a common triangular face)
or is empty.
We approximate the solution space H1

0 (Ω) by the space Sp of conforming
finite elements of p–th order with respect to the triangulation T ,

Sp = {v ∈ H1
0 (Ω) | v|T ∈ Πp(T ), T ∈ T }, (3.1)

where Πp(T ) stands for the polynomials of order not greater than p on T .
Recall that a function v ∈ Sp is characterized by the values v(P ) in the
(Lagrangian) nodal points P ∈ N p. The restriction v|T ∈ Πp(T ) to an
element T ∈ T is determined by the values of v in N p

T = N p ∩ T . We will
frequently omit the superscript p in the sequel.
As in the preceding section, we consider the enlarged space Q ⊂ H1

0 (Ω),
resulting from the extension of the given finite element space S by a suitable
space V ⊂ H1

0 (Ω). To prepare the assumption (C1) on V , a subset Ψ of
H1

0 (Ω) is called locally affine, if for each element T ∈ T the set of non–
vanishing restrictions ΨT = {ψ|T | ψ ∈ Ψ, ψ|T �≡ 0} can be identified with
a finite set ΨT̂ of linearly independent shape functions on a fixed reference

triangle (tetrahedron) T̂ via the transformation

ψ ◦ φT = ψ̂ ∈ ΨT̂ , ψ ∈ ΨT . (3.2)

Here, the affine transformation φT maps the reference element T̂ one-to-one
onto T . The following assumption will be crucial for the remainder of this
section.

(C1) The extension V has a locally affine basis Ψ.

As a consequence of (C1), all non–vanishing restrictions ψ|T , ψ ∈ Ψ, are
linearly independent on T ∈ T . Note that the treatment of elliptic problems
of higher order, as discretized by conforming, but non–affine finite elements
(as for example the Argyris element), may give rise to suitable generalizations
of the condition (C1).
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Assuming that Q consists of continuous functions v, we define the inter-
polation operator I : Q → S by

Iv ∈ S : Iv(P ) = v(P ), P ∈ N , (3.3)

playing an important role in the following condition.

(C2) The extension V consists of continuous functions and provides a direct
splitting of Q = S ⊕ V such that

S = IQ, V = (id− I)Q.

It may be useful (for example in the framework of h–p methods) to modify
the condition (C2) by replacing the interpolation I by different (quasi)–
projections. In this case the proof of corresponding stability estimates (c.f.
Lemma 3.1) becomes less local (and more complicated).
Extensions V will be frequently defined via suitable shape functions ΨT̂ ,

vanishing on the nodal points NT̂ = φ−1
T NT of the reference element T̂ . In

this way, the assumptions (C1) and (C2) are clearly satisfied. Note that this
approach covers the extension of S by uniform h, p and h–p refinement.
Example 3.1: We consider the case of piecewise linear finite elements in

three space dimensions. Then, the set N 1 of nodal points coincides with the
interior vertices of the elements T ∈ T and the following products of the
barycentric coordinates λ0, . . . , λ3 on T̂ clearly vanish in P ∈ NT̂ :

ψ̂Ê = λP0λP1 , Ê = (P0, P1),

ψ̂F̂ = λP0λP1λP2 , F̂ = (P0, P1, P2),

ψ̂T̂ = λP0λP1λP2λP3 , T̂ = (P0, P1, P2, P3).

Here, Ê and F̂ run through all edges and faces of T̂ . The resulting basis
functions ψE , ψF and ψT are called quadratic, cubic and quartic bubbles
on the edges E ∈ E, the triangular faces F ∈ F and the tetrahedra T ∈
T , respectively. Note that the extension of S1 by the quadratic bubbles
V2 = {ψE, E ∈ E} is producing the piecewise quadratic finite element space
S2 = S1 ⊕ V2.
The splitting

Q = S ⊕
⊕
ψ∈Ψ

Vψ, Vψ = span{ψ}, (3.4)

gives rise to the following local defect problems

dS ∈ S : a(dS , v) = rũ(v), v ∈ S, (3.5)

and
dψ ∈ Vψ : a(dψ, v) = rũ(v), v ∈ Vψ. (3.6)
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Solving (3.5) and (3.6) instead of the discrete defect equation (2.5), we replace
the bilinear form a(·, ·) on the enlarged spaceQ by the preconditioner induced
by the splitting (3.4). The corresponding error estimate

jj uQ − ũ jj2 ≈ ηS +
∑
ψ∈Ψ

ηψ (3.7)

consists of the algebraic error

ηS = jj dS jj2 = jj uS − ũ jj2 (3.8)

and the scaled residuals

ηψ = jj dψ jj
2
= rũ(ψ)

2/a(ψ, ψ), ψ ∈ Ψ. (3.9)

In the remainder of this section, we will show that under the assumptions
(C1) and (C2), the estimate (3.7) provides lower and upper bounds for the
discrete error jjuQ − ũ jj. Recall that the relation of the discrete error to the
desired true error has been treated in the preceding section.
We will make frequent use of the local (semi)–norm | · |1,T , where the

integration is carried out only over the element T ∈ T .
We will further utilize the reference spaces ST̂ = Πp(T̂ ) and VT̂ = span

ΨT̂ . The extended reference space QT̂ = ST̂ ⊕ VT̂ is spanned by the form

functions on the reference element T̂ .
Throughout this paper a � b, a � b and a � b stands for a ≤ Cb, a ≥ cb

and cb ≤ a ≤ Cb. The constants c, C only depend on the degree p of the
finite element space S, the shape regularity σ of T , the ellipticity of the
continuous problem and the form functions ΨT̂ generating the extension V .

Lemma 3.1 Assume that the extension V satisfies the conditions (C1), (C2).
Then the interpolation operator I : Q → S is stable in the sense that

jjIv jj � jj v jj, v ∈ Q. (3.10)

Proof. We consider the interpolation Iv|T of some fixed v ∈ Q on an
arbitrary fixed element T ∈ T . Using the affine transformation, we obtain

|v|21,T � h−2
T meas(T ) |v ◦ φT |21,T̂ . (3.11)

It is easily seen that the operator Î : QT̂ → ST̂ , interpolating in the nodal
points NT̂ , satisfies the equation

(Iv) ◦ φT = Îv̂, v̂ = v ◦ φT . (3.12)

As Î is reproducing constants on T̂ and the reference space QT̂ is finite–
dimensional, we obtain

|Î v̂|1,T̂ � |v̂|1,T̂ . (3.13)
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Now we only have to insert (3.12) in (3.11) and to apply (3.13) in order to
show

|Iv|21,T � |v|21,T . (3.14)

Summing up over all T ∈ T and exploiting the ellipticity (2.2) gives the
assertion.

The following Lemma is an immediate consequence of Lemma 3.1.

Lemma 3.2 Assume that the extension V satisfies the conditions (C1), (C2).
Then the equivalence

jj v jj2 � jj vS jj2+ jj vV jj2, v ∈ Q, (3.15)

holds, where v = vS + vV is uniquely decomposed in vS ∈ S and vV ∈ V .

Proof. Let v ∈ Q. By condition (C2), we have vS = Iv, and vV = v − Iv
so that the lower estimate

jjIv jj2+ jj v − Iv jj2 � jj v jj2

follows from Lemma 3.1. On the other hand the triangle inequality and the
Cauchy–Schwarz inequality yield

jj vS + vV jj2 ≤ (jj vS jj+ jj vV jj)2 ≤ 2(jj vS jj2+ jj vV jj2).

This completes the proof.

The further splitting of the extension V is considered in the next lemma.

Lemma 3.3 Assume that the extension V satisfies the conditions (C1), (C2).
Then the equivalence

jj v jj2 �
∑
ψ∈Ψ

jj vψ jj2, v ∈ V , (3.16)

holds, where v =
∑
ψ∈Ψ vψ is uniquely decomposed in vψ ∈ Vψ, ψ ∈ Ψ.

Proof. Let some fixed v ∈ V be decomposed according to

v =
∑
ψ∈Ψ

vψ, vψ ∈ Vψ. (3.17)

We consider v on an arbitrary fixed element T ∈ T , using the transformed
function v̂ = v ◦φT ∈ VT̂ on the reference triangle T̂ . Due to condition (C1),
the transformation of the decomposition (3.17) takes the form

v̂ =
∑
ψ̂∈ΨT̂

vψ̂, (3.18)
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where vψ̂ = vψ◦φT , ψ ∈ ΨT . As a consequence of condition (C2), all functions
in the reference space VT̂ vanish in the nodes NT̂ so that | · |1,T̂ is a norm on
VT̂ . As all norms on a finite dimensional space are equivalent, we have

|v̂|2
1,T̂

�
∑
ψ̂∈ΨT̂

|vψ̂|21,T̂ . (3.19)

In view of the shape regularity of T , this equivalence transforms to

|v|21,T �
∑
ψ∈Ψ

|vψ|21,T . (3.20)

Summing up over T ∈ T and exploiting the ellipticity (2.2) gives the asser-
tion.

Following the proof of Lemma 3.2, the upper bound C = dim VT̂ in (3.16)
can be alternatively shown by the Cauchy–Schwarz inequality.
Now we are ready to state the main result of this section.

Theorem 3.1 Assume that the extension V satisfies the conditions (C1)
and (C2). Then the algebraic error ηS and the local contributions ηψ, ψ ∈ Ψ,
provide lower and upper bounds for the discrete error,

jjuQ − ũ jj2 � ηS +
∑
ψ∈Ψ

ηψ. (3.21)

Proof. Lemma 3.2 and 3.3 jointly state for the direct splitting

v = vS +
∑
ψ∈Ψ

vψ (3.22)

of v ∈ Q into vS ∈ S and vψ ∈ Vψ that the norm equivalence

jj v jj2 � jj vS jj2+
∑
ψ∈Ψ

jj vψ jj2

holds. Since (3.22) is the only additive splitting of v into elements of the
spaces S and Vψ, ψ ∈ Ψ, standard arguments from domain decomposition as
condensed in Lemma 3.1 of [20] give for v ∈ Q the norm equivalence

jj v jj2 � jjPSv jj2+
∑
ψ∈Ψ

jjPψv jj2 .

Here, PS : H1
0 (Ω) → S and Pψ : H1

0 (Ω) → Vψ denote the Ritz projections

a(PSv, w) = a(v, w), w ∈ S

and
a(Pψv, ψ) = a(v, ψ).
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Applying that result to the difference v = uQ − ũ, we obtain the assertion.

Recall from the preceding section that jj uQ − ũ jj is equivalent to the true
error jj u− ũ jj, if the saturation assumption (C0) is fulfilled.
Estimates of the algebraic error ηS may be derived by preconditioning of

the algebraic defect equation (3.8) (see Deuflhard, Leinen and Yserentant
[8], Bornemann, Erdmann and Kornhuber [7]) or by arguments based on the
particular linear solver, which is used (e.g., for the cg-method Deuflhard [9]).
If the exact finite element solution uS = ũ is available, the remaining

contributions ηV =
∑
ψ∈Ψ ηψ provide an estimate of the discretization error

jj u − uS jj. Assuming that ũ ≈ uS, ηV is frequently used to judge the qual-
ity of the underlying discretization. Following Babuška and Rheinboldt [2],
the local contributions ηψ are used as local error indicators in an adaptive
refinement process. More precisely, all elements T , which are contained in
the support of ψ ∈ Ψ, are marked for refinement, if ηψ exceeds a certain
threshold θ. See [6] for further information.
Of course, the results of Theorem 3.1 carry over to the case that V is split

into larger subspaces spanned by more than one basis function ψ ∈ Ψ. In
this way, error estimates of Babuška–Rheinboldt–type can be obtained. On
the other hand, the complete decomposition (3.4) is closely related to the
approach of Babuška and Miller [3], as will turn out in the following section.
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Chapter �

On p Extensions in � Space Dimensions

The spaces V with the property

Sp+1 = Sp + V (4.1)

are called p extensions of Sp. As the extended space Q = Sp+1 provides
approximations of higher order, the saturation assumption (C0) is clearly
satisfied, if the given data are sufficiently regular and the triangulation T
is fine enough. Moreover, hierarchical p extensions Vp+1 with the properties
(C1) and (C2) can be obtained in a straightforward way.
In this section, we will concentrate on hierarchical p extensions in the case

of two space dimensions d = 2. In particular, we give a reinterpretation of
the local contributions ηψ, ψ ∈ Ψ, in terms of jumps of the normal fluxes
and local consistency errors. This reinterpretation allows the illustration
and extension of recent results of Verfürth [18] and motivates the choice of
certain non–standard extensions in the 3–D case, which will be considered
in the final section. We will frequently omit the superscripts p, p + 1 in the
sequel.
Assume that the conditions (C0), (C1) and (C2) are fulfilled and that

the exact finite element solution uS of the discrete problem (2.3) is known.
Then it follows from the Theorems 2.1 and 3.1 that the solutions dψ, ψ ∈ Ψ,
of the local defect problems (3.6) provide the efficient and reliable estimate
ηV =

∑
ψ∈Ψ ηψ of the discretization error jju − uS jj2. In the piecewise linear

case p = 1, this error estimate has been introduced by Deuflhard, Leinen and
Yserentant [8].
The local consistency error RT of uS on T ∈ T is defined by

RT = f +
2∑

i,j=1

∂i (aij∂juS) , T ∈ T .

Utilizing additionally the jumps RE of the normal fluxes of uS across interior
edges E ∈ E,

RE = −
⎡
⎣ 2∑
i,j=1

aijni∂juS

⎤
⎦
E

, E ∈ E,

n = (n1, n2) being a unit normal to E, we introduce the local error indicators
ηBMT , T ∈ T , (c.f. Babuška and Miller [3])

ηBMT = h2T ‖RT ‖20,T +
∑

E=E1,E2,E3

1
2
hE‖RE‖20,E , T = (E1, E2, E3) ∈ T . (4.2)
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Here hE denotes the length of the edge E ∈ E and we made use of the local
L2–norms ‖v‖0,E, ‖v‖0,T induced by the corresponding scalar products (·, ·)E
and (·, ·)T , respectively.
It was shown by Verfürth [18] for the Poisson equation that

jj u− uS jj2 �
∑
T∈T

ηBMT (4.3)

holds for piecewise constant data f ∈ C,

C = {v ∈ L2(Ω) | v|T = constant, T ∈ T }.

Denoting by ωE = T1(E)∪T2(E) the union of the two triangles T1(E), T2(E)
with the common interior edge E ∈ E and

RωE
(x) = RTi(E)(x), x ∈ int Ti(E), i = 1, 2,

the residual r(v) = (f, v)− a(uS, v) can be rewritten as

r(v) = (RωE
, v)ωE

+ (RE , v)E, v ∈ Q, supp v ⊂ ωE . (4.4)

Based on the representation (4.4), we will show that the local contributions
ηψ, ψ ∈ Ψ, and ηBMT , T ∈ T , are locally equivalent for p > 1. Note that (4.4)
can also be used for an efficient implementation of ηψ.
In view of (4.4), we introduce the subsets ΨE = {ψ ∈ Ψ | supp ψ ⊂ ωE}

of Ψ and the corresponding subspaces VE = span {ψ ∈ ΨE}, E ∈ E. As
a consequence of condition (C1), a function v ∈ V is contained in VE, if
and only if supp v ⊂ ωE . Exploiting that locally constant functions are not
contained in V , the inequalities

‖v‖0,E � h
1/2
E jj v jjωE

, v ∈ V , (4.5)

and
‖v‖0,T � hT jj v jjT , v ∈ V , (4.6)

can be derived by the standard affine transformation technique. As usual,
the subscripts ωE , T indicate the corresponding localization of the energy
norm.
We are ready to estimate ηψ, ψ ∈ ΨE, in terms of RωE

and RE.

Lemma 4.1 Assume that the conditions (C1) and (C2) are satisfied and
that aij ∈ C, i, j = 1, 2. Then the estimates

hE‖RE‖20,E − h2E‖RωE
‖20,ωE

�
∑
ψ∈ΨE

ηψ � hE‖RE‖20,E + h2E‖RωE
‖20,ωE

(4.7)

hold uniformly for all E ∈ E and all right–hand sides f ∈ C.
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Proof. Consider some fixed E ∈ E. We introduce the auxiliary problem

dE ∈ VE : a(dE , v) = r(v), v ∈ VE, (4.8)

with respect to the subspace VE . Denoting ηE = jj dE jj2, the equivalence
∑
ψ∈ΨE

ηψ � ηE (4.9)

follows from Lemma 3.3. Hence, it is sufficient to show (4.7) with
∑
ψ∈ΨE

ηψ
replaced by ηE .
Inserting v = dE in (4.8) and using the representation (4.4), the Cauchy–

Schwarz inequality, the estimates (4.5), (4.6) and hE � hTi(E), i = 1, 2, we
obtain

ηE = r(dE) = (RωE
, dE)ωE

+ (RE , dE)E
≤ ‖RωE

‖0,ωE
‖dE‖0,ωE

+ ‖RE‖0,E‖dE‖0,E �
� η

1/2
E

(
hE‖RωE

‖0,ωE
+ h

1/2
E ‖RE‖0,E

)
.

This gives the right estimate in (4.7).
To prove the left inequality in (4.7), we follow the arguments of Verfürth

[18]. In particular, for given RE , we construct a function vE ∈ Q leading to
a suitable test function vV ∈ VE , which can be used in (4.8). Here we will
utilize the quadratic bubble function ψE ∈ S2, which is defined according to
the 3–D analogue in Example 3.1. It is easily checked that ψE is non–negative
on supp ψE = ωE and

‖w‖0,E � ‖wψ1/2
E ‖0,E, ‖ψEv‖0,ωE

� ‖v‖0,ωE
(4.10)

holds for w ∈ Πp−1(E) and v|T1,2(E) ∈ Πp−1(T1,2(E)), respectively. Using
constant extension on the reference triangle (c.f. Verfürth ([18], p. 7), we
define an extension operator P : C0(E) → C0(ωE) such that

‖Pv‖0,ωE
� h

1/2
E ‖v‖0,E, v ∈ Πp−1(E). (4.11)

We finally set vE = ψEP (RE). As the coefficients aij are piecewise constant,
we have RE ∈ Πp−1(E) so that vE ∈ Q. According to (4.10) and (4.11), vE
has the property

‖vE‖0,ωE
� h

1/2
E ‖RE‖0,E . (4.12)

Decomposing vE = vS + vV in vS = IvE ∈ S and vV = vE − IvE ∈ V , we
clearly have r(vS) = 0, as uS is the exact finite element solution. On the
other hand, we conclude from supp vV ⊂ ωE that vV ∈ VE. Hence, vV is an
admissible test function in the auxiliary problem (4.8). Moreover, it follows
from the stability of the interpolation I, as stated in Lemma 3.1, together
with the (inverse) inequalities (4.6) and (4.12) that

jj vV jj � jj vE jj � h−1
E ‖vE‖0,ωE

� h
−1/2
E ‖RE‖0,E. (4.13)
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Using again (4.4), the Cauchy–Schwarz inequality and the estimates (4.13)
and (4.12), the assertion follows from

‖RE‖20,E � ‖REψ
1/2
E ‖20,E = (RE, vE)E = r(vS) + r(vV)− (RωE

, vE)ωE

= a(dE, vV)− (RωE
, vE)ωE

≤ jj dE jj jj vV jj+‖RωE
‖0,ωE

‖vE‖0,ωE

� h
−1/2
E ‖RE‖0,E

(
η
1/2
E + hE‖RωE

‖0,ωE

)
.

To improve the sub-optimal lower bound in (4.7), we now derive additional
estimates for the local consistency errorRT . For this reason, we introduce the
subsets ΨT = {ψ ∈ Ψ | supp ψ ⊂ T} of Ψ and the corresponding subspaces
VT = span{ψ ∈ ΨT}, T ∈ T . Due to (C1), we again get that a function
v ∈ V is contained in VT , if and only if supp v ⊂ T . Note that ΨT is empty
in the piecewise linear case p = 1.

Lemma 4.2 Assume that the conditions (C1) and (C2) are satisfied, that
aij ∈ C, i, j = 1, 2, and p > 1. Then the equivalence

∑
ψ∈ΨT

ηψ � h2T ‖RT ‖20,T (4.14)

holds uniformly for all T ∈ T and all right–hand sides f ∈ C.

Proof. Consider some fixed T ∈ T . Again, we utilize an auxiliary problem

dT ∈ VT : a(dT , v) = r(v), v ∈ VT , (4.15)

denoting ηT = jj dT jj2. According to Lemma 3.3, we have

ηT �
∑
ψ∈ΨT

ηψ. (4.16)

Inserting v = dT in (4.15), the upper bound ηT � h2T‖RT ‖20,T follows imme-
diately from (4.4), the Cauchy–Schwarz inequality and (4.6).
To show the remaining estimate h2

T‖RT ‖20,T � ηT , we follow the lines of
proof of Lemma 4.1, replacing ψE by the cubic bubble function ψT ∈ S3, also
taken from Example 3.1. It is easily seen that

‖vψT‖0,T � ‖v‖0,T � ‖vψ1/2
T ‖0,T , v ∈ Πp−2(T ). (4.17)

Due to the piecewise constant data, we have RT ∈ Πp−2(T ), so that vT =
ψTRT ∈ Q. Now vS = IvT satisfies r(vS) = 0 and vV = vT − IvT ∈ VT is
an admissible test function in (4.15). Using the stability of I, the inverse
estimate (4.6) and (4.17), we conclude

jj vV jj � jj vT jjT � h−1
T ‖vT‖0,T � h−1

T ‖RT ‖0,T
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so that the assertion follows from

‖RT ‖20,T � ‖ψ1/2
T RT‖20,T =

= (RT , vT ) = r(vS) + r(vV) = a(dT , vV) � h−1
T ‖RT ‖0,T η1/2T .

The following Theorem is an immediate consequence of Lemma 4.1 and
4.2.

Theorem 4.1 Assume that the conditions (C1) and (C2) are satisfied, that
aij ∈ C, i, j = 1, 2, and p > 1. Then the local error indicators ηψ, ψ ∈ Ψ,
and ηBMT , T ∈ T , are equivalent in the sense that

∑
ψ∈ΨE

ηψ � ηBMT1(E) + ηBMT2(E), E ∈ E, (4.18)

and
ηBMT �

∑
E=E1,E2,E3

∑
ψ∈ΨE

ηψ, T = (E1, E2, E3) ∈ T , (4.19)

holds uniformly for all right–hand sides f ∈ C.

Theorem 4.1 provides a reinterpretation of the indicators ηBMT in terms of
hierarchical p extensions. Recall that the indicators ηψ are always scaled
properly. On the other hand, it has been shown by Verfürth [18] that the
estimate ηBM =

∑
T∈T η

BM
T of the discretization error is robust in the sense

that the constants are independent of f ∈ C. In view of Theorems 2.1, 3.1
and 4.1, this implies that hierarchical p extensions V p+1 saturate uniformly
in f ∈ C, if the given finite element space Sp is of order p > 1.
Let us take a closer look at the exceptional case p = 1. Then, the hierar-

chical extension V2 is spanned by the quadratic bubble functions ψE, E ∈ E.
Note that dim V ≥ dim C so that the arguments in Section 2 would not con-
tradict a corresponding uniform saturation property of V 2. However, there
are simple counterexamples with piecewise constant data, giving uQ = uS.
In view of the proof of Lemma 4.2, we can increase the robustness of ηV2

by adding the cubic bubble functions VT = span{ψT , T ∈ T } to V2, to
obtain the larger extension VBM = V2 ⊕VT . The resulting estimate ηVBM is
now locally equivalent to ηBM . However, the additional work caused by VT

usually does not pay off in practice.
Roughly speaking, we found that the two presented concepts of hierarchical

p extensions and of local jumps and consistency errors (almost) coincide in
two space dimensions. The resulting error estimates thus combine higher
order approximation with a certain robustness. The next section will show
that the situation is different in three space dimensions.
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Chapter �

On p�Extensions in � Space Dimensions

We concentrate on the most simple case of piecewise linear finite elements.
As in two space dimensions, the hierarchical p extension of S1 is given by the
space of quadratic bubbles V2 = {ψE , E ∈ E}. It is clear that V2 satisfies
the conditions (C1) and (C2), stated in Section 3.
The straightforward extension of the Babuška–Miller–type indicators from

two to three space dimensions has the form

ηBMT = h2T‖RT ‖20,T +
∑

F=F1,F2,F3,F4

1
2
hF ‖RF‖20,F , T ∈ T , (5.1)

where RT is the local consistency error of the exact finite element solution
uS in the interior of the tetrahedra,

RT = f +
3∑

i,j=1

∂i (aij∂juS) , T ∈ T ,

and RF denotes the jump of the normal flux of uS across the triangular faces,

RF = −
⎡
⎣ 3∑
i,j=1

aijni∂juS

⎤
⎦
F

, F ∈ F .

Again, we can reformulate (5.1) in terms of a suitable extension VBM .
For this reason, we define the spaces VF = spanΨF and VT = spanΨT

spanned by the cubic bubbles ΨF = {ψF , F ∈ F} and the quartic bubbles
ΨT = {ψT , T ∈ T }, respectively. The resulting extension VBM = VF ⊕ VT

clearly satisfies the conditions (C1) and (C2) and is producing the local error
indicators ηψ, ψ ∈ ΨBM = ΨF ∪ΨT , as described in Section 3.
For each triangular face F ∈ F , the subset ΨBM

F = {ψF , ψT1(F ), ψT2(F )}
contains the three bubble functions in ΨBM , which vanish outside of the
tetrahedra T1(F ), T2(F ) with the common face F . Now the following propo-
sition can be established along the lines of the preceding section.

Proposition 5.1 Assume that the coefficients aij, i, j = 1, 2, 3, are piecewise
constant. Then the local error indicators ηψ, ψ ∈ ΨBM , and ηBMT , T ∈ T ,
are equivalent in the sense that the estimates∑

ψ∈ΨBM
F

ηψ � ηBMT1(F ) + ηBMT2(F ), F ∈ F , (5.2)

and
ηBMT �

∑
F=F1 ,F2,F3,F4

∑
ψ∈ΨBM

F

ηψ, T = (F1, F2, F3, F4) ∈ T , (5.3)

hold uniformly for all piecewise constant right–hand sides f .
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Observe that the extension VBM , representing the local indicators ηBMT of
Babuška–Miller–type, is complementing the hierarchical p extension V 2,

V2 ∩ VBM = {0}. (5.4)

This is different from the 2D–case, where we have shown V 2 ⊂ VBM . Now
it becomes clear, why hierarchical p extensions work slightly sub–optimal
in three space dimensions (c.f. [7]). On the other hand, we can no longer
expect that the performance of Babuška–Miller–type estimates (implicitly)
takes advantage of higher order saturation.
To accumulate the good properties of p–extensions and Babuška–Miller–

type estimates, we introduce the error estimates resulting from the hybrid
extensions VEF = V2 ⊕ VF and VEFT = VEF ⊕ VT . Note that the extension
VEFT = V2 ⊕ VBM may be regarded as the direct sum of both concepts.
All four error estimates presented above will be compared in the following

numerical example.

Example 5.1 As a model problem, we consider the Laplacian on the unit
cube Ω = [0, 1]3. The right–hand side f is given in such a way that

u(x) = u0(x)
3∑
i=1

ai exp(−bi|x− x(i)|2)

becomes the exact solution. Here, the function u0(x1, x2, x3) =
1
2
Π3
i=1xi(xi−

1) provides the zero boundary conditions, while a1 = 100., a2 = 180.,
a3 = 120., b1 = 150., b2 = 50., b3 = 150 and x(1) = (0.5, 0.5, 0.5), x(2) =
(0.7, 0.6, 0.5), x(3) = (0.3, 0.6, 0.5) characterize the height, the slope and the
location of the local extrema x(i), i = 1, 2, 3. Figure 5.1 shows the level curves
of the solution at the cutting plane x3 = 0.5. The figure has been generated
with the help of the graphical environment GRAPE [16].
Starting with a very coarse initial partition T0 of Ω (with only one inte-

rior node), the continuous problem is discretized by piecewise linear finite
elements with respect to a sequence of triangulations T0, T1 . . . , Tl. Each re-
finement level l corresponds to an adaptive cycle, involving assembly of the
discrete problem, (iterative) solution, error estimation and possible refine-
ment. The refinement depth jl of a partition Tl is denoting the maximal
number of subsequent refinements applied to an initial tetrahedron T0 ∈ T0.
In the present case of a uniform initial partition, the refinement depth char-
acterizes the minimal stepsize of Tl. On each refinement level, the discrete
solution is computed up to an (unreasonable) high accuracy, to make sure
that the algebraic error and the discretization error do not interfere. Then
the discretization error is approximated by one of the four error estimates in
question. The local contributions ηψ are used as error indicators in the adap-
tive process. More precisely, the two tetrahedra T1(F ), T2(F ) are marked for
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Figure 5.1: Solution u at x3 = 0.5

refinement, if the corresponding sum
∑
ψ∈ΨF

ηψ exceeds a certain threshold θ.
Here, ΨF corresponds to the actual extension. The threshold θ is computed
by extrapolation as proposed by Babuška and Rheinboldt [2] (see for example
[6] for further information). As usual, the adaptive algorithm is stopped, if
a certain fixed accuracy (and the related refinement depth) is reached.
The constant β,

β = jj u− uQ jj / jj u− uS jj,

is describing the saturation property (C0) of the extension V . Figure 5.2
shows the development of β with increasing refinement and V running through
the four spaces V2, VBM , VEF and VEFT . The corresponding curves are de-
noted by P–EXT, BM, EF, and EFT, respectively. It is clearly visible that
(C0) is satisfied by all extensions in question, but that VBM is the only
extension, which does not provide an approximation of higher order.
To illustrate the effect of localization, the following Figure 5.3 shows the

ratio
κprc = ηV/ jj uQ − uS jj

2

as a function of the refinement level l. It comes out that the underlying
preconditioning of the discrete defect equation (2.5) hardly affects the results,
i.e. we have κprc ≈ 1 in all four cases.
As a consequence, the effectivity index

κeff = ηV/ jj u− uS jj2 = κprc(1− β2)

is closely related to the saturation constant β. This explains the poor per-
formance of BM. Note that the additional extension of VEF by the quartic
bubbles VT scarcely changes the results.
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Figure 5.2: Saturation Property

1.0

Figure 5.3: Effect of Preconditioning

Finally, Table 5.1 shows the complete approximation history for P–EXT,
BM and the hybrid estimate EF. EFT is more expensive and again provides
almost the same results as EF. If we require a certain fixed accuracy, all local
error indicators in question are producing more or less the same (reasonable)
mesh. Hence, we can compare their numerical efficiency by comparing the
number of adaptive cycles, which are needed until this mesh is obtained.
For example, the hybrid extension EF, provides the accuracy 2.15e-1 after
only seven adaptive cycles. Two or three more adaptive cycles are needed
by the canonical hierarchical extension P–EXT to obtain a comparable accu-
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1.0

Figure 5.4: Effectivity Index

level P-EXT BM EF
j nodes error j nodes error j nodes error

0 0 27 3.45e+1 0 27 3.45e+1 0 27 3.45e+1
1 1 125 7.49e+0 1 125 7.49e+0 1 125 7.49e+0
2 2 486 1.69e+0 2 181 3.15e+0 2 568 1.69e+0
3 3 689 1.29e+0 3 452 1.45e+0 3 1410 1.05e+0
4 4 1870 8.89e–1 4 708 1.19e+0 4 2922 7.40e–1
5 4 3435 6.90e–1 4 1715 8.85e–1 5 14179 4.20e–1
6 5 7367 5.36e–1 4 2310 7.96e–1 6 26115 3.29e–1
7 6 19119 3.70e–1 5 3630 6.63e–1 6 93084 2.15e–1
8 6 22224 3.47e–1 5 7625 5.21e–1
9 6 51337 2.69e–1 5 14982 4.08e–1
10 6 126278 1.93e–1 6 28149 3.21e–1
11 6 48512 2.72e–1
12 6 87713 2.20e–1

Table 5.1: Approximation History

racy (and a comparable grid). Providing corresponding results not before 12
adaptive cycles, the performance of the Babuška–Miller–type extension BM
is still much worse.
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